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Surveying the Energy Landscapes of Multistable Elastic
Structures

Samuel Joseph Avis

Abstract

Energy landscapes analysis is a versatile approach to study multistable systems by

identifying the network of stable states and reconfiguration pathways. Thus far, it has

primarily been used in microscale systems, such as studying chemical reaction rates

and to characterise the behaviour of how protein fold. Here, however, we aim to utilise

energy landscape techniques to study multistable elastic structures, in particular,

complex 3D structures that have been buckled from 2D patterns, which are of interest

for applications such as flexible electronics and microelectromechanical systems.

To this end we have developed new energy landscape methods and software that

are well suited to continuous, macroscale systems with many degrees of freedom.

The first is the binary image transition state search method (BITSS), which offers

greater efficiency for large scale systems compared to traditional transition state

search methods, and it is well suited to complex, non-linear pathways. Next, a new

software library is introduced that contains a variety of energy landscape methods

and potentials which are parallelised to study large-scale continuous systems. This

library can be flexibly used for any chosen application, and has been designed to be

easily extensible for new methods and potentials.

Furthermore, we exploit energy landscape analysis to tailor the stable states and

reconfiguration paths of various reconfigurable buckled mesostructures. We estab-

lish stability phase diagrams and identify the corresponding available reconfiguration

pathways by varying essential structural parameters. Furthermore, we identify how

the introduction of creases affects the multistability of the structures, finding that a

small number can increase the number of distinct states, but more creases can lead to

a loss of multistability. Taken together, these results and methodology can be used

to influence the design of new structures for a variety of different applications.
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Chapter 1

Introduction

Energy landscapes have been widely utilised in physics and chemistry to understand

the various stable configurations of molecular and particulate systems, and to iden-

tify the possible reconfiguration pathways between them. These concepts have been

crucial for understanding topics such as the folding behaviour of proteins [1] and the

effect of catalysis upon chemical reactions [2], as well as characterising the statistical

behaviours of systems such as glasses and amorphous solids [3].

Meanwhile, a separate field of study is that of multistable elastic structures, which

are systems that have multiple stable states that can be reconfigured using external

stimuli, modifying their functionality or structural arrangement. There are a variety

of structures such as mechanical metamaterials [4], which can exhibit unusual mechan-

ical properties, origami [5], which involves folding flat sheets along predefined creases

to create complex 3D shapes, and buckled mesostructures [6], which are thin films

that buckle into 3D geometries under compression. Such multistable structures have

found increasing applications in fields like robotics [7,8], flexible electronics [6,9], and

deployable structures [10,11].

The purpose of this thesis is to combine these two fields and to apply energy

landscape techniques to continuous, macroscopic applications in general. To achieve
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CHAPTER 1. INTRODUCTION

this aim, new methods and software are developed to address computational chal-

lenges posed by these applications and systems with very large numbers of degrees

of freedom, which can often become infeasible using existing approaches. This thesis

then explores the energy landscapes of some reconfigurable buckled mesostructures,

in particular a table-like structure and a ribbon with origami-inspired creases. The ef-

fect of changes to their geometry, material properties, and external forces are studied,

as well as how these alter the stability of states and their reconfigurable behaviour.

Through this we hope to gain new insights into the fundamental principles of recon-

figurable elastic structures and to develop new approaches to design structures with

desired functionality.

1.1 Structure of this thesis

Firstly, in chapter 2, the fundamental concepts of energy landscapes will be intro-

duced, as well as an overview of some of the diverse applications that they have been

used to study. This is followed, in chapter 3, by an introduction to several different

types of reconfigurable elastic structures, as well as some of the recent and ongoing

research into these topics. After this, there is a summary of some of the existing

studies that have applied various energy landscape techniques to investigate elastic

structures. Chapter 4 will then explore a variety of computational methods used to

investigate energy landscapes and their particular advantages and disadvantages will

be discussed.

The main original contributions of this thesis are then divided into four chapters.

The first, chapter 5, introduces a new method for finding transition states, the bi-

nary image transition state search (BITSS). This method is evaluated by performing

comparisons with other methods for locating transition states, and some of its unique

and attractive features are demonstrated, such as the ability to find transition states

even in discontinuous landscapes.

2



1.1. STRUCTURE OF THIS THESIS

Next, chapter 6 outlines the implementation of a software library, ‘ELLib’, that

incorporates a variety of energy landscape methods. The primary goal of this is to

create a cohesive and adaptable framework that can be applied to a range of complex

applications. The library has also been designed from the ground up with parallel

computing in mind in order to study large-scale systems. To demonstrate this, an

example is presented that involves optimising the geometric parameters of an elastic

structure in order to enhance the stability of its two distinct states.

In chapter 7, these ideas are used in the analysis of 3D buckled mesostructures,

leading to the creation of stability phase diagrams that are dependent upon the

structural parameters. In addition to these, the chapter provides detailed information

about the various reconfiguration pathways that are accessible to the structures. The

results gained from this may be used to assist in the design of structures with desired

behaviour and to inform the remote manipulation between states.

Building upon this, chapter 8 explores the energy landscapes of origami-inspired

structures, focusing on the simple arrangement of a single ribbon with multiple

creases, which can be used as building block for more complex structures. The

chapter examines the impact of compressive strain and the number of creases on

the different stable states that are accessible. The findings provide valuable insight

into how creases can introduce further multistability to buckled mesostructures.

Finally, chapter 9 brings together the work in this thesis to provide some overar-

ching conclusions, and outlines some possible avenues for future work related to the

energy landscapes of elastic structures.

3



Chapter 2

Energy Landscapes

This chapter aims to introduce key concepts in the theory of energy landscapes and

how they can be utilised. These include definitions of salient critical points in the

energy landscapes of interest in this thesis. Then, a summary is provided for some of

the various applications to which they have been used.

2.1 Features of energy landscapes

An energy landscape describes how the energy of a system changes throughout its

configuration space. These are often very high-dimensional landscapes, as the total

number of degrees of freedom are typically very large, particularly when modelling

continuous macroscale systems.

The primary points of interest are the stable states. These correspond to local

minima in the energy landscape, as any small perturbation would raise the energy

and result in a driving force restoring it back to the minimum. Mathematically, the

energy in the vicinity of a minimum at x0 can be expressed as,

E(x) = E(x0) +
∑
i

ai
2

∂2E

∂x2i

∣∣∣∣
x0

(xi − x0,i)
2, (2.1)

4



2.1. FEATURES OF ENERGY LANDSCAPES

(a)

(b)

(c)

Figure 2.1: Schematics showing 2D energy landscapes with the features of interest. Blue
circles represent the minima, red squares show the transition states, and white paths show
the MEPs. (a) A simple landscape with two minima connected by a single MEP. (b) A
landscape where an MEP should terminate at a transition state. However, running downhill
from the left-most transition state goes past this and continues to a minimum. (c) A multi-
step pathway with two intermediate minima. The full MEP between the top and bottom
minima is a combination of the three individual MEPs.

where i represents each of the principal directions of curvature, and all of the curva-

tures, ai, are positive. Using energy minimisation methods to identify these stable

states is central to the exploration of energy landscapes. As an example, fig. 2.1(a)

shows a 2D landscape containing two minima, as well as highlighting other features

of interest.

Each minimum also possesses a basin of attraction, which is the surrounding region

of points that will converge to the minimum upon following the gradient downhill.

Taking the analogy of a mountainous landscape, these basins correspond to valleys for

which the dividing lines are ridges and watersheds. The energy depth and the extent

of a basin can be used to quantify the stability of the state; the former providing the

energy required by a interaction to change the state, while the latter provides the

required perturbation size.

Transition states (TS) are first-order saddle points on the energy landscape. These

are stationary points where the energy is defined by eq. (2.1) with a single negative

5



CHAPTER 2. ENERGY LANDSCAPES

curvature, a1 < 0, while all others are positive or zero, ai>1 ≥ 0. These correspond

to minima on the ridges separating basins of attraction, so they provide the lowest

possible energy required to swap between two stable states. This energy barrier

is incredibly useful for quantifying the stability of states and the probability of a

transition between them [12]. The energy barrier is also an important quantity to

estimate transition times in microscale systems, such as chemical reactions, using

transition state theory [13]. Each transition state also uniquely defines a possible

reconfiguration pathway, known as the minimum energy pathway (MEP).

The MEP, x(s), connects the transition state to its adjacent minima by following

the path of steepest descent from either side of the saddle point,

dx

ds
= τ̂ = − ∇E(x)

|∇E(x)|
. (2.2)

Here the pathway parameter s is the integrated path length, so the derivative is

the unit tangent vector of the pathway. Therefore, if a transition state has already

been found it is a simple process to obtain the MEP. An equivalent statement, that

can provide a convergence criterion for pathway search algorithms, is that the local

gradient has no component perpendicular to the direction of the pathway at all points

on its length,

∇⊥E(x) = ∇E(x)− (τ̂ ·∇E(x))τ̂ = 0. (2.3)

Sometimes the precise MEP can end at a transition state rather than a minimum

if the steepest-descent pathway reaches a bifurcation point [14]. A separate MEP then

runs downhill from this to the minima (or to other transition states). However, in

practice, small deviations from the steepest pathway will cause a breaking of sym-

metry in both experiment and simulations, and it will proceed all the way to one of

the minima. An example of this is shown in fig. 2.1(b). MEPs can also be obtained

between states that are separated by intermediate minima. In this case, the MEP

will consist of the combination of the individual MEPs between each adjacent pair

6



2.2. VISUALISING ENERGY LANDSCAPES

of minima, each passing over a separate transition state (fig. 2.1(c)). Hence, it is

possible to build up a network of pathways between adjacent minima to identify all

possible reconfiguration pathways of a system. A single pair of minima can also have

multiple pathways between them, even if they are adjacent to one another. These

different pathways can often be difficult to locate and there can be a large number of

them in a high-dimensional landscape. However, the most important are those with

the lowest energy and most direct, which are the most easily identifiable.

The MEPs that are located are time independent, providing no direct information

about the dynamics along the pathway. On one hand, this allows energy landscape

methods to be more efficient than performing the corresponding dynamical simula-

tions, such as molecular dynamics or finite element analysis, particularly in the case of

rare event transitions with barriers larger than kBT
[15]. On the other hand, the true

pathway taken by the system will depend upon the force driving the transition, and

inertial effects can cause it to deviate from the steepest descent pathway. Therefore,

the MEP instead provides an ideal pathway that is independent of the force driving

the reconfiguration, and provides the average and most probable path that will be

taken if driven by random forces or thermal noise [16].

2.2 Visualising energy landscapes

It can be difficult to visualise the high-dimensional landscapes, but one simple way

of doing so is using disconnectivity graphs [14]. These have a vertical axis showing

the energies of all the minima and the transition states with the minimum required

energies that connect them. Such visualisations are useful because they clearly sepa-

rate the energy landscape into a hierarchy of groups of states according to the ease of

reconfiguring between them. Additionally, the system can be characterised according

to the shape of the graph [17]. If the energy barriers are tall the system will be trapped

it in a single state, and it is referred to as a glassy landscape. In contrast, small barri-

7



CHAPTER 2. ENERGY LANDSCAPES

ers allow the system to easily explore the landscape. This can be seen by contrasting

fig. 2.2(a) and fig. 2.2(b). Furthermore, the energy landscape may be funnel-shaped,

in which case it can quickly converge to the global minimum (fig. 2.2(b)), while for a

flat landscape (fig. 2.2(c)) the system is not biased toward any particular state.

2.3 Free energy landscapes

An important concept for characterising the behaviour of a system is that of free

energy landscapes. Until now the discussion has focused mainly upon potential en-

ergy landscapes which differ from free energy landscapes in a couple of key ways.

Firstly, while potential energy landscapes are high-dimensional and depend upon all

coordinates of the system, free energy landscapes often involve averaging over the

coordinates to produce a lower-dimensional system that represents the overall be-

haviour [14]. Also, the free energy includes information about the thermodynamic

nature of the system, because separate minima in the potential energy can corre-

spond to a single minimum in the free energy if it can freely swap between them.

Therefore, the free energy landscape changes depending upon the temperature.

Fig. 2.2(d) shows an example of this for a particle cluster, where the potential

energy landscape has been reduced to a two-dimensional free energy landscape. These

two order parameters are the potential energy, V , and a face-centered cubic packing

order parameter, Q4. Although, in this example there are no free energy minima with

high Q4. At a high temperature there is just a single minimum for high potential

energy states, which correspond to a liquid phase. As the temperature lowers another

minimum appears with low potential energy, representing the crystallised structure.

At this point the liquid and crystal states are both stable. Finally, at the lowest

temperatures the liquid minimum disappears and the cluster will only be found in its

highly ordered configuration.

This distinction between free and potential energy landscapes are important for

8



2.4. APPLICATIONS OF ENERGY LANDSCAPES

(a)

(b)

(c)

(d)

Figure 2.2: (a-c) Disconnectivity graphs for three one-dimensional potentials, each exhibiting
a different behaviour (see text for discussion). (d) Disconnectivity graph for a 55 particle
cluster, with the envelope size representing the number of states at, or below, that energy.
Three 2D free energy landscapes show the states of the system at different temperatures.
Representative configurations are shown in each of the minima. Adapted with permission
from [18].

microscale and particulate systems where thermal noise is sufficient for the system

to spontaneously explore different states. However, for macroscale systems, which

this thesis primarily focusses upon, we are already dealing with effective free energy

models that correspond to a thermodynamic average of microstates. Although there

may be some random perturbing effects, such as vibrations, we generally do not

consider any further averaging of the states. Therefore, for brevity, we will simply

term our study as an exploration of energy landscapes.

2.4 Applications of energy landscapes

Here, we will summarise known applications of energy landscape studies. To illustrate

their wide applicability, we will discuss phenomena across several orders of magnitude,

from less than 1nm to larger than 1m.

9



CHAPTER 2. ENERGY LANDSCAPES

(d)(b)

(a)

(e)

(f)

(c)

1μm 1m1mm1nm

Quantum tunnelling

Clusters
Crystals

Proteins

Liquid wetting
Locomotion

Elastic structuresLiquid crystals

Figure 2.3: (a) Approximate length scales of various applications of energy landscapes tech-
niques. (b) Energy landscape of a pair of hydrogen molecules where the transition states
show instanton tunnelling pathways. Adapted with permission from [19]. (c) Energy land-
scape showing the candidates for the crystal structure of Na3N. Adapted with permission
from [20]. (d) Disconnectivity graph for a Lennard-Jones 38 particle cluster showing a large
funnel for the native icosahedral structure, and a smaller funnel for the truncated octahe-
dron structure. Adapted with permission from [17]. (e) Energy landscape of an intrinsically
disordered protein, pKID, that folds upon binding with another molecule. Adapted with
permission from [21]. (f) Diagram showing the two modes of locomotion to pass a barrier and
the associate energy landscape. This shows the locomotor transition from the pitching to
rolling motion. Adapted with permission from [22].
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To date, energy landscapes exploration techniques see their most prominent ap-

plications in particulate and molecular systems. At the smallest scales, these are

used to study the transition pathways of chemical reactions, where the stable states

represent the reactants and products, as well as any reaction intermediates. Such ap-

plications are the source of the term ‘transition state’ which has particular importance

for finding reaction rates according to transition state theory.

To obtain accurate chemical reaction rates it is often necessary to consider the

effects of quantum tunnelling, which can cause transitions to occur that are classically

disallowed. It is possible to use information about energy barriers and MEP to

provide tunnelling corrections to the classical rates from transition state theory [23,24].

However, quantum tunnelling depends upon the width of a barrier, not just its height,

so shorter paths than the MEP may be more important for determining accurate

tunnelling rates. One approach is to use instantons, which are based upon the path

integral formulation of quantum mechanics. These provide a temperature-dependent

pathway that ‘cuts the corner’ of the MEP, providing a more direct path at the

expense of a higher barrier [25,26]. By finding the transition states of these instantons

the effective energy barriers of the transition can be determined, providing more

accurate tunnelling rates [19].

Another topic important to many chemical reactions is that of catalysis, which has

been used with energy landscapes for both biological and industrial processes [2,27–29].

This involves a catalyst introducing intermediate reaction steps in order to reduce the

maximum energy barrier and increase the reaction rate [2]. These additional reaction

steps, as well as multiple possible competing pathways [28], make it necessary to study

the entire energy landscape in order to gain an accurate understanding of the effect

that a catalyst will have.

Moving to slightly larger scales beyond chemical reactions, energy landscapes can

be used to investigate the formation and rearrangement of complex structures, of

which protein folding is perhaps the most pertinent [1,30]. Proteins are made up of a
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very long chain of amino acids and, since the number of stable states tends to grow

exponentially with system size, can fold into 3d structures with an incredibly large

number of configurations. In fact, assuming the protein performs a random walk

through these structures it may take considerably longer than the age of the universe

to find a given state. And yet, in nature many proteins spontaneously fold to a single

state at short timescales. This is Levinthal’s paradox [31], and can be resolved using

energy landscapes [1]. The landscapes of these proteins are found to be highly funnel-

shaped and so the protein does not perform a random search, but is instead driven

quickly towards the global minimum configuration. Many proteins can also be found

in multiple states, or are intrinsically disordered proteins that do not fold into any

particular states [21]. Such proteins can be identified by the shape of their landscapes,

according to the number of funnels, or if the landscape is flat, respectively. The

misfolding of proteins is also important to study [32], owing to the role aggregates

of misfolded proteins play in diseases such as Alzheimer’s and Parkinson’s, or the

infectious misfolding that causes prion diseases. In this case the transition pathways

can provide insight into cause of the misfolding, as well as the rate at which it occurs.

Particle clusters, which have widespread applications from catalysis to nanotech-

nology, are another well studied subject in the context of energy landscapes. Here the

landscapes are often characterised using disconnectivity graphs in order to understand

the structural arrangements formed by a given system, as well as properties such as

relaxation timescales [17,33] As an example, the Lennard-Jones 38 particle cluster is

found to have a double funnel landscape producing either a truncated octahedral or

icosahedral structure [34]. The truncated octahedron is the global minimum configu-

ration and so might be expected to be favoured. However, the icosahedral funnel is

much wider with more states, explaining why this state is generally favoured. Re-

lated are crystalline solids, which differ due to their lack of a surface, but use energy

landscape analysis similarly. For example, free energy minima have been surveyed to

predict the stable structures for a given chemical system [20,35,36], and energy barriers

have been used to study phase transitions [37], nucleation [38], and defects [36,39].

12
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In contrast to crystal structures, which tend to have simple funnel landscapes,

amorphous solids, glasses, and granular materials all have very complex energy land-

scapes with high barriers that cause them to get stuck in local minima when cooled

below a critical temperature. Due to the huge complexity in these structures the sta-

tistical properties of the energy landscapes are investigated to gain insight into their

behaviour [3,40]. Notably, the glassy landscapes tend to contain fractal basins that

result in a secondary relaxation, even if large scale rearrangements are blocked [41].

This causes aging of the materials as the structure switches to progressively deeper

basins in the landscape [3]. Shear strain has been found to affect this aging process

by moving into shallower or deeper minima depending on size of strain [42,43]. Studies

have also looked at glassy landscapes for a variety of different topics, such as active

matter [44] and soft glassy materials [45].

Another topic involving the collective arrangement of many particles is liquid

crystals [46–48]. Here, the transitions between different orientational arrangements are

of particular interest for their applications in liquid crystal displays. Much like the

other microscale systems described so far, these can be studied using particulate mod-

els [46]. In this case, each particle is given an orientation and anisotropic interactions

are used. On the other hand, because liquid crystal systems involve a large number

of particles, continuum phase-field models can be used to represent the smooth vari-

ation of the particle orientations [47,48]. Liquid crystals can therefore be considered

somewhere between the microscale, particulate systems, and the macroscale which

are often represented by continuum models.

Progressing to larger scale systems, liquid wetting on surfaces has also been stud-

ied using energy landscapes [49,50]. Similarly to the liquid crystals, these often use a

continuum phase-field model that uses a smoothly varying order parameter to repre-

sent different fluids. Wetting is important for both biological systems and engineering

applications, and one topic relevant to both is structured surfaces. These can intro-

duce superhydrophobicity by suspending droplets so they can be easily shed, keeping

13



CHAPTER 2. ENERGY LANDSCAPES

the surface dry. Using energy landscapes these structures have been investigated to

identify how this suspended droplet state may fail, and how this can be avoided [49,50].

Even highly non-equilibrium systems can benefit from the use of energy land-

scapes, for example, transition pathways have been used to describe locomotor tran-

sitions in animals [22,51]. This represents different modes of motion (climbing, walking,

rolling, etc.) as minima in a free-energy landscape. This landscape is modified by

interaction with the environment, which changes the energy barriers associated with

locomotor transitions, and can cause them to occur spontaneously. This is seen,

for example, in the motion of a cockroach either climbing or rolling past grass-like

barriers [51].

Among some of these largest scale applications using energy landscapes (but by

no means the upper limit) are elastic structures. Here the primary interest lies in the

structural changes between different states, so pathway analysis will be important. In

the following chapter, the different types of elastic structures will be discussed as well

as the existing work that has been performed using the theory of energy landscapes.
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Chapter 3

Elastic Structures

Elastic behaviour is ubiquitous in both nature and engineering applications, and in

many cases, they exhibit multistability and can reversibly change between different

configurations. Such systems have wide-ranging potential applications, such as de-

ployable structures [10,11,52], micro-electromechanical systems [53,54], robotics [7,8,55–57],

and energy absorption [4,58]. These are often complex structures, but the multistable

behaviour is usually derived from simple elements, such as buckled beams or surfaces,

and elastic joints or creases. In this chapter various types of multistable elastic struc-

tures will be outlined, along with some of the recent and ongoing research on this

topic.

3.1 Buckling

Buckling is a sudden change of shape that occurs when a structure is subject to com-

pressive strain. Generally, this is an undesired effect that is associated with structural

failure and can have severe consequences, particularly if it occurs in buildings or other

infrastructure. Therefore, fields such as structural engineering utilise a range of tech-

niques to prevent buckling and ensure the stability of structures. However, recently
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there has been significant interest in exploiting buckling transitions to develop flexible

devices and structures that can reversibly transform from an undeformed state to a

buckled state, or between two different buckled states. Some key examples will be

discussed here.

The most basic, and perhaps most versatile, buckled system is that of a column

or thin beam under compression. This is possible to be monostable or bistable,

depending upon the strain applied and angles at which the end points are held.

Previous research has extensively surveyed the stability of the states under different

sets of parameters [59]. This can therefore be applied to understand the behaviour of

more complex structures constructed from simple beam elements.

Figure 3.1: (a) Schematic showing how the growth of a membrane of cells can lead to buckling
and the formation of folds. Adapted with permission from [60]. (b) A soft jumper that uses the
snap-through buckling of a spherical shell upon inflation. Adapted with permission from [7].
(c) A cheetah-inspired soft actuator for robotic movement. A central bistable linkage is used
in combination with with inflatable channels to change states. Adapted with permission
from [57].

While global buckling modes are typically observed in thin beams, surfaces and

thin shells can exhibit local buckle through the formation of dimples on the sur-

face. This is generally undesired in engineering applications, such as containers or

rockets, and is important to understand how it occurs in order to prevent and con-

trol structural failure. The size of disturbances that are required in order to buckle
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both cylindrical and spherical shells under strain have been investigated by applying

probing forces [61,62]. In addition, various works have investigated the effect of imper-

fections, which can significantly reduce resistance to buckling [62,63]. These findings

highlight the precise manufacturing that is required to ensure that buckling cannot

occur.

The buckling of surfaces and membranes also plays an important role in various

biological functions. One case is in the formation of folded structures of cell layers,

which are essential in many anatomical structures such as glands or crypts. Buckling

is a possible mechanism for the formation of these structures. For example, it can

be caused by the growth of cells when constrained by a surface [60,64], fig. 3.1(a).

Many of these biological membranes, such as lipid bilayers, are a liquid surface that

can redistribute to reduce local stress, but these too can buckle. An example of

this is the budding of cell membranes, where the binding of curved structures to the

membrane can result in stress that causes the surface to buckle [65]. Furthermore, it is

possible to use the onset of buckling to measure the mechanical properties of cells [66].

An area where buckling can be highly beneficial is in the development of soft

actuators for robotics. In contrast to traditional robotic motion, soft actuators can

provide simpler systems that are lighter, less prone to failure, and safer around hu-

mans. Using buckling instabilities it is possible to amplify actuation of these soft

structures, causing large, sudden displacements which can be used for propulsion.

