
Original Article

Proc IMechE Part B:
J Engineering Manufacture
1–10
� IMechE 2023

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/09544054231209782

journals.sagepub.com/home/pib

Fabric defect detection using AI and
machine learning for lean and
automated manufacturing of acoustic
panels

Wai Hin Cheung and Qingping Yang

Abstract
Fabric defects in the conventional manufacturing of acoustic panels are detected via manual visual inspections, which are
prone to problems due to human errors. Implementing an automated fabric inspection system can improve productivity
and increase product quality. In this work, advanced machine learning (ML) techniques for fabric defect detection are
reviewed, and two deep learning (DL) models are developed using transfer learning based on pre-trained convolutional
neural network (CNN) architectures. The dataset used for this work consists of 1800 images with six different classes,
made up of one class of fabric in good condition and five classes of fabric defects. The model design process involves
pre-processing of the images, modification of the neural network layers, as well as selection and optimisation of the net-
work’s hyperparameters. The average accuracies of the two CNN models developed in this work, which used the
GoogLeNet and the ResNet50 architectures, are 89.84% and 95.45%, respectively, showing statistically significant results.
The interpretability of the models is discussed using the Grad-CAM technique. Relevant image acquisition hardware
requirements are also put forward for integration with the detection software, which can enable successful deployment
of the model for the automated fabric inspection.
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Introduction

Background

The manufacturing process of acoustic panels typically
consists of panel cutting, panel edging, fabric cutting,
fabric lay-up onto panels and packaging.
Conventionally, due to the size and the customisation
nature of the product, all operations are performed
manually, and they would occasionally suffer from
human-related problems. Implementing an automated
production system following lean methodologies to
manufacture acoustic panels would optimise productiv-
ity and improve the quality of the products.

This work focuses on automating the fabric inspec-
tion process using AI and ML models. Traditionally,
fabric quality control is performed via visual inspection
by technicians. However, the inspection process is slow
and tedious because some types of faults and defects
such as broken yarns or multi-nettings are small and
can be difficult to identify by the naked eye.1 Replacing
manual inspection with an automated detection system

can eliminate human errors caused by oversight and
fatigue.2 An average human inspector can only carry
out visual inspections in under 30min before detection
performance declines.3 Automated fabric inspection
processes combining computer vision techniques and
AI models have been implemented in the textile indus-
try, and they have outperformed manual inspection in
terms of speed, accuracy and consistency. Thus, it is
proposed to develop an automated fabric defect detec-
tion system by reviewing and applying the relevant
technology. In this work, an automated fabric inspec-
tion system using advanced ML techniques is devel-
oped to detect fabric defects with high accuracy and
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efficiency. Specifically, deep learning (DL) models with
pre-trained convolutional neural network (CNN) archi-
tectures are utilised to perform the defect classification.

This work is also a part of an existing initiative to
develop a lean and automated production of acoustic
panels for the engineering company Soundsorba Ltd,
which specialises in the production of acoustic products
used in building interiors. This AI detection system is to
be implemented in the production line of Soundsorba,
replacing the manual fabric inspection.

Related works in fabric defect detection using
machine vision and DL CNN

A real-time fabric defect detection system is an indus-
trial application of machine vision technology that has
been widely implemented in the textile industry for
quality control. Over the past few decades, the progress
of machine vision technology has enabled a wide vari-
ety of ways to process images and detect fabric defects.
These detection methods can be categorised into statis-
tical, spectral, structural, model-based, learning-based
or a combination of the above approaches.1,3,4

However, the traditional methods all have their respec-
tive weaknesses. For instance, statistical methods such
as auto-correlation functions (AF) cannot detect ran-
dom fabric textures and is sensitive to noise interfer-
ences. Model-based Gaussian Markov Random Field
(GMRF) method has difficulty in detecting small
defects, and the rotation and scaling of the images also
affect the detection performance. Spectral and struc-
tural methods including local binary pattern (LBP),
Fourier transform (FT) and wavelet transform (WT)
can only detect defects at the image level and cannot
localise the defects.5 One critical weakness of tradi-
tional machine vision technology is that the algorithms
are largely fixed designs that are embedded in the
vision system software. With traditional algorithms,
the image feature parameters must be manually
designed. The thresholding of these parameters also
requires manual adjustment and tuning. Consequently,
they lack the flexibility to adapt to changing conditions
of the products and the variety of defects, leading to
inconsistent detection results.

