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Abstract – Arrhythmias are deviations from the normal heart rhythm with impact on the cardiovascular health. Their prompt detection 

plays an important role in mitigating potential negative outcomes, particularly in patients in the intensive care units (ICU). The detection 

of arrhythmias has mainly been focused on electrocardiogram (ECG) signals. However, ICU patient mobility frequently leads to 

disconnection of certain ECG leads, potentially compromising the accurate arrhythmia detection. Arterial line blood pressure (ABP) and 

central venous pressure (CVP) signals are routinely monitored in ICU patients. Changes in the ABP and CVP suggest alterations in the 

haemodynamic status and cardiac function of the patients. Thus, leveraging these signals for arrhythmia detection, either independently 

or in conjunction with ECG data, present a viable approach to ensure that even in scenarios where ECG signals are unavailable, alarm 

systems alerting healthcare providers of arrhythmias remain functional. In this paper, we employ a hybrid model using long-short term 

memory networks (LSTM) and convolutional neural network (CNN), along with different residual CNN (ResNet) models for multimodal 

arrhythmia classification. When using all three channels, ResNet50 achieved the best accuracy of 99.58% on five different arrhythmia 

classes. The significant efficiency of utilizing ABP and CVP signals independently for the classification of arrhythmias, was also 

highlighted. ResNet50 was trained with ABP and CVP signals independently and correctly identified arrhythmias with an accuracy of 

98.79% and 96.67%, respectively. Moreover, the same ResNet50 model was trained on the MIT-BIH arrhythmia database, achieving an 

accuracy, sensitivity, and precision of 98.78%, 98.77% and 98.80%, which demonstrates the scalability of the proposed model. 
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1. Introduction 
Cardiovascular diseases (CVDs) are the leading cause of death, accounting for up to 30% of the annual deaths each year, 

according to the data from the World Health Organisation (WHO). Therefore, it is of utmost importance to identify CVDs 

at the earliest stage in order to initiate prompt medical interventions [1]. Arrhythmias, which are deviations from the normal 

heart rhythm, are common CVDs indicators that are usually divided into two groups: life-threatening and non-life-

threatening. Examples of life-threatening arrhythmias include asystole and ventricular fibrillation, whereas non-life-

threatening arrhythmias include atrial fibrillation (AF), left bundle branch block (LBBB) and premature ventricular 

contractions (PVC). Arrhythmias are frequently detected using electrocardiogram (ECG) records which are non-invasive 

tests that record the electrical activity of the heart by placing electrodes on the skin of the patients. Distinctive features and 

morphologies exhibited by ECG signal waveforms are intricately linked to specific arrhythmias, serving as valuable 

guidelines for clinicians in the identification, treatment, and ongoing monitoring of these cardiac rhythm abnormalities. 

ECG recordings have been extensively used to develop computer-aided diagnosis (CAD) systems through the use of 

signal processing and machine learning classification models such as Support Vector Machines (SVMs) or deep learning 

models such as Convolutional Neural Networks (CNNs). As a result, over the past four decades, the goals of hospital ECG 

monitoring have evolved from basic heart rate tracking to the diagnosis of complex arrhythmias. However, despite the 

progress made in technology, the essential role of human supervision in analysing ECG monitoring data remains crucial, 

particularly in the intensive care units (ICU), where the patients often have complex conditions and are given medication 

which can facilitate the development or exacerbation of arrhythmias [2]. Moreover, in the context of ICU units, patient 

mobility frequently leads to disconnection of certain ECG leads, potentially compromising the CAD systems to accurately 

perform arrhythmia detection [3].  
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       Arterial line blood pressure (ABP) and central venous pressure (CVP) signals are routinely monitored for ICU patients. 