For example, bistable beams have been used to propel swimming robots [56], and the

snap-through of spherical shells has been used for inflatable jumpers [7], shown in

fig. 3.1(b). Buckling can further be used to emulate biological behaviour such as

swimming fish [8], and the galloping of cheetahs [57], fig. 3.1(c). Finally, bistable struc-

tures have been used in pneumatic soft grippers that can be pressurised to pick up

objects and continue to hold them even when the pressure is released [67,68].
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3.2 Buckled mesostructures

The class of elastic structures that will primarily be investigated in this thesis are

known as 3D buckled mesostructures. These are produced as a flat pattern which

buckles under a compressive strain to form a three-dimensional structure. Typi-

cally, this is carried out by binding the structure at various points to a pre-stretched

substrate, which is then released, compressing the structure. This provides a sim-

ple method for fabricating complex structures, and can be used to create structures

down to the microscale. These have been investigated for applications such as flexi-

ble electronics [6], microelectromechanical systems [6,69], biomedical devices [70,71], and

microrobotics [71].

Many works have investigated the resultant three-dimensional structures for var-

ious different precursor patterns. Simple patterns may consist of a single ribbon or a

connected grid of ribbons with periodic bonding sites, in which case the ribbons will

buckle into a wavy structure, section 3.2(a). Or if the ribbons are curved, they can

twist into helical coil shape when buckled [72]. By connecting these ribbons together

in complex networks, it is possible to create multilevel, buckled designs. Generally,

these structures will buckle up fully. However, if the adhesive force to the substrate is

strong ,such as for very small scale structures, it may remain attached to the substrate

in various locations [73].

It is possible for some mesostructures to buckle into multiple different stable

configurations, such as those seen in section 3.2(b). However, these structures are

limited and it may be difficult to obtain more than a single state in practice. This

multistability can be enhanced by incorporating origami-like creases into the structure

where it can more easily bend [6]. This greatly increases the variety of structures with

multiple stable stables and allows greater control over which states are stable. This

can be utilised to create switchable devices, such as an antenna that can transmit in

one configuration, but is shielded in another, as depicted in section 3.2(c).
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Figure 3.2: (a) Buckled mesostructures with patterns that produce multilevel structures.
Adapted with permission from [72]. (b) Multistable mesostructures that can each take two
different buckled states. Adapted with permission from [6]. (c) A multistable mesostructure
with a radio-frequency antenna on top. In shape 1 the antenna is free to transmit, but in
state 2 it is blocked. Adapted with permission from [74].

A number of different approaches have been suggested in order to obtain these

different states. Fu et al. [6] discovered a method of producing different shapes by

controlling the release of the underlying substrate over time. By independently re-

leasing the substrate in different directions they were able to obtain structures with

three separate states. In this approach, the available states are limited to those that

are spontaneous under buckling. Park et al. [75] were able to control the shape of

the structure over time by dissolving a constricting film. However, this approach

is irreversible and the possible shapes are limited. Furthermore, they suggested a

method for keeping the mesostructures buckled after removing from the substrate,

by interlocking parts of the structure to keep it in place. A different approach has
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been considered by Hao et al. [76]. Instead of using a stretched substrate, they used

structures made from hydrogels which swell, causing the structure to buckle. They

were able to control the buckling to obtain various stable configurations by preswelling

parts of the structure.

Despite these methods for creating multiple stable states, reconfigurability after

the structure is created has largely remained unaddressed. An approach addressing

this problem will motivate later work in chapters 7 and 8.

3.3 Mechanical metamaterials

Although we focus primarily upon buckled mesostructures in this thesis, it is worth

considering the related, and popular topic of mechanical metamaterials. These are

materials that have properties defined by their structure and not the properties of the

constituent material. They can show a variety of interesting and unusual properties

such as negative Poisson ratio (auxetic materials) [4,77], where the material expands (or

contracts) in all directions simultaneously, or negative compressiblity [78,79], where the

material contracts under a tensile force. There are many different types of mechanical

metamaterials, but each of which is typically made up of a repeating pattern of simple

elements, such as beams or hinges [77]. If these individual elements are multistable by

undergoing a buckling transition, then the metamaterial itself will be multistable.

Some metamaterials can have large numbers of elements that buckle at once

under compression or tension [4,80]. An example is the 3D elastomeric structure shown

in section 3.3(a), where the array of holes can collectively buckle, resulting in a

highly non-linear compressive behaviour with a negative Poisson ratio [4,81–83]. Similar

structures with buckling beams have also been proposed for energy absorption and

storage [4,58,80,84]. These have advantages over traditional materials used for collision

protection because they can easily unbuckled and reused. The structures can also

exhibit hysteresis loops under cyclic loading and unloading, and so can be used for
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dissipating energy and damping vibration [4]. The order of buckling in these structures

is unpredictable because each cell is identical and will depend upon manufacturing

imperfections, but this can be controlled by varying the thickness of the bistable

beams [80,84].

Energy absorbing metamaterials are generally constructed in arrays, with rows

of cells that buckle together, but not all at once. However, for some metamate-

rials, the transition of one cell can destabilise neighbouring sections and lead to a

cascade across the entire structure. These are attractive for realising complex, self-

deploying structures [11]. The change of state occurs through transition waves that

travel at a constant speed through the structure, behaving similarly to phase transi-

tions observed in crystalline solids [85]. The transition waves can also be controlled and

redirected by introducing defects into the periodic structure, as seen in section 3.3(b).

In addition to exhibiting interesting behaviour under compression, metamateri-

als can also be used to create multifunctional structures that morph into a variety

of different configurations [11,86–89]. One approach consists of tessellating prismatic

structures with flexible hinges, section 3.3(c), which are able to change into a large

variety of different shapes thanks to their 3D structure [88,89]. These can be used to

create structures that modify their shape and behaviour based upon changing en-

vironments, and be used to perform multiple tasks. These structures are able to

remain in the different configurations without an applied force because of multiple

stable states resulting from the buckling of the rigid faces [89]. A similar idea is seen

in [86]. Here, the authors design a metamaterial that consists of an elastic spherical

sphere that can undergo transformation from a large sphere with a relatively open

surface to a small sphere with a dense surface. Such a device could offer reversible

encapsulation functionality in order to transport small quantities of substances.
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Figure 3.3: (a) An elastic metamaterial with holes that buckle under compression. Adapted
with permission from [90]. (b) A transition wave through an auxetic metamaterial that is
redirected by lattice defects. Adapted with permission from [85]. (c) A 3D prismatic meta-
material that is able to reconfigure into a variety of stable states. Adapted with permission
from [89].

3.4 Origami

Origami structures are a specific type of mechanical metamaterial that have garnered

considerable attention in particular. They consist of a network of rigid flat surfaces

joined by creases that are free to bend, which enables simple two-dimensional sur-

faces to form complex three-dimensional structures. Origami is used for both artistic

purposes and engineering applications, largely for its ability to produce strong, but

light structures and materials [91]. One particularly useful class of origami structures

are those that can fold from a flat surface, known as flat foldable, and are therefore

easy to produce. The simple reconfigurability of flat foldable structures also makes

them suitable for deployable structures, such as solar panels for satellites [92,93].
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By considering elastic folds with an optimal angle and allowing some bending of

the rigid faces, many origami structures are found to be multistable. Indeed, one

of the most basic components of origami (vertices of four creases) is multistable [94]

and that these can be tiled to create large reconfigurable structures. One such tiled

structure is the Miura-ori pattern, fig. 3.4(b), which is well known for its ability to

unfold from a compact structure to a flat surface in a single motion as a result of a

negative Poisson ratio [92,93]. For this usage, the structure is elastically monostable

and therefore requires actuation to remain in a deployed state. Bistability has been

observed, however, through the inversion of singular cells of the Miura-ori pattern to

create “pop-through defects”. These can be introduced to programmatically modify

the stiffness of the structure, while remaining completely reversible [74].

Beyond simple sheets, origami can be used to produce three-dimensional struc-

tures. For example, by stacking origami sheets, cellular metamaterials can be pro-

duced that are auxetic or can be used for impact energy absorption [95,96]. The be-

haviour is then easily tunable by modifying the underlying two-dimensional fold pat-

tern. Alternatively, the origami sheets can be curved and turned into tubes and

cylinders [10,52]. These tubes are then able to easily extend and collapse simply by

deforming the end, providing another useful approach for realising deployable struc-

tures.

Kirigami is a variation of origami whereby cuts are introduced into the surface in

addition to folding. This allows for structures with greater flexibility and additional

stable states, with each end of a cut able to take one of two different states [97]. The

introduction of cuts also allows the structure to deform and buckle under compres-

sion [98], which has been exploited to create a variety of simple actuators that rotate

or lift [99].
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(a)
(b) (c)

Figure 3.4: (a) A Miura-ori pattern with a pop-through defect (red) that alters the stiffness
of the structure. Adapted with permission from [74]. (b) A combination of 12 origami tubes
that deploy to produce an enclosed structure. Adapted with permission from [10]. (c) Two
kirigami actuators that rotate and lift, respectively, when extended. Adapted with permission
from [99].

3.5 Energy landscapes applied to elastic structures

Recently there has been increasing interest in using energy landscape methods to

investigate multistable elastic structures [52,61,62,83,89,100,101]. Since these structures

are primarily macroscopic, thermal effects are insignificant and are external forces are

needed to reconfigure them instead. Correspondingly, there is no need to investigate

their statistical behaviour. Instead, energy landscape analysis can be used to design

structures, and to inform how best to reconfigure them.

Perhaps the most common use of energy landscapes in the field is to determine

the various states that a given structure can take for given structural parameters. For

example, this has been used in the study of some reconfigurable mechanical metama-

terials. Iniguez-Rabago et al. have looked into several shape-changing 3D prismatic

structures [89]. By varying just two of the fold angles they were able to produce a

simplified landscape, shown in section 3.5(a), displaying the stable regions of each

of the structure’s various states. A similar survey was also carried out for the elas-

tomeric metamaterial with cylindrical holes that buckles under compression [83]. To

understand how it behaves when compressed, all of the possible states were identified

at increasing levels of strain, section 3.5(b). Furthermore, by introducing slight im-

perfections to the structure they were able to identify which of the states are obtained
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upon experimentally deforming the system.

Energy landscapes have also been utilised in the study of origami structures.

In particular, these have looked at the reconfiguration pathways, which are often

complex and non-linear due to the folding through large angles. Silverberg et al. [100]

investigated the square twist structure which undergoes a bistable transition from an

unfolded to folded state, during which the faces are required to bend. They were

able to identify how the rigidity and shape of the structure affected the transition

pathway and its barrier, and thereby how they could be tuned for specific applications.

Another use of the pathway is demonstrated for an origami cylinder [52], which is

easily deployable as a result of the small energy barrier. In this case, the MEP causes

the cylinder to first extend beyond its deployed state before returning. Therefore,

the structure must take a different pathway when the deployed structure is placed

under compression, ultimately resulting in a much higher energy barrier and stiffness.

However, in each of these cases the pathways have been identified by applying forces

to the structure, rather than locating the MEP.

Recently, MEP methods have also enabled the identification of completely rigid

folding pathways in origami structures, even when crease bending energy is disre-

garded, such that there is no energy barrier between the unfolded and folded states.

By employing a pathway search algorithm that was fixed at the two end points with

an energy that penalised any deviations from rigid folding, Zhou et al. were able to lo-

cate the rigid folding pathway for the Miura-ori pattern [102]. A similar method could

also be applied to other reconfigurable structures that are not necessarily multistable,

as long as the two end states to be known.

In addition to providing information about desired reconfigurabilty, pathway anal-

ysis can be used to identify the failure modes of a system. For example, the buckling

of spherical and cylindrical shells under axial compression is hard to predict and

depends strongly upon the size of any imperfections [62]. However, by studying the

energy barrier it is possible to identify how these imperfections affect the critical pres-
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sure before buckling occurs [61,62]. Further work has also been undertaken to identify

how the shape of the cylinders affects the structure of the energy landscape [101]. Pan-

ter et al. identified that short cylinders had simple funnelled landscapes, and long

cylinders had complex landscapes with many more minima. Furthermore, using the

information about the initial buckling transition state, they were able to modify the

distribution of the structure’s thickness in order to maximise the energy barrier, and

to control the energy landscape, reducing the number of states, section 3.5(d).
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Figure 3.5: Energy landscape methods applied to various elastic structures. (a) The land-
scape of a prismatic structure when varying two of the angles. The elastic energies of each
configuration are shown on the left, and the basins of attraction for each state are on the
right. Adapted with permission from [89]. (b) The stable states of a 2× 2 holar metamaterial
at different values of the compressive strain. Adapted with permission from [83]. (c) Identi-
fying the rigid folding pathway of a Miura-ori vertex using an NEB pathway. The top shows
snapshots along the pathway as it is optimised. At the bottom the 2D energy landscape is
shown. The pathway is refined towards the rigid folding pathway where the energy is zero.
Adapted with permission from [102]. (d) Using information about the transition state of the
buckling of a cylinder to alter the buckling behaviour. The top shows how the thickness is
increased where the bending energy of the transition state is locally higher, resulting in an
altered transition state. The bottom shows that, as the thickness is increased, the landscape
changes and a low energy state is suppressed. Adapted with permission from [101].
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Chapter 4

Energy Landscape Methods

In this chapter we will explore some of the existing methods for energy landscape

exploration. Then we will discuss the advantages and disadvantages for each of the

methods, including their use for elastic structures and other continuous systems. It

is not feasible to discuss all such methods, so we will restrict our focus to some of the

most commonly used approaches.

Firstly, we will look at energy minimisation methods, which are central to the

exploration of energy landscapes. They are used to locate local minima in the land-

scapes, and are utilised in almost all energy landscape methods to find saddle points

and minimum energy pathways. So, efficient minimisation algorithms are crucial.

After this we will look at methods for locating transition states (TS). These can

use a single state to find a nearby TS, so-called single-ended methods, or can use two

states that converge towards a TS from either side, known as double-ended methods.

Finally, we will look at some methods for locating minimum energy pathways using a

chain of states. These methods are also often referred to as double-ended transition

state methods, while the bracketting methods are often overlooked. However, here we

will not be refer to them as such, and disambiguate between the two groups according

to whether a method is primarily locating the pathway or the TS.
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4.1 Energy minimisation

4.1.1 Gradient descent

Perhaps the simplest minimisation algorithm is gradient descent. In this method a

point on the landscape is iteratively refined by taking steps in the direction opposite

to the gradient. This causes the point to follow the path of steepest descent towards

the local minimum. Explicitly, the coordinates xi at iteration i are updated according

to,

xi+1 = xi − αi∇E(xi). (4.1)

The step size, αi, may be set to a single value, however this would slow down conver-

gence, and may cause the method to diverge if it is too large. A more common method

is to use a line search (described below) to perform a one-dimensional optimisation

in the direction of the step.

Line search

Given a search direction p (for gradient descent p = −∇E(x)) the aim of the line

search is to find the step size, α, that minimises the function E(x + αp). An exact

solution could be found, but this is likely inefficient. Instead, it is best to find a

value that is good enough and then proceed with the next iteration of the method.

Two common ways of determining this are using the Wolfe conditions [103,104] or a

backtracking line search [105].

The Wolfe conditions are that the objective function must reduce sufficiently (the

Armijo rule), and that the gradient must also reduce sufficiently (the curvature rule):

E(x+ αp) ≤ E(x) + c1αp ·∇E(x), (Armijo rule) (4.2)

−p ·∇E(x+ αp) ≤ −c2p ·∇E(x). (Curvature rule) (4.3)
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The parameters c1 and c2 must be chosen to satisfy 0 < c1 < c2 < 1. Each of these

rules places a bound on the step size, with the Armijo rule placing a maximum bound,

and the curvature rule enacting a minimum bound.

The backtracking line search is a little different. The Armijo rule is still used to

ensure that the step size is not too large, however the curvature rule is not. Instead,

the method first begins with a large step size and incrementally reduces it until it

satisfies the Armijo rule.

4.1.2 Newton’s method

Newton’s method is a second order minimisation method that uses the Hessian to

provide a faster rate of convergence than first order methods such as gradient descent.

Each iteration of this method effectively uses the gradient and curvature to fit a

paraboloid to the energy landscape surface, and then proceed to the critical point.

As a result, this method may also find maxima or saddle points instead of local

minima.

To obtain the step, si, to take from a position xi at iteration i, we consider the

second-order Taylor expansion,

E(xi + si) = E(xi) + sTi ∇E(xi) +
1

2
sTi H(xi)si, (4.4)

where H is Hessian matrix. The step should take it to the critical point, where the

gradient is zero,

∇E(xi + si) = ∇E(xi) + H(xi)si = 0. (4.5)

So the step that should be taken at each iteration is

si = −H−1(xi) ∇E(xi). (4.6)

Once the step has been found it is also possible to perform a line search along that
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direction. This can be used to ensure that the energy always reduces and a minimum

is found rather than a saddle point or maximum.

4.1.3 L-BFGS

The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [106,107]

addresses two difficulties associated with Newton’s method. The first is the calcula-

tion of the Hessian, which may be complicated or not known for many systems. Fur-

thermore, for an n-dimensional system it has a computational complexity of O(n2),

so it can be computationally costly for many energy landscapes which have a very

large number of dimensions. The second is the inversion of the Hessian in eq. (4.6),

which is even more costly, scaling as O(n3). Since L-BFGS is a quasi-Newtonian

method which approximates eq. (4.6) rather than calculating the Hessian directly, it

does not suffer from these same problems.

It is based upon the BFGS algorithm [108], which continually updates an approxi-

mation of the inverse Hessian matrix using the changes to the position and gradient

at each iteration. This prevents the need to know the Hessian, or perform the matrix

inversion. However, the whole matrix H−1 must still be calculated, with a complexity

of O(n2).

L-BFGS addresses this by only storing several vectors representing changes in

the positions and gradients of the past m steps (sj and yj for j = i −m, . . . , i − 1,

respectively), and the approximation of eq. (4.6) is calculated directly. This bypasses

the need to calculate the full inverse Hessian matrix, and results in a much lower

complexity of O(nm). To do this, two sets of vectors (qj and zj for j = i−m, . . . , i)

are calculated iteratively based upon the recursive method used by BFGS. The first
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vectors are given by

qi = ∇E(xi), (4.7)

qj = qj+1 −
(
sj · qj+1

sj · yj

)
yj for j = i− 1, . . . , i−m. (4.8)

Then the second set of vectors are calculated as

zi−m = −
(
si−1 · yi−1

y2
i−1

)
qi−m, (4.9)

zj+1 = zj −
(
sj · qj+1

sj · yj
− zj · yj

sj · yj

)
sj for j = i−m, . . . , i− 1. (4.10)

The step to take is then given by si = zi. It is also generally desirable to carry

out a line search in this direction to ensure that the step is acceptable and is going

downhill. This is then repeated until convergence is reached.

4.1.4 FIRE

Another useful method is the fast inertial relaxation engine (FIRE) [109]. Unlike the

other methods this uses an inertial minimiser inspired by molecular dynamics. This

involves a velocity, v, that quantifies the rate of change of the system coordinates,

which is driven by the force F = −∇E(x). Additional modifications are also made

to the velocity in order to drive it more quickly in the downhill direction, or stop if

it is moving uphill,

v →


v + α|v|(F̂ − v̂) if v · F > 0

0 if v · F ≤ 0

(4.11)

where α parametrises the downhill velocity modification and ∆t is the timestep.

These values are also dynamically changed to accelerate the minimisation if it is

successfully proceeding downhill: If v · F > 0 for the past five or more iterations,

∆t is increased by a factor of 1.1 until it reaches a defined maximum value, and α is

reduced by a factor of 0.99. Otherwise, if v · F ≤ 0, α is reset to its starting value
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of 0.1, and the timestep is halved. In summary the method follows the following

algorithm:

1. Initialise coordinates x, and velocity v = 0.

2. Calculate the force F = −∇E(x).

3. Update the velocity, v → v + F∆t/m.

4. Modify the velocity according to eq. (4.11).

5. Update α and ∆t depending upon the value of v · F .

6. Update the position, x → x+ v∆t.

7. Check for convergence, otherwise return to 2.

4.1.5 Simulated Annealing

For some applications, when the gradient is undefined or difficult to calculate it may

be necessary to use a gradient-free minimisation algorithm. This is most typically

the case for discrete problems. Simulated annealing [110] is one such algorithm that is

based upon the thermodynamic annealing of metals. This uses random displacements

and chooses whether to accept them depending upon the change in energy. Unlike

the methods above, simulated annealing is primarily a global minimiser because it

can jump into the basins of other minima and so is not simply restricted to finding

the local minimum closest to its initial position.

For each iteration the random perturbation is chosen such that the new state is

not too far from the previous. This may be performed by adding small perturbations

to each degree of freedom separately, or ensuring that the total displacement is below

a certain value. The probability of accepting this depends upon the energies of the

proposed state, E′, and the current state, E, according to a Metropolis acceptance

criteria [111],

P (E′, E, T ) =


1, if E′ ≤ E

exp(−(E′ − E)/T ), if E′ > E

(4.12)

33



CHAPTER 4. ENERGY LANDSCAPE METHODS

The temperature, T , is reduced over the course of the simulation from a high

initial temperature, T0, to zero. This allows the state to initially explore the entire

configuration space, but it is steadily constrained to a single minimum. Usually the

rate of cooling should be sufficiently slow so that the state is remains at thermody-

namic equilibrium, otherwise it is highly likely to get stuck in a local minimum rather

than finding the global minimum. This rate will depend upon the specific application,

and it is hard to predict a reasonable value a priori. The precise cooling schedule can

use a variety of different functions, such as a linear reduction in temperature or an

exponential decrease.

Simulated annealing may also be used to emulate local minimisation by setting

T = 0, ensuring that the energy can only decrease. However, the method is not

guaranteed to find the closest local minimum, because the random perturbations

may still cause it to jump into the basin of another minimum. The probability of this

can be reduced by setting a small limit for the maximum perturbation, but it cannot

be avoided entirely.

4.1.6 Basin hopping

Basin hopping is a related method for finding global minima [112]. Like simulated

annealing, it employs Monte Carlo sampling and evaluates moves according to the

criteria given in eq. (4.12). However, there are two main differences between the

methods. Firstly and most significantly, the energy of each trial state is computed

by performing a local minimisation. This ensures that all states within a basin of

attraction have the same energy for the acceptance test, effectively eliminating the

barriers between adjacent basins. The coordinates of the state may be left unchanged

by the minimisation process, or they may be updated to the position of the local

minimum. The latter approach, given by Li and Scheraga [113], is generally seen to be

the more effective strategy [14].
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The second notable difference is that the temperature is held constant throughout

the simulation. Instead of depending upon a changing temperature to adequately

explore the energy landscape, the step size is adjusted dynamically to ensure that the

average acceptance ratio aligns with a chosen value.

The basin hopping algorithm will tend towards deeper basins until it locates the

global minimum. However, the finite temperature also allows it to move to higher

basins so that it can pass between multiple funnels in the landscape. This allows it to

successfully locate global minima, even in landscapes with multiple deep funnels. To

do this, the temperature must be approximately the size of the barriers separating

funnels. So if the funnels are particularly deep or the temperature is too low the

method may potentially get stuck.

4.1.7 Genetic algorithm

Genetic algorithm is another method for performing global minimisation [114] that

is based upon genetic evolution. In contrast to the other methods that have been

described, genetic algorithm does not optimise using a single state, but instead an

ensemble of states. Each iteration of the algorithm selects the fittest individuals (with

the lowest energies) in the population which are used to produce a new generation.

These children are produced through a combination of crossover the parents genes,

and mutation.

The selection of the parents generally occurs stochastically where the fitter in-

dividuals are more likely to be selected. There are a number of such methods, but

a simple approach that is often used is the roulette wheel selection. For this, the

probability that each individual is picked is proportional to their fitness (or inversely

proportional to their energy),

p(xi) =
1

E(xi)

/∑
j

1

E(xj)
. (4.13)
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An approach known as elitism may also be used, where a small number of the most

fit individuals are selected for the next generation without undergoing any changes.

This ensures that the best solutions are never lost and the global minimum estimate

can only ever improve during the simulation.

For each child in the new generation the parents are randomly selected. Typi-

cally, two parents are chosen, but more parents can be used. Then, the most simple

approach is to use uniform crossover, where each coordinate is randomly selected

from each of the parents. Alternatively, the parents’ coordinates may be split at a

random point and swapped, resulting in a block of coordinates from one parent and

the remaining coordinates from the other. This is known as one-point crossover, and

can be generalised by splitting at a larger number of points.

The selection of the most fit individuals reduces the genetic diversity of the over-

all population and can lead to premature convergence, so mutation is used to keep

the diversity high. For discrete applications the genetic information of an individ-

ual can be expressed as a string of binary values. Mutation is then performed by

randomly flipping certain bits at a given probability, analogous to real genetic mu-

tation. However, for continuous systems mutation is usually carried out by altering

each coordinate by a random amount chosen from a normal distribution.

For continuous applications it also can be helpful to consider hybrid methods [115].