In recent years, advanced ML approaches, specifi-
cally the use of DL models, are among the most preva-
lent methods for defect detection due to their reliability,
speed and robustness. Some of the earliest research
works on fabric defect detection utilising artificial
neural networks have been carried out by Tsai et al.6

and Kumar.7 Kumar proposed that for real-time defect
inspection, a multi-layer feed-forward neural network
may be the most optimal approach as it has the fastest
model execution speed. For large-scale multiclass image
classification applications, CNNs are the most widely
used neural network. As opposed to shallow neural net-
work architectures, CNNs are deep neural networks
composed of multiple layers, and they use convolution

matrixes, or kernels to perform feature extractions. In a
CNN, pixels from each image are converted to a fea-
tured representation through a series of mathematical
operations. By combining multiple layers, complex non-
linear functions can be trained to identify the features
or local patterns such as edges within the pixels, which
can then map the input images to the classification
labels.8 The hidden layers of CNNs consist of opera-
tions such as convolutions and ReLU activations which
are for feature detection. A pooling layer is added after
each convolutional layer for downsampling to reduce
the dimensionality of the convolutional outputs. This
helps to generalise the feature map by maintaining the
important feature characteristics in the input images
but leaving out the fine details that are not as useful.
There may be tens or even hundreds of these layers for
detecting different features respectively. The classifica-
tion layers are fully interconnected, and they provide
the classification output based on probabilities.

Jing et al.5 presented a fabric defect detection system
based on advanced pre-trained deep CNNs. The model
was trained with a two-stage strategy by using the
whole image and the local patches of the image. LeNet-
5, AlexNet and VGG16 were used as the pre-trained
network architectures, and the average accuracies were
93.83%, 94.10% and 96.03%, respectively.

Another study conducted by Sudha and Sujatha9

utilised two advanced pre-trained CNN architectures,
namely, GoogLeNet and AlexNet, for fabric defect
detection. The authors used 10 classes of fabric defects
and GoogLeNet outperforms AlexNet in the prediction
of all the classes. GoogLeNet achieved an average of
99.2% accuracy whereas AlexNet have 89.7%.
However, the fabric classes used in this study do not
include one that is without defects.

In another work by Jing et al.,10 an improved
YOLOv3 framework was used to detect fabric defects
on grey and checked cloths in real-time. It is an object
detection model such that the localisation of fabric
defects over the entire image can be achieved. The
model has an accuracy of 97.81% for detecting grey
fabric, and 98.24% for latticed fabric. Also, it has an
average detection speed of 21.8 fps.

A prototype developed by Blanco11 at Brunel
University London utilised the YOLOv4 object detec-
tion model based on the ResNet50 architecture for fab-
ric defect detection. Soundsorba also provided fabric
samples for the creation of the image dataset, which
contains four classes: ‘oil stain’, ‘hole’, ‘multiple net-
ting’ and ‘no defect’, and there is a total of 903 images.
The model can detect images with fabric defects and
the accuracy is 88.2%. However, it could not detect ‘no
defect’ fabric. The average precision is only 39.5% for
the whole test data.

This work is a continuation of Blanco’s ML model
development. However, a different design approach is
taken such that the model can detect good-condition
fabrics, and this is explained in the Design
Considerations section. Then, the Results and Analysis
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section discusses the performances and the explainabil-
ity of the AI models. It is followed by the Limitations
of the Work section discussing the insights gained from
the results, and why the model failed to make a correct
prediction in certain instances. The Conclusions section
at the end provides a summary and suggests ways of
improvement for the AI models developed in this
work.

Methods

Design considerations

This section presents the design considerations before
building the AI model. The task is defined based on the
data gathered through observations on the manufactur-
ing floor:

(1) The fabric images should be acquired by an auto-
mated fabric inspection machine with a good
quality camera and lens, and with an optimal
lighting setup.

(2) The overwhelming majority of the actual fabric
images acquired will be in good condition and
without defects.