The ABP signals are collected using a catheter, usually inserted in the radial artery of the wrist, which consists of systolic 

upstroke, dicrotic notch and diastolic downslope. The CVP signals are measured with a central venous catheter placed in the 

superior vena cava and typically consist of phases such as: a wave, c wave, x descent and v wave. Although these signals do 

not directly indicate the activity of the heart, changes in the ABP and CVP indirectly suggest alterations in the haemodynamic 

status and cardiac function of the patients [4]. For instance, AF causes irregular pulse waves in the ABP signals [5] and is 

associated with the absence of the a wave or the fusion of the a and c waves on the CVP signal [6]. Thus, leveraging these 

signals for arrhythmia detection, either independently or in conjunction with ECG data, presents a viable approach to ensure 

that even in scenarios where ECG signals are unavailable, alarm systems alerting healthcare providers of arrhythmias remain 

functional. This ensures timely intervention and appropriate treatment for ICU patients.  

       In this work, we developed deep learning models that are able to accurately categorize five different classes of arrhythmia 

signals utilizing single-channel ECG data in combination with ABP and CVP signals. Additionally, the study highlighted 

the significant efficacy of utilizing ABP and CVP signals independently for the classification of arrhythmias. The 

development of precise prediction models for arrhythmias that incorporate both ECG and haemodynamic waveforms presents 

promising prospects for advancing computer-aided diagnosis (CAD) systems, especially within the dynamic and vulnerable 

environment of the ICU, where patients' conditions are frequently unstable and arrhythmias can manifest at any stage. 

       The subsequent sections of this paper are organized as follows. Section 2 provides an overview of the relevant literature 

in the field. Section 3 describes the dataset used in this paper, the workflow of the methodology and the proposed models. 

Section 4 presents the results of the classification, and finally, Section 6 will conclude this work.   

 

2. Related Work 
       Recently, machine learning and deep learning techniques have shown great success in detecting arrhythmias from ECG 

signals. Unlike deep learning models, machine learning models require additional steps of feature extraction and feature 

selection prior to the classification stage. This involves the extraction of features such as QRS complex characteristics, RR 

interval-based features, frequency-domain features or heart-rate features. Other techniques use wavelet transforms (WT) 

such as continuous wavelet transform (CWT) [7] and discrete wavelet transform (DWT) [8] as features to the classification 

model. Although these models achieve good results, the process of feature extraction can either require expert knowledge or 

be tedious and time consuming. This aspect has motivated researchers to explore the development of deep learning techniques 

for this particular application. 

       Deep learning models such as CNNs[9]–[11], recursive neural networks (RNNs) [12], long short-term memory networks 

(LSTMs), autoencoders [13], and hybrid models combining CNN and LSTM architectures [14]–[16] have been frequently 

used in the literature for arrhythmia classification. CNNs have emerged as a promising networks for ECG arrhythmia 

classification, primarily due to their ability to handle multi-dimensional signals and images effectively. In previous studies, 

CNNs were successfully utilized for this task by transforming ECG signals into two-dimensional (2D) images [17], 

spectrograms [18], or 2D time-frequency representations. However, recent advancements have enabled CNNs to process 1D 

signals directly, eliminating the need for intermediate transformations and achieving impressive accuracy in arrhythmia 

classification.  

       In [9], the authors proposed a 9-layer 1D CNN model to classify 1 lead ECG heartbeats for 5 different classes from MIT-

BIH arrhythmia database. They calculated the standard deviation and mean of Z-score from the ECG signals to generate 

synthetic data and balance the arrhythmia classes, achieving an overall accuracy of 94.47%. In [15], a hybrid model 

combining CNNs and LSTMs layers was developed using ECG heartbeats from MIT-BIH arrhythmia database, achieving a 

98.10% overall accuracy for 5 classes. In a related study conducted by authors [11], they achieved a notable ECG arrhythmia 

classification accuracy of 98.30% by developing a 4-layer CNN classifier. The CNN architecture incorporated max pooling 

layer in between the convolutions, and three fully connected layers at the end of the network. To address the issue of 

imbalanced class distribution in the MIT-BIT dataset, the authors employed the synthetic minority oversampling technique 

