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Abstract: Inhibitors of the sodium-glucose cotransporter 2 (SGLT2 inhibitors) are relatively new and

innovative antihyperglycemic drugs which by inhibiting sodium-glucose cotransporter 2 minimalise

reabsorption of glucose in nephrones. Due to this process, SGLT2 inhibitors became a first-choice

drugs in diabetology. Flozins were a turning point in many clinical trials and currently consequently

conquer pharmacoterapy in cardiology. In the past years, clinical studies proved vast role of SGLT2

inhibitors in other fields of medicine. Flosins protect heart muscle and kidneys among patients with or

without type diabetes mellitus type 2. They have positive effect on hypertension, arteries and brain

tissue.

Cardiological condition with the lowest long-term outcome in patients is heart failure with reduced

ejection fraction. Until flozins, treatment in heart failure with reduced ejection fraction was based on

four groups of drugs: β-blocker, inhibitors of the renin-angiotensin aldosterone system (RAA),

including angiotensin converting enzyme ACE/ARB inhibitors, angiotensin and neprilysin receptor

blockers (ARNI) and mineralocorticoid receptor antagonists (MRA). It was an appropriate HFrEF
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treatment over the last years. However thanks to large-scale researches a role of flozins in cardiology

have been established and they became hope for a change in the course of heart failure.

The following article presents aspects of using flozins in treatment of patients with HFrEF,

multipotential usage, vast benefits for patients, not solely cardiologic, and side effects of these

miraculous group of drugs.

Materials and methods: PubMed database was searched for the following terms: “SGLT2

inhibitors”, “flosins”, “flosins heart failure”, ”heart failure reduced ejection fraction” ”flosins role” for

the articles published between 2014-2023 and written in English.

Conclusion: Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors, flozins) are commonly

and successfully used in the first-line treatment of diabetes mellitus type 2 and heart failure. First

reasearched and released in the year 2013 flozin was canagliflozin. Subsequently, dapagliflozin and

empagliflozin were approved by FDA in 2014. Firstly, SGLT2 were accepted for treatment of

diabetes mellitus type 2. In the course of broad scale clinical trials T2DM and EMPA-REG

OUTCOME major influence of flozins on treatment of hailure failure with reduced ejection fraction

was proved. Another trials and researches bring even more promising usage of flozins in diabetology

and cardiology, but also in nephrology and neurology. SGLT2 inhibitors are still a subject of studies,

but they remain one of the most promising group of drugs in the modern medicine and give hope for

better outcome in patients with chronic diseases affecting multiple systems of human body.

Key words: “SGLT2 inhibitors”, “flozins”, “flozins heart failure”, ”heart failure with reduced left

ventricular ejection fraction (HFrEF)”, “dapagliflozin”, ”cardiovascular”, “empagliflozin“ ,

“systolic”, ”diabetes”

Introduction: In the year 2013, the first sodium glucose cotransporter 2 inhibitor (SGLT2 inhibitor),

canagliflozin, was released. In the following years, the group of chemically similar drugs, group

named ”flozins“ have arised. SGLT 2 inhibitors modulate sodium-glucose transporter in nephrons. In

this way they lower the level of glucose in blood by inhibiting glucose reuptake and increasing

elimination of glucose with urine. [1] Flozins, both in monotherapy and combined with glucose-

moderating drugs profoundly maintain adequate level of glucose in the blood. [2,3] Flozins have been

introduced to medicine around decade ago, thus scientists are still working on its effects, influence on

human body and benefits other than reducing level of glucose in blood and minimalising harmful

consequences of diabetes. This paper review the effects of SGLT2 inhibitor on heart failure and

presents six systems in the body which take advantage of flozins as well as present side effects of this
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group of drugs. The presented fields are diabetology, nephrology, cardiology with angiology and

neurology.

Aim: The aim of this paper is to provide a comprehensive review based on literature. This review

takes into consideration the role of SGLT2 inhibitors in treatment of heart failure, their mechanism of

action, vast effects in cardiology and other fields of medicine as well as side effects.