(3) The sizes of the faults and defects are extremely
small relative to the overall size of the fabric.

As shown in Figure 1, the smallest ink stain or dirt con-
tamination visible is approximately 0.5mm in size.
Accordingly, after image processing, the image resolu-
tion must be at least 0.5mm/pixel or less for the ink
stain spots to remain visible.

For this study, the model will apply transfer learning
by using pre-trained networks. For most pre-trained
CNNs such as GoogLeNet and ResNet50, the input
images are rescaled to 224 3 224pixels. Therefore, the
field of view (FOV) of the fabric images feeding into
the neural network should be no greater than 112mm
3 112mm, as illustrated in Figure 2. This can be done
by selecting an optimal focal length for the camera lens.
An alternative method is to first capture the image on a
larger FOV. Then, the image can be cropped to the

required size for image processing. If the original image
is captured with low resolutions, the compressed image
would not be able to retain the information of fabric
defects. The shutter speed of the camera in the optics
system should at least match the moving speed of the
tested sample, in order to avoid blurring and affect the
quality of the images acquired.

CNNs can be applied to tackle two types of com-
puter vision tasks, namely, ‘image classification’ and
‘object detection’. The former is performed at the
image level, whereas the latter is performed at the
object level with bounding boxes around the indicated
objects for annotation. As stated in the previous sec-
tion, most fabric images will be defect-free, which
means no bounding boxes can be created in the image.
Hence, the DL model is built to perform the annota-
tion and classification at the image level. The two
major classes are ‘defect’ and ‘no defect’. The images
with fabric defects are further sub-categorised into their
corresponding defect types.

Two CNN models based on transfer learning are
developed using MATLAB version R2022a with the
necessary toolboxes installed. The models are run on a
NVIDIA GeForce RTX 3050Ti GPU, and an AMD
Ryzen 7 5800H CPU, with 16GB (3200MHz) of RAM.

Fabric image dataset

For this study, the fabrics are provided by Soundsorba
with five types of defects used for acoustic panel manu-
facturing. The fabrics are in assorted colours and with
different knitting patterns.

Figure 3 shows examples of each type of defect and
Table 1 lists the class proportions.

The image dataset is split into training, validation
and testing. The most common train-test split ratio for
ML models is 80:20. Similarly, in this design, the
authors used 20% of the dataset for testing, while 65%
of the dataset is for training, and 15% for validation.

Image pre-processing and augmentation

An image data augmenter is created to perform the
image pre-processing and augmentation. The image

Figure 1. Dimensions of a group of ink stains visible on white
fabric.

Figure 2. Requirement of image FOV.

Cheung and Yang 3



augmentations applied are random rotation from 0� to
360�, as well as random reflection on the x-axis and y-
axis, as depicted in Figure 4. Randomised augmenta-
tion helps to train the network to be invariant to distor-
tions in the image data and prevents it from
memorising the dataset and overfitting. Therefore, the
augmentation is only applied to the training dataset.
Also, all images are rescaled to 224 3 224 pixels to
match the size of the input layer.

Transfer learning using pre-trained networks

Given the available resources (the computational hard-
ware to train the network, and the number of images
for training), transfer learning has been used to develop
the model based on the pre-trained CNN architectures.
It is also noticed that with more time and resources,

custom-made networks similar to those by Moore
et al.12 have demonstrated the ability to achieve compa-
rable and even higher accuracies on failure mode and
defect classifications than the model based on the pre-
trained networks.

Figure 3. Examples of the six classes of fabric in the dataset: (a) crease, (b) hole, (c) ink stain, (d) multiple netting, (e) oil stain and
(f) no defect.

Table 1. The proportion for each class in the dataset.

Image classes Number of images Percentage

Crease 373 20.7
Hole 234 13.0
Ink stain 231 12.8
Multiple netting 231 12.8
Oil stain 220 12.2
No defect 511 28.4
Total 1800 100

Figure 4. Preview of the random transformations on the
augmented training dataset.
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Based on the literature review, GoogLeNet and
ResNet50 are chosen. LeNet and AlexNet are not cho-
sen due to the relatively low performances shown in the
studies by Jing et al. and Sudha and Sujatha, and
VGG16 architecture is not chosen because it is too
computationally intensive for the available hardware
resources to handle, as the network contains more than
130million trainable parameters.

