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Abstract: Human capability to perform routine tasks declines with age and age-related problems.
Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly pop-
ulation. This paper addresses the problem of the continuous detection of daily human activities
using a mm-wave Doppler radar. In this study, two strategies have been employed: the first method
uses un-equalized series of activities, whereas the second method utilizes a gradient-based strategy
for equalization of the series of activities. The dynamic time warping (DTW) algorithm and Long
Short-term Memory (LSTM) techniques have been implemented for the classification of un-equalized
and equalized series of activities, respectively. The input for DTW was provided using three strategies.
The first approach uses the pixel-level data of frames (UnSup-PLevel). In the other two strategies, a
convolutional variational autoencoder (CVAE) is used to extract Un-Supervised Encoded features
(UnSup-EnLevel) and Supervised Encoded features (Sup-EnLevel) from the series of Doppler frames.
The second approach for equalized data series involves the application of four distinct feature ex-
traction methods: i.e., convolutional neural networks (CNN), supervised and unsupervised CVAE,
and principal component Analysis (PCA). The extracted features were considered as an input to the
LSTM. This paper presents a comparative analysis of a novel supervised feature extraction pipeline,
employing Sup-ENLevel-DTW and Sup-EnLevel-LSTM, against several state-of-the-art unsupervised
methods, including UnSUp-EnLevel-DTW, UnSup-EnLevel-LSTM, CNN-LSTM, and PCA-LSTM. The
results demonstrate the superiority of the Sup-EnLevel-LSTM strategy. However, the UnSup-PLevel
strategy worked surprisingly well without using annotations and frame equalization.

Keywords: human activity recognition (HAR); dynamic time warping (DTW); convolutional variational
autoencoder (CVAE); mm-wave radar sensor; deep neural networks (DNNs)

1. Introduction

The physical and mental well-being of the ageing population is a serious challenge for
all countries as the pace of the aging population is currently much faster than anticipated [1].
People over seventy are prone to having age-related medical conditions [2], which consume
a major part of national health spending [3]. Elderly people with medical conditions
require regular physical monitoring. This makes it difficult for such vulnerable people
to live independently, and they either have to live in care homes or rely upon private
care. However, many elderly people prefer to live independently in their own homes,
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rather than moving to other facilities later in their lives. Sensor-based activity monitoring
facilitates elderly people to live independently and safely, as such systems can provide
some reasonable level of health monitoring.

HAR is a widely researched area and can be categorized into two classes based on
the type of device for HAR, namely wearables and non-wearable HAR. Wearable systems
predominantly use accelerometer and gyroscope sensors [4–6] in the form of fitness bands
and body-worn sensors [7,8]. In [9], wearable sensors and machine learning algorithms are
used to identify anomalous gestures and provides temporal information such as duration
and frequency. The authors use situation calculus and neural networks for modeling and
detecting motion disorders. In [10], the authors used smartphones and a deep neural
network-based system for continuous HAR.

Wearable devices are popular among the youth, as most of them connect with mobile
devices, but this technology is not well suited for the elderly population as they might
forget to wear it or can lose it easily. HAR for elderly people is mainly helpful to highlight
any risks or dangerous situation. This implies that the elderly person has to wear it to
every place for the whole time. This situation makes wearable devices comparatively
inconvenient for the elder generation.

A non-wearable system uses external sensor hardware. An RGB depth sensor such
as Kinect can be used to recognize spatial and temporal features for HAR [11]. Ther-
mal infrared imaging technology [12] and vision-based activity recognition by mobile
cameras [13] provide robust results in HAR. Acoustic sensors are also used to recognize
human actions in day-to-day life by collecting data using a microphone [14]. In another
work, the authors presented a methodology for automatic segmentation and recognition of
continuous human activity using digital cameras in [15].

However, these approaches are intrusive and lack the privacy required by the el-
derly population.

Privacy perseverance and comfort of non-wearables can be achieved by using a radar
sensor system for continuous monitoring [16]. radar sensor technology is extensively
applied for gesture, respiration rate, human activity, and fall detection analysis [17]. Low-
cost radar sensors are a wise choice for HAR, and there are several ways to recognize
human activity using radar sensors.

HAR has a wide scope of research and many studies are currently undergoing to
develop a robust HAR by employing deep neural networks (DNNs). Ref. [18] used sparse
and non-uniform point cloud for accurate individual HAR, and out of many classifiers, a
time-distributed CNN combined with a bi-directional Long Short-Term Memory (LSTM)
provided accurate results on raw radar profiles. Ref. [19] developed a light-weighted neural
network to accurately recognize individual human activity using a mm-Wave radar sensor.
These HAR systems did not utilize feature extraction techniques. Ref. [20] applied two
feature extraction methods, namely: local Discrete Cosine Transform (DCT) and CVAE
for individual activities. These feature extraction methods provided robust results over
traditional supervised feature extraction methods.

Ref. [21] used a combination of CNN and recurrent neural network (RNN) architecture
for HAR. To reduce the dependency on the labels, Ref. [22] proposed a semi-supervised
transfer learning (TL) algorithm. This algorithm has two modules. The first module is
unsupervised domain adaptation and the second one is the supervised semantic trans-
fer. These HAR systems did not utilize feature extraction techniques as well. In [23], the
authors addressed human activity recognition using deep learning and leveraged multi-
resolution information from multiple spectrograms. They employed three time-frequency
analysis methods to create single spectrograms with varying resolutions, combining them
into a composite spectrogram for input to a VGG16 deep convolutional neural network.
The composite spectrogram enhanced recognition accuracy compared to using individual
spectrograms for six activities. The research work reported in [24] provided a hidden
Markov model (HMM) likelihood matrix of Doppler shifts for feature extraction to over-
come the limitation of a fixed sliding window. Ref. [25] provided an intelligent system
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using Markov modelling and the so-called Upper Confidence Bound method for a medical
reminder system.

One of the main limitations of the previous works on the use of radar data is that
they used individual activity recordings of equal duration, where either the number of
the activity frames were kept constant, or the time for the activity series was kept con-
stant [26,27]. In real life, the length and duration of different activities are not consistently
the same. However, such pre-processed analysis could be a challenge because in real life
different activities are performed continuously one after another. A real-time monitoring
system should be capable of detecting activities captured in different lengths of frames and
duration. However, both (equalized and non-equalized series) approaches were studied in
this research to get a better insight into the need of frame equalization.

Though the series of activities were equalized in the second approach, the number of
frames per activity per series still varies. This approach is still unexplored and has huge
potential for future research.

In this paper, a mm-wave radar sensor is used for the recognition of continuous
recordings of human activities. In [28], authors have employed mm-wave sensor data of
six subjects, with a total of twenty un-equalized series of activities data, for the recognition
of human activities by applying the DTW algorithm. Building upon our prior research,
this paper expands the scope of our study to encompass ten subjects and analyzes a
dataset comprising one hundred series of activities. Ten subjects performed a series of
daily activities, such as sitting, sit-to-stand, and walking, which were recorded. The
series of activities also contains an extreme condition where a person is having a fall and
requires attention. The same series of activities are repeated ten times by all subjects. That
allows capturing the variations in activity patterns of individual subjects as well as the
diverse patterns of different subjects. Unlike the existing methods, the different activity
recordings are not isolated in the series. Instead, the recognition is performed using the
whole data series of different activities. A sensor named TI IWR-1443® single-chip mm-
wave was integrated into the system for accurate activity recognition. We use the series of
two-dimensional (2D) range-Doppler frame of mm-wave radar sensor as the basic data.
Each range-Doppler frame gives information about the objects’ velocity (Doppler) versus
their distance to the sensor within the environment. The acquired 2D frames include a
large number of pixels. Therefore, feature extraction techniques are employed to reduce
the number of variables for recognition models. For the purpose of supervised feature
extraction, activity detection and evaluation, the data have been labelled manually.