Chemistry and mechanism of action

SGLT1 inhibitors are situated in the intestinal mucosa. Unlike, sodium-glucose cotransporters-2 are

located solely on the luminal membrane of the proximal tubule. The cortransporters reabsorb up to

180 g of glucose per day. [4] Found by scientists in rats, phlorizin entirely inhibit renal glucose

reabsorption and was a starting point for flozins. [5, 6, 7]

Phlorizin is a natural glucoside occuring in plants, it is able to inhibit both SGLT1 and SGLT2

inhibitors. [8] It was studied to be treatment for diabetes mellitus type 2, but became eliminated by

more selective synthetic analogs, such as empagliflozin, dapagliflozin and canagliflozin. [9, 10, 11]

Chemically phlorizin and SGLT2 inhibitors are glucosides [12], but empagliflozin (Jardiance),

dapagliflozin (Forxiga) and Canagliflozin (Invokana) on contrary to phlorizin are not cleaved by

lactase. [13]

Glucosides bind to the external side of sodium-glucose cotransporters 2 in the binding site of

cotransporters. [14] This affects in orientation of the aglycone and leads to blockage of cotransporter.

By inhibiting the SGLT-2-dependent glucose and sodium reabsorption, there are two benefits. An

inhibitor cause a reduction of glucose intake in nephrons and an increase in distal tubular sodium load.

It results in inhibition of the renin-angiotensin-aldosterone system and reduction of afterload and

preload. [15] In this way gliflozins not only enhance glycemic control but also reduce body weight,

systolic and diastolic blood pressure and have cardioprotective effect by reduction of afterload and

preload. [16, 17, 18]

Indications for SGLT2 inhibitors in heart failure

Flozins are stated to be a major pharmacological advances in cardiovascular medicine in the 21st

century. They are the newest addition to treatment guidelines in heart failure with reduced ejection

fraction. Moreover, latest researches show their significant meaning in treatment of heart failure with

mildly reduced and preserved ejection fraction as they reduce negative cardiovascular outcomes.

Clinical trials T2DM and EMPA-REG OUTCOME demonstrated major reduction in heart failure

patients hospitalizations in the empagliflozin group of patients. [19] Further researches established the
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role of flozins in reducing number of hospitalizations. In the EMPA-REG OUTCOME occurence of

adverse cardiovascular events (e.g. cardiovascular mortality, myocardial infarction, stroke) was

reduced up to 38% compared to placebo group. [19] Other studies, CANVAS, DECLARE TIMI,

CREDENCE, VERTIS, MACE-3 reported equivalent results and secured role of SGLT2 inhibitors in

the management of heart failure. [20, 21, 22, 23, 24] In DAPA-HF dapagliflozin a significant decrease

in cardiovascular death and hospitalizations amid patients with reduced ejection fraction was observed.

[25] In heart failure with preserved ejection fraction common is diastolic dysfunction. This is

frequently seen in geriatric patients with companion of cardiac, renal and diabetic dysfunctions.

SOLOIST-WHF was first trial that proved beneficial role of flozins in heart failure with preserved

ejection fraction. [26] Subsequently, empagliflozin in EMPEROR-Preserved trial assessed efficacy of

SGLT2 inhbitors in patients with heart failure mildly reduced ejection fraction and heart failure

preserved ejection fraction regardless of patient’s diabetes status. [27] SGLT2 inhibitors are currently

accepted as heart failure reduced ejection fraction first-line treatment in heart failure and should be

considered in heart failure preserved ejection fraction to reduce risk of hospitalization and cardiac

mortality. [28, 29]

Flozins and their other application in cardiology and angiology

It was already known that metformin significantly reduces myocardial infarction and death. SGLT2

inhibtors have been found to have cardiovascular preservation. [30] Na+/H+ exchanger 1 (NHE1) is

mostly situated in cardiomyocytes and its activition increases in pathological situations - acute

ischemia, heart failure and diabetes. [31] Activation of Na+/H+ exchanger 1 enlarges intracelluar

sodium load in cardiomyocytes which results in calcium overload in ischemia. Calcium worsens

injury and causes slower reperfusion. [32] Moreover, NHE1 prompted cardiac hypertrophy and heart

failure in mice. [33] Suggested SGLT2 protection hypothesis proposes that this may be induction of

autophagy. [34, 35, 36] Trials prove that empagliflozin may improve cardiac function and post

myocardial infarction survival. Empagliflozin protective mechanisms work through NHE1 mediated

suppresion of autophagy. In myocardial infarction both uncontrolled and insufficient autophagy might

be destructive in myocardial infarction. Empagliflozin regulates and optimalises autophagy

mechanism in cardiac muscle. [37, 38, 39]