(SMOTE) to balance the training data. Houssein et al. [19] performed feature extraction prior to the CNN classification and 

obtained class balance by using SMOTE and random undersampling. The authors achieved high-performance results by 
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utilizing a set of six distinct types of features extracted from each heartbeat, which were subsequently fed into the 1D CNN 

classifier. In [20], the authors used a deep CNN architecture with a total of 34 layers to identify arrhythmias by utilising 

single-lead ECG signals from ambulatory ECG monitoring devices. The diagnostic accuracy of the deep-CNN model 

exceeded the average performance of a cardiologist, this being attributed to the ability of the CNN to learn subtle patterns in 

the data. Although the stated works proved to be incredibly effective for ECG arrhythmia classification models, deep CNN 

architectures are usually confronting with the vanishing gradient problem, which occurs when the gradients that are used to 

update the weights of the network become very small and diminishes the ability of the network to learn meaningful 

representations of the data. To solve this issue, researchers proposed Residual Neural Networks (ResNet) architectures [21] 

which use skip connections, also known as residual connections, that allow the networks to skip certain layers and propagate 

the information from the deeper layers in the network with the current one. In this manner, the network is able to preserve 

important features while preventing their degradation as they pass through multiple layers. ResNet models have been 

successfully applied in ECG arrhythmia classification. Zhang et al. [22] proposed a ResNet with 101 layers (ResNet101) 

architecture for single-lead ECG which achieved a 99.75% accuracy using the MIT-BIH database. The authors transformed 

the segmented ECG heartbeats into 2D time-frequency diagrams using the Hilbert transform (HT) and the Wigner-Ville 

distribution (WVD). In another work, Rahman et al. [23] used a pre-trained ResNet50 (transfer learning) model to classify 

ECG heartbeats in the form of images, achieving an overall 91% accuracy. More recently, 1D ECG signals have been 

accurately classified in ResNet models, eliminating the need for prior 2D transformations [24], [25]. In their work, Khan et 

al. [24] implemented a 1D ResNet with six convolutional layers and three max pooling layers to classify arrhythmia single-

lead ECG heartbeats. In addition, they used SMOTE to balance the minority classes which helped them achieve 98.63% 

accuracy, 92.41% sensitivity, and 99.06% specificity.    

Although all the aforementioned methods achieved great accuracy on ECG arrhythmia classification signals, little has 

been done on the multimodal physiological signals. Blood pressure signals such as ABP and photoplethysmogram (PPG) 

have been first used for arrhythmia classification by Kalidas et al. [26] in the Physionet/Computing in Cardiology 2015 

Challenge with the goal of suppressing false alarm generation in ICU. In their work, they applied spectra and time-domain 

feature extraction on the ECG, ABP and PPG signals, which then were fed into an SVM for the final classification, achieving 

a sensitivity of 94% and specificity of 86%. In [27], Arvanaghi et al. used frequency, power, and entropy features extracted 

from ECG and ABP signals in a Least Square SVM (LS-SVM) classifier. The method achieved an accuracy, sensitivity, and 

specificity rates of 95.75%, 96.77%, and 96.32%. In a different study, Arvanaghi et al. demonstrated the contribution of the 

ABP signals in arrhythmia classification by utilising them alone in a CNN classifier under the form of scalograms, reaching 

90.16% F1-score, 89.03% accuracy, and 81.46% sensitivity. In [28] the advantage of incorporating the ABP was again 

highlighted. Two class arrhythmia classification was performed on ECG features only, and on ABP and ECG features 

together. The accuracy of the model achieved 89% only with ECG features versus 96.6% when using both ABP and ECG. 

Numerous studies have been conducted on automatic ECG heartbeat classification models, leading to impressive 

accuracies as high as 99.75%. However, these studies have predominantly focused on ECG signals, neglecting the potential 

utilization of other physiological signals, such as ABP, PPG and CVP signals, which are easily accessible in ICU patients. 

Furthermore, the integration of multi-modal signals holds the potential to improve the detection accuracy, particularly in 

ICU settings where patients may inadvertently displace ECG leads due to their unconscious state or movement. 