For the classification of continuous human activities, two approaches are studied in this
paper. In the first approach, the length of each series of activities are kept as it is (without
any frame equalization) whereas in the second approach, the number of frames per series of
activities are equalised by the gradient-based frame equalization algorithm. Classification
for the first approach is performed by supervised DTW (dynamic time warping). The
DTW is applied on raw pixels of the collected frames and also on the extracted features
obtained by a deep Convolutional Variational Auto Encoder (CVAE) based on two different
strategies. In the second approach, the classification is performed by supervised Long
Short-term Memory (LSTM) after various feature extraction methods are used. Besides the
conventional CNN-LSTM strategy, a novel pipeline is introduced that separates the feature
extraction and time series analysis to alleviate the effect of limited training sample and
overfitting of the models. A supervised CVAE strategy is cascaded by an LSTM step for the
time-series analysis which outperforms the other methods.

The main contributions of this paper are the following:

1. The data collection for continuous human activity recognition using mm-wave
radar sensor.

2. Two new pipelines based on Supervised CVAE-DTW and CVAE-LSTM for continuous
and accurate HAR.

3. A comparative study with other state-of-the-art methods for HAR.
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Section 2 of the paper explains the use of the mm-wave radar sensor and the data
collection. The data analysis, incorporating the methodology, is outlined in Section 3,
followed by the experimental results and discussion in Section 4. Conclusions are outlined
in Section 5.

2. Data Collection and Description

The data acquisition experiments using a mm-wave radar sensor were followed
by data pre-processing. Data analysis techniques were then employed to classify the
activities into four different categories. The evaluation was performed by calculating frame-
based and activity-based accuracy measures. Details of each part of the methodology are
explained in the following subsections.

2.1. Data Acquisition

The mm-wave sensor is the radar that operates in a short wavelength of 1 cm to
1 mm. The short wavelength makes it a more appropriate technology for high-accuracy
human activity detection [29]. In our experiments, IWR 1443® was used to collect the data
and to capture the tiny motions of moving or stationary objects. Radar wave sensors use
electromagnetic waves to recognize human activities indoors and it is compatible with
short-range detection only [30].

The experiment area includes a chair and a soft mat at the end of the walking path of
the subjects. The subjects started from the left side of the room by sitting in a given chair
and completed the series of activities at the safety mat by covering approximately a 3 m
long walking path. The radar sensor is kept at a height of 1 m from the ground and all
subjects followed a similar path. The experimental setup is shown in Figure 1.

mm -wave
radar sensor

Height -1m

Figure 1. Experimental setup for data collection.

The temperature was from 17 °C to 22 °C at the time of data collection. All data
recordings were performed under natural daylight. All the participants wore moderate
clothing, as the temperature was mild. The data were collected from a total of ten subjects
varying in the age range of 23 to 65 years. The experiments were performed voluntarily by
all the subjects, and they were not rewarded financially. Each subject repeated the series of
activities ten times to maintain adequate samples. The four types of activities are shown in
Figure 2.

Sitting (Talk) Sit-to-stand ('Help') Walk (Cough) Fall (Scream)

Figure 2. Flowchart for activities performance order.
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The description of the data is provided in the next section. An example of the recorded
series of activities is shown in Figure 3.

Figure 3. Radar frame visualization of four human activities.

2.2. Data Description

There are four categories of activities that shape a four-class recognition problem,
including sitting, sit-to-stand, walking, and an extreme condition of falling. Ten subjects
participated in data collection. Each subject repeated the series of predefined activities to
produce a total of a hundred series of data. There were few variations in the performance of
each series of activities, as the body characteristics, walking style and movement path that
each subject has taken slightly varied from individual to individual. This implies that the
time taken for each activity series and the number of frames per series varies. The longest
series has 60 radar data frames, while the shortest series has 13 radar data frames. The time
taken to perform the longest activity is 20.24 s, whereas the shortest series was completed
in 4.60 s. This radar sensor captured nearly 2.9 frames per second. The average length of
the activity series is 26 frames.

In day-to-day life, a person performs various continuous indoor activities rather than
performing them individually. The sequence of events was designed to simulate a realistic
scenario including an extreme condition that might happen in the real life of elderly people
in their homes. The series of human activities were recorded in the form of consecutive
frames. Each frame has a specific timestamp linked to it with 2D frames of size 16 × 256
in the Doppler range. The code for acquiring data from the radar sensor is written in
MATLAB. In each Doppler range 2D heatmap, the vertical axis shows the distance to the
sensor (m). A visualization of the Doppler range heatmap along with timestamps is utilized
to annotate the data. A pattern of the four activities is shown in Figure 3. In order to
provide robust labels for semi-supervised classification as well as evaluation, a sequential
frame differencing technique was applied to each series of activities. Sequential frame
differencing was able to provide a clear difference between two consecutive activities as
this approach can precisely detect the sharp changes in the activity series. A visualization
of sequential frame differencing is provided in Figure 4.

Figure 4. Sequential frame differencing result visualization for the four activities.

A total of 2637 frames (100 series) were labelled and details of annotation are pro-
vided in Table 1. The actual 2D raw data of the range-Doppler matrix were in the
form of 16× 256× Number o f Frames (NF). For the analysis, the data were permuted
to NF × 16 × 256. Then, 80% of the labelled data were used to train the model and 20% of
the data were used as a test without shuffling. Table 1 represents that the total number of
frames captured for each subject while performing four class series of activities 10 times
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by each of ten subjects. The variance for the number of frames is high and that shows
that each subject performed each series differently and the time taken to finish the activity
varies too. This illustrates that the collected data have a wide variety in it and depicts
real-life scenarios.

Table 1. Subject-wise frames annotation details.

Subject No. Total No. of Frames Age of Subject (yr)

1 503 31

2 269 30

3 283 33

4 237 23

5 183 65

6 190 31

7 228 43

8 218 42

9 349 23

10 177 56

The flowchart for data analysis is presented in Figure 5. The data analysis has two
approaches: the first strategy is to use an un-equalized series and the other one is to use an
equalized series of activities. The details of the data analysis are given in the next section.

Continuous
HAR

UnSup-EnLevel

Without Feature
Extraction

UnSup-PLevel Sup-EnLevel UnSup-EnLevel

Classification
by DTW

Classification
by LSTM

Activity Series
with Un-

equalized Frames

Activity Series
with Equalized

Frames

With Feature
Extraction

With Feature
Extraction

 CNNSup-EnLevel PCA

Figure 5. Comprehensive system overview of data analysis methodology.

