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1 Introducción 
In this project, we are going to investigate a topic that will be of great importance in the 

coming years, such as the management of the charging of electric cars. It is nothing new 

that the trend in the automotive sector is towards a future in which electric vehicles will 

predominate, which can be a problem for the current electricity grid due to the increase 

in energy demand produced by the charging of these cars. Therefore, it is necessary to 

investigate different charging methods in order not to saturate the grid. 

In this work, research has been carried out about the problem mentioned above, proposing 

an optimization algorithm which is able to manage the charging process of a fleet of cars 

in a charging car park for electric cars, based on the paper " Electric vehicle charging 

under power and balance constraints as dynamic scheduling" [7]. 

In the first part of the work, an extensive state of the art about the most important 

optimisation algorithms in use today is made, explaining what they are based on and 

giving a brief explanation of how they work. 

Then, the problem that has been investigated with this work is described, the optimisation 

of the electric car charging using the ant colony algorithm (ACO). In addition, the results 

obtained are analysed and the parts of the work that can be improved in future projects 

related to this topic are detailed. Finally, the conclusions obtained are given. 

 

2 Context 
 

In recent years, there has been a significant increase in the use of electric cars, driven 

mainly by growing concern about climate change and the need to reduce greenhouse gas 

emissions produced by internal combustion vehicles. 

The transport sector in one of the largest contributors to global greenhouse gas emission. 

According to EEA (European Environment Agency), “the recently proposed legislation 

(Fit for 55) sets targets to cut CO2 emissions from cars by 55% and vans by 50% by 

2030 (EU, 2021). It also proposes to completely cut emissions from cars and vans by 

2035.  

Electric cars (EVs) are a more sustainable and environmentally friendly alternative to 

petrol or diesel-powered vehicles, as they do not emit harmful exhaust gases and are more 

energy efficient. In addition, battery technology has improved significantly in recent 

years, making electric cars increasingly longer range and more affordable. Thus, “a 

significant increase in the uptake of EVs will be needed to achieve these goals” [1]. For 

this reason, the number of charging points for electric cars will increase drastically in the 

next few years, creating a problem when it comes to managing the network for charging 

them. 

However, the integration of electric cars into the electricity grid poses some challenges. 

In particular, charging electric vehicles can significantly increase electricity demand at 
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peak times, such as during peak hours, which can overload the grid and cause power 

outages. In addition, charging many electric vehicles in a concentrated area can require 

costly upgrades to the local grid infrastructure to handle the additional load. 

In order to fight this issue, new technology is required, such as increasing the capacity 

and lifetime of electric car batteries and increasing the speed of charging them. Besides, 

technical solutions are being implemented, such as smart charging, which allows charging 

speed to be adjusted based on the capacity of the electricity grid at the time. In addition 

to improving the electronics that make up electric cars and their respective chargers, it is 

necessary to control the charging process. “Several studies have shown that when the 

EVs’ charging process is not properly coordinated in a charging station, several problems 

may occur, such as increase in the peak load period, decrease in service quality, 

degradation of the voltage profile, overload of circuits, and increase in energy losses” [5]. 

So, in order to avoid the problems mentioned above, scheduling the charging of EV`s in 

an efficient way is crucial. 

In this project, the problem of coordinating the charging process of electric cars in a 

parking lot will be addressed. 

 

 

3 Objectives and Scope of Work 
 

The main objective of this work is to address a topic that is currently giving a lot to talk 

about, such as the charging of electric vehicles. In order to achieve this, the following 

objectives are established: 

The first objective is to thoroughly analyse and understand the context and characteristics 

related to the different optimisation algorithms that actually exist. This involves a detailed 

review of the existing scientific and technical literature, as well as the identification of 

current trends, developments and challenges in the field. 

Furthermore, another objective is to focus on the implementation and operationalisation 

of the proposed methodology. This will involve the use of relevant tools, techniques or 

experiments to obtain concrete data and results that contribute to knowledge and add 

value in the field of EV charging. 

The scope of this work is limited to, on the one hand, analysing the different optimisation 

algorithms that exist, and, on the other hand, using one of them to optimise the problem 

set out in the project. 
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4 Benefits of the work 
 

This Master's thesis provides a number of significant benefits and contributions in the 

field of EV charging. 

Firstly, this work contributes to the advancement of knowledge in the field of EV load 

optimisation. By comprehensively reviewing the existing literature and conducting 

empirical research, it is hoped to gain a better understanding of the different alternatives 

that exist to solve problems in the field, providing a solid basis for future research and 

development.  

In addition, the methodology developed in this work has an important practical 

application, so that the algorithm could be implemented in a real problem. 

In terms of social and economic impact, the findings and conclusions of this work are 

expected to generate benefits in the transition to EV. These benefits can be economic, 

social and environmental, and will contribute to improving people's quality of life and 

sustainable development. 

Finally, the results and conclusions of this work will provide a solid basis for informed 

decision making in the field of EV load optimisation. It will enable key stakeholders to 

use the information and recommendations derived from this work to more effectively 

address future EV load optimisation projects. 

5 State of art 
 

This section provides a comprehensive review of research dealing with the electric 

vehicle charging scheduling using different optimization algorithms. In order to highlight 

the lack of information regarding the different types of optimisation algorithms used to 

solve this task, a compilation will be made of what type of algorithms have been used so 

far in the different studies carried out. 

Optimization algorithms are used in all kinds of fields such as engineering, medicine, 

economics... in order to find the best solution to a given problem. So, depending on the 

problem to be solved, different types of them can be used. Figure 1 shows the 

classification of the different types of algorithms that are used today to solve different 



 

 

4 

 

problems, and although in the study of the electric car charging problem only one will be 

used, this work will make a brief description of each of them. 