 

3. Materials and Methods 
       The overview of the proposed method can be seen in Figure 1. Pre-processing involving noise filtering, normalisation 

and segmentation of the signals in individual heartbeats are first performed. The classification is first performed on the entire 

set of signals (ECG+ABP+CVP) using different deep learning architectures such as CNN-LSTM, ResNet18, ResNet34, and 

ResNet50. The model providing the most accurate results is then used to assess the potential of each signal as follows: ECG, 

ABP and CVP are individually used for classification, then we use the blood pressure signals (ABP and CVP) together. In 

the end, we assess the scalability and generalizability of the proposed methodology by choosing the model with the best 

performance and using it on the MIT-BIH arrhythmia database. 
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Figure 1. The overall framework of the presented study. 

3.1. Dataset 

       The dataset used in this study consisted of simultaneous lead v1 ECG, ABP and CVP signals collected at a sampling 

frequency of 1000 Hz in Harefield Hospital London from patients in the ICU following cardiac surgery. The dataset consists 

of 29 patients, with five different arrhythmias: sinus rhythm (SR), atrial fibrillation (AF), atrial tachycardia (AT), left bundle 

branch block (LBBB), and premature ventricular contractions (PVC). This study was approved by the South West - Cornwall 

and Plymouth Research Ethics Committee as part of the PACESIM trial (ISRCTN15383573). All patients gave written 

informed consent. To be able to evaluate our model against the literature we used lead 2 from the MIT-BIH arrhythmia 

dataset, an open-sourced database provided by the Massachusetts Institute of Technology that contains a collection of long-

term ECG recordings for arrhythmia analysis that were recorded with a sampling frequency of 360 Hz. The heartbeats 

extracted from MIT-BIH database where grouped according to the Association for the Advancement of Medical 

Instrumentation (AAMI) standard into five classes: normal (N), supraventricular ectopic (S), ventricular ectopic (V), fusion 

(F) and unknown (Q). 

 
3.2. Data Pre-processing 

       Signals recorded in ICU patients are often highly affected by noises caused by electronic devices, motion or electrode 

artefacts. The CVP, for instance, is highly affected by respiration, with values increasing during inspiration and decreasing 

during expiration, whereas ECG signals present multiple motion and electrode artefacts. To remove these noises, we applied 

DWT on all three signals, each being decomposed with a different wavelet: biorthogonal for the ECG and CVP signals, and 

daubechies for ABP signals. Then we normalised all three signals in the [-1;1] range and performed ECG R peak detection 

using Pan-Tompkins algorithm.  

       The heartbeat segmentation of the signals has been approached differently for ECG and blood pressure signals, 

respectively. As it can be seen in Figure 1, the delay between the ventricular contraction of the heart and the response seen 

in the haemodynamic waveforms causes a delay between the R peaks seen in the ECG signals and the systolic upstroke and 

a wave in the ABP and CVP, respectively. This phenomenon needs to be reflected in the segmentation strategy. Therefore, 

the ECG heartbeat segmentation was performed using 800 milliseconds (ms) around the R peak, whereas the CVP and ABP 
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are segmented using 200ms before the location of the R peaks and 600ms after the R peaks location. In this manner we are 

able to align each heartbeat with the correct corresponding ABP and CVP response.  
3.3. Classification 

       The classification was performed using two types of architectures: a hybrid model using CNN and LSTM layers and 

ResNet models. LSTM and CNN models are well known for their ability of accurately classifying arrhythmias. However, 

when combining both CNN and LSTM layers, the models are capable of capturing not only local spatial features, but also 

long-term temporal dependencies. In this work, the proposed CNN-LSTM model has two 1D convolutional layers, each 

followed by 1D batch normalisation layers, ReLu activation function, max pooling and dropout layers. The convolutional 

layers are then followed by two LSTM layers, and 2 fully connected layers at the end. The ResNet architectures, on the other 

hand, follow the same architectures adopted in the well known ResNet18, ResNet34 and ResNet50 models, with the 

exception that in our work we will use 1D layers able to use one or multiple channels at once, as opposed to 2D layers which 

need prior transformations and fusion of the channels. As explained in Section 2, ResNet have shown increased performance 

compared to traditional CNN layers due to their ability of propagating the information from deeper layers in an efficient and 

stable manner, which led us to explore their potential on multimodal channel arrhythmia classification.  