These can be used to perform a gradient-based local minimisation on each individual

when calculating the fitness. This is also known as a Lamarckian genetic algorithm

because of the ability for individuals to pass on what they have ‘learned’. Performing

the local search is beneficial because it can locate local minima much faster than

using genetic algorithm alone. Also, it may be useful for studying energy landscapes

where the minima sit in deep wells, in which case the energy in the neighbouring

region may be unrelated to the energy of the minima.

However, a local search may cause issues due to many duplicates, which can
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result in a lack of genetic diversity and stagnation of the population before reaching

the global minimum. One approach to resolve this is to remove individuals that

are too close to another using a duplicate predation operator [116,117]. This ensures

that the population remains diverse, so it can converge more quickly to the global

solution, and also finds more local minima. However, duplicate predation may result

in too few parents if there are not many minima on the landscape, in which case more

individuals would need to be initialised, or the method restarted.

4.2 Single-ended transition state methods

One approach to locate saddle points is by evolving a single state such that it as-

cends up valleys in the landscape, effectively maximising one degree of freedom while

minimising others. Such methods are known as walker methods or single-ended transi-

tion state search methods. We will discuss the climbing image, eigenvector-following,

and dimer methods, although other methods also exist, such as the climbing string

method [118] or the Lanczos iterative method [119].

τ̂

x0

x1

x2

F0

F1

F2

FR

(a) (b)

Figure 4.1: (a) The effect of τ̂ on the climbing image force in the vicinity of a saddle point
(white is high energy, black is low). Here τ̂ is pointing 20◦ away from the optimal vertical
direction, resulting in an inward spiralling force. The arrows show only the direction of the
force. (b) The forces used to rotate a dimer, including the downhill forces on each state, Fi,
and the rotational force applied to state 1 about the midpoint, FR.
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4.2.1 Climbing image

The climbing image method [16,120] is perhaps the most simple single-ended method.

It involves minimising the energy of a state, but the gradient is inverted in a chosen

direction, τ̂ , resulting in a driving force of the form,

F = −∇E + 2(∇E · τ̂ )τ̂ . (4.14)

An example of this force about a saddle point is shown in fig. 4.1(a).

Because the gradient has been modified, this can no longer be considered a min-

imisation problem. Therefore, optimisation methods that ensure that the energy

decreases, such as line search, can not be used here. This is also the case for most of

the other energy landscape methods.

The climbing image is able to reach the TS so long as it starts sufficiently close to

it and τ̂ is approximately the direction of negative curvature at the TS. If not, this

method is likely to diverge. Therefore, this method is often used in conjunction with

other methods, especially pathway methods, in order to refine an initial estimate for

the transition state, but it cannot usually locate a TS from a minimum.

4.2.2 Eigenvector-following

Unlike the climbing image method which requires the maximisation direction to be

provided, the eigenvector-following method [121,122] instead calculates it by finding

the eigenvector with the lowest eigenvalue of the Hessian matrix, H. Also, because

this direction is updated at each step, the state does not need to be initialised close

to the TS. The original method by Cerjan and Miller [121] required calculating the

inverse Hessian matrix, with later methods finding ways around the costly matrix

inversion [123]. Munro and Wales then introduced the hybrid eigenvector-following

method that did not require the Hessian matrix to be calculated at all, making it
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useful for large systems [122].

The method used by hybrid eigenvector-following to find the smallest eigenvalue

is to first consider the following function for a vector y,

λ(y) =
yTHy

y2
. (4.15)

When this function is minimised with respect to y it will give the value of the smallest

eigenvalue, λmin, and y will be in the direction of the corresponding eigenvalue, êmin.

To do this without knowledge of the Hessian, λ(y) is approximated using the function,

λ(y) ≈ E(x0 + δy) + E(x0 − δy)− 2E(x0)

(δy)2
, (4.16)

where x0 is the position where we are evaluating the Hessian, and δ is a very small

value.

Once the minimum eigenvalue and eigenvector have been found the state is

stepped uphill along the eigenvector with a step size of

h =
2F

|λmin| (1 +
√
1 + 4F 2/λ2

min)
, (4.17)

with

F = ∇E · êmin. (4.18)

Then the energy is minimised along the hyperplane orthogonal to êmin. This entire

process is repeated, first finding the eigenvector then stepping uphill and minimising,

until it converges to the saddle point.

4.2.3 Dimer method

The dimer method [124–126] is a variant of the eigenvector-following method, that iden-

tifies the smallest eigenvector of the Hessian using a pair of close-lying states. It does
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this by using the gradient on each state to generate a torque that turns the dimer to

minimise the curvature.

By considering a close pair of states x1 and x2 with midpoint x0, each experienc-

ing a force Fi = ∇E(xi) (as demonstrated in fig. 4.1(b)), the rotational force applied

to state 1 is found to be

FR = (F1 − F2)− [(F1 − F2) · τ̂ ]τ̂

= 2(F1 − F0)− 2[(F1 − F0) · τ̂ ]τ̂ ,
(4.19)

where τ = x1 − x0. This has been re-expressed using the force at the midpoint,

because this is needed for the translation step, so one fewer gradient calculation is

necessary. This rotation force can be used to iteratively reorient the dimer until it

reaches convergence.

Once this has occurred the dimer proceeds similarly to the climbing image method,

maximising in the direction of the gradient while minimising in other directions using

eq. (4.14). However, if the dimer is located in a convex region where the curvature

along the dimer is positive (such as close to minima) a different force is instead used

to ensure that it does not get trapped:

F = (∇E · τ̂ )τ̂ . (4.20)

4.3 Double-ended transition state methods

If both endpoints of a transition are known then single-ended methods are inadequate

because they are not guaranteed to find the correct TS. Instead, double-ended meth-

ods that converge towards the saddle from either side can be used. Unlike pathway

methods these do not typically require an initial estimate for the pathway, simplifying

the process for applications with complex non-linear pathways.
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There are a number of such methods, including the method introduced by Dewar,

Healy, and Stewart (DHS) [127], the step and slide method [128], the ridge-walking

method [129], and the double-ended surface walking method [130]. Here we will focus

on the first two.

4.3.1 DHS method

The DHS method [127] involves individually minimising each of the two states under

a constant separation from the other state. This separation is then steadily reduced

until the method converges to the transition state.

Each iteration of the method involves first identifying which of the two states has

the lowest energy. This state is typically further from the transition state, so it is

chosen to be minimised. It is then brought towards the other, typically by about 5%,

and minimised under a fixed separation constraint. After one or more iterations, this

state gains a higher energy than the other and the minimisation switches to the other

state. The behaviour of this method is demonstrated in fig. 4.2.

4.3.2 Step-and-slide method

The step and slide method [128] is similar to the DHS method, although, the roles are

switched. Instead of fixing the separation and minimising the energy, the separation is

minimised at constant energy. This is iteratively performed using a two-step process.

First, an energy is first chosen and the two states are ‘stepped’ directly towards one

another until they reach the isosurface for this energy. Then, the states ‘slide’ along

this isosurface until the separation is minimised. If the chosen energy is below that

of the transition state then the two states will approach the TS. Whereas, if it is too

high, the states will meet and should be reverted back to their previous positions. In

this way, step and slide is able to provide an energy bound for the transition state.
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In order to slide along the isosurface a bespoke minimisation procedure is required.

It must also be implemented in such a way that one state cannot accidentally jump

over the saddle point, otherwise the method will fail. For example, this may occur if

the state is moved tangentially to the isosurface when close to the saddle. Therefore,

the approach used in ref. 128 is to instead move one state downhill slightly accord-

ing to the gradient and then step back up to the isosurface. This is alternatively

performed on each state until the separation has converged.

In order to choose the target energy for each iteration Etrial, the method uses

maximum and minimum bounds for the transition state energy. The minimum energy

is given by the energies of the two states E1,2, while the maximum energy, Emax, is

updated any time the states combine after the slide. Then the target energy can

be chosen according to a binary search, Etrial = (E1,2 + Emax)/2. To initialise the

method the maximum bound can be set by finding the maximum energy of a linear

interpolation. However, if the result is very large, it may be better to increase the

energy by a set amount until an upper bound is found that way.

(a) (b)

Figure 4.2: (a) A diagram demonstrating the behaviour of the DHS method. (b) An
illustration of two iterations of the step and slide method. Adapted with permission from [128].
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4.4 Pathway methods

Once transition states have been identified, the full MEPs can be found by performing

a downhill minimisation from either side of the saddle to the minima and tracking

the trajectory. To accurately follow the steepest descent, the step size of this minimi-

sation should not be too large, and ideally a gradient descent method should be used.

However, other minimisation methods, such as L-BFGS, can give an approximation

of the pathway, particularly for large and complex systems where gradient descent

may be slow.

Alternatively, there are a number of commonly used methods that can directly

find MEPs between two end points. Each of these approaches utilise a chain of states

{x1, ...,xN}, where each state contains a full set of system coordinates. This chain

can be initialised as a linear interpolation between the two end states, but for some

systems more complex pathways may be required [129,131,132]. The energy of the chain

is then minimised while keeping the states equally separated until it converges to the

MEP. Convergence is satisfied when the gradient orthogonal to the local pathway

tangent vector goes to zero for every state in the chain,

∇⊥E(xi) = ∇E(xi)− (τ̂ ·∇E(xi))τ̂ , (4.21)

where τ̂i is the tangent vector to the pathway at image xi along the chain.

These methods are also often used in order to find the approximate locations of

transition states, which occupy local maxima along the MEP. While these methods

generally do not precisely find these transition states, they can be used in conjunction

with a single-ended TS search method for this purpose.

A number of pathway search methods have been proposed, although here we will

focus on two commonly used approaches: the nudged elastic band (NEB) and string

methods, as well as some of their variants.
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(a) (b)

Figure 4.3: (a) A diagram showing how NEB converges to the MEP for a 2D landscape.
The inset shows a schematic of the forces on an state in the chain. Adapted with permission
from [133]. (b) A schematic illustrating how the string method evolves. The arrows show the
partial minimisation followed by a reparametrisation along the new interpolation.

4.4.1 Nudged elastic band method

The core feature of NEB methods [134,135] are that the states are kept separated along

the chain using elastic spring interactions. Therefore, the aim of the method can be

considered to minimise the following total energy of the string,

ENEB =
N∑
i=1

E(xi) +
1

2
k

N∑
j=i+1

|xi − xj |2
 , (4.22)

where k is a parameter for the spring constant between the states. However, a couple

of modifications (‘nudges’) to the gradient of eq. (4.22) are made to reduce unwanted

interference between the two contributions. Firstly, the gradient of the underlying

potential is projected perpendicular to the tangent vector, τ̂i. This prevents the

images from sliding down the pathway and ensures that the potential does not affect

the parametrisation of the path, only its course. The second modification aims to

reduce the corner cutting around bends in the pathway by using only the component

of the spring force parallel to the tangent vector. Therefore the total gradient on
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state i in the chain is

GNEB,i = ∇⊥E(xi) +G
∥
S,i, (4.23)

where

G
∥
S,i = (τ̂i ·GS,i)τ̂i (4.24)

GS,i = k(xi+1 + xi−1 − 2xi). (4.25)

The tangent vector at each point can be computed in a few ways. The simplest

approach is to use central difference between the points and normalise the result,

τ̂i =
xi+1 − xi−1

|xi+1 − xi−1|
. (4.26)

However, an approach that provides better results in areas of high curvature is to

bisect the tangents given by forward and backward difference [134],

τi =
xi+1 − xi

|xi+1 − xi|
+

xi − xi−1

|xi − xi−1|
and τ̂i =

τi
|τi|

. (4.27)

A variant of NEB known as the doubly-nudged elastic band method (DNEB)

brings further improvements to the method [135], and has since seen widespread use.

This improves stability by introducing an additional term to the NEB gradient,

eq. (4.23), such that the perpendicular component of the spring force is not com-

pletely removed. This correction term is

G∗
S = G⊥

S − (G⊥
S ·∇⊥E)∇⊥E. (4.28)

The states along the chain in NEB and DNEB are unlikely to provide a particu-

larly accurate approximation to the transition state, especially if there is significant

corner cutting due to the spring interaction. Therefore they are often used in hybrid

methods with single-ended transition search methods, such as climbing image [120], or
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eigenvector-following [135]. Once the chain has converged these can be run from the

highest energy state, or, can be applied to the highest state at the same time as the

elastic band is minimised. The latter requires some extra care because it is possible

for the climbing state to diverge if it starts too far from the transition state.

4.4.2 String method

The string method [16,136] shares many similarities with NEB, however it differs es-

sentially by the process that keeps the states separated along the chain. Instead of

using a spring force, the states are reparameterised along the pathway occasionally

throughout the minimisation.

In the originally proposed method [136] the states in the chain are driven downhill

according to the gradient of the potential orthogonal to the direction of the chain.

Explicitly, for state i along the chain this driving force would be,

Fi = −∇Ei + (τ̂i ·∇Ei)τ̂i. (4.29)

In a later modification to the method [16] this driving force was simplified to remove

the orthogonal projection because the reparametrisation step makes this unnecessary,

leaving Fi = −∇Ei. The tangent vector can be simply computed according to the

difference between the neighbouring states, τ̂i = (xi+1 + xi−1)/|xi+1 + xi−1|.

After a certain number of minimisation iterations have passed the states must be

reparametrised along the chain. A suitable choice for this depends upon the system

and the minimisation algorithm. This reparametrisation may be performed using

either a linear, or a cubic-spline interpolation along the set of points. Then the new

points can be equally separated along the interpolation. The number of these new

points does not necessarily need to be same as the previous step, which can make

it easy to refine the pathway over time. Additionally, the points do not need to

be evenly distributed, and could instead be clustered close to the transition state
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by weighting the length of the interpolated path according to the local value of the

potential [16].

Similar to NEB it is possible to use a hybrid method with climbing image [16] or

eigenvector-following in order to accurately find the transition state. In this case,

the state with the highest energy using the chosen method and should be left out of

the reparametrisation step. Another climbing image / string method hybrid, called

the climbing string method, has also been proposed [118]. However, unlike the other

methods, this is a single-ended saddle point search method. This uses the string of

states to guarantee that it has not left the basin of attraction for a minimum rather

than for locating a MEP.

4.5 Methods comparison

Minimisation

Minimisation methods that use the Hessian, like Newton’s method, generally provide

faster convergence compared to other methods. However, the calculation of the Hes-

sian can become the limiting factor if the number of degrees of freedom is large, which

it generally is in the continuous systems that we are interested in. Since L-BFGS is

quasi-Newtonian, it benefits from this faster convergence without being bogged down

Method Local Global Gradient Hessian Ensemble
Gradient descent ✓ ✗ ✓ ✗ ✗

L-BFGS ✓ ✗ ✓ ✗ ✗

FIRE ✓ ✗ ✓ ✗ ✗

Newton’s method ✓ ✗ ✓ ✓ ✗

Simulated annealing ✓ ✓ ✗ ✗ ✗

Basin hopping ✗ ✓ ✓ ✗ ✗

Genetic algorithm ✗ ✓ ✗ ✗ ✓

Table 4.1: A comparison of the different minimisation methods, indicating which can be used
as local or global minimisers, which require the gradient or the Hessian, and which use an
ensemble of states.
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by the calculation of the Hessian, therefore it is ideal for our purpose.

FIRE is also a good option with convergence speeds approaching that of L-

BFGS [109], so it is a good alternative for cases where L-BFGS has difficulty. It is

also more amenable to parallelisation along the degrees of freedom, because there are

much fewer vector magnitudes and dot products calculated per iteration compared

to L-BFGS. On the other hand, FIRE has a free parameter, the maximum time step,

which can require some tuning for each system and makes the method a little more

difficult to use.

As for simulated annealing, it is primarily a global minimiser, but it can also

be used to find local minima. Compared to L-BFGS and FIRE it converges much

more slowly, and the random perturbations make it possible to jump into the basin

of another minima. Therefore, where possible other methods should be used, but it

is particularly useful if the gradient cannot be calculated or is undefined.

However, when it comes to global optimisation or locating multiple minima, basin

hopping and the genetic algorithm tend to win out. For genetic algorithm, the en-

semble of states provides a much larger accessible search region, resulting in better

performance for most problems [137,138]. Furthermore, it is well suited to parallelisa-

tion because each state can be run separately, with a minimal number of interactions

in each generation. As for basin hopping, it is particularly attractive because of its

simplicity, the only variable parameter being the temperature. This makes it more

straightforward to apply to new systems in comparison to simulated annealing or ge-

netic algorithm, which depend heavily upon the choice of cooling schedule and genetic

operators, respectively, as well as their related parameters.

Transition states and pathways

Single-ended search methods are generally efficient at locating saddle points quickly.

This makes them particularly well suited for surveying large numbers of transition
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Method Number of
states

TS from
endpoints

Can find
multiple TS

No
interpolation

Single-ended TS 1 ✗ ✗ ✓

Double-ended TS 2 ✓ ✗ ✓

Chain-of-states ≥ 3 ✓* ✓* ✗

Table 4.2: A comparison of the three types of TS and pathway methods, including the
number of states that are optimised, if the method can find one or multiple TS between two
chosen endpoints, and if an interpolation is required. An asterisk indicates a hybrid method
is required.

states or refining estimates, such as those obtained from chain-of-states methods.

However, if a specific pathway between two known end states is of interest, single-

ended methods are often inadequate and double-ended methods and chain-of-states

methods should be used instead.

The simplicity of the climbing image method makes it excellent for refining tran-

sition state estimates, but it cannot usually be started far from the transition state,

such as from minima. The requirement for a tangent vector estimate also restricts

its use. The eigenvector-following and dimer methods solve these issues and can

be used in most situations, but their success depends strongly upon the number of

iterations allowed when calculating the uphill direction and the corresponding conver-

gence criteria. This can also take some time to adequately converge for large numbers

of degrees of freedom. If there are zero eigenmodes of the Hessian, such as global

translation and rotation, then the dimer and eigenvector-following methods can also

struggle and special consideration is required.

For finding the transition states and pathways between two end points, the choice

between using double-ended transition state methods or chain-of-state methods will

depend upon the situation. Chain-of-states methods will be preferable if full pathways

are desired, or precise transition states are not required. Likewise, if there are many

intermediate minima and transition states, which is often the case for particulate

systems, chain-of-states methods can identify the approximate locations for many of

these at once. Chain-of-states methods are also more reliable, whereas double-ended
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methods can often fail to locate a transition state. As a result, chain-of-states methods

are much more widely used than other methods. However, double-ended bracketting

methods can be particularly efficient for finding transition states for pathways with

no (or very few) intermediate minima. This is especially true if the pathways are

highly non-linear on the landscape, where chain-of-states methods require a large

number of images to accurately approximate the pathway. It can also make it difficult

to choose an appropriate initial pathway estimate, which is necessary for chain-of-

states methods. These advantages make double-ended methods attractive for elastic

structures and other continuous systems, which have comparatively few minima, yet

complex, non-linear pathways.

Comparing the double-ended TS methods, we find that each has different advan-

tages and disadvantages. The DHS method is particularly simple to implement and

use, and it can be good for obtaining the TS within a certain distance error. However,

because only one state is minimised at a time, the distance must be reduced quite

slowly for it not to pass over the ridge. As for the step and slide method, it is useful

for getting a bound on the energy of the transition state. However, the minimisation

along a constant energy surface requires a more complicated implementation that is

not as efficient as standard minimisation algorithms. Also, it can be hard to know

how much to initially increment the energy, if it is too large or too small the method

may take a lot longer to converge.

Of the pathway methods, both DNEB and string methods have a comparable

effectiveness. Each can be advantageous for different systems and sets of parameters,

but it is difficult to know which will be better a priori [139].
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Chapter 5

Binary Image Transition State

Search

5.1 Introduction

Transition states are central to the description of reconfiguration mechanisms for

systems in chemistry, condensed matter physics, and engineering. Historically, many

computational methods for locating transition states have grown from an atomistic or

particulate perspective. These have proven to be important tools for understanding,

for example, protein folding [1,30], biological and industrial catalysis [2,27,29], quantum

tunnelling [19,25], crystallisation [38], and cluster formation [17,33].

More recently, it is increasingly being recognised that transition states are use-

ful in mesoscale or macroscale systems. Here, the minimum energy barriers provide

important lower bounds to the energy input required for transitions to occur. This

has been used to understand failure in structural engineering applications [62,101], for

the development of super liquid-repellent surfaces [50,140,141], and investigating loco-

motion through complex terrain for robotics [51]. Moreover, it is becoming desir-

able to tailor elastic deformation transitions to enable technologies such as advanced
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deployable structures [10,52], mechanical sensors and actuators [77,142–144], and energy

absorbers [58,84] to name but a few.

As discussed in sections 4.2 to 4.4, transition state search methods generally fall

into two categories, single- and double-ended methods. Single-ended methods are

initialised at a single state and attempt to climb to a nearby saddle point. Ex-

amples include eigenvector following [121], the dimer method [125,126,145], and climbing

image methods [16,118]. Double-ended methods can be further subdivided into two

groups. The first are bracketing methods, which involve two states converging to

the transition state from either side. These include the Dewar-Healy-Stewart (DHS)

algorithm [127], ridge method [129], the step and slide method [128], and the double-

ended surface walking method [130]. The second group utilise chain-of-states methods

for finding pathways, such as string method [16,136] and doubly-nudged elastic band

(DNEB) [135]. In order to locate transition states, these are combined with single-

ended methods, resulting in a hybrid approach. However, chain-of-states methods

require an appropriate initial interpolation, which can sometimes be challenging to

obtain [132].

Unfortunately, a large range of landscapes prove challenging or impossible to ex-

plore via these methods. One such problem arises from the push towards larger

and more complex systems [146–148], resulting in the need to develop algorithms that

are more computationally and memory efficient, and can incorporate optimisation

strategies such as on-the-fly adaptive remeshing and coarse-graining. These typically

involve changing the resolution or discretisation of the systems to focus the compu-

tational time on important regions, such as using a higher resolution mesh in regions

of high stress in finite element simulations [149]. However, chain-of-states methods

involve a coupling between the configurations of each state, and so there is an issue

if they have different discretisations and numbers of degrees of freedom. Meanwhile,

single-ended methods can be inefficient because they are not well suited for identify-

ing specific pathways and can spend a large amount of time searching for undesired
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transition states. Another major challenge in studying complex energy landscapes

relates to the presence of locally flat or discontinuous regions, such as when con-

sidering patchy [150–152] and hard-body [38,153] interactions in atomistic simulations,

systems of polymer chains [12], or collision constraints for macroscopic objects [154].

Flat zero-modes in the landscape pose issues for single-ended search methods and

current bracketing methods that rely only upon local information. Specialist treat-

ment can sometimes be used such as in the case of global rotation and translation [155],

but they are thwarted by local zero-modes. Finally, current methods cannot typically

be applied in the case of discontinuous potentials, or if the gradient is prohibitively

expensive to compute, because continuous, differentiable optimisation functions are

required.

In this chapter we introduce a new double-ended bracketing method, the Binary-

Image Transition State Search (BITSS). Using a range of different applications, we

demonstrate that it successfully addresses each of the above challenges. In addition,

we show that BITSS is superior compared to existing bracketing methods, allowing

us to access the transition states when other methods fail.

5.2 BITSS method

The method begins by first initialising the states, x1 and x2, in the basins of attraction

of different local minima, such as the two blue spots in the 2d potential in fig. 5.2(a).

These can be set to the minima, but this is not a necessary requirement. The energies

of these two states are then minimised, while constraining their separation. This is

iteratively reduced to zero, such that, at iteration i, their separation is

di = (1− f)di−1, (5.1)

with d0 taking the value of the separation between the two initial states. A reduction

factor of f = 0.5 is successful for most applications, but this can be made smaller to
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ensure that the states do not slide off the ridge between the two basins of attraction.

This and other parameters in this chapter are listed in table 5.4. Different metrics

may be used to compute this distance, although we will simply use the Euclidean

distance,

d(x1,x2) =

√∑
i

(x1,i − x2,i)2. (5.2)

To further ensure that neither state is pulled over the ridge, a secondary constraint

enforces equal energies for the two states. Using this strategy, the two states will

meet at the lowest point on the ridge, the transition state.

The two constraints are implemented using energy penalty terms, which result in

driving forces on the two states if the constraints are not met, such as in fig. 5.2(b).

Including these energy penalty terms gives the total BITSS energy for the pair of

states,

EBITSS(x1,x2) = E1 + E2 + κe (E1 − E2)
2 + κd (d(x1,x2)− di)

2 , (5.3)

where E1 and E2 are the single-state energies, and κe and κd parametrise the strengths

of the energy and distance constraints.

The L-BFGS algorithm is chosen to minimise this energy, owing to its fast con-

vergence and low memory requirement for large numbers of degrees of freedom [107].

However, any other minimisation method can be used in practice.

5.2.1 Choosing the constraint coefficients

To ensure that the transition state is located successfully, the constraint strengths

κd and κe are updated as the algorithm proceeds using information from the system.