 

 

FIGURE 1. CLASSIFICATION OF OPTIMIZATION ALGORITHMS [10] 

 

As can be seen in Figure 1, the optimization algorithms can be clearly classified into 

two categories. On one side, the deterministic algorithms and on the other, the 

stochastic algorithms. In short, deterministic algorithms allow a future event to be 

calculated precisely, without the involvement of randomness. However, a stochastic 

algorithm can handle uncertainties in the inputs applied [11]. In other words, if 

something is deterministic, you have all of the data necessary to predict (determine) the 

outcome with certainty whilst Stochastic models possess some inherent randomness - 

the same set of parameter values and initial conditions will lead to an ensemble of 

different outputs. Afterwards, each one has different types, which will be briefly 

explained below. 

 

 

5.1 Deterministic Algorithms 
 

Deterministic algorithms are the classical branch of optimisation algorithms in 

mathematics. They are usually based largely on linear algebra, either based on gradient 

computation or in some cases on hessian calculus. Compared to stochastic algorithms, 

they have the advantage of converging faster, namely they require fewer iterations than 

stochastic algorithms to reach a solution. 

These types of optimization models are based, as mentioned above, in rigorous 

mathematical formulation without involving stochastic elements. That is why the results 

achieved are replicable and unequivocal. Nevertheless, this does not mean that stochastic 

models cannot provide same quality solutions. In terms of method of operation, 
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deterministic algorithms focus on finding stationary points in the response variable, 

hence, the best solution found could be the local best and not the global best. Besides, 

these algorithms are usually single objective. [12] 

In an optimisation process, elements must be established in order to find the right solution. 

It is necessary to choose a sample or a group of samples from which to start, as well as a 

stopping criterion. By feasible sample we mean an assignment to each input variable so 

that all the constraints of the problem are satisfied and as a stopping criterion we refer to 

a condition that once fulfilled, leads to the correct solution. 

In the following sections, different types of deterministic algorithms will be explained. 

5.1.1 Linear optimization  
 

Linear optimization, also known as linear programming (LP) is a mathematical procedure 

or algorithm used to solve an indeterminate problem, formulated through a system of 

linear inequalities, optimising the objective function, which is also linear.  It consists of 

optimising (minimising or maximising) a linear function, called the objective function, in 

such a way that the variables of this function are subject to a series of restrictions that we 

express by means of a system of linear inequalities. 

Any LP problem consists of an objective function and a set of constraints. In most cases, 

the constraints come from the environment in which your objective is located. I.e., when 

an objective wants to be achieved, some constraint will be set by the environment to 

achieve the goal.  

In order to a better understanding, an example is given below. Imagine a carpenter who 

sells tables and chairs and wants to maximise his income. In this case, if he sells each 

chair (x2) for 3 euros and each table (x1) for 5 euros, the objective function would be as 

shown equation (1). The constraints are set by external factors such as working time and 

raw material limitations (equations (2) and (3) respectively). The production time for a 

table is 2 hours and for the chairs 1 hour. Besides, the raw material required to build a 

table and a chair are 1 unit and 2 units respectively. Besides, it is assumed that X1 and 

X2 are both positive values.  

 

𝑂𝑏𝑗𝑒𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 5 ∙ 𝑥1 + 3 ∙ 𝑥2 (1) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1 →   2 ∙ 𝑥1 + 𝑥2 ≤ 40 (2) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 2 →  𝑥1 + 2 ∙ 𝑥2 ≤ 50 (3) 

 

One’s equations (1), (2) and (3) are defined, it is possible to find optimal solution to the 

problem. In the following Figure 2 a graphical representation of the problem can be seen.  
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FIGURE 2. REPRESENTATION OF A LINEAL OPTIMIZATION. [13] 

5.1.2 Non-linear optimization 
 

Although some problems can be modelled by linear programming, others have to be 

optimised by non-linear programming, as they are defined by non-linear equations. This 

type of deterministic optimization follows the same procedure as the linear optimization 

algorithms, but in this case, the objective or the constraints functions are not lineal 

equations. 

These algorithms can be classified according to the number of variables they have, 

considering a large problem has more than a thousand or so variables and also by the 

computational weight it has, hence, there are ones which are computationally expensive 

to evaluate and other which are cheap, like the linear problems.  

An example of non-linear optimization is shown in the Figure 3. 

 

FIGURE 3. REPRESENTATION OF A NON-LINEAR OPTIMIZATION [14] 

 

Objetive function 

Optimal vertex 

Iso function 
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5.1.3 Gradient based algorithms 
 

 “In order to decrease the computation time and make the optimization solution more 

robust, gradient algorithms are used. Such procedures use the derivative of the cost 

function, under specific conditions, such as differentiability and Lipschitz condition, to 

solve the optimization problem.” [15] 

These gradient-based algorithms are usually classified as follows. [16] On the one hand, 

there are first-order algorithms, which only need the information of the derivative, and 

on the other hand there are second-order algorithms, which apart from the derivative 

information, they need the Hessian matrix. Within these two categories, there are different 

algorithms.  

Among the linear algorithms, the best known is the linear programming (LP) algorithm. 

Those are used for optimization problems when the objectives and constraints are linear. 

However, among the second-order algorithms, they can be distinguished quadratic 

algorithms (QP), sequential quadratic algorithms (SQP) and finally convex programming 

(CP). QP and SQP algorithms are used when the objective is quadratic and the constraints 

are linear and CP ones are used for convex objective and concave inequality constraints. 

 

5.1.4 Derivative free algorithms 
 

There are functions which are impossible to derive or whose derivative involves a very 

high operational cost. For such cases, derivative-free algorithms (DFA) have been 

invented. The DFA is able to transform the solution to a global optimum, unlike the 

gradient algorithms that provide local suboptimal solutions. 