3. Data Analysis

In this section, continuous HAR is carried out using two strategies. In the first
approach, the original size of each series of activities is preserved as it is. The DTW is used
in this approach for the classification of the activities in the time-series of radar frames data.
The input data for DTW are provided using two different strategies. First, the raw radar
array data are used, while in the second strategy, feature extraction based on CVAE was
performed before classification. This allows for studying the impact of feature extraction
by comparing the classification results of DTW with and without feature extraction.

In the second approach, a gradient-based frame equalization was performed to equal-
ize the length of each series of activities. Then, they are fed to the analysis pipeline
including some feature extraction methodologies such as supervised and unsupervised
CVAE (Sup-EnLevel and UnSup-EnLevel), CNN, and PCA followed by classification based
on LSTM. The LSTM model is an improvement to the general recurrent network and
provides better result as it handles the vanishing gradient problem [31]. These approaches
are described in the following sections.
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3.1. HAR with Un-Equalized Series of Activities

The purpose of this study is to recognize indoor human activities in a continuous
manner. In a day-to-day life, a person performs multiple activities and the duration of
the activities varies depending on the type of activity, the subjects and their mood or
condition. So that, even for the same activity performed by the same person, the time
taken can be different. The data collection experiments also demonstrate that the activity
patterns, the number of frames per activity series and the time taken to perform the series
of activities are highly varying. That is very similar to the day-to-day routine of an elderly
person. To deal with data analysis of asynchronous series of activities, three types of inputs
are provided to the DTW algorithm for activity classification. The following outlines the
continuous HAR approach for un-equalized series of activities. Section 3.1.1 delves into
the DTW algorithm, which is utilized for classifying un-equalized series of activities. As
depicted in Figure 5, the classification of continuous HAR with un-equalized series of
activities is explored both with and without feature extraction in Sections 3.1.2 and 3.1.3,
respectively. In Section 3.1.3, we introduce the CVAE approach, which is employed for both
UnSup-EnLevel and Sup-EnLevel feature extraction techniques. Section 3.1.3 A outlines
the unsupervised feature extraction by CVAE, while Section 3.1.3 B and Section 3.1.3 C
detail the proposed supervised feature extraction pipeline by CVAE.

3.1.1. Dynamic Time Warping

The DTW algorithm is an effective method for finding an optimal alignment between
two sequences of data under certain restrictions. This makes DTW widely useful in a
variety of applications. DTW measures the similarity between two temporal series. Since
each subject activity profile and gesture pattern might be different, DTW allows quantifying
the similarity between the labelled and unlabeled series. This is performed based on a cost
function and allows the recognition of each category of activity, such as sitting, sit-to-stand,
walking, and falling. Two sequences are warped in a nonlinear fashion to match the actions
to each other [32]. The DTW does not require huge number of labelled data for matching
two sequences, like a neural network or a hidden Markov model (HMM) [33].

Consider two time-dependent sequences of different sizes. Here, X is a series of
activities, with the number of frames n.

X = (x1, x2, . . . , xn). (1)

Y is an another series of activities, with m being the number of frames.

Y = (y1, y2, . . . , ym). (2)

Mapping of X to the Y will give an nxm matrix. In this matrix, the distance between
the ith and jth frames of the respective series X and Y will be a squared Euclidean distance
given in (3). In this context, opting for the squared Euclidean distance is a prudent decision,
as it yields improved outcomes, when dealing with multivariate radar imagery data.

In (3), equation l is the counter of pixels over the 16 × 256 frame size.

c(xi, yj) =
16×256

∑
l=1

(xil − yjl )
2. (3)

The above equation shows the distance between two frames xi and yj in the two
series. The idea of the DTW is to find a path of the best pair of similar frames between two
series. For this aim, first, a cumulative cost matrix including the cumulative summation of
distances is computed. The computation of the elements of this cost matrix is iterative and
is based on Dynamic Programming (DP). Each element of the cost matrix is the cumulative
distance, with the following initial condition.
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γ(i, j) =

{
∞ if i = 0 or j = 0
0 if i = 0 and j = 0.

(4)

The cumulative distance γ(i, j) can be calculated by adding c(xi,yj) in the current
frame and the minimum cumulative distance from the adjacent frames shown in (5).

γ(i, j) = c(xi, yj) + min{γ(i− 1, j− 1), γ(i− 1, j), γ(i, j− 1)}. (5)

Next, the series of cumulative distances within the cost matrix are found forming a
warping path W. The path consists of a set of adjacent matrix elements defined as:

wk = (i, j)k, (6)

where (i, j) ∈ [1 : n][1 : m] for k ∈ [1 : K] and max(n, m) ≤ K < n + m− 1, where K is the
total number of elements in the path W. So, the warping path series can be expressed as
W = w1, w2, w3, ..., wk, ..., wK.

The DTW algorithm follows three constraints to calculate the warping path and the
warping cost. The constraints are as follows.

• Boundary Constraint: This states that the warping path starts at w1 = (1, 1) and ends
at wK = (n, m).

• Monotonicity Constraint: This constraint says that the warping path can not go back.
It either stays the same or moves forward. This suggests that i1 ≤ i2 ≤ · · · ≤ in and
j1 ≤ j2 ≤ · · · ≤ jm.

• Continuity Constraint: Every point in the series should be used and indexes can only
be increased by 0 or 1. In other words, the point comes from (i− 1, j), (i− 1, j− 1) or
(i, j− 1).

The total cost of a given warping path W between two series X and Y is Cw(X, Y) and
is shown in (7).

Cw =
K

∑
k=1

c(xik , yjk ). (7)

Then, the optimum path corresponds to the minimum warping cost and is computed
based on the following criteria:

Cw∗ = min{Cw | where w is the warping path}. (8)

3.1.2. Activity Detection without Feature Extraction

In this approach to HAR, the raw 2D data of dimension NF × 16 × 256 are first applied
to the unsupervised DTW algorithm for the classification of the four human activities. As
such, the classification is performed at the pixel level for the frames in the series. Thus, this
approach is called the UnSupervised Pixel Level (UnSup-PLevel) method.

3.1.3. Activity Detection with Feature Extraction

Considering the 2D Doppler radar profiles, there are many local dependencies between
the pixels of a frame. In addition, the specific patterns that can be used to distinguish the
frames of different activities are not spread over the whole space of the profiles. Then, the
effect of reducing the dimensionality of the pixels by extraction and encoding local features
is investigated. In this study, CVAE is used for feature extraction. The CVAE is explained
in the next section.

Convolutional Variational Auto-Encoder: The Variational Autoencoder (VAE) is the
model whose latent layer represents a normal distribution. VAE helps to improve data
reconstruction and reduces overfitting. The CVAE is the combination of VAE and Convolu-
tional Auto Encoder and has the benefits of both methods. The CVAE is a generative model
which has a similar network frame as the Autoencoder. The CVAE architecture includes an
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encoder and decoder network [34]. This concept of CVAE helped to extract the feature of
the time series captured from the mm-wave sensor for HAR. The encoder part of CVAE
maps the original data space into the compressed low-dimensional latent space. On the
other hand, the decoder reconstructs the original data reversing the operations to sample
from the low dimensional latent space [35]. The encoder is a recognition network and on
the other hand, the decoder is a generative model. The loss in the CVAE is the addition
of reconstruction loss and a second term which is the Kullback-Leibler divergence (KL
divergence) [36].