Flozins are used as modern drugs in cardiologic and diabetologic patients. About 70% of patients with

diabetes also have hypertension. [40, 41] As well as hypertension and diabetes are major risk factors

for microvascular and macrovascular diseases. Due to omnipresent arterial stiffness and sodium

retention associated with diabetes physiology, diabetes mellitus and hypertension are closely related
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and coexistant. [42, 43, 44] Non-enzymatic glycosylation leads to injury and hyalinization of the

arterial walls proceeding into atherosclerosis and causing arterial stiffness. Atherosclerosis leads to

fatal complications such as sudden cardiac death, myocardial infarction, and stroke. Hyperglycemia in

diabetes mellitus enlarges the activity of the sodium-glucose transporters causing increased sodium

retention and volume expansion and consequently increasing blood pressure. [45, 46, 47] Inhibtion of

sodium intake by SGLT2 inhibitors can reduce blood volume, blood pressure and minimalise

cardiovascular risk as well as risk of cardiovascular events and hospitalization.

SGLT2 inhibitors and its upregulation in diabetology

Canagliflozin, empagliflozin and dapagliflozin are at present first-line treatment in diabetes mellitus

type 2, right next to metformin. SGLT2 inhibitors increase glycosuria, reduce weight, decrease level

of HbA1c and protect from diabetic nephropathy and atherosclerosis. SGLT2 transporters are situated

in the proximal tubules, as they filter plasma and reabsorb or excrete glucose. [48, 49]

In clinical trials the decrease of HbA1c depends on eGFR. The larger difference was observed in

patients with eGFR 60 to 90 ml/min/1,73m², yet even in patients with eGFR 30 to 60 ml/min/1,73m²

it was clinically significant. [50] The lowering of HbA1c was reached in canagliflozin trial. [51] A

study with empagliflozin revealed 90% decreased risk of hypoglycemia and reduction in body mass

up to 4,5 kilogrammes in comparison to glimepiride. [52] Further trials with SGLT2 inhibitors proved

another metabolic and diabetologic benefits and strengthen prior results. Flozins reduced body weight,

reduced amount of needed insulin, lowered HbA1c and did not led to hypoglycemia. [53, 54, 55]

The application of SGLT2 inhibitors in nephrology

The principal mechanism of SGLT2 inhibitors is glycosuria due to blockade in the renal nephron.

They reduce consequences of heart failure, enhance glycemia and glucose homeostasis but also

protect kidneys and renal function. SGLT2 inhibitor is responsible for around 90% reabsorption of

glucose, it also blocks reabsorption of sodium generating natriuresis. [56] Natriuresis and glucosuria

provoke osmotic diuretics and thus reduce volume of plasma. This process maintain benefits for

cardiovascular system - reduced filling volume, preload, afterload and blood pressure. [57, 58] Trial

RECEDE-CHF provided that among patients suffering from heart failure treated on a long-term with

diuretics, when on the addition of empagliflozin, urine output grew up to 500 ml per day. [59]

Dysfunction of heart can result in disorder of kidneys and likewise, aggravation of renal function is

able to cause cardiovascular diseases. [60] As much as 60% of patients with heart failure suffers with

chronic kidney disease. [61, 62] Natriureris, secondary to pathophysiological processes in diabetes

mellitus type 2, reduce concentration of natrium in macula densa, leading to dilatation of renal

arterioles and hyperfiltration. Hyperfiltration is considered to be main factor in diabetic nephropathy.
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[63] Flozins, by inhibition of natrium reabsorption and effect on afferent arteriole, normalise blood

flow in kidneys and re-estabilish tubuloglomerular mechanisms. [64, 65]

A role of SGLT2 inhibitors in neurology

Both, diabetes mellitus and cardiovascular diseases are risk factors for cognitive impairment. [66, 67]

SGLT2 inhibitors vastly used in these conditions have a potential for neuroprotection. [68] SGLT

receptors occur in central nervous system, as they maintain glucose homeostasis and flozins have

possibility to reach the brain/serum ratio from 0.3 to 0.5. [69] SGLT inhibitors play a key role in

maintaing glucose homostasis. [70] SGLT1 inhibitors are widely spread in central nervous system.