 

5.2 Stochastic Algorithms 
 

 “Stochastic optimization refers to a field of optimization algorithms that explicitly use 

randomness to find the optima of an objective function, or optimize an objective function 

that itself has randomness (statistical noise). Most commonly, stochastic optimization 

algorithms seek a balance between exploring the search space and exploiting what has 

already been learned about the search space in order to hone in on the optima.” [17] 

 “The source of inspiration of many randomized search methods comes from the 

observation of nature. Concepts from biology, physics, geology, or some other field of 

investigation, are borrowed and implemented in a simplified model of some natural 

phenomena. Most of these methods are population-based algorithms, in which a set of 

initial samples evolves (or moves) up to convergence. The rules of the evolution, which 

always include some randomness factor, depend on the natural model embodied. 

Population-based algorithms are also known as Swarm Intelligence (SI) when they mimic 
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the collective behaviour of self-organized natural systems. Commonly, the collective 

behaviour which is mimicked is taken from the animal kingdom: herding, flocking, 

shoaling and schooling, swarming, hunting, foraging, feeding” [13] 

Compared to deterministic optimization methods, they are more recent and innovative. 

As an advantage over the deterministic algorithms, they are usually less complicated in 

terms of maths and they even contain randomness in the searching procedure. A 

disadvantage would be that they converge much slower.  

Within stochastic algorithms we can differentiate between heuristics and meta-heuristics. 

Heuristic ones try to find an approximate (not approximation) solution to a problem. Is 

about getting a good guess at the solution to a problem, but it doesn’t really know how 

good it is. Instead, meta-heuristic is about obtaining a solution for which it can be 

demonstrated how close the solution obtained is to the optimal solution. 

The following are some of the most commonly used stochastic algorithms. 

 

5.2.1 Heuristic algorithms 
 

Heuristic algorithms are used to design solutions to the problems as quickly as it is 

possible. This type of algorithms will not find the best solution to the problem, instead, 

they will give a good solution in a short period of time. That is why when it is not 

necessary to find the best solution to a problem, these algorithms are used, in order to 

their quick convergence. 

“Heuristic algorithms are used to solve Non-deterministic Polinomial (NP) problems and 

decrease the time complexity of problems by giving quick solutions. It’s popularly 

utilized in artificial intelligence problems. One example is informed search, where 

additional information is available to determine the next step towards finding the 

solution” [6]. 

Regarding how they work, they use a heuristic function in order to find the heuristic value 

that will help to find the optimal solution. From a starting point, which could be a solution 

to the problem, a value for its node is calculated using the mentioned function. Hence, 

the optimal solution will be the one with lower nodes value. This procedure can be seen 

at Figure 4. 

https://www.baeldung.com/cs/p-np-np-complete-np-hard
https://en.wikipedia.org/wiki/Search_algorithm#Informed_search
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FIGURE 4. HEURISTIC PROCEDURE [36] 

The heuristic functions can be classified as follows, admissible and non-admissible. The 

first ones, never overestimate the cost of reaching the goal whereas the second ones do. 

It can be explained with Figure 5. 

 

 

 

 

 

 

FIGURE 5. ADMISSIBLE AND NON-ADMISSIBLE HEURISTIC FUNCTIONS 
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“In order for a heuristic to be admissible to the search problem, the estimated cost must 

always be lower than or equal to the actual cost of reaching the goal state. The search 

algorithm uses the admissible heuristic to find an estimated optimal path to the goal state 

from the current node.” [29] Analysing Figure 5 it can be seen that the cost from A to E 

is 1+3+5+2=11. Then, calculating the value of its node with the heuristic function (H(x)), 

it is noted that it is always lower than the total cost from A to E. This is an example of an 

admissible heuristic function. However, looking at the rest of the paths (A-F,A-G), the 

total cost from each one is 1 and the value of the heuristic function to each node is 4 and 

5 respectively. As those values are higher than the total cost, that function is considered 

as non-admissible functions. 

These algorithms are not the best ones for every problem. There are some conditions that 

give an idea if they fit or not to a problem. If a problem has several solutions, this type of 

algorithm is not the best option because they will not give the best solution from all the 

ones available. Besides, if the best solution to a problem is required, they are not the best 

option either. Nevertheless, if the convergence time is important, they are a good option 

to be used. 

 

5.2.2 Meta-heuristic algorithms 
 

Metaheuristics are approximate methods designed to solve combinatorial optimisation 

problems where classical heuristics are not effective. Metaheuristics provide a general 

framework for creating new hybrid algorithms, combining different concepts derived 

from artificial intelligence, biological evolution and statistical mechanisms. Besides, the   

advantage of metaheuristics over other methods lies in their great flexibility, which allows 

them to be used to tackle a wide range of problems. 

Compared to heuristic algorithms, these ones are considered as a "master strategy that 

guides and modifies other heuristics to produce solutions beyond those that are normally 

generated in a quest for local optimality" (Glover and Laguna 1997). Like heuristic 

algorithms, metaheuristic algorithms use a certain trade-off of randomization and local 

search. Besides, they do not provide the best solution, but a good solution in a brief period 

of time. 

“Two major components of any metaheuristic algorithms are: intensification and 

diversification, or exploitation and exploration (Blum and Roli, 2003). Diversification 

means to generate diverse solutions so as to explore the search space on a global scale, 

while intensification means to focus the search in a local region knowing that a current 

good solution is found in this region. A good balance between intensification and 

diversification should be found during the selection of the best solutions to improve the 

rate of algorithm convergence. The selection of the best ensures that solutions will 

converge to the optimum, while diversification via randomization allows the search to 

space from local optima and, at the same time, increases the diversity of solutions. A good 

combination of these two major components will usually ensure that global optimality is 

achievable.”[25] 
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Between all the metaheuristic algorithms, the most commonly used are “Particle Swarm 

optimization (PSO)”, “Artificial Bee Colony (ABC)” and “Ant Colony Optimization 

(ACO)”. In the following sections, these three types will be explained. 