 
3.4. Evaluation metrics 

       The performance of multi-class classification models is assessed using known metrics such as accuracy (Acc), sensitivity 

(Sen), precision (Pre) and F1-score. The Acc represents the overall performance of the model’s predictions and, as shown in 

Eq. (1), is calculated as the ratio between the sum of the true positives (TP) and true negatives (TN) and the number of total 

predictions, which is the sum of correct predictions, the false positives (FP) and false negatives (FN). The Sen assesses the 

ability of a model to correctly identify TP instances and is calculated using Eq. (2).  Pre represents the ability of the model 

to identify positive instances out of all the instances predicted as positive, as seen in Eq. (3). The F1-score, combines Pre and 

Sen, as shown in Eq. (4). 
 

Acc (%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100 (1) 

 

𝑆𝑒𝑛 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

 

(2) 

 

𝑃𝑟𝑒 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 

 

(3) 

 
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 (%) = 2 ×  
𝑃𝑟𝑒 × 𝑆𝑒𝑛

𝑃𝑟𝑒 + 𝑆𝑒𝑛
× 100 (4) 

 

4. Results and Discussion 
       The classification performance will be analysed for two categories: overall performance of the models on all three sets 

of signals, and the performance of the best model using individual signals and hemodynamical signals only. The data is first 

split into training set, consisting of 70% of the data, validation set and testing set, both consisting of 15% of the data. When 

analysing the performance of individual signals, we split the data and train the models using ECG, ABP and CVP 

individually.  

        
4.1. Performance of the classification models 

       The overall results obtained on our entire dataset can be seen in Table 1. First, hyperparameter optimisation was 

performed on the models using the Weights and Biases module, a machine learning experimentation platform in Python. We 

tested Adam, Root Mean Square Propagation (RMSprop) and Stochastic Gradient Descent (SGD) optimizers, with learning 

rates ranging from 0.0001 to 0.1, and four different batch sizes ranging from 8 to 64. Random hyperparameter method was 

used in the experiments; this generates random combinations of hyperparameters values from the predefined search space. 

The obtained results suggested a learning rate of 0.0003, a batch size of 16 and Adam optimiser with the default beta values. 
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We used the same hyperparameters across all the tested models, which were developed using PyTorch. As we can see in 

Table 1, the best results are achieved when using the ResNet50 model, with an Acc that reaches up to 99.58%, a Sen of 

99.59%, Pre of 99.58% and an F1 score of 99.57%.  However, all of the models achieve good accuracies over 98%, with 

smallest results obtained using the CNN-LSTM network, which is also the network with the simplest architecture. The 

second-best classifiers are ResNet18 and ResNet34, with results very similar to one another. This demonstrates that a deeper 

CNNs architectures that use residual connections, such as the ResNet architectures that we tested, are able preserve the 

information flowing through the network and can bridge the gap between a good classifier and one that reaches a performance 

near perfection. 
Table 1. Overall performance of the models using all three signals: ECG, ABP and CVP. 

 

Overall results (%) CNN-LSTM ResNet18 ResNet34 ResNet50 

Acc 98.59 99.38 99.38 99.58 

Pre 98.65 99.40 99.41 99.59 

Sen 98.59 99.37 99.38 99.58 

F1 score 98.55 99.37 99.37 99.57 
 

4.2. Performance of the ResNet50 classifier when using individual signals 

       ResNet50 classifier was then used to assess the classification performance of each individual signal. This is done to test 

the ability of individual signals of being used alone in the classification of arrhythmias, especially in ICU where patients are 

prone to sudden changes in their cardiac state and ECG electrodes might not always be properly positioned and recorded. 