Studies say the can be found in brain cortex, cerebellum cells, cells of hippocampus and even in

amygdala and nucleus of the solitary tracts. [71, 72, 73, 74] As flozins have link with SGLT1

receptors they can be protective against ischemia and brain damage during reperfusion. What is more,

SGLT inhibitors are located in sites of brain responsible e.g. for food intake, energy homeostasis,

glucose homeostasis, central cardiovascular and autonomic regulation. [74, 75] Trials have shown

major increase in expression of SGLT1 and SGLT2 after brain injury. [76] Researches present

promising use of flozins in neurology. Protein SGLT2 have expression in choroid plexus epithelial

cells and ependymal cells, this may be helpful in understanding pathology of neurodegenerative

disorders and discover proper treatment. [77, 78] In a rat model dapagliflozin markedly reduced

seizure activity during epilepsy. [79] Blockade of SGLT1 have positive impact on brain lesions,

edema, volume of damaged tissue and motoric disability. [80]

Adverse effects of SGLT2 inhibitors

Although flozins are modern and innovative group of drugs which were a turning point in treatment of

diabetes and heart failure they do have side effects. They are connected with urinary tract infections,

lower limb amputation, diabetic ketoacidosis, acute kidney injury and Fournier gangrene. [81, 82]

I. Genito-urinary tract infections

SGLT2 inhibitors increase three times a risk of genito-urinary tract infection, especially in elderly

patients. [83, 84] As infections are caused by glycosuria patients should be learned how to maintain

proper hygiene.

II. Lower limb amputation

In CANVAS trial a group taking canagliflozin was connected with higher risk of amputations in

comparison to placebo group. [81, 85] However, in a retrospective analysis rate of amputations was

comparable to new antibdiabetic agents. [86] The pathophysiology of amputation caused by flozins

remains unclear. It is speculated that they promote volume depletion and hemoconcentration leading

to peripheral ischemia. [87]
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III. Diabetic Ketoacidosis

SGLT2 can result in diabetic ketoacidosis in patients with diabetes type 1, and less frequently in

diabetes type 2. Potential triggering factors are insulin withdrawal, decreased calories intake, infection

or surgery. Risk for developing diabetic ketoacidosis is still unknown and needs greater insight. In

recent trials patients developed diabetic ketoacidosis in the presence of controlled glycemia. [88]

Elements of DKA pathophysiology caused by flozins might be increased glucose loss,

hyperglucagonemia and hypovolemia. [89, 90, 91] It is important to test urine and plasma ketons at

the beginning of SGLT2 inhibitors therapy and be cautious about nausea, malaise and vomiting.

IV. Acute kidney injury

It is recommended to monitor kidney function during SGLT2 inhibitors therapy, especially when

other potentially acute kidney injury (AKI) causing drugs are used. Flozins may be also connected

with acute nephrotoxicity. SGLT2 inhibitors cause uricosuria (glucose exchange with uric acid in the

proximal tubule). High level of uric acid may produce uric crystals deposition, inflammation and

oxidative stress. [92, 93] Other risk factor for AKI is shift of oxygenation from medulla to cortex -

this may put at risk of AKI patients with diabetes mellitus type 2, contrast, NSAIDs and volume

depletion. [94, 95, 96]

V. Fournier gangrene

Flozins have also been connected with a risk of Fournier gangrene occurence. Fournier gangrene is a

rare emergency characterized by necrotizing infection of genitalia, perineum and perianal area. FDA

pointed out 55 cases of Fournier gangrene in patients treated by SGLT2 inhibitors. [97]

Conclusion:

Not without a reason SGLT2 inhibitors are called new statins. Yet, in comparison to statins, flozins

have less unwanted effects and can be applied not only in cardiovascular diseases. Flozins work on

many paths of renal physiology. Study trials present their potential in diabetology and neurology. As

SGLT2 inhbitors can bring benefits for many patients, they have ability to enhance comfort of their

lives.

In cardiology field, they minimalise the risk of heart failure in patients regardless renal function or

diabetes. SGLT2 inhibitors have colossal effect on preserving ejection fraction and preventing heart

failure. Both, dapagliflozin and empagliflozin improved renal functions in hospitalized patients, and

what is more important reduced death in patients with HFrEF due to cardiovascular diseases and all-

cause.
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The ongoing clinical trials and studies will hopefully provide insight into understanding and better

treatment of heart failure with multipotential benefits and hollistic approach to patients.
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