 

5.2.2.1 Particle swarm optimization 
 

The particle swarm optimization (PSO) algorithm, originally developed by James 

Kennedy and Russell Eberhart in 1995, is an algorithm from the artificial intelligence 

area of the swarm intelligence branch. It is inspired by the social behaviour of living 

beings and compared to genetic algorithms (GA), which are based on the mechanism of 

biological evolution. The particle swarm optimization algorithm is inspired by evolution 

in collective behavior, trying to mimic the social behavior of various animal groups such 

as shoals, flocks, herds, etc. [18] 

As they use analogies with other processes to solve the problem, they are considered meta 

heuristic algorithms. Hence, they are not specialized to solve a particular problem, so they 

can be used for any problem, with the disadvantage that they can gen stuck in local 

suboptimal solution.  

Another characteristic of these algorithms is that they are non-deterministic (stochastic), 

which means that the results obtained will not always be the same even if the same 

function is involved. In many of their applications, both genetic algorithms and particle 

swarm algorithms offer 99% quality results, however, it has been shown that particle 

swarm algorithms are superior in terms of efficiency due to their low computational cost 

[19]. 

The operation of this type of algorithm will be explained using a flock of birds as an 

example. At each iteration, each individual is a bird in the search space, shifts with a 

certain velocity in a direction which is a function of the global best location found so far 

by the swarm and the personal best location found so far by the bird. Methods for avoiding 

collisions could be implemented as well in the algorithm and help in maintaining a certain 

degree of diversity in the population. This, together with the introduction of small 

perturbations (called craziness or turbulence) to the individual’s position at each iteration, 

increases the robustness of the algorithm. Craziness reflects the change in an individual’s 

flight which is out of control and is very important if the whole population happens to 

stagnate around a local minimum [12].  
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5.2.2.1.1 PSO programming 

 

Even if there are variations, the structure of a PSO algorithm to optimise (maximise or 

minimise) a function with one or multiple variables follows these steps: 

1. Create an initial swarm of n random particles. Each particle consists of 4 elements: 

a position representing a certain combination of values of the variables, the value 

of the objective function at the position where the particle is located, a velocity 

indicating how and where the particle is moving, and a record of the best position 

the particle has been in so far. 

Each particle is defined by a position, velocity and value that change as the 

particle moves. In addition, it also stores the best position it has been in so far. 

When a new particle is created, only information about its position and velocity 

(usually initialised as zero) is known, all other values are not known until the 

particle is evaluated. 

 

2. Evaluate each particle with the objective function. 

 

Evaluating a particle consists of calculating the value of the objective function at 

the particle's current position. Each particle also stores the best-valued position it 

has been in so far. In order to identify whether a new position is better than the 

previous ones, it is necessary to know whether it is a minimisation or 

maximisation problem. 

 

3. Update the position and velocity of each particle 

 

Moving a particle involves updating its velocity and position. This step is the most 

important as it gives the algorithm the ability to optimise. 

4. If a stop criterion is not met, return to step 2 

 

Each particle (individual) has a position 𝑝 , and a velocity 𝑣  which determines it 

movement through the space. In addition, as real-world physical particles, they have an 

amount of inertia, which keeps them in the same direction in which they were moving, as 

well as an acceleration (change in velocity), which depends mainly on two characteristics: 

• Each particle is attracted to the best location that it, personally, has found in its 

history (personal best). 

• Each particle is attracted to the best location that has been found by the set of 

particles in the search space (global best). 
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FIGURE 6. INITIAL POSITION OF THE PARTICLE [20] 

The force with which the particles are pushed in each of these directions depends on two 

parameters that can be adjusted (attraction-to-best-personal and attraction-to-best-global) 

so that, as the particles move away from these best locations, the force of attraction is 

greater. Once the velocities are updated, their positions also update following the next 

equation (1).  

 pi(t + 1) = pi(t) + vi(t) (1) 

 

 

 

 

 

 

FIGURE 7. POSITION UPDATED.[20] 

 

Once the theory of this algorithm is explained, to get a better view of how the algorithm 

works and what sequence it follows, the following block diagram has been used. 
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FIGURE 8.PROCESS FLOW OF PARTICLE SWARM OPTIMIZATION [28] 

 

5.2.2.2 Genetic algorithms 
 

Genetic algorithms (GA )were developed in the 1960s and became popular through the 

work of Holland and his student Goldberg. GAs represents a different approach to 

evolutionary computation in which the evolution of a population is mainly due to the 

effect of a cross-over operator. In general, the input variables are encoded into binary 

strings, although GAs using real-valued input variables also exist [12]. 

Given a specific problem to be solved, the inputs to the GA are a set of potential solutions 

to that problem, coded in some way, and a metric called fitness function, which allows 

each candidate solution to be quantitatively evaluated. These candidates can be solutions 

that are already known to work, with the goal of being improved by the GA, but they are 

usually generated randomly. 

From there, GA evaluates each candidate according to the fitness function. Of course, it 

should be noted that these first randomly generated candidates will have minimal 

efficiency by the time to solve the problem, and most will not work at all. However, 

casually, a few may be promising, and may show some characteristics that show, even if 

only in a weak and imperfect way, some ability to solve the problem. 

These promising candidates are retained and allowed to reproduce. Multiple copies of 

them are made, but these copies are not perfect. Instead, some random changes are 

introduced during the copying process, like the mutations that can occur in the offspring 

of a population. These digital offspring are then passed on to the next generation, forming 
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a new set of candidate solutions, and are again subjected to a round of fitness evaluation. 