Table 2 illustrates the performance metrics obtained on the test set when using the ResNet50 classifier on different signals 

and combinations of signals in comparison with other methods used in the literature. As expected, among all three individual 

signals, ECG alone performs better than ABP and CVP, respectively. Specifically, when using only the ECG signal, an 

accuracy of 99.38% is achieved. In contrast, using the ABP signal yields an accuracy of 98.79%, while using the CVP signal 

results in an accuracy of 96.67%. Nevertheless, the classification results achieved on the individual blood pressure signals 

demonstrate the ability of ABP and CVP signals to capture changes in the conduction of the heart, even in the absence of 

ECG leads. Moreover, Table 2 shows that our results are comparable with the methods proposed in the literature when using 

the ResNet50 classifier, not only for our dataset, but also when applied to the MIT-BIH arrhythmia database. 

Table 2. The testing performance metrics of ResNet50 classifier compared with other methods used in the literature. 

Study Year Method Signal Dataset Acc (%) Sen (%) Pre (%) 

[15] 2018 1D-CNN-

LSTM 

ECG- lead II MIT-BIH arrhythmia 98.10 97.50 98.70 

[11] 2019 1D-CNN ECG- lead II MIT-BIH arrhythmia- 98.30 95.51 - 

[22] 2021 2D-ResNet101 ECG- lead II MIT-BIH arrhythmia 99.75 91.36 99.85 

[19] 2022 1D-CNN ECG- lead II MIT-BIH arrhythmia 99.33 98.52 99.60 

[23] 2022 2D-ResNet50 ECG- lead II MIT-BIH arrhythmia 91.00 - - 

[24] 2023 1D-ResNet ECG- lead II MIT-BIH arrhythmia 98.63 92.41 99.06 

[26] 2016 SVM ECG+ABP +PPG Computing in Cardiology (CinC) 

Challenge 2015 

- 94.00 86.00 

[28] 2017 MLP ECG 

ECG +ABP 

MINIC physioNet  89.00 

96.60 

- - 

[29] 2022 2D-CNN ABP Multi-Parameter databases (MIMIC) 89.03 81.46 99.50 

Ours 2023 1D-ResNet50 ECG+ABP+CVP Our dataset 99.58 99.58 99.60 

Ours 2023 1D-ResNet50 ECG Our dataset 99.38 99.38 99.41 

Ours 2023 1D-ResNet50 ABP Our dataset 98.79 98.70 98.78 

Ours 2023 1D-ResNet50 CVP Our dataset 96.67 96.68 96.73 

Ours 2023 1D-ResNet50 ABP+CVP Our dataset 98.19 98.19 98.29 
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Ours 2023 1D-ResNet50 ECG-lead II MIT-BIH arrhythmia 98.78 98.77 98.80 

 
5. Conclusion 
       In this work, different deep learning methods including CNN-LSTM and different ResNet architectures were proposed 

for classification of 5 different arrhythmias using ECG, ABP and CVP signals collected in Harefield Hospital London. To 

be able to use these signals and correctly match the ECG heartbeat and the corresponding waves on the ABP and CVP 

signals, we employed a different segmentation approach which considers the delay between the ECG heartbeat and the 

response in the haemodynamic waveforms. These models, particularly the ResNet50, can accurately extract features and 

classify the heartbeats taken from three channels without the need of any prior feature extraction techniques. Moreover, the 

presented results demonstrate the ability of individual haemodynamic signals of capturing changes that arise with the 

presence of arrhythmias. This is important, as it highlights the ABP and CVP signals potential of being used in classification 

models for accurate arrhythmia classification in the ICU, where these signals are already collected from patients for 

monitoring purposes. When comparing our results with the ones present in the literature (Table 2), we can conclude that this 

study achieves significant results not only when using our dataset, but also on the MIT-BIH arrhythmia database. 
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