These are initially calculated at the start of each minimisation, and regularly recal-

culated throughout (once per 100 iterations is used here). These are set such that the

driving forces due to the constraints and single-state energies are of similar size, in
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order to prevent the constraints from dominating the underlying potential or causing

large jumps that make a state pass over the ridge.

To obtain the expression for the energy coefficient, κe, we first assume that the

separation is fixed, so the distance term can be ignored. The coefficient κe must be

high enough to prevent one state from being pulled over the ridge, for which the

greatest risk occurs when the gradient on one state is much greater than the other,

e.g. |∇E2| ≫ |∇E1|. In this case the total gradient is approximated by

∇EBITSS = [1− 2κe(E1 − E2)]∇E2. (5.4)

Therefore, when not at a transition state or a minimum in the landscape (|∇E2| ≠ 0)

convergence will occur when the term in the square brackets is zero, resulting in

E1 − E2 = 1/2κe. This energy difference should be less than current energy barrier,

so we can substitute it with EB/α, where α is a constant greater than one, and EB

is an estimation for the current energy barrier, evaluated using a linear interpolation

between the two states. This leaves us with an expression for κe.

κe =
α

2EB
. (5.5)

The distance coefficient is determined by assuming that the energies are equal

and thus the energy constraint can be ignored. In this case, convergence will occur

when ∇E1 +∇E2 = −2κd(d− di)∇d. It is then possible to find the value of κd for

which the magnitude of each side of this equation is equal for a desired relative error

in the distance, β = (d− di)/di,

κd =

√
|∇E1|2 + |∇E2|2

2
√
2βdi

. (5.6)

Here, it has been used that the gradient of the distance with respect to a single

state has a magnitude of 1, so the total magnitude for the pair of states is |∇d| =

55



CHAPTER 5. BINARY IMAGE TRANSITION STATE SEARCH

√
12 + 12 =

√
2. To ensure that the coefficient is not too small if the gradient is

close to zero, such as when the states are initialised at the minima, a lower bound is

set by replacing |∇E1| and |∇E2| with 2EB/di. This results in the following overall

equation for κd.

κd = max


√

|∇E1|2 + |∇E2|2

2
√
2βdi

,
EB

βd2i

 , (5.7)

In practice, when numerically minimising, the states will jump about slightly

which can result in large gradients perpendicular to the optimal movement direction.

To reduce this effect, the gradients used in eq. (5.7) are projected in the direction of

the separation between the two states:

|∇En| ≈
|(x1 − x2) ·∇En|

|x1 − x2|
. (5.8)

In order to choose suitable values for the constant parameters α and β we have

tested different parameter choices using the seven-particle cluster and cylindrical

buckling examples, described in section 5.3. These are used with a fractional separa-

tion decreases of f = 0.5 and f = 0.4, respectively. Fig. 5.1 shows which choices lead

to convergence and the speed at which this occurs.
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Figure 5.1: Speed of convergence of the BITSS method under different choices of parameters
for (a) the seven-particle cluster, and (b) cylindrical buckling. The speed is given by the
number of evaluations of the gradient until the two states are separated by less than a
thousandth of the initial separation. The combinations that do not converge to the transition
state are shown in grey. The chosen parameters are marked by a red star.

The parameters α = 10 and β = 0.1 are chosen for converging quickly, while
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remaining far from the regions of non-convergence in both test cases. Hence, this

choice is likely to still succeed even if the boundaries of the non-convergence region

shifts when using different systems. However, these parameters may also be adapted

to a specific system if desired.

5.2.2 Method summary

In summary, the BITSS method involves iteratively performing the following three

steps:

1. Reduce the constrained separation, according to eq. (5.1).

2. Minimise the potential of the pair of states, eq. (5.3).

3. Recompute the constraint coefficients, κe and κd, at regular intervals using

eqs. (5.5) and (5.7).

This process is completed once a suitable convergence criterion is reached. This can

either be based upon the separation between the states, the size of gradient at the

midpoint between them, or the change in the position of the midpoint.

Using this approach, the typical trajectories of the states are demonstrated for a

simple 2D potential in fig. 5.2(a). Initially, the lower energy state jumps up to sat-

isfy the equal energy constraint and then moves to minimise the separation without

increasing its energy. Then, the two states converge directly towards one another,

before being deflected towards the saddle in the ridge. Consequently, if there are mul-

tiple possible pathways between two states, BITSS will be biased towards identifying

those that are more direct or with lower energy. Furthermore, the final two states are

positioned either side of the transition state in the direction of the negative curvature

eigenvector, τ̂ (fig. 5.2(c)). So, BITSS automatically identifies the ‘reactive mode’

and associated eigenvalue in addition to the transition state. Once the transition

state has been identified, it is possible to find the full minimum energy pathway by

tracing the trajectory of downhill minimisations from the two final states, which are
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either side of the saddle.

τ̂

FE

FD
x1

x2

(a)

(b) (c)

Figure 5.2: Schematics of the BITSS method on a simple 2D potential with two minima.
(a) The orange line shows the trajectories of the two states from the minima (blue) to the
transition states (red) under the BITSS method. The minimum energy pathway is shown by
the dashed line. (b) A snapshot of the BITSS minimisation showing the driving forces on
each state due to the energy constraint, FE, and distance constraint, FD, with E1 < E2 and
d(x1,x2) > di. (c) The final configuration of the BITSS method showing the two states in
orange, the transition state in red, and the negative curvature eigenvector, τ̂ .

In the event that there are intermediate stable states, there will be a chain of

multiple transition states between the two minima. In this case, the equal-energy

constraint will not prevent the states from passing over the lower energy transition

states, so BITSS should converge to the transition state with the highest energy. This

enables the identification of the overall energy barrier, providing estimates about

the overall ease of the transition, or the rate for chemical processes. However, as

demonstrated later in section 5.4.5, if multiple transition states have very similar

energies then a smaller distance reduction factor, f , may be necessary to ensure that

it does indeed converge to the highest transition state. Furthermore, if all of transition

states or the full pathway are desired, BITSS can be continually repeated from one of

the minima downhill from the located transition state and one of the initial minima

until the initial minima are piece-wise connected by a full pathway.
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5.2.3 Changes for undefined gradients

In order to use BITSS in situations where the gradients are unknown a couple of

alterations to the method must be made. First, the calculation of κd in eq. (5.7)

must be adapted to avoid the use of gradients. This can be done by simply removing

the first term and just using the second term in the equation. Secondly, L-BFGS can

no longer be used because it requires knowledge of the gradients. We must instead

use a minimiser that does not require a differentiable optimisation function, for which

we use simulated annealing [110]. This has a chance of randomly jumping one state

over the dividing barrier, but we can reduce this probability by limiting the initial

temperature and maximum random displacement. We typically employ T0 = EB/10,

and dmax = d(x1,x2)/100.

5.3 Details of the test systems

To test the BITSS method several diverse systems are used which exhibit a broad

range of energy landscapes. These are described below, and further details of the

potentials can be found in section 6.3, including the full functions for their energy

and gradient.

Firstly, the 2D potentials in figs. 5.2 and 5.4 use a sum of Gaussian potentials,

eq. (5.9), to create a landscape with two minima and a curved pathway between them.

E(x, y) =
∑
i

ai exp

(
−(x− bx,i)

2

cx,i
− (y − by,i)

2

cy,i

)
(5.9)

The parameters for each figure are provided in tables 5.1 and 5.2.

The next system is a two-dimensional cluster of seven particles, with 14 degrees

of freedom representing the particle coordinates. A Lennard-Jones potential is used

for the interaction between each pair of particles. This is frequently used as a test
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a bx by cx cy
-3 -1.4 0 1 1
-2 1.4 0 1 1
-1 0.07 1 1 1

Table 5.1: Parameters for the Gaussians to produce the potential used in fig. 5.2.

a bx by cx cy
-1 0 0 10 10
1 0 0 1 1
5 2 0 1 0.1
-1 1 1 0.1 0.1
-1 1 -1 0.1 0.1

0.01 0 0 1 1
0.5 -2 0 1 1

Table 5.2: Parameters for the Gaussians to produce the potential used in fig. 5.4.

system for studying transition rates [15,156]. The cluster has a global minimum when

the particles are arranged in a hexagon, and it undergoes a transition to a second

minimum when a pair of the outer particles slide past one of the other particles, as

shown in fig. 5.3(a).

The third test case is the buckling of a thin cylindrical shell under axial com-

pression. For this, the ends of the cylinder are compressed towards one another by

0.14% and then fixed in place. The characteristic transition in fig. 5.3(b) shows the

formation of a stable dimple from an initially unbuckled cylinder. This transition is

essential to capture and predict mechanical failure under strain [61,101]. This is mod-

elled using a 2D triangular mesh to represent the surface of the cylinder, with 35 400

degrees of freedom for the node coordinates in three-dimensional space. The elastic

energy is calculated using a bar-and-hinge model. This treats all the bonds in the

mesh as elastic springs and connects all adjacent pairs of triangles with elastic hinges

in order to calculate the stretching and bending energies, respectively.

The final system is the droplet on a striped surface, with 40 000 degrees of freedom

representing the local fluid compositions at each site of the discretised domain. The

regions on the surface are hydrophilic and hydrophobic, with contact angles of θa =
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60◦ and θb = 110◦, respectively. In this example, the transition involves the movement

of the droplet from being centred upon one of the hydrophilic regions, to straddling

across two of them, as shown in fig. 5.3(c). Droplet transitions on patterned surfaces

such as this are vital to understand as powerful bio-inspired liquid manipulation

strategies [157,158]. The system is modelled on a 200× 200 2D grid (and 400× 400 in

section 5.4.3) with a phase-field model [50]. This uses an order parameter to represent

the phase of the fluid (liquid or gas) at each point on the grid, and it varies smoothly,

resulting in a diffuse interface between the phases. This interface width is set to a

value of 2.5 lattice units. The total volume of the droplet is also constrained to ensure

that it does not fully evaporate, using an energy penalty for any variation from the

target volume. Because the order parameter only varies when it is at the interface

of the droplet, the transitions follow highly non-linear pathways across the model’s

configuration space. Therefore, it is a useful test for how BITSS behaves for complex

pathways.

*

*

*

(a)

(b)

(c)

Figure 5.3: Three of the transitions used to test the BITSS method. These are: (a) a
Lennard-Jones seven-particle cluster, (b) cylindrical shell buckling, and (c) wetting of a
chemically-striped surface. The configurations shown correspond to the two minimum energy
states and the transition state, marked by an asterisk.
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5.4 Results and Discussion

5.4.1 Comparison with other bracketing methods

The BITSS potential in eq. (5.3) and iterative steps above offer key advantages over

existing bracketing methods that also use two states to locate the transition state. For

instance, in the ridge method [129], the two images are initially chosen to bracket the

largest energy point on an interpolated path between the two endpoints. However,

this is not guaranteed to be on the ridge containing the transition state, and specialist

methods are required to avoid high-energy local maxima, or when the initial path

contains multiple candidate maxima. In another example, the double ended surface

walking method [130] requires Gaussian bias potentials to be added at each iteration

to force two dimers to climb uphill in the landscape. For high numbers of degrees of

freedom and many iterations, this becomes very computationally expensive.

The two methods most similar to BITSS are the DHS [127] and step and slide [128]

methods. In the step and slide method, the separation between two images is min-

imised while their energy is fixed (iteratively increasing the energy up to the transition

state). Conversely in the DHS method, the energy of an image is minimised while

the image separation is fixed (iteratively decreasing the separation and changing the

frozen image up to the transition state). To illustrate how BITSS is superior com-

pared to these methods, we consider the hooked 2d potential in fig. 5.4. For this

potential the energies of the images ascend higher than that of the transition state

and consequently both of these methods fail to converge to the saddle point regardless

of the parameters that are used. The step and slide method fails in this situation

because it always expects that the energy of the two states is below the saddle point

if they have not converged, so it has no means of descending down the ridge. For

DHS, the images reach a certain point at which one state can pass over the ridge

by minimising its energy. At this point DHS will fail even if the distance is reduced

very slowly. In contrast, the BITSS method is successful for this potential. This is
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because the combination of distance and energy constraints allow BITSS to approach

a transition state from both below and above (by sliding down a ridge).

BITSS

DHS

Step & Slide

Figure 5.4: Trajectories of the bracketing methods on a hooked potential with a single saddle
point. The minimum energy pathway is shown by the dashed line.

Furthermore, using both an energy and distance constraint with BITSS provides

improved efficiency over these methods which each use just one of the constraints. In

the case of DHS, fixing one state in place and optimising the other means that the

amount that the separation is reduced must be much smaller than BITSS to ensure

that it does not pass over the ridge. Meanwhile, in step and slide, it is difficult to

obtain a reasonable energy increment when the two states are far from the transition

state, leading to a larger than necessary number of iterations. Also, restricting the

minimisation to a constant energy surface can result in a considerably more complex

method, as the states must be constantly projected back onto this surface.

5.4.2 Comparison with chain-of-states methods

In contrast to BITSS, chain-of-states methods do not typically find transition states

directly. Instead, they are designed to find the full pathway (or an approximation

thereof), and a secondary method can then be used to refine to the transition state.

As we will demonstrate, this strategy is successful for simple, linear pathways, but

faces two key challenges when the pathway is highly non-linear. Firstly, for such com-

plex pathways, a large number of states are required to sufficiently approximate the
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minimum energy pathway. The second is that choosing a suitable initial interpolation

can be problematic to achieve. BITSS can be advantageous in both these regards,

as only two states are evolved, regardless of the pathway complexity, and no initial

interpolation is required.

Here we compare the speeds of convergence of BITSS to two widely used ap-

proaches for finding transition states that employ chain-of-states methods: climbing

image nudged elastic band (CINEB) [120], and DNEB with hybrid eigenvector follow-

ing (DNEB-HEVF) [121]. Three diverse systems are used for this comparison, the

seven-particle cluster, cylindrical buckling, and wetting of a droplet on a striped sur-

face. For the latter, the high non-linearity of the pathway causes the chain-of-states

methods to fail to find the correct pathway if they use a simple linear interpolation.

Instead, the position of a semi-circular droplet is interpolated between the two final

positions.

These methods use NEB and DNEB which are described in section 4.4.1. Put

simply, they involve minimising the total energy of a chain of states that are connected

by elastic springs to keep them equally spaced along the transition pathway. The

optimal values for these spring constants are system dependent. They are chosen

such that they keep the states equidistant without overwhelming the gradients arising

from the potential energy landscapes under consideration. We employ 10−1 for the

Lennard-Jones particle cluster, 10−2 for the cylindrical buckling example, and 10−6

for the striped wetting system. We also fix the two end-points at the minima, so the

number of states that are minimised is two fewer than the number of states in the

chain.

CINEB modifies NEB by altering the behaviour of the state with the highest

energy. The direction of minimisation on this state is inverted along the pathway di-

rection, effectively converting the saddle point into a local minimum. Alternatively,

DNEB-HEVF involves first minimising the chain of states until a convergence crite-

rion is met, and then performing hybrid eigenvector following from the highest energy
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System BITSS BITSS-
HEVF

DNEB-HEVF CINEB

3 5 20 3 5 20
LJ-7 148 144 135 138 361 30 153 1692

Buckling 12 866 14 446 73 694 7315 12 094 — 8352 77 904
Wetting 12 100 17 262 17 840 17 721 48 286 — — —

Table 5.3: Number of potential gradient calculations required to reach the transition state
for the three comparison examples. The climbing image nudged elastic band (CINEB) and
DNEB with hybrid eigenvector following (DNEB-HEVF) methods have been run for different
numbers of images. Convergence is determined to be when the root-mean-square of the
gradient at the estimate for the transition state is less than 10−4. The fields left blank
indicate that the method has not converged to the correct transition state.

state, moving uphill along the smallest eigenvector of the Hessian until it reaches the

transition state. For completeness, we also combine hybrid eigenvector following with

BITSS and include the results in the convergence comparison.

When using hybrid eigenvector following, we need to set out criteria to determine

when the double-ended method has sufficiently converged, at which point the eigen-

vector following method begins. For BITSS, the criterion is when the average of the

two states changes by less than a tenth of the reduction in the separation given by

eq. (5.1) during a BITSS step. For DNEB, the root-mean-square of the total energy

gradient of the chain of states is used with a convergence criterion of 10−3 for the

particle cluster and cylindrical buckling systems, and 10−5 for the striped wetting.

We employ the hybrid eigenvector following method implemented in the program

OPTIM [159].

It is also possible to use the string method with a climbing image [16] or eigen-

vector following [160]; although, in this case, the results are expected to be similar to

the nudged elastic band methods. We note that our aim in this section is to observe

how the BITSS method behaves for different systems, rather than providing a com-

prehensive comparison of the currently available methods, which has been performed

in other works [133,139].

The results for the three systems are shown in table 5.3. First, we note that for all

three systems, using hybrid eigenvector following does not significantly improve the
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speed of BITSS. Indeed, for buckling and especially wetting, HEVF is detrimental to

performance. Next, it is interesting to compare each method’s performance between

simple and complex pathways. In contrast to the wetting transition’s highly non-

linear pathway, the pathways of the LJ-7 rearrangement and the buckling system

can be simply tracked following a gradual variation in the order parameters. For

LJ-7, this is the translation of atoms 5 and 6, and for buckling, this is the radial

displacement of the centre of the dimple [101]. For these simpler pathways, BITSS is

generally slower, but for the complex pathway, BITSS is faster. Moreover, we see that

for the wetting example, CINEB does not converge to the transition state because the

estimated tangent vector is highly inaccurate due to the non-linearity of the pathway.

For situations where memory is limited, it is important to minimise the number

of images used. However, efficiently finding the TS is challenging for both CINEB

and DNEB-HEVF if too few images are used, as observed for the cylindrical buckling

with three images. BITSS, on the other hand, converges using only two images.

5.4.3 Adaptive discretisation

Adaptive remeshing and coarse-graining are widely used techniques that we can utilise

to further increase the efficiency of BITSS. These techniques cause issues for most

existing double-ended methods because the coupled states may end up with different

degrees of freedom. However, in BITSS the only direct coupling is in the distance

measure, d(x1,x2), which is relatively easy to adapt. Here we will demonstrate the

feasibility of adaptive remeshing by considering two issues separately: a changing

discretisaton, and different discretisations on the two states.

To test the discretisation changing we use the cylindrical buckling example and

increase the resolution each time the separation is halved. In total the number of tri-

angles around the cylinder is increased from 40 to 100, corresponding to an increase

from 1760 to 11 000 degrees of freedom. To determine the three-dimensional coordi-
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Figure 5.5: Demonstration of BITSS addressing the challenges associated with adaptive
remeshing. (a) Snapshots of the BITSS method for the buckling of a cylinder with a changing
mesh. The radial displacement relative to the unbuckled cylinder is shown, as well as the
underlying triangular mesh. (b) Snapshots for the striped wetting example with different
resolutions for the two states. Each grid cell denotes 50 × 50 lattice nodes. The zoomed
axis shows the difference in the fluid interface between the two final states, as well as the
approximated transition state (solid black line). This is compared to the transition state
found using a high resolution (dashed line).

nate of each new grid point, a linear interpolation from the previous coordinates is

performed based upon the positions of the unbuckled meshes. The results for this

in fig. 5.5(a) demonstrate that BITSS is indeed able to handle the discretisation and

number of degrees of freedom changing as the method runs. Therefore, BITSS is able

to converge to the transition state so long as the remeshing is not so significant as to

shift a state into the basin of attraction of the other minimum.

In the second test, shown in fig. 5.5(b), we demonstrate the use of different meshes

for the two states in the striped wetting example. In this case, the distance measure

is adapted by mapping the higher resolution state onto the other mesh and then

computing the Euclidean distance. However, for some applications a simpler measure

may be sufficient, such as the difference between average values of the system. Using

this approach, BITSS is able to closely approach the transition state. The precision

of this convergence is now limited by the transition state energy differing slightly

on each grid, but this effect will be reduced when using a higher resolution or an
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Figure 5.6: Demonstration of BITSS applied to flat and discontinuous potentials. (a) Energy
profile of the BITSS pathway on a 2D potential with flat regions. Blue and red dots denote
the minima and transition state, respectively. Points of interest are labelled by i–iii (see
text). Top inset: A zoomed in view around the transition state. Bottom inset: The pathway
taken, with the edges of the flat regions marked by dashed lines. (b) The discontinuous hard-
core pair potential used in the seven-particle cluster (orange). The standard Lennard-Jones
potential is also shown in grey. (c) Disconnectivity graphs of the energy landscapes for the
seven-particle cluster with the two potentials. The two graphs are offset for visibility.

adaptive method where the grids themselves converge.

5.4.4 Complex landscapes

The final challenges we will address are those related to complex landscapes that

prove challenging for previous algorithms. The first is the presence of flat regions in

the landscape. Fig. 5.6(a) shows BITSS applied to a 2D landscape with two such

regions (i & ii) that are flat in the x-direction. We see BITSS is able to successfully

converge past these flat regions, even with one very close to the transition state

(ii). In these regions there are no driving forces due to the potential and the energy

constraint, which use purely local information about the gradient. However, the

distance constraint continues to pull the states together, preventing them from getting

stuck. When only a single state has a zero-gradient mode then the other is likely to

slide down the potential slightly (iii), but the two states still remain either side of the
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dividing ridge and so the result is unaffected.

An additional consideration is the case where the potential energy surface is flat

at the top of the pathway. There are two possibilities here, one is that the potential

is flat in a direction perpendicular to the tangent of the pathway, such that the ridge

is level. In this case BITSS is unaffected and it will be able to converge to some point

along the ridge. An example of this is the free global rotation and translation of the

Lennard-Jones cluster in fig. 5.3(a). The other possibility is that the flat mode is in

the direction of the pathway. In this case there is no single transition state along the

pathway, but instead a region. BITSS would be ill suited in this situation because the

equal-energy constraint would not prevent the images from passing over the saddle

and falling to a minimum.

Finally, we investigate the application of BITSS to systems with undefined gra-

dients, such as when the landscape is discontinuous. To account for this, the equa-

tions for the coefficients must be adapted to not depend upon the gradients, and a

gradient-free minimiser (simulated annealing) is used. These changes are detailed in

the methods section. This has been tested using a 7-particle cluster with a hard-core

Lennard-Jones pair-potential, shown in fig. 5.6(b), which results in a discontinuous

landscape. Using the gradient-free approach, BITSS is able to successfully find the

transition states, allowing us to plot the disconnectivity graph of the system, shown

in fig. 5.6(c). Compared with the results for the standard Lennard-Jones cluster,

the energies of the minima are largely unchanged, but the energies of the transi-

tion states are found to be slightly higher. This indicates that the particles in the

Lennard-Jones cluster cut the corner slightly as they transition, whereas this is not

possible using the discontinuous potential, resulting in higher energies. Despite this

gradient-free method being feasible, it is worth noting that a gradient-based approach

is significantly more efficient, and so should be preferred if possible.
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5.4.5 Multiple transition states

Here we test how the BITSS method performs when there are multiple transition

states in the pathway between the two starting minima. For this we use a 2D po-

tential, shown in fig. 5.7(a), with a pathway that follows two connected 135◦ circular

arcs. The energy is given by the squared distance from this path, plus two Gaussian

barriers resulting in transition states A and B, with energies EA and EB. We then

vary EB between 0 and EA, and the size of the distance reduction factor, f , to see

if BITSS successfully converges to the higher transition state A. For each pair of

parameters we perform 5 runs with slight variations in the starting positions, with

the results in fig. 5.7(b) showing the points at which all 5 runs converge to the higher

TS, A.

We see that if the difference between the two barriers is sufficiently large (≳ 10%)

then BITSS always converges to the higher transition state. However, as the difference

decreases it starts to sometimes converge to the lower transition state if the separation

is decreased quickly. Therefore, to ensure that BITSS always converges to the higher

energy transition state it may be necessary to restrict the separation step size.

Although the equal-energy constraint should cause the states to converge to A,

this is not always the case because the discrete steps in the minimisation can cause

the left image to jump over A before the other image passes B. If the minimisation is

fast and takes large steps then the chance for this to occur is increased. Therefore,

systems with complex, high-dimensional landscapes can probably successfully locate

the highest transition state for larger values of f and smaller height differences than

simpler systems such as this 2D example.
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Figure 5.7: (a) The potential used in the multiple TS test. M1 and M2 denote the two
starting minima, and A and B are the two transition states. The energy of the barrier to
B, EB, is varied between 0 and EA. (b) The results for the parameters under which BITSS
reliably converges to A, and the points at which it sometimes converges to B. The x-axis is
the BITSS distance reduction factor, f , and the y-axis is the relative difference between the
two barrier heights.