Candidates that have worsened or not improved with changes in their code are eliminated 

again; but again, by pure chance, random variations introduced into the population may 

have improved some individuals, making them better, more complete or more efficient 

solutions to the problem. The process is repeated as many iterations as necessary, until 

we get solutions good enough for our purposes [20]. The process has been schematized 

in the following Figure 9.  

 

FIGURE 9. GENETIC ALGORITHM PROCESS 

 

5.2.2.3 Bee colony optimization 
 

The artificial bee colony (BCO) algorithm is one of the most recent algorithms in the 

domain of collective intelligence. It was proposed by Dervis Karaboga in 2005, and it is 

based on the behaviour of the bees when they are looking for food sources.  It is a 

population-inspired optimisation algorithm, where the solutions to the optimisation 

problem are the food sources. The goal of these bees is to discover the food sources with 

the most amount of nectar. 

5.2.2.3.1 BCO theory 

 

The process of nectar foraging by bees is an optimisation process, and the behaviour of 

bees was modelled as a heuristic optimisation based on the biological model consisting 

of the following elements [23]: 

• Food source: the value of a food source depends on many factors, such as 

proximity to the hive, richness or concentration of energy and ease of extraction 

of this energy. It is summarised in a numerical value that indicates the potential 

of the food source. 

• Employed forager bees: are associated with a food source. They carry with them 

information about that particular source, its distance, location and profitability to 

share with the observer bees. 
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• Unemployed forager bees: these bees are looking for food sources to exploit. 

There are two types: 

o Explorers: they are responsible for searching for new food sources in the 

environment surrounding the hive. That is, they carry information about a 

specific source and share it with other bees waiting in the hive. The 

information includes the distance, direction and nectar of the food source. 

o Observers: With information shared by employees or other scouts in the 

nest, they search for a food source. 

The employed bees communicate the information about the food source they are 

exploiting to the observer bees by means of a dance, where the angle to the sun indicates 

the direction of the source and a zigzag indicates the distance. The dances with the longest 

duration describe the most profitable food sources most likely to be chosen by the 

observer bees. Once food sources have been depleted, they are abandoned and replaced 

by new sources found by scout bees. 

 

FIGURE 10. DESCRIPTION OF BCO [23] 

Figure 10 shows the used bees assigned to a food source (1). Then (2) shows the 

communication of food source information by means of a dance, and the observer bees 

visit the most promising food sources (3). And finally, the scout bees search for new 

sources (4). 
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5.2.2.3.2 BCO Programming  

 

Similar to other metaheuristic approaches, the BCO algorithm performs an iterative 

process which is repeated for a certain number of iterations (NG). It starts with a 

population of solution or food sources, which are randomly generated. Then, the next 

three operations are applied until a stopping criterion is reached.  

1. Send out employed bees 

2. Selection of food sources by onlooker bees 

3. Determine which bees will be scout bees 

Normally, these algorithms follow the procedure of the Figure 11. However, the 

programming of the algorithm is explained below. [27] 

 

 

FIGURE 11. PROCEDURE BCO ALGORITHMS [37] 

 

• Initialization phase. 

 

The algorithm starts by initializing Np food sources. Each food source, is 

characterised by a vector of D elements, which represent the decision variables. 

These variables are randomly generated between the lower 𝑥𝑗
𝑙𝑜𝑤  and upper 

𝑥𝑗
ℎ𝑖𝑔ℎ

 limits, previously defined. (2) 

 𝑥𝑗,𝑖 =  𝑥𝑗
𝑙𝑜𝑤 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑥𝑗

ℎ𝑖𝑔ℎ
− 𝑥𝑗

𝑙𝑜𝑤) (2) 

 

 

𝑗 = 1,2 … 𝐷 

𝑖 = 1,2 … Np 

Where j and i are the indices of the parameter and population respectively. 

Therefore, 𝑥𝑗,𝑖  is the j-th parameter of the i-th individual. 
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• Send employed bees. 

 

In this phase, each employed bee searches for a new food source, as follows: 

 𝑣𝑗,𝑖 =  𝑥𝑗,𝑖 +  𝜙𝑗,𝑖 ∗ (𝑥𝑗,𝑖 − 𝑥𝑗,𝑘) 

 

 𝑘 = 1,2 … Np 

𝑗 = 1,2 … 𝐷 

 

(3) 

 

 

Where 𝑥𝑗,𝑖 is a parameter j randomly selected from the i-th individual and k is one 

of the Np food sources, satisfying the condition i≠k. If a given parameter of the 

candidate solution 𝑣𝑗,𝑖 exceeds its predetermined bounds, that parameter must be 

adjusted so that it is in the defined range. 𝜙𝑗,𝑖 is a random number withing the 

range [-1,1]. Once a new solution has been generated, its quality is calculated 

using an objective function. The quality fiti of a candidate solution 𝑣𝑗,𝑖  is assigned 

by the following expression: 

 

𝑓𝑖𝑡𝑖 = {

1

1 +  𝐽(𝑉𝑖)
   𝑖𝑓 𝐽(𝑉𝑖) ≥ 0

1 +  𝐽(𝑉𝑖) 𝑖𝑓 𝐽(𝑉𝑖) < 0
 

 

(4) 

 

 

 

Where J is the objective function to be minimized and 𝐽(𝑉𝑖) is the objective 

function value of solution 𝑉𝑖. 

 

 

• Food source selection by onlooker bees. 