The architecture of CVAE with 50 latent dimensions is shown in Figure 6.

Input 64 (1,3)
Convo

128(1,3) 
Convo

Latent
Dimension

Z=50

128(1,3) 
Convo

64 (1,3)
Convo

Reconstructed
Output

Encoder Decoder

Figure 6. CVAE architecture used for latent dimension 50.

A. Unsupervised-Encoded Level (Unsup-Enlevel) Feature Extraction
To extract features based on an unsupervised strategy, all training series of 2D frames

of size NFtr × 16× 256 including all four activities are considered and used for training the
CVAE model. We refer to this approach as unsupervised encoded feature level (UnSup-
EnLevel) feature extraction. In addition, the 2D frames are vectorized to the form of
NFtr × 4096 and CVAE is applied to the 1D data and trained using vectorized data. To
improve the performance of feature extraction, the latent dimensions are varied with a
step size of five (from five to sixty) to find an optimum latent dimension. The latent
dimensionality with the highest training accuracy is chosen for training the CVAE model.
Next, the features extracted by the CVAE are used for DTW analysis. It was found that the
vectorized inputs work better rather than the 2D frames in terms of the training accuracy
of the models developed for these datasets.

B. Supervised-Encoded Level (Sup-EnLevel) Feature Extraction
In order to improve the accuracy of activity recognition, a supervised feature extrac-

tion framework is considered. For this aim, the training and validation raw data frames
corresponding to each of the four activities including sitting, sit-to-stand, walking, and
falling, were used to create four sub-datasets. These sub-datasets were used to train and
validate four CVAE models. The CVAE models with the latent dimension 5 yielded superior
results after a systematic search for the optimum latent dimension. The architecture of the
sitting activity supervised-CVAE model is shown in Figure 7. The architectures of the other
three CVAE models were almost identical to Figure 7, however the hyperparameters were
tuned according to the given data. These four CVAE models will create four feature sets for
each test series that is fed to all four models. The comprehensive pipeline for Sup-EnLevel
feature extraction with DTW is elaborated upon in the subsequent section.

Sitting
Dataset as

Input

2 (1,1)
Convo

BN 1(1,1) 
Convo BNLatent

Dimension
Z=5

1(1,1) 
Convo

2 (1,1)
Convo

Reconstructed
Output

BNBN

Encoder Decoder

Sup-EnLevel Feature Extraction for Sitting

Figure 7. The architecture of the Sup-Enlevel feature extraction for the sitting activity.

C. The Proposed Supervised Pipeline for DTW-based on Sup-EnLevel Features
The evaluation of four sets of Sup-EnLevel features by DTW is a challenging task as

four sets of testing data features were extracted from four supervised CVAE models. The
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flowchart for the evaluation is shown in Figure 8. The reference series with the supervised
features are used to apply DTW against each set of testing series. The application of DTW
for each set of testing series features will provide a cost matrix. The minimum cost distance
for each test series frame is calculated for each feature set. This implies that there are four
minimum distance values for each test frame. The minimum distance from these four
matrices is found and the corresponding class of the feature set from which this minimum
distance is extracted, is considered as the predicted label. The mathematical explanation of
this approach is outlined below.

Test Features
from Sitting

CVAE

Reference
Series from
Sup-CVAE

DTW Application

Cost_Matrix_1

Test Features
from

Standing
CVAE

Reference
Series from
Sup-CVAE

DTW Application

Cost_Matrix_2

Test Features
from Walking

CVAE

Reference
Series from
Sup-CVAE

DTW Application

Cost_Matrix_3

Test Features
from Falling

CVAE

Reference
Series from
Sup-CVAE

DTW Application

Cost_Matrix_4

Min_Dist_1 Min_Dist_2 Min_Dist_3 Min_Dist_4

c = Min(Min_Dist_1, Min_Dist_2, Min_Dist_3, Min_Dist_4) for each frame
Predicted_Class = The class value from the minimum distance (c) for each frame

Figure 8. Test series evaluation by using Sup-EnLevel feature extraction and DTW.

Taking into account a test activity series denoted as A, which has four distinct sets
of features originating from four supervised CVAE models, namely sitting, sit-to-stand,
walking, and falling, referred to as FASit,FAStand, FAWalk, and FAFall respectively. Consider
a reference series labeled as Re f , whose known labels are precisely established. The process
of feature extraction from the Ref series results in the creation of a series called Re fFE.
Subsequently, the DTW algorithm is applied independently to the four sets of features
from series A and the Re fFE series. These pairings are: FASit-Re fFE, FAStand-Re fFE, FAWalk-
Re fFE, and FAFall-Re fFE. Below, you will find the mathematical expression that describes
the evaluation of the classification of the test series, focusing on the Sup-EnLevel feature
extraction with DTW method. To facilitate comprehension, the explanation provided will
focus solely on the sitting activity model. Suppose the FASit has n number of frames
and Re fFE has m number of frames. Equations (9) and (10) shows test series FASit and
Re fFE respectively.

FASit = (FA1, FA2, . . . , FAn) (9)

Re fFE = (Re f1, Re f2, . . . , Re fm) (10)

The same methodology is applied to the remaining three sets of extracted feature series,
FAStand, FAWalk, and FAFall . To implement the DTW approach, the initial step involves
computing the square of the Euclidean distance between the ith and jth frames of the FASit
series and the Re fFE series by (11). In this equation, l represents the number of latent
dimensions (5 in this case), that were utilized during the training of the four supervised
CVAE models.

D(FAi, Re f j) =
5

∑
l=1

(FAil − Re f jl )
2 (11)

The cumulative distance γ(i, j) is calculated by using (12) for FASit and Re fFE.

γ(i, j) = D(FAi, Re f j) + min{γ(i− 1, j− 1), γ(i− 1, j), γ(i, j− 1)} (12)
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The Cost_Matrix_1 represents a cumulative distance matrix with dimensions nm. In a
similar manner, Cost_Matrix_2, Cost_Matrix_3, and Cost_Matrix_4 serve as cost matrices
corresponding to the FAStand, FAWalk, and FAFall features in relation to Re fFE, respectively.
For each frame within the FASit series, we select the minimum cost value and store it in
Min_Dist_1. Likewise, we create Min_Dist_2, Min_Dist_3, and Min_Dist_4 arrays. Then,
for each frame fi, the minimum value among the corresponding four elements in those
four arrays will be selected.

ci = min[(Min_Dist_1)i, (Min_Dist_2)i, (Min_Dist_3)i, (Min_Dist_4)i] (13)

Then, the variable ci denotes the minimum value for each frame, and we utilize the
index of the reference frame associated with this minimum cost to predict the class of the
given test series frame.

3.2. HAR with Equalized Series of Activities

Human activity can be recognized individually or in the continuous manner. In most
studies, the time or the number of frames per activity is kept fixed at the time of data
collection [37,38]. If the activity series do not have an equal number of frames, then frame-
equalization methods are applied to keep the number of frames per activity series constant.