5.5 Conclusion

Overall, we have developed the binary image transition state search (BITSS) algo-

rithm for the efficient location of transition states in traditionally challenging land-

scapes. This has distinct advantages for complex pathways owing to the lack of a

required initial pathway estimate, as well as the identification of the transition state

that provides the overall energy barrier in multi-step pathways. From the speed

analysis, we find that the combination of chain-of-states methods with single-ended

transition state search methods provides good performance for near-linear pathways,

such as for the Lennard-Jones cluster and cylindrical buckling. However, for highly

complex and non-linear pathways, as exhibited by the striped wetting example, BITSS

is superior. Indeed, the demonstrated speed and memory-efficiency will be key as we

move towards studying larger and more complex systems using BITSS.

A second source of efficiency in the BITSS method comes from the ability to adap-

tively change the degrees of freedom as the algorithm proceeds. We demonstrated how

transition states could be found by both increasing the resolution upon convergence,

and coupling systems with different discretisations. The ease of coupling two copies

of a system and adaptive remeshing, now leads to the possibility of incorporating

BITSS into existing open-source optimisation methods, such as surface evolver [161]
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or finite element methods [162], to provide important energy barrier functionality.

We also showed how BITSS can be used to survey discontinuous energy land-

scapes, demonstrated for a system of attractive hard-core particles. This opens up

possibilities for studying a broad range of systems previously out of reach of con-

ventional landscape methods, but where transition information is valuable. These

include systems with very short range interactions, such as in colloidal clusters, or

hard contact forces, such as in the folding of elastic materials, or locomotion and

environmental interaction in robotics.

The distance metric between the two BITSS images is interesting to analyse fur-

ther. One question that emerges is whether transition states can be located by cou-

pling two images through a small number of collective properties, rather than the

total distance between all degrees of freedom in the system. A second question con-

cerns landscapes with multiple competing pathways between states. In such cases,

it may be possible to access transition states different from the most direct one by

using a biased distance metric. A further investigation that is now open to pursue

is when discontinuities in the landscape occur at ‘stationary points’ (now properly

referred to as critical points). In this case, a transition state can no longer be defined

by its Hessian eigenvalues, but instead is more broadly defined as a region of locally

minimal energy that separates two basins of attraction to minima. Overall, it will be

interesting to explore how BITSS enables access to even more challenging landscapes,

and those not yet amenable to traditional landscape exploration techniques.
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Topic Symbol Parameter description Value

B
IT

SS

α Energy constraint strength 10
β Distance constraint error 0.1
f Distance reduction factor 0.5
— Coefficient recalculation regularity 100 iterations

B
uc

kl
in

g

— Cylinder radius 50
— Cylinder length 80
— Mesh resolution 1.57
— Compressive strain 0.14%
kS Stretching rigidity 100
kB Bending rigidity 1

W
et

ti
ng

— x grid size 200
— y grid size 200
θa Hydrophilic contact angle 60◦

θb Hydrophobic contact angle 110◦

α12 Interfacial width 1.77
γ12 Surface tension 0.943
V0 Droplet volume 4375
kV Volume constraint coefficient 104

N
E

B

k NEB spring constant (LJ-7) 0.1
k NEB spring constant (Buckling) 0.01
k NEB spring constant (Wetting) 10−6

Table 5.4: Values of the parameters that are used throughout this chapter, unless otherwise
specified. Some of the parameters for the buckling and wetting examples are described in
the following chapter in section 6.3.
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Chapter 6

Energy Landscape Software

Library

In this chapter, we discuss the aims and structure of the energy landscape library

‘ELLib’, which has been developed in order to study large and versatile systems. We

detail the various potentials and methods that have been included in the library and

how they have parallelised. Finally, there is a demonstration of the library being

applied to a structural optimisation problem.

The software library and the program used for the structural optimisation are

both accessible in the supplementary materials, detailed in appendix A. Alternatively,

the most up-to-date version of ‘ELLib’ is available on GitHub at the link: https:

//github.com/sjavis/ellib. This chapter provides details about how it can be

used and will be further developed into comprehensive documentation in the near

future.
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6.1. SOFTWARE STRUCTURE

6.1 Software structure

The energy landscape software is contained within an object-oriented C++ library

that can be imported and run inside a user script or as a part of another program. It

has been designed in a modular manner so that different methods and applications

can be easily interchanged and new methods can be implemented without difficulty.

At the core of almost all energy landscape methods is some form of energy min-

imisation, often with modifications, therefore ELLib contains a sub-library specifi-

cally for the minimisation methods. Outside of this are the landscape exploration

methods which make use of the minimisation, such as pathway and transition state

search. However, there is not always a clear division between the minimisation meth-

ods and the landscape methods. For example, the genetic algorithm is a minimisation

method but is not contained within the sub-library. This distinction is made accord-

ing to whether the method involves the minimisation of just a single state or multiple

states, and whether further minimisation steps are involved within the method.

The minimisation sub-library is split into several core components. Firstly, there

is a class called Potential. This provides the interface for calculating the energy and

gradient for a given set of coordinates, and includes any potential specific parameters.

A Potential object can be created using functions for the energy and gradient, or

using a predefined subclass. The State class is used to create systems consisting of a

potential and a set of coordinates. These State objects are what the landscape and

minimisation methods operate upon, and can be used to easily obtain the coordinates,

energy, or gradient. Each state can be parallelised onto multiple processors. This uses

a Communicator object that abstracts away the parallelisation using MPI, the details

for which are given in section 6.2 below. The final key component is the Minimiser

class. This provides the framework for the methods to minimise a single state.

A typical user script would likely use the energy minimisation methods in the

following way:
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• Read in or initialise any required data.

• Create a Potential object using a predefined potential or make their own.

• Modify any potential parameters.

• Create a State object using the potential and some initial system coordinates.

• Create a Minimiser object, choosing the specific minimiser to use.

• Modify the minimisation parameters.

• Minimise the state.

• Final data analysis / output data.

A typical energy landscape user script may look like:

• Set up data

• Create a Potential object and modify any parameters.

• Optionally, create a Minimiser object.

• Initialise a landscape method with the potential and minimiser and choose

parameters.

• Run the landscape method.

• Final data analysis / output data.

Users may also combine multiple methods into a single script or use them as part of

a larger program.

6.2 Parallelisation

A primary aim of the software is to be able to utilise computational clusters for high

performance computing in order to speed up large-scale systems. Therefore, the code

is designed to be parallelised using MPI (message passing interface), which distributes

the memory across the computational processors and uses messages to pass necessary

data among them. This has been implemented in such a way as to abstract away

the details of the parallelisation. This enables users who are either developing new

methods and potentials or primarily interested in applications to make use of the
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parallelisation with minimal effort or knowledge of MPI.

The parallelisation is performed on each State object. By default each state

is split among all of the processors, but specific processors may also be assigned

to a given state when it is created. The state’s coordinates are split into blocks,

one for each processor, which are then stored in a vector locally. Any coordinates

that the processor requires for computing the energy and gradient of its block are

then stored at the end of this vector (the halo coordinates). The updating of these

halo regions and all other communication between the processors is handled by an

internal Communicator object. State offers functions to either calculate the en-

ergy and gradient contributions specific to each processor’s block (blockEnergy and

blockGradient), or the total energy and gradient (energy and gradient) which uses

MPI communication in the background. Likewise, the blockCoords functions can be

used to read and assign the local coordinate vector, and coords can be used to read

and assign the whole system coordinates.

In order for a specific potential to make use of the software’s parallel framework it

must be defined in such a way that the halo coordinates can be determined automat-

ically. To do this, the calculation of the energy and gradient are split into separate

elements that each rely only upon a small number of degrees of freedom. These ele-

ments also include a label for the type and any parameters specific to that element.

The potential must then have an elementEnergyGradient function defined that will

compute the contributions to the energy and gradient for each individual element.

For some potentials it may not be possible to split it neatly into separate elements.

If this is the case, then there is a backup blockEnergyGradient potential that can

be defined. The state’s Communicator object is passed to this function, which can be

used to manually communicate between the processors.

The Communicator object itself is initialised automatically when a State is cre-

ated. This will first split the system coordinates into the blocks for each processor.

Currently there is no attempt to optimise this, it requires that the user define the

77



CHAPTER 6. ENERGY LANDSCAPE SOFTWARE LIBRARY

coordinates in a logical order so that the halo regions are kept small. There is poten-

tial scope to improve this in the future so that the order of coordinates is changed

to reduce the halo regions. Next, each element is assigned to a processor based upon

which block contains the most of its degrees of freedom. Any of this element’s co-

ordinates that are contained on other blocks are therefore in the halo region. Once

this is done, new MPI data types are created that will send the required data to up-

date the halos of the other processors. In order to use this, a communicate function

is defined which will update the halo of whatever vector is passed to it, typically,

the coordinates or gradient vector. The Communicator also has several other useful

functions, such as assignBlock and assignProc, which take a vector with the total

number of degrees of freedom and return a vector of the local block, or the block and

the halo, respectively. Furthermore, there are additional functions included, such as

sum and dotProduct, that first perform operations on vectors locally before summing

the result across the processors used in this Communicator object.

6.3 Potentials

An underlying system potential is necessary in order to study an energy landscape.

In the software library, these can be created using the Potential class or a sub-

class. This potential can be defined by the user by providing energy and gradient

functions, or a single function to compute both, energyGradient. If instead, it is

to be run in parallel then the elementEnergyGradient and blockEnergyGradient

functions should be used, as described in the previous section. If the potential also

needs to set up parameters, then there is an init function, which is called when the

potential is used to create State object.

The user may also make use one of several predefined potentials: Lj2d, Lj3d,

BarAndHinge, PFWetting. Each of these potentials is described below.
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6.3.1 Lennard-Jones

A Lennard-Jones particulate model has been implemented for both 2D and 3D, which

can be accessed using Lj2d and Lj3d. For a set of particles with positions x1, . . . ,xN

the model gives an energy of

E(xi) =
∑
i,j ̸=i

4ϵ

[(
σ

rij

)12

−
(

σ

rij

)6
]

where rij =

√∑
k

(xi,k − xj,k)2. (6.1)

The parameters ϵ and σ are the inter-particle potential well depth and the particle

size, respectively. These can be set in the code using the epsilon and sigma param-

eters, each beginning with a value of one. The gradient of the energy with respect to

each degree of freedom is then given by,

∂E

∂xi,k
= 24ϵ

∑
j ̸=i

(xi,k − xj,k)

(
σ6

r8ij
− 2σ12

r14ij

)
. (6.2)

At present this potential cannot be run in parallel, as Lennard-Jones systems

are not the focus of this PhD work. In future parallelisation could be implemented

in order to study large clusters with short range interactions. However, this would

require the particles to be redistributed among the processors according to their

location, which is beyond the current limits of the software.

6.3.2 Bar and Hinge Triangulated Surface Model

The software contains a bar-and-hinge model to simulate thin elastic surfaces (Bar-

AndHinge). This represents the surface as a triangular mesh, within which, each bond

is an elastic spring, and each pair of adjacent triangles is connected by an elastic hinge.

The total elastic energy is, therefore,

E =
∑
i

kS
i

2
(ri − r0i)

2 +
∑
j

kB
j

2
(θj − θ0j)

2, (6.3)
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where the first sum gives the stretching energy due to each bond i, with length

ri, equilibrium length r0i, and stretching rigidity kS
i . The second sum provides the

bending energy, where θj is the dihedral angle, θ0j is the equilibrium angle, and kB
j is

the bending rigidity of hinge j. In the software kS and kB values can be set using the

setRigidity function. It is also possible to set the equilibrium lengths and angles,

but otherwise they will be calculated from the initial configuration of the mesh. The

triangulation itself is applied using setTriangulation. This takes a list of the three

node indices for each triangle. These must all be listed in the same order, either

clockwise or anticlockwise, to ensure that the surface is properly oriented and so that

the dihedral angles can be evaluated across the full 2π range.

x1

x2

x3
x4ha hb

r

n̂a n̂b

θ

Figure 6.1: Schematic of the bar and hinge model showing the relevant parameters for a single
hinge element. hi and n̂i denote the height and unit normal of each triangle respectively.

The expressions for the gradient of the energy can be obtained by considering

the stretching and bending energies of an individual bond and hinge. For simplicity,

the indices for the bond and hinge are ignored. Using the variables shown in the

schematic in fig. 6.1, the gradient of the stretching energy of the bond between x2

and x3 is given by
∂ES

∂x2
= −∂ES

∂x3
= kS(r − r0)(x2 − x3). (6.4)

The gradients of the bending energy of the hinge are

∂EB

∂x1
= kB(θ − θ0)

n̂a

ha
, (6.5)

∂EB

∂x2
= −kB(θ − θ0)

[
n̂a

ha
+

n̂a + n̂b

r

]
, (6.6)
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∂EB

∂x3
= −kB(θ − θ0)

[
n̂b

hb
+

n̂a + n̂b

r

]
, (6.7)

∂EB

∂x4
= kB(θ − θ0)

n̂b

hb
. (6.8)

These models have been widely applied to study origami structures [102,163,164],

where the triangular mesh is made to match the geometry of the crease pattern.

Alternatively, it can also be used to model continuous elastic surfaces by choosing

the spring constants in such a way that they accurately represent the elastic moduli

in the continuum limit. In which case, the spring coefficients are given by [165–167],

kS = Y t · Asum

r20
, (6.9)

kB =
Y t3

12(1− ν2)
· r20
Asum

, (6.10)

where Y is the Young’s modulus, t is the thickness of the surface, and ν is the Pois-

son’s ratio. The value Asum is the total area of the adjacent triangles at equilibrium,

of which there will be one for bonds on the boundary, and two for the others. This

method is used if the rigidities have not been directly set, and the thickness param-

eter is provided. This can take a different value for each node of the mesh in order to

create a varying thickness. In this case an average is taken for each bond and hinge.

This model is particularly useful for its simplicity and speed, however it has some

limitations on its accuracy compared to real structures. Firstly, because it is a 2D

surface, the thickness is assumed to be much smaller than the dimensions along the

surface itself. This is particularly important since the one-dimensional folding of

adjacent triangles cannot accurately model the effect of twisting, but this will be

negligible as long as the thickness is sufficiently small. This is because any twist-

ing of a thin surface requires some in-plane stretching, the energy of which scales

proportionally to the thickness, t, while twisting energy scales as t3. Similarly, it

cannot model the energy due to Gaussian curvature, the product of the two princi-

pal curvatures. However, the high resistance to stretching makes this negligible in
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most circumstances, and, if the boundary is fixed or the surface is closed, the to-

tal energy due to the Gaussian curvature is topologically constant according to the

Gauss-Bonnet theorem [168], so it may be safely ignored. Finally, another limitation of

the model is that the Poisson ratio under stretching cannot freely be tuned. Instead,

it depends upon the geometry of the mesh. For example, if an equilateral triangular

mesh is used then the Poisson ratio will be 1/3, regardless of the spring constants

that are applied [165]. These limitations mean that the model is primarily of use to

study elasticity problems where bending is the dominant effect.

An additional energy contribution is possible by incorporating an external force

with the force parameter. This can be a uniform force to model gravity, or a magnetic

field; or applied inhomogeneously across the structure such as to initialise random

structures. It is also possible to include interactions with a substrate using setWall,

which turns on a Lennard-Jones 3-9 potential, which is obtained by considering an

interaction between a particle and an infinite wall of particles that interact by the

standard Lennard-Jones potential, eq. (6.1).

E(h) = ϵ

(
2

15

(
σ

h− h0

)9

−
(

σ

h− h0

)3
)
, (6.11)

where the height above the wall, h, has been shifted by h0 to ensure that the energy

is minimal at h = 0. The Lennard-Jones parameters σ and ϵ are initially set to 10−12

and 10−5, which tend to give results that correspond to levels of adhesion observed

in experiments. But the precise adhesion energy, controlled by ϵ, will depend upon

system size and so should be adjusted for different applications. The adhesion arises

because the potential is attractive for h > 0, but if this is not desired, it can be

switched of, in which case the potential is cut off at h = 0 and shifted so that

E(0) = 0.

This potential uses the software’s parallel framework by splitting the contributions

to the energy into energy elements. The stretching energy uses one element for each

pair of particles, and the bending energy has one element for the four particles in pair
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of triangles. If the force and substrate interactions are switched on, they each have

one element per particle.

6.3.3 Phase Field Model

In order to model multicomponent fluid systems a phase field model has been im-

plemented, PFWetting. This potential has been implemented with two variants: a

binary fluid and an N -fluid version, which can be accessed by modifying the nFluid

parameter. This method uses a square grid (resolution size δ) where each node is

marked as either solid or a fluid using setSolid. If a fluid node is adjacent to a solid

node then the solid surface passes through the center of the node, and the volume V

and surface area A take different values from the bulk. Each fluid has a concentra-

tion, Ci, for each fluid i (for the N -fluid variant) or an order parameter, ϕ = C1−C2

for the binary model. These concentrations take bulk values of 0 or 1 depending on

if the fluid is located at that position, and smoothly vary, resulting in diffuse fluid

interfaces.

This potential has four or five contributions to the overall energy depending upon

whether it is using the binary or N -fluid model. One sets the bulk fluid values, EB,

and another includes the interfacial energy of the fluids, EI. If the N -fluid model is

used, there is also a soft energy constraint to ensure that the total concentration is

the same everywhere, ED. Next, there is a fluid-solid interaction, ES. Then, finally,

there is either an energy penalty to set a constant volume across the system, EV, or

the energy due to the pressure of the system, EP.

The EB, EI, and ED terms each apply to the whole of the fluid domain. Therefore,

they are split into single elements for each fluid node in the system so that the

potential can be computed in parallel. The energies of these discrete elements are
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then given by,

EB =


κ
16(ϕ+ 1)2(ϕ− 1)2V binary,∑N

i=1
κi
2 C

2
i (Ci − 1)2V N -fluid,

(6.12)

EI =


κ′
4 (∇ϕ)2V binary,∑N

i=1
κ′
i
2 (∇Ci)

2V N -fluid,
(6.13)

ED =


0 binary,

kV
(
1−

∑N
i=1Ci

)2
V N -fluid.

(6.14)

Equation (6.12) uses a double well potential to ensure that the energy is minimised

when the fluid concentrations are 0 or 1. Equation (6.13) penalises any fluid in-

terfaces where the gradient of the concentrations / order parameters are non-zero.

Equation (6.14) ensures that the sum of the concentrations is equal to one by using

a large constraint coefficient kV. The parameters κi and κ′i are related to the in-

terfacial tensions, γij , and widths, αij . This can be determined by finding the fluid

concentration function that minimises the energy given by the continuous analogue

of eqs. (6.12) and (6.13), giving the following relations,

γij =

√
κi + κj

√
κ′i + κ′j

6
, (6.15)

αij =

√
κ′i + κ′j
κi + κj

. (6.16)

They are assigned by the setSurfaceTension and setInterfaceWidth functions,

and used to calculate κi and κ′i. However, if four or more fluids are used, the full

set of surface tensions cannot be matched because there are not enough parameters

in the model. Alternative models that allow all surface tensions to be prescribed are

available in the literature, such as [169].

Each of these energy elements includes the neighbouring nodes in order to cal-

culate the gradients in eq. (6.13). Generally these use central difference, however
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forward difference is used if one side is a solid node. For example, the x-gradient of

ϕ at a point where x = x0 is

∂ϕ

∂x
=



ϕ(x0+δ)−ϕ(x0−δ)
2δ for bulk fluid,

ϕ(x0+δ)−ϕ(x0)
δ if solid at x0 − δ,

ϕ(x0)−ϕ(x0−δ)
δ if solid at x0 + δ.

(6.17)

The equations for the energy gradients at each element are therefore given by

∂EB

∂ϕ
=

κ

4
ϕ(ϕ2 − 1)V binary, (6.18)

∂EB

∂Ci
=

N∑
i=1

κi
2
(2C3

i − 3C2
i + Ci)V N -fluid. (6.19)

The interaction between the fluid and solid is designed to apply partial wetting

behaviour, such that the fluid interface meets the solid surface at a specific contact

angle, θ. This contact angle can be defined by a function across the domain using

setContactAngle. The interaction uses a cubic wetting potential, where the gradient

is zero at the bulk fluid concentrations in order to avoid enrichment of the fluid

concentration at the surface. This energy relies only upon the local fluid values at

the surface, so the energy is split into one element per surface node with

ES =
1√
2
cos θ

(
ϕ3

3
− ϕ− 2

3

)
A. (6.20)

Finally the pressure and volume energies are given by,

EP = pVtot, (6.21)

EV = kV(Vtot − V0)
2, (6.22)

where p and V0 are the chosen pressure and volume, and Vtot is the total volume of the

fluid. Unlike the energy contributions, the calculation of Vtot relies upon the whole
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system, so it cannot be assigned to separate energy elements and requires special

treatment using the blockEnergyGradient function. Therefore, the fluid volume is

first calculated on each block and then added up across the processors, reducing the

overhead required for MPI.

6.4 Implementation of minimisation methods

The Minimiser class contains the framework for optimising a single state to a (usually

local) minimum in the energy landscape. Therefore, it does not encompass ensemble

minimisation methods, such as Genetic Algorithm, which will be discussed in the

next section. The methods that have been implemented are:

• Gradient descent (GradDescent)

• L-BFGS (Lbfgs)

• FIRE (Fire)

• Simulated annealing (Anneal)

These methods are themselves subclasses of Minimiser and implement functions

that are called during a minimisation. The first is an init function that can be used

if any set up is required at the start, including the instantiation of parameters. Then

the main loop is run, during which the iteration function is called which contains

the main part of the methods. At the end of each iteration a checkConvergence

function detects if it has reached the minimum, at which point the method ends. A

user defined function may also be passed into the minimisation that is called at the

start of each iteration to modify system parameters. This provides flexibility to the

user and could be used, for instance, to steadily perturb the system during the start

of the minimisation, or to save the trajectory of the minimisation.

Minimiser also has parameters generic to most or all of its subclasses. Namely,

the maximum number of iterations and which line search method should be used, if

at all. Currently, backtracking line search is included, which ensures that the energy
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decreases sufficiently to satisfy the Armijo rule, eq. (4.2), with c1 = 0.5, or optionally,

that the energy never increases more than a chosen amount.

6.4.1 Gradient descent

The gradient descent implementation has one additional parameter alpha, which is

the step size factor, αi, in eq. (4.1). This has a default value of 0.1, although the

actual step size will be determined using a line search. So, unless it is turned off,

the value of alpha is not hugely important. In order to check for convergence, the

root mean square of the gradient, |∇E| /
√
N , where N is the number of degrees of

freedom, is compared to the convergence parameter that is chosen for the State

object. This same criterion is also used for both L-BFGS and FIRE.

The gradient descent algorithm is also very amenable to parallelisation by dis-

tributing the degrees of freedom between processors. This is because communication

between the processors are only required at three points: to communicate the gradi-

ent to the halo nodes, computing the magnitude of the gradient for the root mean

square, and calculating the energy for the line search. The latter may require multiple

communications, depending upon the number of iterations, but if no line search is

used then just the two communications are necessary.

6.4.2 L-BFGS

As for the implementation of L-BFGS, there are two additional parameters. The

first is the number of steps to store to calculate the search direction, m, which has a

default value of five. Secondly, maxStep can be used to restrict the step size in each

iteration, such that, if the step is greater than this, it is rescaled to the maximum

value. This can be useful, for example, to ensure that the minimisation is smooth

when the trajectory is used to approximate an MEP. If this value is not manually

set, then no restriction is made.
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Currently, if L-BFGS is run in parallel, then only the calculations of the gradient

and line search are split among the processors, while the calculation of the search

direction is instead performed in serial. This is because 2m + 2 dot products are

required when calculating eqs. (4.7) to (4.10), and each would require a separate

communication. Therefore, the search direction is calculated in serial by collecting

the whole of the gradient on each processor in an attempt to reduce the number of

MPI communications.

6.4.3 FIRE

The Fire object has a parameter dtMax, which is the maximum timestep that is

allowed when updating the velocity and the position. Ideally, an appropriate value

should be assigned by the user. However, if none are provided, then a reasonable

value will be estimated using the energy gradient at the start of the initialisation,

∆tmax =
1

10
√

|∇E|
. (6.23)

This will result in a step size that is independent of the scale of the energy, so, if the

gradients are very high it will not cause very large step sizes. The step size would

instead be on the order of 0.1, which may not be accurate for particularly large or

small system sizes. In the unusual circumstance that the gradient is initially zero,

dtMax is simply set to one. Since FIRE is an inertial optimisation method that uses

a continually updated velocity, the line search is off by default. However, it can be

switched on, in which case the importance of the timestep is reduced.

In contrast to L-BFGS, FIRE does not require so many communications between

processor nodes, and so is efficient for parallelisation. Aside from communicating to

update the halo nodes, the only other communication that is required is to calculate

the magnitudes of the gradient and the velocity, and their dot product. Therefore

the method never requires collecting all degrees of freedom on a single processor.
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6.4.4 Simulated Annealing

To use simulated annealing an Anneal object can be created using two parameters:

displacement and tempInit. Suitable values for these cannot be easily guessed, so

the user is required to provide them. The former is used in calculating the random

trial state for each iteration. For each degree of freedom a perturbation is picked

from a uniform distribution where the maximum value is given by displacement.