 

There are two different groups within the unemployed bees, onlooker and scout 

bees. The first ones, share their food source information with the onlooker bees, 

which are waiting in the hive. Then, each onlooker bee selects one of the proposed 

food sources depending on its quality. The probability of a food source being 

selected is obtained from the following equation: 

 
𝑃𝑟𝑜𝑏𝑖 =

𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑁𝑝
𝑖=1

 
(5) 

 

 

 

Where fiti is the quality value of the i-food source. The probability of a food source 

being selected by an onlooker bee increases with an increase in the quality value 

of the food source. After the food source is chosen, the onlooker bees will go to 

the selected position and will determine a new candidate food source within the 

neighbourhood of the selected food source. Such position is calculated by (3). In 
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case the quality of the new solution is worse than the previous one, its position is 

maintained; otherwise, the last solution is replaced. 

 

• Determine new scout bees 

If a food source i (candidate solution) cannot be performed within a certain 

number of L trials, the food of source is abandoned and the corresponding bee 

become a scout bee. In order to verify if a candidate solution has reached the limit 

L of trials, a counter Ai is assigned to each food source i. This counter is increased 

as a consequence of a bee operation failing to improve the quality of a solution. 

 

In summary the BCO algorithm: 

a) is inspired by the foraging behaviour of honeybees, 

b) is a global optimization algorithm, 

c) has been initially proposed for numerical optimization 

d) can be also used for combinatorial optimization problems 

e) can be used for unconstrained and constrained optimization problems 

f) employs only three control parameters (population size, maximum cycle number 

and limit) that are to be predetermined by the user. [26] 

 

 

5.2.2.4 Ant colony optimization 
 

Ant Colony Optimization (ACO) theory was introduced by Marco Dorigo in the early 

1990s as a tool for the solution of complex optimisation problems. The ACO belongs to 

the class of heuristic methods, which are approximate algorithms used to obtain good 

solutions to complex problems in a reasonable amount of computing time. [21] 

The source of inspiration for ACO is the actual behaviour of ants. These insects when 

searching for food initially explore the area around their nest in a random way. As soon 

as they find food sources, they assess their quantity and quality, and carry some of this 

food back to their nest. On the way back to the nest, the ants deposit a chemical substance 

called pheromone on the path, which will serve as a future guide for others to find the 

food. The amount of pheromone deposited will depend on the quantity and quality of 

food. This will help to find the shortest routes between their nest and food sources. 

 

5.2.2.4.1 ACOs theory.  

 

In order to understand how ants, use the path with the most pheromones (the shortest) to 

find their food, the following example its described. 

Consider the example illustrated in Figure 12, in which ants reach a point where they 

have to decide whether to turn right or left. As there is initially no pheromone present on 
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the two alternative paths, the choice is made randomly. It is estimated that on average 

half of the ants turn left and the other half decide to turn right. The criterium to name the 

ants is by a letter (R or L) followed by a number. So, if an ant turned to the right in the 

first fork, it will be named R1. [21] 

 

FIGURE 12. ACO ALGORITHM EXAMPLE 1 [22] 

 

Figures 13 and 14 show what happens in the following instants, assuming that all the ants 

walk at the same speed. The number of dotted lines is proportional to the number of 

pheromones the insects have deposited on the ground.  

 

FIGURE 13. ACO ALGORITHM EXAMPLE 2 [22] 

 

FIGURE 14. ACO ALGORITHM EXAMPLE 3 [22] 
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As the lower path is shorter than the upper path, many more ants will transit the lower 

path during the same period of time. This implies that the shorter path accumulates more 

pheromone much faster. After a certain time, the difference in the amount of pheromone 

in the two paths is large enough to influence the decision of new ants to enter these paths. 

Given the above, new ants entering the system will prefer to choose the lower path due 

to they perceive a higher amount of pheromone there. 

 

5.2.2.4.2 ACO programming 

 

Having explained the behaviour of the ants in finding the shortest route to the food source, 

it is time to analyse how the algorithm works. That is why in this section, the 

programming code will be examined. 

 

First of all, the different parameters to be used in the algorithm will be defined. They are 

the following: 

• Pk(t): The path followed by the ant k. It is time-dependent because it changes with 

each iteration. 

• G = (V, E): weighted graph  

• Ni: nodes available from node i 

• k=1,2 …N: Number of the ant 

• τ ij: Number of pheromones between paths i and j  

• α: is a parameter to control the influence of τ ij 

• β: is a parameter to control the influence of nij 

• i,j: i is the actual node and j the following node. 

• dij: distance between nodes i and j. 

• nij: is the desirability of edge i, j. Typically 1/ dij 

• ρ: is the rate of pheromone evaporation 

• ∆ τ ij: is the amount of pheromone deposited by each ant in the path i-j. 

The time (t) increases once all the ants find food and return to the origin (t→ t+1). 

The algorithm follows the following sequences: 

1. t=0, initialize the pheromones σij for every path available with randomly generated 

small values.  

2. Locate N ants at the source node. 

3. Repeat 

3.1. For each ant k=1,2 …N  

3.1.1. Pk(t)=0. At the first instant, the path followed by each ant is 0, because 

the ant has not yet moved. 

3.1.2. Repeat 
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• select the next node according to the probability q. If q>q0 the next node 

is selected according equation (6). If q<q0, the next node is selected 

according the equation (7). 

 

𝑃𝑖𝑗
𝑘 =

[τ𝑖𝑗]
α

∗ [n𝑖𝑗]
𝛽

∑ [τ𝑖𝑗]
α

∗ [n𝑖𝑗]
𝛽𝑁

1

  if j ∈  N𝑖 

(6) 

 

 

 𝑎𝑟𝑔𝑚𝑎𝑥 [τ𝑖𝑗]
α

∗ [n𝑖𝑗]
𝛽

 (7) 

 

 

  

• add a step (i, j) to the path Pk(t). 

Until the food source is reached. 