GoogLeNet is a 22-layer deep CNN developed by
researchers at Google.13 ResNet50 has 50 layers, and it
is a variant of the deep residual network (ResNet)
model developed by He et al.14 based on the residual
learning technique. Both networks were trained on the
ImageNet dataset which contains over 15million
labelled images.15 GoogLeNet uses inception modules
that are based on several small convolutions of differ-
ent weight filter sizes (1 3 1, 3 3 3 and 5 3 5) at the
same level for feature extraction. On the other hand,
the residual modules in ResNet50 are constructed to
solve the vanishing gradient and degradation problem
that arises from deeper networks with a single convolu-
tion per layer. By comparison, the network structure of
GoogLeNet is wider, but ResNet50 is deeper. Both net-
works each have 1000 output classes, whereas in the
fabric image dataset there are only six classes.
Subsequently, the final layers of both networks are
modified, including the fully connected layer and the
classification layer (Table 2).

Hyperparameters of the model

The process of building CNN models involves tuning
their hyperparameters. A suitable optimisation algo-
rithm must also be selected when building the model.
Gradient descent is the fundamental optimisation algo-
rithm of neural networks by iteratively minimising the
gradients of the loss functions during the back-
propagation learning of the network. The gradient for
an n-dimension multivariate function f(x) at a given
point p is:

rf pð Þ=

∂f
∂x1

(p)
∂f
∂x2

pð Þ
..
.

∂f
∂xn

(p)

2
66664

3
77775

ð1Þ

Then, the next parameter vector point (pn+ 1) is calcu-
lated by scaling the gradient at point pn with the

learning rate h, and then subtracting the scaled gradi-
ent from the current point:

pn+1 = pn � hrf(pn) ð2Þ

The iterations are repeated until the convergence of the
local minima, this approach is known as batch gradient
descent. Typically, stochastic gradient descent (SGD)
or mini-batch gradient descent are performed for their
enhanced efficiency because most deep neural networks
are handling an exceedingly large dataset.

In this experimental design, the optimisation algo-
rithm chosen is the Adam (Adaptive Moment estima-
tion) algorithm because it combines the advantages of
several SGD variants including Adaptive Gradient
(AdaGrad) and Root-mean-square Propagation
(RMSProp) algorithms. First introduced in 2014 by
Kingma and Ba16 from OpenAI, Adam is an SGD
algorithm that uses parameter update with momentum
terms that are similar to RMSProp. First, the moving
average of both the parameter gradients and their
squared values are computed:

mn =b1mn�1 + (1� b1)rf(pn) ð3Þ

vn =b2mn�1 + 1� b2ð Þ rf pnð Þ½ �2 ð4Þ

where m is the first-order moment vector, v is the
second-order moment vector, b1 and b2 are the gradi-
ent decay rates.

Then, the parameter vector updates by using the gra-
dient momentums, with e being the denominator offset:

pn+1 = pn � h
mnffiffiffiffiffi
vn
p

+ e
ð5Þ

This momentum scaling can help the learning step to
escape local minima and plateau regions and to reach
the global minimum of the loss function.

The hyperparameters of the models are fine-tuned
during the experimental design and they are described
in Table 3. For a fair comparison between the utilised
networks, the same hyperparameters are used, except
for the number of epochs. Since different network
architectures have different training efficiencies, the
number of epochs should be optimised based on each
network respectively to avoid undertraining or over-
training. After fine-tuning, the optimal number of
epochs for the training of GoogLeNet is set to 36. For
ResNet50, it is set to 20 epochs. The order of the

Table 2. Summary of the utilised networks.

Network Number of layers Trainable parameters (million) Input layer size

GoogLeNet 22 7 224 3 224 3 3
ResNet50 50 25.6 224 3 224 3 3
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testing dataset is shuffled after each epoch of training
to reduce systematic bias.

Results and discussions

Model performance

Since the procedure of splitting the dataset into training
and testing is done randomly, it is difficult to ensure the
sets are truly representative of the different classes in

the dataset. To reduce random errors, the training and
testing for each pre-trained network are repeated five
times.