The second parameter tempInit describes the initial temperature, which should be

high enough to allow the system to adequately explore the energy landscape. The

precise function describing how the temperature decreases over time may be set by

the user using the coolingSchedule parameter, but the default function uses linear

multiplicative cooling [170], such that, at iteration i, the temperature is

T (i) =
T0

1 + ki
, (6.24)

where T0 is the initial temperature, and k is the cooling rate, which can be adjusted

via the parameter coolingRate which has a default value of 1.

Because simulated annealing is not a gradient-based minimiser and it is attempt-

ing to find the global minimum rather than local minima, convergence should not

be determined using the root mean square of the gradient. Instead, the state is de-

termined to be converged once the trial state has been rejected more than a certain

number of iterations in a row, which is given by the maxRejections parameter. This

is initially set to zero, in which case the method is allowed to continue until it reaches

the maximum number of iterations.

Simulated annealing is performed almost completely in parallel. The only com-

munications required are to sum up the total energy of the state, to communicate the

random perturbations to the halo coordinates, and to share the same random test

value so that all processors agree on whether to accept or reject the step.
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6.5 Implementation of energy landscape methods

The main ELLib library contains the more general energy landscape methods that

typically make use of the minimisation algorithms in order to find transition states,

pathways, and in the search for minima. Because they cover a variety of methods,

they do not follow any rigid structure, unlike the minimisation methods. Each method

is implemented in a class which can be used by creating an object for the method,

modifying any parameters, and then calling a run function. This function outputs the

result for the method, whether that be a global minimum configuration, transition

state, or pathway. Each class may also have functions for obtaining other information

from the method.

The currently implemented methods are the genetic algorithm for finding global

minima, the BITSS method for locating transition states, and NEB to find pathways.

In the future we hope to expand this to include other methods, such as basin hopping,

eigenvector-following, and the string method.

6.5.1 Genetic Algorithm

The genetic algorithm is implemented in the GenAlg class. This takes a Potential

object that is be used to generate a population of states. The size of this population

is given by popSize, and the total number of generations, maxIter. Each of these

are initially set to 100.

There are two possibilities for initialising the population. Firstly, a function may

be provided by the user to individually generate states (assiged using stateGen).

Alternatively, bounds can be set to the upper and lower bounds for each degree of

freedom. The coordinates for the states are then randomly generated between these

bounds. If neither of these are set then there is no way of determining suitable

coordinates for the states, so the method will not run.
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In order to create a new generation, the parents can be selected using one of

two methods, either roulette selection (the default), or simply choosing the most

fit. This is set by the selectionMethod parameter, with the number of parents

chosen as fraction of the population according to selectionRate. Elitist selection is

also possible by setting numElites to be the number of the best states that should

be passed directly to the next generation. The remaining children are then created

using uniform crossover between pairs of parents. Each of the child’s coordinates may

then be mutated with a probability given by mutationRate. This mutation is chosen

from a uniform distribution with a standard deviation chosen by the perturbation

parameter. If this is not set, but the bounds are, then the standard deviation is 1%

of the total allowed range.

The genetic algorithm implementation also has a couple of other useful features.

Firstly, it can also be run as a Lamarckian hybrid approach by passing a Minimiser

object to use for the local search. This allows it to more quickly identify and explore

local minima in the landscape. Secondly, a generic user-defined function can be

called in each generation to access and modify the population. This can be used, for

example, to output the fittest state from each generation.

The standard behaviour is to continue until the full number of generations has

been reached, but there are two possible methods for stopping early if it is deemed to

have converged. The first is a user-defined energy limit, such that if a state is found

with a lower energy it will stop. This could be useful if the precise global minimum

is not needed and all that is desired is a low energy solution. The second method

halts the method if it has gone a certain number of generations without seeing any

improvement in the fittest individual. These two methods and their criteria can be

applied using the setConvergence function.

The method by which the genetic algorithm is parallelised depends on the number

of processors relative to the size of the population. If the population size is greater

than or equal to the number of processors then each state is run on just a single
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processor. This is particularly efficient because the processors only need to communi-

cate when setting each new generation, while the energy of each state is computed in

serial. On the other hand, if there are more processors, then each state is distributed

among two or more processors. This may be useful if the potential is particularly

complex or a hybrid method is being used. This parallelisation is most efficient when

the population size is a multiple / factor of the number of processors. Otherwise,

some processors will be assigned a larger share of the work, and the others will spend

time idle.

6.5.2 BITSS

The Bitss class provides the implementation of the BITSS method, and is initialised

using two states and a minimiser. These two states provide the initial coordinates for

the method, so they are typically selected to be the minima. The Bitss class creates

a new State object and an associated BitssPotential. These wrap around the two

individual states in order to calculate the full energy of the pair of states, including

the constraints.

The most significant parameter for BITSS is the fraction to reduce the distance

for each iteration. This is given by distStep with a value of 0.5, but this may be

too rapid for some applications, and should be changed accordingly. Typically, the

method should run until convergence or failure, but maxIter can be set to halt the

method after a large number of iterations, with an initial value of 100. If distStep

is reduced significantly then this will likely need to be increased. To calculate the

separation between the states the Euclidean distance is often used, but the user is

free to use any metric. This can be done by passing functions for the distance and

its gradient to the distFunc parameter.

The constraint coefficients are recalculated throughout each minimisation accord-

ing to the coefIter parameter, which is initially every 100 iterations. During this
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recalculation the energy barrier is estimated using a linear interpolation, but for some

applications this may be many orders of magnitude too large when the states are far

from TS. To prevent this from causing an issue, the maxBarrier parameter may be

set to a reasonable value. It is also possible to alter the α and β parameters from

eqs. (5.5) and (5.7), using alpha and beta, but they can usually be left at their

recommended values of 10 and 0.1, respectively. To prevent issues associated with

recalculating the coefficients, it is recommended to switch off the line search for the

minimisation. Furthermore, if no minimiser is provided then it defaults to L-BFGS

with the line search automatically switched off.

The convergence to the TS can be based on one of five methods. Two of these

are based upon the separation constraint reaching a chosen size, whether that be the

actual distance, or the distance relative to the initial separation. The next criteria are

based upon the estimate of the TS. The third criterion relates to the root mean square

of the gradient at the estimate, while the fourth uses the change of the estimate from

one iteration to the next. Finally, the uncertainty of the TS energy can be used. This

is calculated as the difference between the energy of the TS estimate, ETS, and the

pair of states, Ei, relative to its height above the initial state energies, Ei,0,

ϵE =
ETS − ⟨E1, E2⟩

ETS − ⟨E1,0, E2,0⟩
, (6.25)

where ⟨· · · ⟩ denotes the average. Each of these methods can be set using the set-

ConvergenceMethod function, which is initially set to a relative distance criteria of

1%.

The coordinates of the TS are output by the run, but other information can

also be extracted. The final two states can be obtained using the getPair and

getPairCoords functions, which return two State objects or vectors, respectively.

Meanwhile, the getTS and getTSCoords functions give the state and coordinates

of the TS estimate midway between the pair. Bitss can also report if it believes

it has not successfully found the TS if the getFailed function is called. This is
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based upon any of three conditions: if the final state did not properly converge, if

⟨E1, E2⟩ < max(E1,0, E2,0), or if ETS < ⟨E1, E2⟩.

The BITSS method can be run in parallel to distribute the calculation of the

energies and gradients of the individual states, but the energy contributions of the

constraints are computed in serial. This is because the total energy needs to be known

for the energy constraint, and the full set of coordinates are needed to calculate the

separation between the two states. However, the effect of this is relatively minor

because the calculation of the underlying potential tends to be much more costly.

6.5.3 Nudged elastic band (NEB)

The Neb class encompasses several variations of the NEB method, including a hybrid

climbing image method and DNEB. The latter of which may also be accessed using

the Dneb wrapper class. There are two ways that the method may be initialised,

either using a set of coordinates for the initial chain, or by passing the end points

and the number of states (including the end points), in which case the chain is set

by a linear interpolation.

Similar to BITSS, the NEB implementation uses a single State object with

NebPotential which calculates the total energy of the elastic band. This delegates

the computation of the single state energies to a set of State objects for each image

along the chain. This main State is then minimised to find the pathway. Because

NEB and DNEB modify the gradient of the energy, the minimisation should, again,

not use a line search, and the default L-BFGS minimiser has it switched off by default.

The elastic spring constant, k in eq. (4.22), can be set using the kSpring parame-

ter, which is initially set to one. This should not be too large or too small because it

may cause the potential or equal spacing constraint to be washed out and the method

may take longer to converge. The tangent vectors used to project the components of

the forces are obtained using the bisection method, described by eq. (4.27).
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To utilise a hybrid climbing image method the setHybrid function may be called.

This is also used to set the hybridIter variable, which activates the climbing image

at a chosen iteration, allowing the the chain to first approximate the pathway. After

this, at each iteration, the state with the highest energy is selected and its driving

force is replaced by the climbing image force, eq. (4.14).

The run function performs the initialisation and optimisation of the chain and

outputs the coordinates along the pathway. Subsequent outputs can be acquired

using getChain, getCoords, and getEnergies. These methods provide the final list

of State objects, the list of coordinates, and the list of energies, respectively.

The method allows the chain of states to be distributed among the available pro-

cessors so that the calculations of the single state energies and gradient are performed

in parallel. These are either allocated with multiple states per processor or multiple

processors per state, using the same approach as the genetic algorithm. The results

from the individual states are then broadcast to all processors so that the total energy

and gradient can be computed serially. Although the full energy and gradient could

possibly be calculated in parallel, this would significantly complicate the method, and

much like BITSS, the main computational cost is usually associated with the single

state energy calculations.

6.6 Demonstration: structural optimisation

In this section the versatility of the software library will be demonstrated by optimis-

ing an elastic structure to maximise the energy barrier between two states, thereby

identifying the structure for which these states are at their most stable. The structure

that will be investigated is a table-shaped buckled mesostructure that will be studied

in further detail in the next chapter. Fig. 6.2(a) shows a schematic of this structure

with the four parameters that will be optimised: the leg width, the thickness, and

the outer and inner radii of the centre. At the end of legs are bonding sites that are
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compressed by a 20% strain and then fixed in place. The structure will not restricted

by a substrate, so may buckle down as well as up. The two stable states, between

which the barrier will be computed, are shown in fig. 6.2(b).

The parameters are bounded during the optimisation to ensure that they remain

realistic. The thickness, for example, would likely continue to rise if left unrestricted.

Therefore, a maximum is placed to ensure that it does not become unreasonably

large and respects the model’s requirement that the thickness remains relatively small

compared to the other dimensions of the structure. The parameters are given relative

to the total length of the structure, ignoring binding sites, which is given a size of 1.

It also depends upon the resolution of the mesh, which is made as close as possible

to an equilateral triangular mesh with side lengths of 0.05. These parameter bounds

are listed in table 6.1. The other fixed parameters are listed in table 6.2.

Parameter Minimum Maximum
w 0.0866a 0.25
t 0 0.05

rout 0 1/3
rin 0 rout

a This is two times the optimal triangular height.

Table 6.1: The bounds on each of the four structural parameters.

To perform this structural optimisation it is necessary to combine a variety of

energy landscape methods. First, energy minimisation is required to identify the two

stable states for each set of parameters. L-BFGS will be used for this. Then, the

transition state between the states will be identified using BITSS. At this point the

energies of the TS, ETS, and minima, E1/2, are known, so the energy barriers in each

direction can be evaluated and added together to give the ‘total energy barrier’,

EB = 2ETS − E1 − E2. (6.26)

To maximise this, the four structural parameters will be optimised using the genetic

algorithm. A script is written that carries out this procedure using ELLib, with its

structure described here.
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In order to be used with the genetic algorithm a Potential subclass is created,

whose energy is the inverse of the barrier given in eq. (6.26). Therefore, minimising

this energy will maximise the barrier. The potential also takes a blank function for

the gradient because the genetic algorithm does not require it.

The energy function takes four coordinates between 0 and 1, which it converts

into the parameters using the bounds in table 6.1. An external program is then called

to generate a mesh based upon the parameters, using a Delaunay triangulation [171] to

make the triangles as close to equilateral as possible. Using this mesh, the thickness,

and the BarAndHinge potential, an initial State object is created. Two copies of this

state are then minimised using Lbfgs, each with a function that is called for the first

500 iterations of the minimisation. This function has two roles. First, it slowly moves

the binding sites in until they reach the final position. Second, it applies forces to the

structure to obtain the desired configuration. After 500 iterations these are turned

off to allow the structure to relax. Once the states have converged, they are checked

to ensure they converged correctly. If not, the energy barrier is determined to be

zero, and the function ends. Otherwise, the two minimum states are passed to Bitss

in order to find the TS. At this point the barrier is evaluated using eq. (6.26), and

the function returning the inverse of this value.

Using this potential, the script creates a GenAlg object and sets the following

parameters: popSize = 48, maxIter = 20, bounds = [0, 1], perturbation = 0.3,

mutationRate = 0.25, selectionRate = 0.4. Additionally, it uses elitism to ensure

the best structure is not lost, and it uses a function to save the population in each

generation. Finally, the genetic algorithm is run until the full 20 generations are

complete.

The results in fig. 6.2 show how the optimal structure evolves over time. The leg

width and thickness very quickly converge to their lower and upper bounds, respec-

tively, and the inner radius also becomes small early on. However, the outer radius

takes more time to evolve, beginning with a large value, and only changing to a small
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Figure 6.2: (a) Schematic of the structure showing the four parameters: leg width, w,
thickness, t, outer radius, rout, and inner radius, rin. The fixed bonding sites are shown in
grey. (b) The two minima for the structure with the highest barrier in the first generation.
The colour represents the height above the horizontal plane, positive height in red, negative
in blue. (c) The energy barrier for each individual in the population. The blue line follows
the states with the highest barrier in each generation. (d) The values for each of the four
parameters for each individual throughout the optimisation process. The parameters are
scaled such that the total length of the structure, excluding bonding sites, is 1. (e) The
minima and transition state for the most optimal state after 20 generations.

radius around generation 15, at which point the maximum barrier correspondingly

increases. After 20 generations the optimal structure is: w = 0.0866, t = 0.05,

rout = 0.1145, and rin = 0.0137.

These results demonstrate that a highly complex optimisation study is feasible

using ELLib, and more generally, illustrates the flexibility of the library.
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6.6. DEMONSTRATION: STRUCTURAL OPTIMISATION

Topic Symbol Parameter description Value

St
ru

ct
ur

e

— Compressive strain 20%
— Total structure length 1
— Mesh resolution 0.05
Y Young’s modulus 1.4
ν Poisson ratio 0.3

B
IT

SS

α Energy constraint strength 10
β Distance constraint error 0.1
f Distance reduction factor 0.15
— Coefficient calculation regularity 100 iterations
— Max BITSS iterations 30

G
en

et
ic

A
lg

or
it

hm

— Population size 48
— Number of generations 20
— Mutation rate 0.25
— Parent selection rate 0.4
— Pertubation size 30%

Table 6.2: Values of the parameters that are used in this section.
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Chapter 7

3D Buckled Mesostructures

This chapter is based upon the joint work: Y. Li, S. J. Avis, J. Chen, G. Wu, T. Zhang,

H. Kusumaatmaja, and X. Wang, “Reconfiguration of multistable 3D ferromagnetic

mesostructures guided by energy landscape surveys”, Extreme Mech. Lett., 48, 101428

(2021).

In particular, the experimental ferromagnetic structures are the work of Y. Li,

while the simulations and energy landscape analysis are my own work.

7.1 Introduction

Reconfigurable three-dimensional structures that can actively change their geome-

tries and thereby their functionalities upon external stimuli (like mechanical forces,

magnetic fields, hydration, and temperature) [10,88,172–175] are promising for a diverse

range of applications including deployable solar panels [176], metamaterials [177–179],

phononics [180,181], biomedical devices [182,183], robotics [7,184,185], metasurfaces [186,187],

and many others. The design of reconfigurable structures usually relies on struc-

tural instabilities [11,188,189], stimuli-responsive constituent materials (like swellable

gels, shape memory polymers and magnetic materials) [174,190–193], or their heteroge-
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neous combinations [194].

As discussed in section 3.2, structural instabilities of simple 2D patterns under

compression have been exploited to produce 3D buckled mesostructures, and can

be used to realise a diverse range of complex 3D functional architectures and elec-

tronics [72,195–198]. Through elastically deforming the assembly platform in different

time sequences (i.e., loading-path control), the 3D structures have been shown to

morph into different shapes [6,199]. In addition to mechanical deformation, reconfig-

urable structures can also be realised through active materials including ferromagnetic

composites [173,200–202], hydrogels [174], shape memory polymers (SMPs) [175,196], liquid

crystal elastomers (LCEs) [203], and electrochemically active materials [204], which can

change their shape upon external stimuli.

In recent years, an emerging attractive strategy to realise robust reconfigurable

structures is to encode multiple stable states by design that do not require persistent

external stimuli [205–208]. Each of these stable states is a local minimum in a complex

energy landscape, and therefore only a temporary external stimulus is needed to guide

the structure from one state to another, after which it will remain in that state.

Despite intensive studies, a number of critical challenges remain, especially when

asymmetric and complicated modes are involved in the architectural reconfigura-

tion. The first challenge is associated with the presence of multiple local minimum

configurations, which could affect the stability of the targeted stable state under

perturbations (e.g., environmental noises) or trap the structure in an intermediate

state during the process of reconfiguration. For example, it is recently recognised

by researchers that hidden local minimum configurations can destroy the designed

pathway of deploying origami structures [100,209]. Thus, it is crucial to provide means

of manipulating the energy well depth of targeted configurations and eliminating

unfavorable local minima in the design of reconfigurable structures.

The second challenge stems from the complexity of the transition paths from
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one local minimum state to another, especially when the two states are separated

by other stable and transition states [61,83,101,210,211]. A recent work [101] shows that

the transition from a uniformly deformed cylindrical shell to a 9-dimple buckled

pattern needs to pass 7 local minimum configurations, which cannot be achieved

by directly applying local probes to the shell. Complicated transition paths among

local minima are also found in mechanical metamaterials, which further provides new

design parameters to program the deformed configurations of the structures [83].

Finally, it is also very challenging to realise remote, locally controlled, and rapid

reconfiguration of the deformed, highly nonlinear structures [6,212]. These challenges

call for a new means of systematically surveying the energy landscapes of the multi-

stable structures to probe and tailor the energy barrier height among different local

minima.

In this chapter, we develop a set of strategies to address these challenges and to

guide the design of ferromagnetic 3D mesostructures, which are developed by our

collaborators. The use of ferromagnetic materials enables remote and rapid reconfig-

uration among different stable states via a portable magnet, eliminating the need for

mechanical stages to apply controlled, global deformations to the substrate, as used

in previous works [6,199]. Thus providing opportunities for remote, tetherless shape

morphing, which is advantageous for many applications, especially those that require

shape morphing in enclosed or delicate environments such as robotics and biomedical

devices.

Theoretically, we employ a discrete shell model [166,213] and path-finding algo-

rithms [16,101] to conduct fundamental studies on the complicated energy landscapes

of the 3D ferromagnetic structures. We construct design phase diagrams showing how

the available stable states sensitively depend on the essential material and geometrical

parameters of the elastic structures. Furthermore, the minimum energy reconfigura-

tion paths between the stable states and their energy barriers are identified using a

combination of our developed BITSS method and the string method [16]. A salient

102



7.2. RESULTS

advantage of our approach is that it allows the computation of reconfiguration paths

following the minimum energy pathways (MEPs) systematically without the need to

assume a predefined path for the structural transformation.

Our methodology is versatile and is applied to design and realise reconfigurable

structures with a wide range of geometries, including ribbons and structures that

resemble tables, baskets, flowers, boxes, single and double beams. In all cases, the

theoretically predicted and experimentally realised shapes and reconfiguration paths

are in excellent agreement. We also demonstrate reconfiguration of structures fabri-

cated from non-active materials that are locally patterned with ferromagnetic films,

which significantly expands the design space and material libraries for reconfigurable

structures.

To further demonstrate the versatility of these reconfigurable 3D ferromagnetic

structures, we highlight a number of applications that have been created by our

experimental collaborators. This includes a reconfigurable light emitting system,

which illustrates the capacity to integrate other functional components into the 3D

structures. Finally, magnetically actuated particle delivery is shown, which utilises

the different reconfigurational modes of a table structure.

7.2 Results

7.2.1 Phase diagram of stable states for a table structure

Fig. 7.1(a) schematically illustrates the assembly process of a 3D structure from

ferromagnetic composite thin films via compressive buckling, and the architectural

reconfiguration of the structure via magnetic actuation. The ferromagnetic compos-

ite is prepared by homogeneously embedding hard NdFeB (neodymium-iron-boron)

microparticles into a soft elastomer, polydimethylsiloxane (PDMS). These are then

patterned into 2D layouts using a CO2 laser, followed by their magnetization using
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impulse magnetic fields (about 2.7 T). They are then attached to a prestretched elas-

tomeric substrate using a very thin layer of superglue to generate strong bonding at

select location on the 2D patterns. Releasing the prestrain in the substrate leads to

compressive forces on the 2D ferromagnetic pattern at the bonding sites and geomet-

rically transforms the pattern into a 3D structure. We define the 2D layout to lie on

the x-y plane so that its normal vector is in the z direction.

Figure 7.1: Multistability of magnetically reconfigurable 3D structures. (a) Schematic illus-
trating the assembly and reconfiguration of 3D ferromagnetic structures. (b) Experimental
and computational results of multistable states in a 3D table structure. (c) Design phase
diagram showing the number of distinct stable states based on the energy scales of the table
structure. Representative examples in each regime with different values of L are marked. (d)
Experimental and computational results of the distinct stable states for the three represen-
tative examples marked in (c). S1-S3 refer to state 1-3, respectively. Scale bars, 1 cm.
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To efficiently explore the possible stable states existing in the table structure, we

simulate the structure using a simple discrete shell model. The surface is discretised

using a Delaunay triangulation [171], with a target mesh size of a tenth of the ribbon

width, and then the energy is calculated using the bar-and-hinge model discussed in

section 6.3.2. In these simulations, we assign the Young’s modulus of the ferromag-

netic film to be Y = 1.4MPa [200] and use a thickness, t = 150 µm. The gravitational

force is also included by setting the film density to its measured experimental value

of ρ = 2.59 g cm−3. These parameters, and others used in this chapter, are listed in

table 8.3. Finally, we model the repulsive substrate interaction using a Lennard-Jones

3-9 potential with the attractive region removed. Consequently, the model does not

take into consideration the effect of adhesion which may become significant at small

scales.

The stable states are obtained by minimizing the structures energy using the L-

BFGS algorithm [106,107], which is highly efficient for minimization involving a large

number of degrees of freedom. The structures are buckled by steadily moving the

binding sites from their positions in the flat precursor to their final positions over the

first 10 000 iterations. While this buckling is taking place, the structure is split into a

number of different regions and each is given a random force to enable the structure

to take different configurations. This process is repeated several hundreds of times

to identify the different local minima in the energy landscape.

Fig. 7.1(b) presents experimental and corresponding computational results of a

3D ferromagnetic table structure and its multiple stable states. The table structure is

oriented in a way such that gravity is perpendicular to the substrate (in the negative

z direction), which is the case for most of the structures in this study unless specified

otherwise.

Three distinct states (state 1-3) with a total of nine configurations are discovered.

Magnetically deforming the assembled table structure via a portable disk magnet,

with one leg becoming flat while the other three legs remain buckled, rapidly recon-

105



CHAPTER 7. 3D BUCKLED MESOSTRUCTURES

figures the table structure from state 1 into a distinct stable state 2, with four different

orientational configurations (state 2: shape I-IV). Further magnetic actuation induces

an additional leg of the table structure to become flat and results in the transition

from state 2 into another stable state with four different orientations (state 3: shape

I-IV). In addition, unlike previously reported reconfigurable 3D structures that rely

on persistent external stimuli to maintain their deformed shapes [173,174,203,214], the

deformed configurations of the table structure shown here can well maintain their

shapes after the applied magnetic field is removed, as they are locally stable config-

urations. Computational modelling results of the configurations for the stable states

and their different orientations via the discrete shell model are highly consistent with

experiments, with the colour in the results denoting the displacement of the structure

along the z direction.