3.1.3. Remove the cycles in Pk(t). 

3.1.4. Calculate the length of the path found f(Pk(t)). 

3.2. For each connection (i,j) 

• Update the number of pheromones of each path. The new number of 

pheromones is calculated by the following equations: 

 τ𝑖𝑗(𝑡 + 1) = (1 − ρ)τ𝑖𝑗(𝑡) +∆ τ ij     

Where: ∆ τ ijk = ∑
1

f(Pk(t))
 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑒𝑑𝑔𝑒 𝑖, 𝑗𝑁

1  

 

(8) 

 

 

 Until all the ant follows the same path 

4. Return the shortest way, the lower f(Pk(t)).  

 

In ACO pheromones are updated on two different levels, globally and locally. In the 

global pheromone trail update, only the ant which represent the global best solution its 

allowed to add pheromone to its solution components. The pheromone trails are updated 

as follows: 

 τ𝑖𝑗 ←  (1 − ρ)τ𝑖𝑗 + ρ ∗ ∆ τ ij   (9) 

 

 

Where p is the pheromone evaporation rate (𝜌 ∈ (0, 1]) and  ∆ τ ij = 1/𝐶, where C is the 

total tardiness for the best solution. If C becomes 0, the ACO terminates. However, in 

local pheromone trail update, ACS applies a step by-step pheromone update rule 

immediately after an ant has added a new solution component, following the next 

equation. 

 τ𝑖𝑗 ←  (1 − 𝜉)τ𝑖𝑗 + ξ ∗ ∆ τ  (10) 
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Where ξ controls the influence of the local pheromone update and τ o is the initial 

pheromone value. This local pheromone update helps to make the correct decision of 

assigning EV j in position i less desirable for the other ants to favour assignments of other 

EVs on that position. It should be noted that all pheromone trails are initialised at the 

beginning of the algorithm by a matrix. [4]   

6 Description of the solution 
This section will describe the problem that has been investigated in this project, i.e. the 

problem posed by Hernández-Arauzo in the paper "Electric vehicle charging under power 

and balance constraints as dynamic scheduling" [7]. As mentioned above, the paper deals 

with optimising the charging of electric cars in a car park. 

 

6.1 Problem definition 
 

Climate change is an issue of concern for much of the world today. This is why different 

communities around the world have already begun to take measures to try to reduce this 

problem as much as possible. A turning point came in 2015, when the UN General 

Assembly adopted on 25 September the 2030 Agenda for Sustainable Development, an 

action plan for people, planet and prosperity, which aims to strengthen universal peace 

and access to justice [30].  The framework consists of 17 goals for environmental 

sustainability (see), social inclusion, economic development, peace, justice, good 

governance and partnership, the main issues for the world population in the 21st century. 

Each goal has several targets that better define its aims. The total number of targets is 169 

[31]. 

 

FIGURE 15.  ASD 17 GOALS [30] 
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This project contributes to the implementation of objective number 7, “affordable and 

clean energy”. A large part of C02 emissions are emitted by the transport sector. In 2020, 

this same sector emitted 25% of all CO2 emissions in Europe [33]. Therefore, by 

decarbonising the automotive sector, i.e. replacing existing combustion vehicles (diesel, 

petrol) with electric or plug-in hybrid vehicles, it is possible to reduce the greenhouse gas 

emissions produced by this sector. 

In addition to the SDGs, the European Parliament has approved in February 2023 the 

legislation that will ban the sale of combustion vehicles from 2035 in Europe. The 

regulation will require that by 2035 automakers must achieve a 100 percent cut in CO2 

emissions from new cars sold, which will make it impossible to sell new fossil fuel-

powered vehicles in the 27-country bloc. It also sets a 55 percent cut in CO2 emissions 

for new cars sold from 2030 versus 2021 levels, much higher than the existing target of a 

37.5 percent. New vans must comply with a 100 percent CO2 cut by 2035, and a 50 

percent cut by 2030, compared with 2021 levels [34].  

All of the above measures, coupled with public awareness of climate change, have led to 

a surge in the sale of electric vehicles in the last few years. Electric cars, which include 

battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), are 

gradually penetrating the EU market. There has been a steady increase in the number of 

new electric car registrations annually, from 600 in 2010 to about 1,061,000 units in 2020, 

when they accounted for 11% of new registrations. In 2021, electric car registrations 

surged, accounting for almost 18% of newly registered passenger cars [35].  

 

 

FIGURE 16. NEW REGISTRATIONS OF ELECTRIC CARS IN EU MARKET [34] 
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As can be seen in the above graph, the penetration of the electric car in the European 

Union's vehicle fleet is taking place at a dizzying speed. This implies a considerable 

increase in electric demand, unfortunately, this means a considerable increase in 

electricity demand, and unfortunately, not all distribution or low voltage grids are 

prepared to support the increase in electricity demand that would result from the 

recharging of thousands of vehicles. The power to be transported by these networks would 

increase, a power for which they were not designed. 

The problem comes when that network and the medium voltage transformer have not 

been designed to handle that amount of power. In this case, a solution to the problem must 

be found. Changing the transformer is one option, but that is not very cheap. Another is 

to manage the recharging of EV in an intelligent way. If not, there may be an imbalance 

between the phases, in case most of the vehicles are connected to the same one.  

To fight these issues, there are different solutions: 

• Add distributed generation, so that it can mitigate the impact of electric vehicle 

demand. 

• Manage recharging of EVs taking into account grid parameters, such as voltage. 

Excessive consumption in low-voltage grids means that the voltage can drop 

below the limits not allowed by regulations. 

• Oversizing the distribution and low-voltage networks, assuming the huge costs 

that this entails. 

 

In this work a method for managing the charging of EVs will be proposed. Taking into 

account all the optimization algorithms mentioned in section 5, it should be noted that the 

most widely used today for this type of problem are the metaheuristic algorithms. 