The performances of the trained model using
GoogLeNet and ResNet50 are shown in Figures 5 and
6. As shown in Figure 5, on average, the ResNet50
model took more than double the amount of time to
complete the training. The average accuracy of the
trained model using the GoogLeNet architecture is
89.84%. Due to the imbalance in the multi-class data-
set, the weighted averages of the precision, recall and
F-score are calculated according to the proportions of
classes. The confusion matrix of the test results for the
second repetition (89.17% accuracy) is illustrated in
Figure 7. The ‘crease’ class has the lowest F-score
(0.8000) and lowest precision (0.7529), indicating a high
false positive prediction rate.

For the second model using the ResNet50 architec-
ture, the average accuracy obtained is 95.45%. The
confusion matrix for the first replication (94.72% accu-
racy) is also given in Figure 7. Both the GoogLeNet
and the ResNet50 model have achieved 100% correct

Figure 5. Training and test performance for both models.

Table 3. Summary of the hyperparameters in the models.

Hyperparameters Value

Optimisation algorithm Adam (Adaptive Moment
estimation)

Initial learning rate 1 3 1023

Gradient decay factor (b1) 0.9
Squared gradient
decay factor (b2)

0.999

Mini batch size 54
Validation frequency 32
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classification for the ‘ink stain’ class. The ‘hole’ and ‘oil
stain’ classes have also been predicted with 100% accu-
racy by the ResNet50 model. The ‘crease’ class has the
lowest prediction performance in terms of recall.

The average time for the models to predict a typical
fabric image is within seconds. When the system is
deployed in an industrial application, more powerful
hardware can be utilised, and the prediction speed can
be further increased.

A two-tailed independent samples t-test is performed
to determine whether the difference in the average
accuracy is statistically significant or is simply caused
by random variations. It is assumed that both sets of
model test results follow the normal distribution with
equal variances, because the dataset-splitting proce-
dures are randomised and are done independently for
each repetition.

The accuracy values of the five repetitions for
GoogLeNet are YA ; N(mA, sA

2), and the accuracy
values for ResNet50 are YB ; N(mB, sB

2), on the

assumption that sA and sB are unknown but
sA

2=sB
2. The hypotheses are formulated as below:

� H0 (null hypothesis): mA2mB=0 (there is no differ-
ence in the average accuracy between the two
models)

� H1 (alternative hypothesis): mA2mB 6¼ 0 (there is a
statistically significant difference, and a two-tailed
test is performed)

The significant level a is chosen to be 0.05. Then, the t-
value can be calculated according to H0:

t=
�yA � �yBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
p(

1
nA

+ 1
nB
)

q , where

S2
p =

nA � 1ð ÞS2
A + nB � 1ð ÞS2

B

nA + nB � 2

ð6Þ

which is computed to be � 3:297.

Figure 6. Test accuracies across five repetitions for both models.

Figure 7. Confusion matrices of the test results.
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The degree of freedom is nA + nB � 2=5+
5� 2=8. Then, the two-tail critical t-value is found
(using a t-distribution table) to be 2.306, which is less
than the absolute value of t-value |t|=3.297.
Accordingly, the null hypothesis H0 should be rejected,
which means there is a statistically significant difference
between the accuracies of the two CNN models.

To further investigate the performance of the net-
works, the incorrectly classified images from the testing
sets are selected for checking. Three examples are cho-
sen for comparison, the first is an incorrect prediction
of defective fabric, while the second is a correct predic-
tion of defective fabric, and the third is a correct pre-
diction of non-defective fabric. From the confusion
matrices, the images with the ‘crease’ class produced
relatively poor prediction results. The first example
shown in the top image in Figure 8 depicts a piece of
grey fabric with a crease on the fabric located diagon-
ally across the image, resulting in a difference in the
contrast level. However, the model predicted it as ‘no
defect’.

The activated feature maps of the batch normalisa-
tion layer after the first convolution layer are visualised
for comparison between the images. Dark pixels are
negative weights and white pixels are positive weights.
The second image shows a correctly classified, defect-
free fabric image. Both images have produced a similar
activation output after passing through the first convo-
lution layer for feature extraction, which could explain
why the model is struggling to differentiate between the
image classes of ‘crease’ and ‘no defect’.