Using the combined experimental and computational strategy, we further study

the effect of essential geometry and material properties on the entire spectrum of

existing stable states, yielding the design phase diagram shown in fig. 7.1(c). The

diagram illustrates the total number of stable states according to two dimensionless

parameters that are determined from the ratios between three relevant energy scales

– gravitational (EG), stretching (ES), and bending (EB). These energy scales can be

expressed in terms of the material and geometric parameters of the 3D structure:

EG = ρgL3t, ES = Y L2t, EB =
Y t3

1− ν2
, (7.1)

where ρ is the material density, Y is the Young’s modulus, ν is the Poisson ratio, t

is the film thickness, and L represents the in-plane size of the structure (the width

of table legs is used for this study). The cubic term of L in EG comes from the fact

that the volume of the structure scales with L2 and the displacement in the direction

of gravity is proportional to L.

Three regimes in terms of the number of existing stable states can be identified

in fig. 7.1(c): (i) 3 distinct stable states, (ii) 2 distinct stable states, and (iii) 1
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distinct stable state, which are controlled by two dimensionless variables ES/EB =

L2(1−ν2)/t2 and EG/EB = ρgL3(1−ν2)/Y t2. The variable ES/EB characterises the

bendability of the structure, with a larger value indicating that it is easier to generate

bending deformation. EG/EB describes the competition between the gravitational

and bending energies. When ES/EB and EG/EB are relatively large, three distinct

stable states as shown in fig. 7.1(b) exist in regime i, with states 2 and 3 having 4

different orientations. As the two dimensionless variables decrease, state 2 becomes

unstable, resulting in two distinct stable states (states 1 and 3) for regime ii. When

EG/EB is further reduced to an even smaller value, only the buckled-up state (state

1) is stable in regime iii.

To validate the phase diagram experimentally, we fabricate 3D ferromagnetic

structures of the same film thickness (t) and material properties (ρ, Y , and ν) but of

different sizes (L), and magnetically reconfigure them into their multistable states.

Fig. 7.1(d) (i-iii) demonstrates the number and configurations of the stable states

for structures with L = 1.04mm, 0.8mm, and 0.5mm, respectively, which agree well

with the prediction of the design phase diagram. Please note that the overall in-plane

dimensions of the structures are scaled proportionally with L as it varies.

The diagram provides very important guidelines for achieving a well-controlled

number of stable states or for removing undesired stable states in various applications

by tuning the geometry and material properties. For instance, if state 2 is undesired,

the structure can be designed with ES/EB and EG/EB falling within regime ii, where

only states 1 and 3 are stable.

7.2.2 Reconfiguration pathways of a table structure

Identifying the optimal transition pathways between the stable states of a 3D struc-

ture is critical for well-controlled, energy-efficient reconfigurations. By using the table

structure as an example, we further examine its energy landscape to identify the min-
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imum energy pathways (MEPs) between metastable states, in which the maximum

energy along the path occurs at a saddle point (the transition state). However, the

non-linear reconfigurations of the structure can thwart standard pathway methods

unless they are initialised close to the correct path, and the large number of degrees

of freedom used to model the structure can make the problem computationally in-

tractable. Instead, to locate the pathway efficiently, a combination of methods are

used. First, the transition state is located using the BITSS method, which does not

require an initial pathway guess. By minimising downhill from either side of the

transition state with L-BFGS a pathway is generated, which is then refined using the

string method (introduced in section 4.4.2).

Our approach allows automatic and systematic computation of reconfiguration

paths following the MEPs without the need to assume the pathways along which the

structure morphs. This is useful because the energy-efficient reconfiguration paths

can be highly complex for 3D elastic structures, and it is not always possible to

prescribe an expected pathway a priori, as typically adopted in previous works where

energy barriers are calculated [6,61,95,215].

As shown in fig. 7.2(a), we find the transition pathways to progress from state 3

to state 1 of the table structure can be broadly grouped into three regions: (I) two

paths, 1 and 2, exist (red region); (II) two paths, 1 and 2*, exist (orange region); (III)

only path 1 exists (yellow region). The distinction between paths 2 and 2* is that the

intermediate state 2 is no longer stable on the latter. For illustration, we construct

the design diagram by varying the in-plane size of the structures (L), while keeping

their material properties (ρ, Y , and ν) and film thickness (t = 125 µm) constant. The

marked red and blue points correspond to those in the 3-state and 2-state regimes

identified in the design diagram in fig. 7.1(c), respectively.

For L > 0.89mm (region I), two independent minimum energy pathways are found

and illustrated in fig. 7.2(b) for a representative table structure with L = 1.04mm.

The first (path 1) is a direct pathway with energy barrier ∆E1, and the second (path
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2), a path that passes through state 2 as an intermediary, with energy barriers ∆E2

between states 3 and 2 and ∆E3 between states 2 and 1.

Figure 7.2: Energy barriers and reconfiguration pathways. (a) Variation of the energy barriers
against L. Three regions (I-III) with different available pathways are highlighted. Inset: The
locations within the design phase diagram. (b-d) Energy profiles and snapshots of stable
and transition states for the pathways from state 3 to 1 with three values of L: (b) 1.04mm,
(c) 0.8mm, and (d) 0.72mm. The energies are normalised by the bending energy. The
definitions of the three energy barriers (∆E1, ∆E2, ∆E3) are shown in (b). Scale bars, 1 cm.
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Snapshots of configurations along the pathways are captured in simulations and

magnetic reconfiguration experiments and are shown in fig. 7.2(b), with the complete

structural transformation process and corresponding energy profiles simultaneously

demonstrated in videos A.1 and A.2.

The energy barriers of the pathways demonstrate both the stability of the states

and the ease of transitioning between them. For example, the energy barrier to

progress from state 3 to state 1 is much smaller than that from the inverse direction,

thereby making state 1 more stable. Comparing paths 1 and 2 also suggests that a

smaller input energy is needed when reconfiguring the table structure along path 2

(passing two saddle points) than that along path 1. However, the finite energy barrier

∆E3 also indicates that the transition can be potentially trapped in state 2 if insuf-

ficient external energy is provided for reconfiguration. In addition, reconfiguration

along path 2 requires more efforts in manipulating the direction and the strength of

external magnetic forces, compared to the direct pathway following path 1.

These complexities clearly show the importance of harnessing the energy land-

scape analysis for guiding the choice of transition paths based on specific applications

and the nature of available external magnetic fields (or other external stimuli). In

addition, it is also worth noting that the pathways observed in experiments, where a

portable magnet is utilised to reconfigure the structure from state 3 to state 1, are

highly consistent with those from simulations, which indicates the high fidelity and

reliability of the approach used in this study. Moreover, the experimental reconfigu-

rations can be completed within a few seconds (videos A.1 and A.2). Such fast and

remotely controlled transitions are desired for numerous applications, such as in soft

robotics [57,216] and multifunctional metasurfaces [186,187].

As we decrease L, all the energy barriers become smaller monotonically, as shown

in fig. 7.2(a). At L = 0.89mm, the boundary between the 3-state and the 2-state

regimes in the phase diagram of fig. 7.1(c) is reached, where ∆E3 reduces to zero,

a signature that state 2 is no longer stable. For 0.78mm < L < 0.89mm (region
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II in fig. 7.2(a)), there remains two distinct minimum energy pathways to transition

from state 3 to state 1, even in the absence of a stable state 2. The typical energy

profiles for this range of L values are illustrated in fig. 7.2(c) for L = 0.80mm.

Snapshots of the configurations from simulations and experiments for L = 0.80mm

are further shown in fig. 7.2(c), with reconfiguration along the full pathways provided

in videos A.3 and A.4. The shape evolution along the pathways remains qualitatively

similar to that shown in fig. 7.2(b).

Interestingly, we also find that there is a crossover in the preferred energy-efficient

pathway at L = 0.84mm, where ∆E1 = ∆E2 in fig. 7.2(a). For a larger L (0.84mm <

L < 0.89mm), path 2* is favorable because the corresponding energy barrier is

smaller, while for a smaller L (0.78mm < L < 0.84mm), path 1 has a lower energy

barrier and thereby is desired.

The preference for path 1 at smaller L values is further accentuated by the loss

of path 2* as a minimum energy pathway for 0.56mm < L < 0.78mm (region III in

fig. 7.2(a)). For this range of L values, we are unable to identify path 2* in simulations,

as indicated by the lack of data points in fig. 7.2(a). Furthermore, attempts to ex-

perimentally reconfigure along this pathway fail, with the structure instead following

path 1. Therefore, only path 1 remains. The typical energy profile for the transi-

tion along path 1 in this range of L values is shown in fig. 7.2(d) for L = 0.72mm,

with the corresponding snapshots of the reconfiguration and the full pathway given

in fig. 7.2(d) and video A.5, respectively. State 3 itself becomes unstable when L is

further reduced below 0.56mm, where we enter the 1-state regime. At this point the

energy barrier ∆E1 becomes zero, as seen in fig. 7.2(a).

Taken together, these highly nonlinear behaviors observed for the transition path-

ways make the energy landscape analysis a necessary tool for an efficient and robust

design of the multistable configurations and the transition paths among them, which

has not been systematically studied before for continuous 3D mesostructures.
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Figure 7.3: Diverse magnetically reconfigurable 3D structures. Optical images and com-
putational modelling of multistable states for three types of structures: (a) 3D structures
attached to a substrate. Pink arrows in the first structure indicate differences among the
four shapes. Scale bars in the first and second structure are 1 cm and 2mm, respectively. (b)
3D structures with the substrate underneath the structure removed. Scale bars, 1 cm.

7.2.3 3D structures with diverse geometries

The reconfiguration strategy and the energy landscape analysis described above are

versatile and can be extended to different types of 3D structures in diverse geome-

tries, as illustrated in fig. 7.3. Fig. 7.3(a) shows an assembled ferromagnetic basket

structure (shape I; film thickness: 125 µm) and its multiple stable states (shapes II-

IV) that can be achieved via magnetic control. The pink arrows indicate differences

among the four shapes. In addition, by introducing creases to selective locations of a

ribbon structure (crease thickness: 70 µm; non-crease thickness: 125 µm), we create
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a ferromagnetic origami structure, which is further tuned to display multiple stable

configurations by using magnetic forces.

The elastomer substrate used for 3D assembly in figs. 7.1 and 7.2 provides essential

support for the assembled 3D structures, but it also poses some limitations for the

reconfiguration in the out of plane direction. To allow more freedom for spatial

reconfiguration, the substrate underneath the 3D table structure is removed, while

the substrate adjacent to the bonding sites is maintained to support the 3D structure.

Such 3D structure on a hollow substrate allows bending up/down deformations across

the plane of the substrate. Fig. 7.3(b) demonstrates a selection from a large variety

of reconfigurable 3D structures on hollow substrates that have been investigated,

including basket, single- and double-beam structures.

It is very interesting to note that the multistable configurations on hollow sub-

states are sensitive to the orientation of the structures. Take the table structure for

example, when placed horizontally (i.e., the direction of gravity is perpendicular to

the substrate), the structure only displays two stable states, buckled up and down.

However, when the table structure is placed vertically with the direction of gravity in

the x direction (fig. 7.3(b)), in addition to the buckled up (Shape I) and down (Shape

IV) states, it can deform into an asymmetric, twisted shape (Shape II), similar to

state 3 of the table structure with an intact substrate. This deformed shape can be

further magnetically deformed into shape III, with the four bonding sites attached to

the substrate and the rest of the structure self-supported in the air.

We also carry out energy landscape analysis for this structure, the details of

which are presented in fig. 7.4. Similar to the case with an intact substrate, we can

distinguish several regimes with different numbers of stable states, depending on the

three relevant energy scales: gravitational, stretching, and bending energies.

In addition, we quantitatively compare the dimensions of three representative

3D structures from experiments and modelling results and find negligible difference

113



CHAPTER 7. 3D BUCKLED MESOSTRUCTURES

between them (table 7.1), which further highlights the consistency between modelling

and experimental results.

  

State 1
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State 1

State 2

State 2
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𝑔
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Figure 7.4: (a-b) Phase diagrams of table structures on hollow substrates, with the direction
of gravity in (a) the z-direction, (b) the x-direction. In panel (b), state I has two equivalent
configurations, while both states II and III have four equivalent configurations. (c) Energy
profile of the transition pathway from the buckled-down (state 1) to buckled-up (state 2)
configurations when gravity is in the z-direction. (d) Energy profile of the transition pathway
from the buckled-down (state 1) to buckled-up (state 1’) configurations when gravity is in
the x-direction.
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Experiment Simulation

State Width
(mm)

Height
(mm) State Width

(mm)
Height
(mm)

32.2 9.2 33.5 9.0

37.6 10.7 38.0 10.9

31.5 10.1 31.9 9.9

Table 7.1: The dimension comparison of experimental 3D structures and simulated 3D struc-
tures.

7.2.4 Hybrid ferromagnetic structures

In addition to tuning the strength and the direction of external magnetic forces for

reconfiguration, an alternative and potentially more versatile means to realise mag-

netically controlled reconfiguration is through manipulating the distribution of mag-

netic materials within 3D hybrid structures. Fig. 7.5(a) schematically illustrates the

fabrication process of such structures by locally integrating laser-cut ferromagnetic

composite film patches (125 µm thick) onto a thin layer of inactive materials (PDMS,

180 µm thick) and compressively buckling the 2D hybrid pattern into a 3D structure.

Following this strategy, reconfigurable 3D hybrid structures that resemble tables

and flowers are fabricated and magnetically tuned to display five stable configurations

(Shape I-V) using a portable magnet. The deformed shapes can well maintain their

configuration after the magnetic force is removed, the capability of which is the same

as structures composed of a single layer of ferromagnetic composites.

In addition, 3D hybrid structures can potentially allow more local magnetic con-

trol by varying the direction and the strength of the residual magnetic field in each

ferromagnetic patch through magnetization in different directions and mixing differ-
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ent concentrations of magnetic particles in the composite film, respectively. This

could be combined with information from the energy landscape analysis in order to

design the patches so the deformation in a magnetic field most accurately follows the

MEP. However, this analysis and the exploration of other composition materials for

reconfigurable 3D hybrid structures are beyond the scope of the current work.

Figure 7.5: Locally tunable, heterogeneous 3D structures. (a) Schematic illustration of
the fabrication process for locally controlled heterogeneous 3D ferromagnetic structures. (b)
Optical images and computational modelling of multistable states for 3D structures composed
of locally patterned ferromagnetic films on a thin layer of PDMS. Scale bars, 1 cm.

7.2.5 Applications of reconfigurable 3D structures

Using the techniques described above, our experimental collaborators have designed

two proof-of-principle applications that demonstrate the potential offered by recon-

figurable ferromagnetic mesostructures.
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Firstly, functional materials and components may be integrated onto the 2D pre-

cursor, providing access to tunable 3D functional devices. This is demonstrated using

a reconfigurable light emitting system in fig. 7.6(a). Here, two light emitting diodes

(LEDs) are integrated onto designated locations of a double-beam structure with

copper thin films connected to the LED serving as contacts for LED activation. The

cross-links in the structure can be individually buckled using magnetic actuation, de-

forming the structure from shape I to II (or III). This enables a firm contact between

the LED on the structure with the copper contacts on the substrate, connecting to

an external power supply and activating the LED. The multistability of the structure

then enables the LED to maintain its “on” status after the magnetic force is removed.

When the two beams are simultaneously deformed to form stable configuration IV

using a magnet, both LEDs are turned on. This simple example suggests a broad

range of possibilities in other types of electronic and optoelectronic devices.

Based upon our investigations of the 3D table structure, a device is created for

the delivery of particles in a well-controlled manner. As shown in fig. 7.6(b), a

thin layer of pure PDMS film is placed in a concave shape in the centre of the

table, in order to support a silica particle. This film that supports the particle is

insensitive to the applied magnetic field when the table structure is magnetically

actuated, thereby exerting minimal influence on the reconfiguration of the whole

structure. The table structure itself is designed to be in the 2 state region of the phase

diagram, fig. 7.1(c), such that it exhibits one upright state and a second state in four

different orientations (modes I-IV). To trigger the delivery of the particle, a portable

magnet is used to manipulate the structure into one of these different orientations,

leading to well-controlled particle delivery in a chosen direction. Therefore, such

flexible, remotely reconfigurable structures could have a lot of potential applications

in controlled delivery.
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Figure 7.6: Applications of reconfigurable structures in on-demand 3D light emitting systems
and controlled particle delivery. (a) Schematic illustration and optical images of a 3D light
emitting system that can be reconfigured among its multistable states to switch the LEDs on
and off. (b) Controlled release of particles in four different directions (Modes I-IV) enabled
by four possible stable states of the table structure. Scale bars, 1 cm.

7.3 Discussion

To conclude, we have tightly integrated experiments and modelling to survey the

energy landscapes of highly nonlinear 3D ferromagnetic structures for the develop-

ment of reconfigurable systems. Our systematic computational analysis predicts a

design phase diagram for a targeted number of stable states by varying essential ma-

terial properties and geometries. It also allows us to systematically identify highly

complex transition paths among the distinct stable states that minimise the energy

barriers, without the need to prescribe an expected pathway for structural transfor-

mations a priori. These predictions are thoroughly validated by our experiments of

creating multistable 3D ferromagnetic structures and magnetically reconfiguring the

structures among their multistable states following different pathways rapidly, in a
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remote, on-demand manner.

Using this strategy, a plethora of symmetric and asymmetric 3D mesostructures

of diverse geometries are realised and reconfigured among their multistable states, in-

cluding those that resemble ribbons, tables, baskets, flowers, boxes, single and double

beams. These versatile reconfigurable structures have a range of possible applications,

illustrated by the integration of electronic components to create reconfigurable light-

emitting functional devices, and a magnetically actuated table structure for particle

delivery.

We believe our fundamental studies on the reconfigurational behaviours of 3D

structures establish the foundations for a robust and reproducible modelling approach

that may be applied more broadly to the design and development of diverse types

of reconfigurable structures and systems. This may include origami, kirigami and

stimuli-responsive structures beyond magnetic actuation, where the exploration of

energy landscapes could aid in understanding the reconfiguration and the tunability

of multistable states.

It is also interesting to explore the integration of functional materials with locally

patterned magnetic films of different magnetization directions [173,216], and stiffness

manipulation [217] to expand the design space of possible hybrid structures and to

potentially enable multi-stimuli-responsive structures and soft machines. We believe

these studies will provide important insights for the design of reconfigurable structures

and functional systems for wide-ranging applications, such as in deployable solar

panels, phononics, morphable architected materials, and soft robotics.
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Topic Symbol Parameter description Value

St
ru

ct
ur

e

L Arm width 1.04 / 0.8 / 0.5mm
— Arm length 12.5L
rout Outer ring radius 5L
rin Inner ring radius 3.75L
— Mesh resolution 0.1L
t Thickness 150 µm
ρ Density 2.59 g cm−3

Y Young’s modulus 1.4MPa
ν Poisson ratio 0.3
— Compressive strain 0.3

L-
B

FG
S m Iteration memory 10

— Initialisation iterations 10 000
— Initialisation force density 10Nm−2

— Gradient RMS convergence 10−10

P
at

hw
ay

s

α BITSS energy constraint strength 10
β BITSS distance constraint error 0.1
f BITSS distance reduction factor 0.5
— BITSS coefficient regularity 100 iterations
— String reparametrisation regularity 300 iterations
— String number of images 20

Table 7.2: Values of the parameters that are used throughout this chapter, unless otherwise
specified.
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Chapter 8

Origami-inspired Mesostructures

This chapter is based upon the joint work: Y. Li, S. J. Avis, T. Zhang, H. Kusumaat-

maja, and X. Wang, “Tailoring the multistability of origami-inspired, buckled mag-

netic structures via compression and creasing”, Mater. Horiz., 8, 3324 (2021).

In particular, the experimental ferromagnetic structures are the work of Y. Li,

while the simulations and energy landscape analysis are my own work.

8.1 Introduction

Origami, the ancient art of folding two-dimensional (2D) thin sheets along predefined

creases to create three-dimensional (3D) objects [69,218,219], has inspired the design of

many engineering structures for a wide range of applications, including deployable

systems [176,220,221], self-folding machines [53], reconfigurable metamaterials [74,206,222],

and DNA origami [223]. For those applications, a key design feature of the structures

is their ability to have multiple stable states as well as the tailoring of those states for

tunability and adaptability. Existing works so far have primarily focused on bistable

systems for rigid origami patterns (like the Miura folding [92] and its derivatives [10])

and deformable origami (like the twisted square pattern [100]). For example, Sadeghi
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and Li realised rapid and reversible folding by harnessing the asymmetric bistability of

designed origami structures [224]. Liu et al. demonstrated that a folded hypar origami,

obtained by folding a piece of paper along concentric squares and their diagonals to

arrive at a seemingly smooth saddle shape, exhibits bistability between two symmet-

ric configurations [193]. More recently, Melancon et al. realised pressure-deployable

origami structures characterised by two stable configurations — one compact and

one expanded – at the meter scale [220]. Furthermore, Fang et al. showed that the

potential energy landscapes of stacked Miura-ori and the Kresling-ori structures, and

therefore their stability profiles and constitutive force–displacement relations, can be

effectively tuned by embedded magnets [225].

In addition to multistability, reconfiguration among the different stable states of

origami-inspired structures in a well-controlled manner is demanded in many engi-

neering devices and structures. Theoretical and experimental studies have been per-

formed on reconfiguration paths in origami-inspired structures. For example, Zhai et

al. created an origami-inspired mechanical metamaterial that can be deployed and

collapsed along different configuration paths [52]. Silverberg et al. showed that hidden

degrees of freedom in square twist origami structures give rise to a critical transition

from mono- to bi-stability [100]. Moreover, significant advances have been made to

improve the tunability and adaptability of origami-inspired structures by incorpo-

rating stimuli-responsive materials, which provides opportunities for micro robotics,

biomedical devices, and many others [192,226–229].

Previous studies have laid solid foundations for the design and development of

origami-inspired structures with bistability and tunability. One of the remaining

challenges in this field is to actively control the number of possible stable states

and their reconfiguration paths. Here we investigate this by extending our studies

of mesostructures from the previous chapter to incorporate origami-inspired creases,

which can increase the prevalence of multistable states. There are innumerable struc-

tures that can be constructed from networks of creased ribbons, so we instead restrict
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our attention to the most simple structure, a single ribbon with multiple creases, to

gain fundamental insights about the effect of creases on multistability. However, the

same approaches could also be applied to study other structures.

The two key parameters that we control are compressive strain and creasing in the

ribbon, which are selected because they are easy to tune and very effective to alter

the multistable behaviors of the structure for real applications. We utilise a similar

computational approach as the last chapter in order to construct phase diagrams

showing how the available states sensitively depend on the compressive strain and the

number of creases. Then we generate the the reconfiguration pathways to understand

the stability of the various states and how they can interchange upon applying an

external magnetic force or varying the applied strain.

Finally, guided by this analysis, our collaborators have produced diverse complex

origami-inspired structures, including structure arrays that be individually tuned

based on the multistability of the structural unit and a biomimetic insect.

8.2 Results and Discussion

8.2.1 Concept of origami-inspired, multistable magnetic structures

Fig. 8.1 schematically illustrates the experimental assembly process and reconfigu-

ration of origami-inspired structures compressively buckled from ferromagnetic com-

posites [73,195,196]. These are constructed using the approach described in chapter 7,

however laser patterning is also used in order to create crease sections with a thick-

ness that is 46.15% of the non-crease regions. Due to this reduced thickness, the

crease regions act as flexible hinges that can bend into different states, affecting the

potential multistable reconfigurations [185].

Under an external magnetic field generated by a manually manipulative magnet,
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Figure 8.1: Schematic illustration of the assembly and magnetic reconfiguration schemes of
multistable origami-inspired ribbon structures.

the assembled origami-inspired structure can be reconfigured into up to four distinct

stable states: state 1 (S1, one center peak), state 2 (S2, one side peak), state 3 (S3,

two peaks), and state 4 (S4, twisted two peaks). These are then able to remain stable

after the removal of the applied magnetic field.

8.2.2 Phase diagram of stable states for origami-inspired structures

We first study the effect of two essential parameters, the number of creases and

compressive strains, on the number and configurations of stable states by using a

ribbon structure as an example. A phase diagram, indicating the stable states of

the structure with up to seven creases and at strain levels of 0%-40%, is shown in

fig. 8.2(a) and serves as a theoretical foundation for the multistability design. The

phase diagram is constructed computationally by identifying the local minima in the

energy landscape of the structure under various conditions of strain levels and crease

numbers.

124



8.2. RESULTS AND DISCUSSION

As in chapter 7, we have used the discrete shell model, this time with two thick-

nesses: 130 µm and 60 µm, combined with a random search algorithm for energy

minimisation. At selected points (typically 5 different strain levels for each crease

number) across the phase diagram, the structure is randomly initialised several hun-

dreds of times and relaxed to the minima. Once the qualitatively distinct configura-

tions are identified, we systematically vary the compressive strain to observe the full

range over which each state is stable. It is worth noting that while it is difficult to

guarantee that all possible stable states have been obtained, we are unable to find

additional states when more points in the phase diagram are sampled. Hence, we

consider the identified stable states to be representative in this study.