Table 1 shows that the frames to complete the given activity vary widely with each
subject and the standard deviation for each subject (for 10 times series of activities) is
94 frames. The high deviation in time series length suggests that the frame equalization
must be performed carefully, so that no significant frame loss or redundant frame generation
occur. In this study, interpolation and extrapolation of the frames were performed based
on a new gradient-based frame equalization strategy. The main idea is to measure the level
of variations between the sequential frames using the gradient function. Then, using that
as a measure of variation in sequential frames. First, the length of the median length of the
series is considered as the intended length to equalize. Then, for the activity series with
the higher number of frames than the median requiring frame removal, the smooth parts
of the sequence with the lowest absolute gradient magnitude are removed. In the case of
series with lower number of frames than the median, more frames were added between
the two frames with highest absolute gradient values based on their average frame.

The data used in this study have 100 series of activities and the median of the number
of frames is 24. After performing the frame equalization procedure, all 100 series of activities
have 24 frames each. Despite the frame equalization processing, the number of frames
per activity and per series still varied; however, the total number of frames per series was
attained equal.

Reviewing the literature shows that the LSTM has achieved a prominent result for
the classification of time series data [39]. In [40,41], the LSTM network was applied for
HAR and good results were achieved. In our study, LSTM is applied for the frame-wise
classification for the data of equalized frames per series. The architecture of the LSTM is
described in the section below.

Long Short Term Memory For Classification: Recurrent neural networks (RNNs)
have achieved a reliable performance in many applications. The major problem with RNNs
is that the effect of the input decreases with each hidden layer and it almost vanishes
when it reaches the output layer. The loss of input information affects the cyclic network
connection of RNN [31]. The decaying gradient problem was addressed in the Long Short-
term Memory (LSTM) networks. LSTM consists of a set of recurrently connected subnets
or memory blocks. Each block contains one or more self-connected memory cells and three
are multiplicative units: the input, the output, and the forget gates. The architecture of
LSTM is similar to that of the RNN; however, the hidden layers of the RNN were replaced
by memory units to store the information for a longer period of time.

The data collected in the form of a time series are increasing exponentially. Distance-
based algorithms have achieved good results for time series classification. Many deep
neural network architectures also provided robust results for time series data analysis.
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However, LSTM can learn temporal dependencies [42] and LSTM has proven to be suc-
cessful at a range of tasks that require a long memory range [43]. The mentioned qualities
of LSTM make it an ideal candidate for sequence-to-sequence frame classification. The
employed architecture of a sequence-to-sequence LSTM model for unsupervised feature
extraction is presented in Figure 9.

LSTM Block (64,
Dropout =0.2)

LSTM Block (32,
Dropout =0.2) Dense (4, Softmax)

Figure 9. LSTM architecture for the classification with unsupervised features.

In the presented LSTM architecture, two layers of LSTM were combined. The input
to the LSTM layer was chosen using some different feature extraction methods, including
CNN, unsupervised CVAE, and PCA. The drop out ratio was added to avoid the overfitting
issue. The feature extraction methods applied to the equalized frames will be presented in
the next section.

3.2.1. LSTM Classification with Feature Extracted by CNN

One of the important factors in the performance of a classifier is the quality of the
features fed to the LSTM layers. The feature extraction, performed using a convolutional
neural network (CNN), has shown encouraging results for classification problems. Feature
extraction by CNN also provided promising results for HAR as well [43].

CNN is a widely used efficient architecture for automatic feature extraction. In contrast
to the classic fully connected networks (FCN) that require the extraction of relevant features
from raw images based on expert knowledge and decisions, CNN architecture allows the
automatic extraction of features from the images through optimization of the kernel weights,
based on the gradient descent algorithm. It also benefits from fantastic characteristics, such
as weight sharing and pooling that allow for the scaling up of the design for deeper models
with more layers of convolutional feature extraction [44].

A standard CNN architecture is made up of five layers. The first layer comprises an
input layer. The input layer will hold the information of the input images and the pixel
values. The second layer is the convolutional layer. The convolutional layer applies local
kernels to the image map for linear feature extraction. In fact, the output of this layer is
a scalar product between the kernel weights and the local receptive fields of the image
going under the kernel. Then, a non-linear activation function is applied to the linearly
extracted features based on convolution. That ensures the approximation of a complex
function based on the CNN architecture, for modeling the nonlinear relation between the
images and the targets. After the convolutional and activation layers, a pooling layer is
used to downsample the dimensionality of the feature maps. Depending on the depth of
the model, several convolution, activation, and pooling layers might cascade. Finally, the
feature maps are floored and fed into a fully connected network for decision making. The
fully connected network will work exactly as a standard artificial neuron network (ANN).
A fully connected layer is employed for the classification. However, in this study, CNN is
employed as a feature extractor, and the extracted features are fed into the LSTM layers.
Then, no FCN layer is used. The designed architecture based on the CNN for feature map
extraction and LSTM layers for this study is presented in Figure 10.

Figure 10. The employed CNN-LSTM architecture.
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3.2.2. LSTM Classification with Feature Extracted by CVAE

In the above CNN-LSTM architecture, the weights of the convolutional layers for
feature extraction were optimized together with the LSTM layer during the optimization
process. However, due to the limited number of training samples, the learning process
might be influenced, e.g., due to early stopping to avoid overfitting. On the other hand, it
is not possible to employ transfer learning strategies to adopt features from the common
pre-trained model given the special type of mm-wave radar image modalities used in this
work. One possible solution is to separate the learning and optimization process for the
convolutional feature extraction and the time-series analysis based on LSTM. This can help
to perform training in two separate steps for two less complex models. For this aim, two
different strategies are considered using the equalized frame data for feature extraction:
(1) An unsupervised CVAE-LSTM framework (UnSUp-EnLevel) and (2) a supervised
CVAE-LSTM (Sup-EnLevel) framework. The details of these two approaches are described
in Section 3.2.2 A and Section 3.2.2 B below.

A. An unsupervised CVAE-LSTM (UnSup-EnLevel with LSTM) framework
An unsupervised CVAE framework, similar to that explained in Section 3.1.3 B, has

been employed to extract features to be fed later to an LSTM architecture. The input of
the unsupervised CVAE network is the gradient-based equalized data. The unsupervised
CVAE model has been optimized and stepwise hyper parameter tuning has been carried
out to find the finest architecture. Then, two different two-layer LSTM models of units 64
and 32 have been trained using each of the extracted feature sets to classify the human
activities. The Unsup-CVAE-LSTM architecture is presented in Figure 11.

Figure 11. Unsupervised CVAE-LSTM architecture for equalized series of activities.

B. The proposed Supervised pipeline for LSTM-based on Sup-EnLevel Features
A supervised strategy to extract features based on CVAE using each of the individual

class’ data is considered, similar to what has been described in Section 3.1.3 C above.
The strategy for supervised CVAE feature extraction and LSTM is presented in Figure 12.
As shown in Figure 12, four datasets of sitting, sit-to-stand walking, and falling were
created using equalized series data. These four datasets were used for the training and
validation of four CVAE networks (Sit-CVAE, Sit-to-stand-CVAE, Walk-CVAE, and Fall-
CVAE) for feature extraction. For each CVAE model, a separate LSTM model was trained
and validated; this yielded sit-LSTM, sit-to-stand LSTM, walk-LSTM, and fall-LSTM. Sit-
CVAE was also used to extract the less relevant features from the sit-to-stand, walk, and
fall series. Then, all four class features extracted from Sit-CVAE were used as an input to
sit-LSTM. Of these four classes’ data in sit-LSTM, the sitting series will have influential
features, whereas the other three series will have insignificant attributes. The described
input data were used to train sit-LSTM for a binary classification model of sit vs the other
classes. Similarly, sit-to-stand-LSTM, walk-LSTM, and fall-LSTM networks were trained.
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The architectures of supervised sit-CVAE and sit-LSTM are illustrated in Figure 13. The
labels were predicted by majority voting of probabilities of the four LSTM models.