Both models have produced 100% correct predic-
tions on ink-stained fabric. The feature map of the bot-
tom image in Figure 8 shows that the stain features in
the input image have already been activated at the first
convolution layer. The red circles on the feature map
highlighted two noticeable activations of the extracted
features, which represent the ink stains.

Interpretability of the CNN models

It is worthwhile to explore what features the hidden
layers of the CNN models have learned from the fabric
images. This can be done via saliency maps, in which
the regions of interest are highlighted to show where in
the images the AI models ‘look for’ to make a predic-
tion. The saliency maps are produced using the
Gradient-weighted Class Activation Mapping (Grad-
CAM) technique. Grad-CAM uses the global average
pooled gradients of the output class score (yc) with
respect to the convolutional layers in the CNN to
visualise the weighted pixels in the combined feature
maps.17 In one feature map, the global average pooled
gradients are the neuron importance weights, and can
be expressed as:

ac
k =

1

N

X
i

X
j

∂yc

∂Ak
i, j

ð7Þ

where Ak
i, j represents the convolutional layer with k fea-

ture maps, i, j are the indexes of pixels and N is the
total number of pixels in the feature map. The ReLU
activation function is then applied to the weighted com-

bination of the feature maps
P
k

(ac
kA

k), such that the

positively weighted pixels are visualised in the Grad-
CAM map.

Figure 9 shows the images of different fabric defect
classes and their corresponding Grad-CAM maps. For
holes, ink stains and oil stains, the highlighted regions
are directly on the location of the defects because of
their inherent small size. It can also be seen that for
fabric with creases, the network focused on the shadow
of the folds. This means the shadow is the main feature
that the network has learned to classify creases.
Another interesting finding is that when the input
image does not contain any defect, the network would
look at the whole image to search for features of fabric

Figure 8. Comparison between three classified images and
their activated feature maps.
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defect to make its decision, as evident by the large area
of the image being highlighted in the Grad-CAM map.

Limitations of the work

The investigation of the test images and their feature
maps has shown that both models struggled to differ-
entiate the ‘crease’ and ‘no defect’ classes. The reason
could be the features or patterns of creases caused by
folding or pressing are not as prominent as the other
defects such as ink stains and holes. It is also found that
some images with no defect have a slightly noticeable
difference in the contrast level, which appears to be
caused by the uneven lighting during image capturing.

Moreover, performing classification on the whole
image means the model can only produce a single class
prediction result. The model cannot perform well if
there is more than one type of defect existing in the
image, such as the one depicted in Figure 10 that has a
crease on the bottom-right (red circle), and multiple
netting on the top-left (red rectangle). This would be a
rare case scenario, but it should still be considered in
future work. Consequently, after running the CNN

model to perform image-level classification, the images
can be fed into an R-CNN or a YOLO object detector
to perform defect localisation.

Figure 9. Grad-CAM maps of the different fabric defect classes.

Figure 10. A fabric image containing two defect types.
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Conclusions

This project developed two DL models which utilised
GoogLeNet and ResNet50, two state-of-the-art pre-
trained CNN architectures for the classification of fab-
ric faults and defects. The models are trained on a data-
set containing 1800 images of various coloured fabrics
with and without defects. The ResNet50 model has
obtained superior results in the classification perfor-
mance with over 95% average accuracy and a weighted
average F-score of over 96%. It is also more reliable
and robust as it produced a smaller sample standard
deviation of the accuracy values when compared to the
GoogLeNet model (1.22% vs 3.60%).

The CNN models developed in this work can be
readily deployed for industrial applications. Further
improvement can be implemented regarding the hard-
ware design of the image acquisition system, as noted in
the previous section that the uneven lighting when cap-
turing the images has negatively affected the model per-
formance. The images in this project are captured with
the aid of a camera flashlight, which can be improved
with a ring light or symmetric side lights with equal
luminosity around the camera, as well as a back panel
lighting placed under the fabric. This should help elimi-
nate any contrast level differences in the images caused
by uneven lighting, so that the network will be perform-
ing feature extractions on good-quality images. It is also
possible to further improve the design and training of
the CNNs, for example, through customising loss func-
tions in the neural network.
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