As shown in fig. 8.2(a), the number of creases (ncrease) has notable effects on

the number and configurations of stable states. To better illustrate this point, we

demonstrate the available states of structures as ncrease is increased from 0 to 7

under a constant compressive strain of 15% in fig. 8.2(b), with the computational and

experimental results shown side by side. When the ncrease is zero, i.e., the continuous

ribbon structure, only S1 (one center peak) exists at all strain levels (e.g., point i).

An additional asymmetric state S2 becomes available when ncrease rises to two at a

compressive strain of 15% (point ii). A further increase to three creases causes the

structure to admit state S3 (two peaks) at a strain of 15% (point iii) and S4 (twisted

two peaks) at a higher strain level. As ncrease increases above three, the number of

stable states begins to decline, with S2 becoming unstable for structures with four

creases (point iv). For structures with five creases and above, only S1 remains stable

at a compressive strain of 15%, although S3 is still stable under lower strains for

ncrease = 5 and 6. This can be expected because we are approaching the continuous

case when the number of creases is large.

The available stable states also depend strongly on the magnitude of the applied

compressive strain used in the assembly process of the structure. We illustrate this

using a structure with three creases due to its rich phenomena.
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Figure 8.2: Multistability of origami-inspired ferromagnetic ribbon structures under varying
creases and compressive strains. (A) Design phase diagram showing the effect of the crease
number and compressive strain on the number and configurations of distinct stable states
of the ribbon. (B) Experimental and computational results of multistable states under a
constant strain of 15% and varying crease numbers, corresponding to points i-v labelled in
fig. 8.2(a). Scale bars, 2 mm. and (C) Experimental and computational results of multistable
states at a constant number of creases (ncrease = 3) and varying strain levels, corresponding
to points vi-ix in fig. 8.2(a). Scale bars, 2 mm.
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Based on the number and configurations of stable states, five regimes are identi-

fied: a) two distinct stable states (S1 and S2; 0-10% strain), b) three distinct stable

states (S1, S2, and S3; 10-17% strain), c) two distinct stable states (S1 and S3; 17-

19% strain), d) three distinct stable states (S1, S3, and S4; 19-30% strain), and e)

two distinct stable states (S1 and S4; 30-40% strain). Fig. 8.2(c) shows experimental

and computational results of distinct stable states at representative strain levels for

the five regimes. Under a relatively low compressive strain of 8% (point vi), states S1

(one center peak) and S2 (one side peak) exist, which can be reversibly reconfigured

into each other via manually controlling the magnetic force and direction. Increasing

the strain to 15% (point iii) leads to the appearance of a third state, S3 with two

peaks, which increases the number of stable states to three. However, when the strain

is further increased to 18% (point vii), S2 with one side peak disappears. Further

increasing the strain to 24% (point viii) causes the formation of an interesting twisted

state (S4) and therefore increases the number of stable states to three (S1, S3 and

S4). As the strain becomes even larger, S3 disappears and only S1 and S4 exist at

the strain of 34% (point ix).

The experimental and computational results shown above agree reasonably well.

The discrepancy in the configuration of some stable states (e.g., (v) S1 in fig. 8.2(b))

between experiments and modeling likely results from the adhesion and friction be-

tween the structure and the substrate in experiments, which is neglected in compu-

tational modeling. The effect of friction will be further discussed in section 8.2.3.

Furthermore, by continuously changing the strain levels from 0% to 40% using

the 3-crease structure, we record the dynamic progression of the five regimes and the

fast, remote magnetic reconfiguration among the stable states within each regime in

video A.6, which is highly consistent with the predictions of the phase diagram in

fig. 8.2(a). We also show that the states are stable under perturbations perpendicular

to the vertical surface (along the height direction) of the ribbon, except in cases where

S4 (twisted two peaks) is present.
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The studies above provide important guidelines for tailoring the number and

configurations of stable states in origami-inspired structures by tuning the number

of creases and the assembly strain. For example, for applications like digital logics

where multiple stable states are desired, structures with three creases may offer more

design space and tunability, while structures with a lower or higher number of creases

is preferred for applications where a single stable state is needed.

Furthermore, from the phase diagram, we observe that structures with two and

three creases have multistable states under a wide range of strain (15%-40% strain

for the case of two creases and 0%-40% strain for the case of three creases), which

can be used for applications of multistable structures that demand a wide working

strain range.

Effect of crease thickness and length

As a brief aside, we also study the effects of modifying the crease thickness ratio

and length ratio (defined with respect to the length of each flat segment) on the

multistability. For this, the 3-crease ribbon under a strain level of 14% is used as an

example.

Thickness
ratio State 1 State 2 State 3 State 4

0.67 ✗ ✗ ✗

0.56 ✗ ✗

0.46 ✗

0.33 ✗

0.25 ✗ ✗

Table 8.1: Effect of the crease thickness ratio on the multistability of the ribbon structure
(strain: 14%; length ratio: 0.32)
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Length ratio State 1 State 2 State 3 State 4

0.10 ✗ ✗ ✗

0.18 ✗ ✗

0.32 ✗

0.56

1.00 ✗

Table 8.2: Effect of the crease length ratio on the multistability of the ribbon structure
(strain: 14%; thickness ratio: 0.46)

The results in tables 8.1 and 8.2 show that both ratios can have a significant

effect on the multistability of the ribbon structure. In particular, reducing the crease

thickness and increasing its length has an overall similar effect on the stable states as

increasing the compressive strain. The main difference is at the extreme when state 3

remains stable, rather than progressing to the twisted state. This is because reducing

the thickness of the crease, or increasing its length, grants the creases more flexibility,

which reduces the amount of bending that is required in the edge segments. However,

it is likely that at larger compressive strains state 3 will become unstable.

8.2.3 Reconfiguration pathways for a 3-crease ribbon structure

In addition to locating the stable configurations, we also investigate available path-

ways that the structure can be reconfigured among its stable states, which is im-

portant for many applications. The pathways have been computed using the same

method as chapter 7, first by finding the TS with BITSS, for which the separation of

the two states is reduced by 30% each iteration, and then computing the pathways

using a combination of downhill minimisation and the string method. In addition,

once a transition state is found for a given strain, a continuation approach is then

used with the BITSS method in order to identify the energy barriers across the whole
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Figure 8.3: (A) Reconfiguration paths among the distinct stable states of origami-inspired
ferromagnetic ribbon structures. Scale bars, 2 mm. (B) Energy profiles of pathways for the
3-crease ribbon structure at various strain levels. (C) Minimum energy barriers for pathways
in fig. 8.2(b) as a function of the strain. The solid lines indicate the energy barriers from the
lower numbered states to the higher numbered states and the dashed lines are the barriers
from the higher numbered states to the lowered numbered states (illustrated by ∆Ef and
∆Eb in fig. 8.3(b), respectively) . The line colors correspond those in fig. 8.3(a). The blue
and orange lines also encompass the extended pathways P1-2*-3, P1-2*-3*-4, and P1-3*-4.

range of strains that the pathway exists.

Here we use the three-crease structure as a representative case for study because

of its complexity in the configurations and the number of stable states, which results

in a large number of reconfiguration paths. As illustrated in fig. 8.3(a), we identify

four distinct pathways among the stable states of the structure: P1-2 for the transition

path between S1 and S2, P1-3 between S1 and S3, P2-3 between S2 and S3, and P3-4

between S3 and S4. It is worth noting that in cases where one or more of those states

are not stable, the corresponding individual paths may merge into one, as we will
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detail below.

Fig. 8.3(b) shows the available pathways and the associated energy profiles for

a representative case in each of the five regimes for a 3-crease ribbon (identified in

fig. 8.2(a)) as the strain is increased from 0% to 40%. In the first regime (0-10%

strain), only states S1 and S2 exist, with a single pathway (P1-2) to reconfigure

between them, as shown in video A.7. In the second regime (10%-17% strain), state

S3 appears, so two additional pathways, P1-3 and P2-3, become accessible (video A.8).

Our analysis also highlights that there are not only multiple stable states existing

in the structure, but also multiple available paths for transforming the structure from

one state to another. For example, we can observe that there are two main pathways

that can be taken from state S1 to S3. The first path, initially following P1-2 to

reconfigure S1 to S2, subsequently involves the creation of an asymmetric peak at

one side of the structure to form state S3 from S2 (P2-3). Due to symmetry, there

are two equivalent scenarios depending on which side the peak is created to form

S3. The second path, P1-3, directly reconfigures S1 to S3 by forming two edge peaks

simultaneously while maintaining symmetry.

As the strain increases to the regime of 17%-19%, state S2 becomes unstable, so

P1-2 and P2-3 merge into a single path P1-2*-3 (video A.9), where 2* denotes that state

2 is no longer stable. Above the strain of 19%, pathway P3-4 appears between state

S3 and twisted state S4, while the two pathways from S1 to S3 still exist (video A.10).

Finally, at the strain of 30% and above, S3 is no longer stable leaving just two merged

paths P1-2*-3*-4 and P1-3*-4 between S1 and S4 (video A.11).

We further investigate the energy barriers of each pathway as a function of strain.

For each pathway, there are two relevant energy barriers, as illustrated in fig. 8.3(b)

using P1-2 in the case of 8% strain as an example. We label ∆Ef for the energy

required to transition from a lowered numbered state to a higher numbered state in

each pathway (here, S1 to S2), while ∆Eb is the energy required for the opposite
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transition (here, S2 to S1). We summarise the values of the energy barriers for all

the available pathways in fig. 8.3(c), where ∆Ef and ∆Eb for each pathway are

represented by solid and dotted lines, respectively.

We can see that the energy barriers for pathways reconfiguring from S1 to other

states including S2, S3 and S4 depending on the strain levels (P1-2, P1-2*-3, P1-2*-3*-4,

P1-3, P1-3*-4; solid blue and orange lines) are much larger than their corresponding

reverse barriers (dotted blue and orange lines, respectively). Such difference suggests

that state S1 is more stable than the other states (S2, S3 and S4), which is consistent

with the phase diagram in fig. 8.2(a), where S1 is almost always stable for cases under

all crease numbers.

It is also seen that the energy barriers of paths P2-3 and P3-4 are significantly

lower than those of pathways involving state S1. This suggests that reconfigurations

among states S2, S3, and S4 are much easier than those between S1 and S2/S3/S4.

Correspondingly, the required forces to disturb the reconfiguration paths or trap

locally stable states are low. Hence, forces like friction between the structure and the

substrate (assembly platform) in experiments may be sufficient to trap the structure

along these paths or at states S2, S3 and S4. This may explain why experimentally

the structure appears to get trapped in some states which are shown to be unstable

in computational results (videos A.9 to A.11). For example, in video A.9, when

the structure is reconfigured from S2 to S3, the 2nd edge peak is not fully formed

due to possible friction between the structure and the substrate, causing the slight

asymmetric configuration of S3.

From fig. 8.3(c), we can also see that the energy barriers for the majority of

the reconfiguration paths increase monotonically with the strain, implying that it

becomes more difficult to reconfigure the states at larger strains. Exceptions occur

for reconfiguration paths P2-3 (solid green line, transition from S2 to S3) and P3-4

(solid red line, transition from S3 to S4), the energy barriers of which decrease with

increasing strain levels. Here, the cases when the energy barriers tend to be zero
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correspond to the instances where S2 and S3 become unstable, i.e., the instability

modes of these states. Overall, the energy barrier analysis reinforces the previous

observation that, as the strain is varied from 0% to 40%, state S1 always exists while

the availability of states S2, S3 and S4 strongly depends on the strain imposed.

8.2.4 Multi-ribbon structures

The multistable ribbon configurations studied above can serve as building blocks for

complicated geometries and diverse types of origami-inspired structures. Several such

structures are detailed in this section that have been created by our collaborators.

Fig. 8.4(a) show a 3 × 3 array of ribbons with three creases at different strain

levels, which is consistent with the prediction of the phase diagram in fig. 8.2(a).

Particularly, as predicted by the phase diagram, three distinct stable states exist at

the strain levels of 14% (S1, S2, and S3) and 28% (S1, S3, and S4), respectively. In

experiments, each individual ribbon unit is separately addressable and therefore the

structure array can be magnetically tuned in a sequential manner to simultaneously

display all the three stable states (S1 in row 1, S2 in row 2, and S3 in row 3 at a strain

of 14%; S1 in column 1, S3 in column 2, and S4 in column 3 at a strain of 28%).

Such capability of dynamically and reversibly tuning the patterns in a structure array

represents an important option for applications including digital coding and smart

switches [222], especially when integrated with other functional materials or elements.

In addition, the complexity of origami-inspired structures and the number of sta-

ble states can be increased by incorporating a larger number of interconnected struc-

tural units, like ribbons with two creases. Fig. 8.4(b) presents a structure consisting of

two creased table structures connected with a creased ribbon, which can be magneti-

cally reconfigured into six distinct stable states that are enabled by the multistability

of the ribbon units. Furthermore, the multistable origami-inspired structures can be

extended to diverse geometries. For example, fig. 8.4(c) demonstrates a structure that
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Figure 8.4: Diverse origami-inspired, multistable ferromagnetic structures that can be ac-
tuated by magnetic forces. (A) An array of 3-crease ribbon structures showing different
patterns formed by the multistable states of the ribbon under the strain of 14% and 28%,
respectively. Scale bars, 3 mm. (B) Multistable states and magnetic reconfiguration of a
double-table structure composed of creased ribbon segments. (C) A multistable biomimetic
“insect” in its flat and standing states, respectively. Scale bars, 2 mm.

mimics insect flexion, with various standing states that show biomimetic movements.

Here the legs can be treated as two-crease ribbons with each switching between their

two asymmetric cases (S2 in fig. 8.2). When the peak is beside the binding site, it

corresponds to the insect lying flat. But if the peak is beside the body then it causes

the insect to stand upright.

8.3 Conclusion

To sum up, it has been shown that the multistability and the associated transition

paths of origami-inspired, compressively buckled ferromagnetic structures can be tai-

lored by controlling the number of creases and assembly strain. Our constructed
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phase diagram of a representative creased ribbon structure from the energy land-

scape analysis provides important guidelines for the targeted number of stable states

by varying the two control factors. In addition, transition pathways among the dis-

tinct stable states are computed and illustrate how the structure can be manipulated

to be reconfigured along different pathways. These have been validated using ex-

perimental results of origami-inspired ferromagnetic structures, which show targeted

multistable states following designed pathways, which highly agree with modelling.

The fundamental understanding of the multistability of creased ribbon structures

provides important guidelines for the design and application of multistable origami-

inspired systems, with demonstrated examples including an arrays of creased ribbon

units and the various states of a biomimetic “insect” structure. Also, the energy

landscape analysis offers an approach to study the multistable states and pathways,

and can be tailored for specific applications.

These results highlight potential opportunities in the future to exploit multistable,

origami-inspired ferromagnetic structures for intelligent and adaptive systems such

as programmable logic array by integrating complex structure design and functional

materials like stimuli-responsive polymers and electronics. It will also be interesting

to explore the concept of actively manipulating the number of stable states and their

reconfiguration paths in the design of other types of functional structures by using

alternative control parameters.
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Topic Symbol Parameter description Value

St
ru

ct
ur

e

t Thickness 130 µm
tcrease Crease thickness 60 µm

l Segment length 2.5mm
lcrease Crease length 0.8mm
w Ribbon width 0.8mm
ρ Density 2.59 g cm−3

Y Young’s modulus 1.4MPa
ν Poisson ratio 0.3

L-
B

FG
S m Iteration memory 5

— Initialisation iterations 30 000
— Initialisation force density 10Nm−2

— Gradient RMS convergence 10−11

P
at

hw
ay

s

α BITSS energy constraint strength 10
β BITSS distance constraint error 0.1
f BITSS distance reduction factor 0.2
— BITSS coefficient regularity 100 iterations
— String reparametrisation regularity 5000 iterations
— String number of images 60

Table 8.3: Values of the parameters that are used throughout this chapter, unless otherwise
specified.
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Chapter 9

Conclusions and Outlook

In this thesis, we set out to apply energy landscape techniques to study complex

macroscale systems, in particular multistable elastic structures. However, we found

that traditional techniques, such as chain-of-states pathway methods, are often in-

adequate for these applications. As a result, we have developed new techniques to

study the energy landscapes of these large-scale systems.

In chapter 5, we introduced a new transition state search method, BITSS. Unlike

traditional methods, BITSS does not require any initial estimate for the pathway,

making it effective for locating complex pathways without any a priori knowledge of

their route. We have shown that BITSS is compatible with adaptive remeshing tech-

niques, which can offer simultaneous improvements to both efficiency and accuracy.

Furthermore, BITSS has been successfully applied to various challenging energy land-

scapes, such as where it is locally flat, or even discontinuous. Therefore, this opens

up a range of previously inaccessible problems to energy landscape analysis.

This and several other methods have then been incorporated into an energy land-

scape software library, ‘ELLib’, as detailed in chapter 6. The library is designed to

be modular, flexible to use, and may be easily extended to incorporate new methods

and potentials. Additionally, it is designed to utilise parallel methods for calculating
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potentials, minimisation, and exploring energy landscape for large system sizes.

Having developed this new methodology, we then applied it to investigate the

behaviour of multistable buckled mesostructures. We demonstrated in chapter 7 that

our approach can accurately locate stable states and reconfiguration pathways for a

range of different structures, with results that match observations from experimentally

manipulating the structures. Moreover, by investigating a table structure we were

able to create phase diagrams that highlight how the various states and pathways

depend upon the chosen system parameters. These findings can therefore be used to

design a structure with specific functionality for a given application.

In chapter 8 we extended our investigations to explore the effect of origami-

inspired creases on the multistability of simple ribbons, which can be used as a

building block for many larger structures. Our results show that the number of

creases plays a critical role in the number of available states, with three creases show-

ing the greatest multistability, then quickly reducing to just a single stable state as

the number of creases is increased further. Furthermore, we found that increasing

the strain led to changes to the available states and pathways, with a group of states

that could be easily interchanged while another was separated by a large barrier.

Taken together, these results provide new insight into how the multistability of

buckled mesostructures is affected by various structural and material parameters.

Our methodology and findings outline a process by which these, and other more gen-

eral structures, may be tailored to obtain chosen states and reconfiguration pathways.

The identified reconfiguration pathways can also be serve as targets for remote ac-

tuation, providing a critical step towards developing rapidly reconfigurable devices

for applications in soft robotics and deployable structures, among other fields. This

work has thus contributed to advancing the field of multistable elastic structures and

has potential implications for a wide range of technological applications.
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9.1 Future work

9.1.1 Locating multiple pathways

Many applications have multiple competing pathways between a pair of states. For

example, the snap-through buckling of a clamped beam, fig. 9.1(a), can take one of

two asymmetric pathways. Therefore, we may wish to use a method that enables us

to locate these additional pathways.

However, locating multiple pathways between a single pair of minima is a difficult

problem that has not been fully addressed by existing methods. One possibility is

to use single-ended TS search methods from the regions around each of the minima,

however this is not guaranteed to find all of the TS and those that are found may not

be connected to the states of interest. Another approach is to make initial guesses

using a chain-of-states method, but this requires some knowledge of the expected

pathways and the initial interpolation may be difficult. Alternatives are possible,

such as transition path sampling [230] or using molecular dynamics over long time-

scales, but these can be very computationally costly.

(a) (b)

Figure 9.1: (a) The asymmetric snap-through buckling pathways for constrained thin sheets
(specifically graphene membranes). The endpoints are allowed to rotate in the first, and they
are fixed in the second. An equivalent, reflected pathway is possible in both. Adapted with
permission from [231]. (b) Schematic illustrating a 2D landscape with two pathways, and a
possible modified distance metric that would enable BITSS to locate the second TS. The
pathway’s radius of curvature is calculated to set a certain distance d0 from the known TS
(red dot).

One possibility would be to extend the BITSS method to locate multiple TS by
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modifying the distance metric. Taking inspiration from general relativity, in which

mass can curve space-time and reduce the distance between two points, once BITSS

has located a TS a “negative mass” could be applied, effectively expanding space

around that point. This would result in the two states attempting to move away from

the known TS as they converge, and hopefully converging to another. This could then

be repeated to find multiple different transition states that separate the two minima.

Such a method would bear a resemblance to the deflated Newton method [232], but

for finding multiple TS instead of minima.

Of course attempting to calculate an accurate distance based upon a curved space-

time would be exceedingly complicated, however it does provide a useful analogy.

Instead, a simpler approach could be to consider a circular arc between the states

that has a radius of curvature that points it away from the TS so that the images

would converge a chosen distance away, as illustrated in fig. 9.1(b). By repeating

BITSS and continually increasing this distance bias, it could be possible to locate all

available pathways.

9.1.2 3D elastic metamaterials

In this thesis, we have investigated the behavior of two-dimensional elastic structures

through the use of a discretised shell model that is particularly effective in analyzing

the bending of thin films. However, this approach is insufficient for studying a variety

of complex reconfigurable structures such as three-dimensional mechanical metama-

terials, as discussed in section 3.3. As a result, a natural extension to our work would

be to incorporate a three-dimensional elastic potential, such as one based on the finite

element method, to better examine these systems.

Energy landscape analysis could be a promising tool for addressing a wide range

of problems associated with mechanical metamaterials. For example, the effectiveness

of collisional energy-absorbing structures [58,84] is heavily influenced by material and
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(a) (b)

Figure 9.2: (a) Energy absorbing structures. Adapted with permission from [58]. (b) Bistable
auxetic metamaterial that undergoes a transition to a deployed state. Adapted with permis-
sion from [215].

geometric factors, which modify the energy barriers of the various reconfiguration

pathways. Therefore, by optimising the barriers as we demonstrated in section 6.6,

we could gain valuable insights into how to maximize the efficiency of these structures.

A similar analysis could be applied to flexible metamaterials that undergo a

large-scale, bistable transformation, which are of interest to develop deployable struc-

tures [11,215]. Here, an important consideration is their durability, i.e. how many times

they can be reconfigured without breaking, which is found to be inversely correlated

with the elastic strain energy during the transition [215]. In this case, investigating the

minimum energy pathway could provide the structural parameters that minimise the

energy barrier, thereby increasing durability, while allowing the structure to remain

bistable.

9.1.3 Reconfigurable surface structures for adaptable wetting

An interesting application of the creased ribbon structures investigated in chapter 8

could be to create an array of adaptable surface structures that could be remotely
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(a)
Cassie-Baxter State

Wenzel State

(b)

Figure 9.3: (a) Illustration of the Cassie–Baxter and Wenzel states of a droplet on a struc-
tured surface. (b) An origami-inspired mesostructure with two states that could be used to
realise an adaptable wetting surface.

switched between two states in order to alter the wetting properties of a surface.

For example, it is known that an array of pillars on a surface can keep a droplet in a

suspended Cassie–Baxter state where it can exhibit superhydrophobic behaviour. But

this depends upon the geometry of the posts, and if they are further apart the droplet

may instead transition to a Wenzel state, sinking into the structure and losing the

superhydrophobic behaviour. These two states could potentially be switched from

one to the other using the structure in fig. 9.3(b), which has one state where the

‘pillars’ are larger with less spacing between then, and another state with smaller

pillars and larger spacing.

However, due to their more complicated design, flexible ribbon structures would

restricted to larger sizes than a simple pillar geometry, making the Wenzel state more

prone to failure. Energy landscape methods could be used to address this using a

similar analysis as performed in [50]. This would provide information as to how the

structure should be modified to maximise the energy barrier that prevents the droplet

from penetrating the structure.
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Appendix A

Supplementary Material

Supplementary material for this thesis can be found at this link: https://doi.org/

10.15128/r1n870zq87j

This contains the ELLib software library, the script used to perform the structural

optimisation in section 6.6, and supplementary videos for chapters 7 and 8, which are

described below.

Video A.1: Reconfiguration path 1 for a table structure with L = 1.04mm.

Video A.2: Reconfiguration path 2 for a table structure with L = 1.04mm.

Video A.3: Reconfiguration path 1 for a table structure with L = 0.8mm.

Video A.4: Reconfiguration path 2* for a table structure with L = 0.8mm.

Video A.5: Reconfiguration path 1 for a table structure with L = 0.72mm.

Video A.6: Progression of the five regimes of the 3-crease ribbon when the strain is increased
from 0% to 40%, with a magnetic reconfiguration among the stable states in each regime.

Video A.7: The single pathway (P1-2) for a 3-crease ribbon at 8% strain.

Video A.8: The three pathways (P1-2, P1-3, and P2-3) for a 3-crease ribbon at 14% strain.

Video A.9: The two pathways (P1-2*-3 and P1-3) for a 3-crease ribbon at 18% strain.

Video A.10: The three pathways (P1-2*-3, P1-3, and P3-4) for a 3-crease ribbon at 24% strain.

Video A.11: The two pathways (P1-2*-4 and P1-3*-4) for a 3-crease ribbon at 34% strain.
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