Unequalized Data

Equalized Data
(Gradient-based

Equalization)

Sit-CVAE
CVAE trained and
validated on sitting

frames

Sit-to-Stand-CVAE
CVAE trained and
validated on sit-to-

stand frames

Walk-CVAE
CVAE trained and

validated on Walking
frames

FAll-CVAE
CVAE trained and
validated on falling

frames

Sit-LSTM
LSTM trained and
validated on four

class frames using sit
CVAE features for

sit/rest binary
classification

Sit-to-stand-LSTM
LSTM trained and
validated on four

class frames using sit-
to-stand CVAE

features for sit-to-
stand/rest binary

classification

Walk-LSTM
LSTM trained and
validated on four
class frames using

walk CVAE features
for walk/rest binary

classification

Fall-LSTM
LSTM trained and
validated on four

class frames using 
fall CVAE features
for fall/rest binary

classification

Majority voting on the probability of above four models

Figure 12. Supervised CVAE-LSTM approach for equalized series data.

Figure 13. Supervised CVAE-LSTM architecture for Sit-CVAE-LSTM.

3.2.3. LSTM Classification for Feature Extraction Based on PCA

Given the high dimensionality of the original mm-wave radar frames (16× 256), the
standard PCA analysis has been used to reduce the number of features. Then, using the
transformed features into the lower dimensional space, an LSTM model can be used for
decision-making.Therefore, in this work, PCA is used to transform data linearly into a
lower dimensional space. Reviewing the literature shows that the number of selected
principal components is decided based on the accuracy of the model, or their percentage of
the explained variance [45].

In this work, the original data of Median× 16× 256 are used to employ PCA. For
this aim, first the data are reshaped to Median× 4096. Then, various numbers of principal
components such as 256, 1296, and 2116 were experimented with for the purpose of feature
extraction, and the gained validation accuracies were compared. Results showed that
selecting 2116 features would gain the best results. Then, the extracted features based on
PCA were applied to the LSTM model for classification. The PCA-LSTM framework is
presented in Figure 14.
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Figure 14. PCA-LSTM framework for equalized series of activities.

4. Results

In this section, the results obtained with the methods described in Section 3 are
presented. This includes the results achieved with and without the frame equalization
process. In total, 80 series were considered as train data, whereas 20 series were considered
as test data. The length of each series differs in the non-equalized frame data whereas
each series of human activities with equalized frames has 24 frames, as this is the median
number of frames of all 100 series.

The performance of classification is assessed at the frame level and activity level by
calculating an accuracy measure. For frame-based accuracy, the accuracy is calculated
based on the ratio of the number of correctly classified frames over the total number of
frames, while for the activity-based accuracy, the number of correctly classified activities
(which include a group of frames) is divided by the total number of activities. An activity
is considered to be correctly classified if all its frames are classified correctly.

The results for both approaches are presented in the following section.

4.1. Experimental Results Based on DTW and the Un-Equalized Series

The dataset was collected from 10 subjects and each subject performed the activity
series 10 times, but the time and length of the activity series varied widely. The median
of all 100 series of activities is 24 frames. Figure 15 provides the subject-wise series length
comparison with the median. This figure shows that the lengths of all the series of subject-1
and subject-2 are higher than the median, whereas subject-10 has all its series lengths lower
than the median. Subject-4 has five series longer than the median and another five series
shorter than the median. Only six out of one hundred series lengths are similar to the
median series length.

Figure 15. Subject-wise series length comparison.
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The non-equalized activity series of data are divided into training and testing sets
using careful analysis. The subject-wise train and test data division is given in Table 2.

Table 2. Subject-wise train and test series distribution.

Subject No. No. of Series in Train Set No. of Series in Test Set

1 7 3

2 8 2

3 8 2

4 9 1

5 8 2

6 8 2

7 9 1

8 8 2

9 8 2

10 7 3

Visualizing the Optimal Path using DTW
Although the one hundred series, including sitting, sit-to-stand, walking, and falling

activities, show similar patterns, the series are different in their patterns and number of
frames. That is even the case for the 10 series of activities performed by the same subject.
Figure 16 shows two series of activities performed by two subjects. Since each frame is of
size 16× 256, the sum of the pixel values of each frame is used to show each frame as a
point on this plot. As can be seen, the two trends have some level of similarity, but differ in
duration. The optimal alignment of the two series is shown as a black color line connecting
the corresponding frames of the two series represented by blue and red color lines. The
optimal path found based on the DTW algorithm and the UnSup-PLevel features was used
for finding the matching frames of the two series in this case.

Figure 16. Optimal alignment between two series of frames mapped based on the DTW optimal path.

The DTW cost matrix computed for the two series is shown in Figure 17 where the
optimal path is also highlighted. The corresponding frame-wise labels of the two series
shown in Figure 17 are presented in Table 3 to check the activities using the optimal path.
As the straight line suggests, there is a high similarity between the two series of activities.
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Figure 17. Optimal warping path found by DTW on the extracted features by UnSup-PLevel method
for subject four (reference) and six (test).

Table 3. Frame-wise comparison of the reference and test series used to compute the cost matrix
shown in Figure 18.

Activity Reference Series (Frame No.) Test Series (Frame No.)

Sitting 0 to 8 0 to 4

Sit-to-stand 9 to 11 5 to 6

Walking 12 to 20 7 to 14

Falling 21 to 24 15 to 17

In the first approach, un-equalized series of activities were used as input data. DTW is
applied to all the training and test samples at pixel level first. Then, CVAE is applied to the
series of 2D frames as well as to the vectorized frames (1D data). To train an unsupervised
CVAE model, the 80 training activity series were used. The training inputs for CVAE
models were of size 2044× 16× 256 when 2D inputs were used, and it was 2044× 4096
when the 1D vectorized inputs were used. The series of frames were vectorized without
shuffling the samples. After training the CVAE model, the final encoding part of the model
was used to extract the encoded features from both training and test series frames. The
test series includes a total of 593 frames (20 activity series). The extracted features per
frame and the series of features were used by the DTW for the classification of four human
activities. Then, by considering one series from the training dataset as a reference, the
activities in the testing dataset were found by comparing their warping path.

It was found that the accuracy is higher when the data were vectorized. In order
to identify the optimum number of encoded features and latent dimensionality in the
unsupervised CVAE architecture, a systematic search was conducted. As such, the number
of latent features varied from five to sixty with a varied step size of five and ten. It
was observed that the classification performance is highly dependent on the latent space
dimensionality. A comparison of the effect of latent space dimensionality on the frame-
based accuracy is shown in Figure 18. From the above result, it is evident that the extracted
features with a latent dimensionality of 50 have the highest training accuracy (79.39%)
among other latent dimensions.

In the CVAE architecture, the activation function of type ‘relu’ is chosen to build the
encoder and decoder, and the regularization L1 (Lasso Regression) is used to avoid overfit-
ting in the network. The Adam optimizer is used to optimize the training of the network.
To avoid the exploding gradients, the clipnorm value is used to keep the gradient under
the limit. The number of epochs was estimated by trial-and-error (80 in this experiment)
and the best results obtained were with a learning rate of 0.00001 with a batch size of 32.
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Figure 18. Frame-Level classification accuracy using different number of latent dimensions for
UnSup-EnLevel feature extraction.

In the case of the CVAE model with supervised feature extraction, the series of frames
for each activity type were considered separately. Then, each class data were used to train
a CVAE model, resulting in four models for feature extraction. The optimum number of
latent dimensions of five provided good results for all four activities. For training the CVAE
models, minor changes were applied to the same architecture of the CVAE model that
was used for the unsupervised analysis. For the model trained using the sitting dataset,
the learning rate was decreased to 0.0001, the number of epochs was increased to 40, and
the batch size was 16. The drop out of 0.2 was applied after batch normalization for the
optimum result. The learning rate of 0.001 was used for all three of the other CVAE models
of the sit-to-stand, walking, and falling activities. The number of epochs was 40, 20, and
20 for sit-to-stand, walk, and fall, respectively. The sit-to-stand and walk activities had a
batch size of sixteen, whereas falling had a batch size of eight. L2 kernel regulization was
applied to all the layers. The optimization was performed at both the architectural and
hyperparameter levels to reduce the overfitting problem. As the feature space is very large
due to the high dimension of the data, the architecture level optimization was carried out
by the attentive step-by-step observation whereas, the hyperparameter tuning was carried
out using a grid search where the parameters were tuned between a given range.

As explained in the above section, the accuracy evaluation of the DTW algorithm is
performed using frame-based and activity-based criteria for all three types of
inputs—UnSup-PLevel, UnSup-EnLevel, and Sup-EnLevel features. Table 4 presents a
comparison of the frame-based training and test accuracy. It illustrates the effectiveness
of the Sup-EnLevel feature extraction, which was trained with four CVAE models and
combined with DTW, as depicted in Figure 8. This approach outperformed the other two
strategies during training. However, it is worth noting that the UnSup-PLevel method
consistently demonstrated a strong performance in both training and test scenarios, without
the need for annotations.

Table 4. Frame-based training and test accuracy comparison for the three types of inputs for DTW.

Accuracy UnSup-PLevel UnSup-EnLevel Sup-EnLevel

Training 79.39% 67.59% 78.87%

Testing 80.81% 60.22% 71.04%

The evaluation results for the activity-based criteria are shown in Tables 5 and 6. They
are calculated based on the number of activities for which of their frames were correctly
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classified. The results suggest that the analysis pipeline based on UnSup-PLevel input to
DTW without any feature extraction was comparable to the other analysis pipeline based
on Sup-EnLevel extracted features for the classification. Among all activity types, the
testing accuracy results suggest that DTW has poorly recognized the sit-to-stand activity
using all three types of inputs. That is due to the nature of this activity, seen in a few frames,
being labelled subjectively, as it includes the transition from sitting to standing, which is
not easy to judge explicitly. In the case of other activities, DTW worked reasonably well
using the UnSup-PLevel and Sup-EnLevel features.

Table 5. Activity-based training accuracy of DTW with different inputs.

Activity UnSup-PLevel UnSup-EnLevel Sup-EnLevel

Sitting 80.29% 68.33% 76.17%

Sit-to-stand 74.38% 37.57% 64.26%

Walking 85.74% 81.09% 75.49%

Falling 88.87% 82.86% 69.72%

Table 6. Activity-based testing accuracy of DTW with different inputs.

Activity UnSup-PLevel UnSup-EnLevel Sup-EnLevel

Sitting 80.61% 63.87% 73.59%

Sit-to-stand 75.75% 36.29% 61.50%

Walking 82.45% 80.93% 71.83%

Falling 85.72% 80.05% 70.01%

4.2. Experimental Results Based on LSTM and the Equalized Series

The data with equalized frame series of activities have 100 series of 24 frames each.
The interpolation and extrapolation of each series of activities were performed by applying
the gradient-based frame equalization.

The train, validation, and test data distribution in the equalized series data was
performed with manual splitting of the data samples by using prior knowledge; however,
the frames per activities series were not shuffled, as the series of activities frames is in the
form of time series. In the case of time series classification, the past data frames are essential
to predict the future frame class. To extract features from the series of frames, four different
strategies were considered as described earlier in Section 3.2. First, a CNN-LSTM model
was trained including both feature extraction (CNN layers) and prediction based on the
time-series of features (LSTM layers). This was shown in Figure 11. In this case, the weights
of the whole model are learned all at the same time, based on the optimization of the
network. In the other three methods, the feature extraction was conducted separately and
then the learned features were fed into the LSTM model as shown in Figures 9, 11 and 13.
The three feature extraction methods include Unsup-EnLevel, Sup-EnLevel and PCA. All
the models were trained using training (80%) and validation data. The validation data were
15% of the training data. Then, they were tested using the test set (20%). The evaluation
of the results and the computation of activity detection performance are conducted by
comparing the result with manually annotated labels.

To implement the feature extraction methods, the mm-wave radar frames values are
normalized between the range of−1 to 1 and the labels were converted into one hot encoder
for the better result.

The CNN-LSTM model has a batch size of 4 and the model was trained over
1000 epochs with a callback of early stopping, when the model stops improving. The
learning rate was kept at 0.0001 and the RMSProp was used as an optimizer. The ReLu
activation function was used for the hidden layers. To avoid the issue of overfitting, a layer
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of batch normalization is added after each convolutional layer in each block. A drop out
ratio of 0.05 is added after each maxpooling layer.

The unsupervised CVAE was performed to extract highly effective features. In this
model, the latent dimension of 50 provided a better result. All other specifications of the
CVAE model were kept exactly the same as the UnSup-EnLevel model. The output is in the
form of 2400× 50, where 2400 is the number of samples and 50 represents the extracted
features. After dividing the data manually into train and test sets as shown in Table 2,
the training data had the shape of 1630× 50 and the test data had the shape of 480× 50.
The size of the validation set is 290× 50. The model used an RMSProp optimizer and
categorical cross entropy as a loss function. The learning rate is kept at 0.00001 and the
batch size is 4. A sequential model of two LSTM layers was built for the classification as
shown in Figure 9.

While extracting features from the supervised CVAE, four different models for each
class have been trained. The specification of each model is kept the same as the Sup-EnLevel
feature extraction. In the equalized frame activity series, there are, in total, 2400 frames that
belong to one of the four classes. In the equalized data, the sitting activity has 596 frames,
sit-to stand has 466 frames, walking has the highest number of frames with 926, and the
falling activity has 412 frames. The train and validation frames are used for developing
the four CVAE models. The latent dimension is kept at 5 for this model. In order to train
the supervised CVAE-LSTM framework, a combination of L1 and L2 kernel normalization
was used, where L1 is kept at 0.0005 and L2 was 0.001. Each convolutional layer in the
supervised CVAE was followed by batch normalization and drop out ratio. The drop out
ratio was kept 0.6, 0.7, 0.4, and 0.7 for sit, sit-to-stand, walk, and fall, respectively.

PCA was employed using the Scikit library in Python. One of the conditions for using
PCA for the feature selection is that the number of maximum selected features is based on
the minimum value between number of samples (2400 in our case) and number of available
features (4096), so the possible optimal number of features would be less than 2400. In
this case, we have used three principal components (PCs) setups—256 (16× 16), 1296
(36× 36), and 2116 (46× 46)—in which the data were reshaped for the LSTM architecture.
In order to select the optimum number of PCs, the model accuracy was validated using
three different numbers of components. The result of the PCA approach for a different
number of components is presented in Figure 19. The Figure shows that selecting 2116 PCs
achieved the highest accuracy among all three approaches.

Figure 19. Comparison of the PCA-LSTM train and validation accuracies for different numbers
of PCs.

The result of the four approaches to feature extraction and time-series prediction based
on LSTM at frame-level test accuracy is provided in Table 7 below. The extracted features



Mach. Learn. Knowl. Extr. 2023, 5 1513

were fed to the LSTM network for the classification of four activities, i.e., sitting, sit-to-
stand, walking, and falling. Activity-level train and test classification accuracy by the LSTM
network for four inputs (features extracted by CNN, UnSUp-EnLevel, Sup-EnLevel and
PCA) are reported in Tables 8 and 9. Out of all the feature extraction strategies, Sup-EnLevel
strategy along with LSTM excelled in the classification of continuous HAR.

Table 7. Frame-level classification accuracy of the test set using LSTM and different types of feature
extraction methods with equalized series.

Accuracy CNN-LSTM UnSup-EnLevel Sup-EnLevel PCA-LSTM

Training 74.03% 68.51% 85.19% 75.45%

Testing 71.58% 69.43% 81.23% 71.88

Table 8. Activity-level training accuracy using LSTM and different types of feature extraction methods
with equalized series.

Activity CNN-LSTM UnSup-EnLevel Sup-EnLevel PCA-LSTM

Sitting 69.27% 61.08% 83.42% 64.72%

Sit-to-stand 65.62% 39.15% 84.25% 61.02%

Walking 72.77% 64.92% 72.91% 75.39%

Falling 74.23% 67.45% 79.54% 74.22%

Table 9. Activity-level testing accuracy using LSTM and different types of feature extraction methods
with equalized series.

Activity CNN-LSTM UnSup-EnLevel Sup-EnLevel PCA-LSTM

Sitting 67.50% 60.41% 80.19% 62.08%

Sit-to-stand 64.21% 38.24% 81.07% 59.17%

Walking 73.45% 63.93% 70.33% 60.72%

Falling 73.33% 68.33% 76.54% 73.34%

Figure 20 displays the confusion matrix for the most effective Sup-Enlevel approach
employing LSTM. Within this matrix, it becomes evident that sitting activity frames are
often confused with the sit-to-stand activity. Similarly, sit-to-stand activity is primarily
misidentified as walking or sitting. In the case of walking, it tends to be misclassified
as sit-to-stand, while instances of falling are mistakenly categorized as any of the other
three activities. It is noteworthy that, in most instances, misclassifications occur during
transitions between activities.

Figure 20. Confusion matrix for proposed Sup-EnLevel LSTM approach.
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4.3. Discussion

At present, HAR is a well-researched area with a vast number of research studies,
but HAR for the elderly population is still a challenging problem. Most studies use the
recordings of individual activities. The continuous recording of activities for HAR in this
work makes the problem more challenging and different from other studies, which use
individual activity recordings as input for HAR.

A comparison of the activity classification results presented in the previous section
showed that the model based on the extracted features using unsupervised CVAE and LSTM
for prediction achieved the lowest accuracy, even when the optimum latent dimension
was used. That is because of the high level of diversity among the input frames, given the
nature of the four activities. This heterogeneity influences the CVAE model’s capability to
generalize well. An improvement was achieved after separating the data of each activity
(except the challenging class of sit-to-stand, as discussed earlier) and developing the feature
extraction models based on the individual activities’ data.

It is expected that the training data for a CVAE model would include more similar
frames, each describing different variations of the same activity type. That is the case
for less dynamic activities, such as sitting, where most frames are similar. However, for
more dynamic activities, such as walking and especially falling, that is not the case as the
frames might include significantly different patterns during the fall. That can influence
the success and generalization of the CVAE model for feature extraction. The feature
extraction with CNN provided reliable results, but it could not outperform supervised
CVAE feature extraction. Due to the complexity of the NN models and the limited samples,
separating the feature extraction architecture and the time-series architecture would reduce
the complexity of each model and allow for better learning of the weights. Other feature
extraction strategies will be explored in our future work to consider the series of frames
and their sequential dependencies rather than the individual frames. The sup-EnLevel
approach with equalized series data has a superior performance to the Unsup-PLevel
approach, which is the best-performing approach with unequalized series data at the
frame-level evaluation. Overall, supervised CVAE feature extraction performed well with
both DTW and LSTM classification. However, as illustrated in Figures 21 and 22, the
most successful supervised CVAE-LSTM strategy has outperformed the most successful
UnSup-PLevel DTW technique. This implies that the distance-based and easy-to-implement
DTW strategy was effective, but the more complex LSTM classification model performed
better. In Section 4, it is evident that, when combined with Sup-EnLevel feature extraction
and LSTM, the utilization of gradient-based series equalization enhances the probability
of achieving accurate continuous human activity recognition (HAR). This comparison
supports future studies on continuous human activity detection.

Figure 21. Frame-level testing accuracy comparison of unequalized series with DTW-based classifica-
tion and equalized series with LSTM-based classification approach.
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Figure 22. Activity-level testing accuracy comparison of unequalized series with DTW-based classifi-
cation and equalized series with LSTM-based classification approach.

None of the algorithms could classify all the activities of the series correctly and, for
each series, there exist some incorrectly classified frames. The misclassification mainly
occurred at the transition points from one activity to the other, whereas the middle frames
of the activities were classified with high accuracy. This observation is crucial for designing
future HAR classification strategies for continuous frame streams. The limited data with
high feature space and subjective manual labeling also hves a potential impact on the
results. Another limitation of this study is that it deals with only four human activities and
with only one distress condition (fall). In future studies, more types of activities will be
included to accommodate the day-to-day patterns of gestures.

5. Conclusions

In this paper, mm-wave radar sensor time-series data were employed for HAR. Two
key approaches were employed for the data: the first approach used un-equalized series of
activities whereas in the second approach, frames were equalized per series of activities.
In the first strategy, three types of inputs (pixel-based data, supervised and unsupervised
CVAE based extracted features) were fed into the DTW algorithm. In the second approach,
the series of activities were first equalized in terms of the number of frames by using
gradient-based algorithms. That was conducted due to the input size requirements of
the LSTM time-series model. Four different feature extraction strategies, namely CNN,
supervised, and unsupervised CVAE and PCA methods were employed. LSTM was applied
to the extracted features for the classification of human activities. The study proved that
the distance-based DTW algorithm performed well in the absence of many annotated series
and frame-equalization. Furthermore, the supervised CVAE-LSTM outperformed all other
classification techniques.
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