Metaheuristic algorithms are a class of optimization algorithms that are well-suited for 

solving complex optimization problems with many variables and constraints, such as 

electric vehicle (EV) charging optimization. Here are some reasons why metaheuristic 

algorithms are good for EV charging optimization: 

1. Non-deterministic search: Metaheuristic algorithms are designed to perform a 

non-deterministic search of the solution space, which means that they can explore 

a wide range of possible solutions and avoid getting stuck in local optima. This is 

particularly important for EV charging optimization, which involves many 

variables and constraints that can create a complex solution space. 

2. Flexible and adaptable: Metaheuristic algorithms are flexible and adaptable, 

which means that they can be easily customized to meet specific optimization 

objectives and constraints. This is important for EV charging optimization, which 

involves a wide range of variables and constraints, such as charging station 

availability, vehicle battery capacity, and travel time. 

3. Good scalability: Metaheuristic algorithms are designed to handle problems with 

many variables and constraints, which makes them well-suited for large-scale EV 
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charging optimization problems. This is important for optimizing charging 

schedules for a large number of EVs and charging stations. 

4. Can handle uncertainty: EV charging optimization is subject to uncertainty, such 

as changes in traffic patterns, weather conditions, and driver behaviour. 

Metaheuristic algorithms are designed to handle uncertainty by using probabilistic 

methods to explore the solution space. 

Overall, metaheuristic algorithms are a powerful tool for EV charging optimization 

because they can handle complex, large-scale, and uncertain problems with many 

variables and constraints.  

Within metaheuristic algorithms ACO or BCO can be used for this type of problems.  

Both Ant Colony Optimization (ACO) and Bee Colony Optimization (BCO) are 

metaheuristic algorithms that are commonly used for solving optimization problems, 

including EV charging problems. However, there are some differences between the two 

algorithms that may make ACO better suited for EV charging problems compared to 

BCO. Here are some reasons: 

1. Communication between agents: Both ACO and BCO involve the use of multiple 

agents (ants or bees) to explore the solution space. However, ACO agents 

communicate with each other by depositing and following pheromone trails, 

which can help to coordinate their search and avoid redundant exploration. In 

contrast, BCO agents do not communicate with each other directly and rely on 

global information exchange. This can make the search less efficient and 

potentially lead to suboptimal solutions. 

2. Adaptive pheromone updating: ACO algorithms typically use an adaptive 

pheromone updating strategy, where the pheromone level of a given path is 

adjusted based on the quality of the solution obtained by the ants that used that 

path. This can help the algorithm to converge to a good solution quickly and 

effectively. In contrast, BCO algorithms typically use a fixed pheromone updating 

strategy, which can lead to slower convergence and suboptimal solutions. 

3. Robustness to changes in the problem domain: ACO algorithms are known to be 

robust to changes in the problem domain, such as changes in the number of 

charging stations or the number of EVs to be charged. This is because the 

pheromone trails act as a memory of the search history and can guide the search 

even in changing environments. In contrast, BCO algorithms may require more 

tuning to adapt to changes in the problem domain. 

Overall, ACO may be better suited for EV charging problems compared to BCO because 

of its communication between agents, adaptive pheromone updating, and robustness to 

changes in the problem domain. However, the choice between ACO and BCO ultimately 

depends on the specific problem requirements and constraints 
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6.2 Benchmark definition 
 

First of all, I would like to describe what the electric car charging centre looks like. This 

car park is based on 3 charging lines and in each line, there are several charging points. 

Each charging point is also a private car park, so the car batteries can be charged while 

the cars are parked. A visual description of the car park is shown in Figure 17. 

 

FIGURE 17. A GENERAL STRUCTURE OF A CHARGING STATION WITH THREE LINES 

AND MULTIPLE CHARGING POINTS (OR PARKING SLOTS). [3] 

 

As can be seen in the figure 17, the design criteria of the control system were based on 

simplicity, economy and maintenance easiness. The grid is fed by a three-phase source 

of electric power with a voltage between phases of 400 V. Each charging point Pi is 

connected to one single-phase and supplies energy at 230 V and 2.3 kW. So, for a given 

contracted power, there can be a maximum number of vehicles charging in a line at the 

same time. Also, the consumption in the three lines should not be too different at any 

time. Otherwise, the net is imbalanced and there is current in the neutral point. This causes 

higher losses than those of a balanced system and lowers the energy transmission 

efficiency. Moreover, the Spanish regulations (BOE, 2013) do not allow the installation 

of devices that produce large imbalances without the consent of the supplier company, 

which can penalize the customer for it [7]. There are i lines, and each line connects Pi 

charging points. The number of active charging points is stored in the variable N. 

It should be noted that the problem addressed in the paper [7], uses two constraints in 

such a way that the results obtained can be used for an existing charging centre. The two 

constraints used are the following: 

 

∑ 𝑥𝑗
𝑖 ≤ 𝑁, i =  {1, . . . , L}    

𝑃𝑖

𝑗=1

 

 

(11) 

 

 



 

 

28 

 

j 

( 

 |∑ 𝑥𝑗
𝑖 − ∑ 𝑥𝑞

𝑙𝑃𝑖
𝑞=1

𝑃𝑖
𝑗=1 |

𝑁
≤ ∆, i, l = {1, . . . , L}, i ≠  l     

(12) 

 

 

 𝑥𝑗
𝑖 = {

1, if charging point j on line i is active;     
0, otherwise;

 

 

(13) 

 

 

 

 

Eq. (11) ensures that each line can only have N charging points active to charge N EVs 

at the same time, Eq. (12) controls the maximum imbalance between lines (∆  ∈ [0, 1]) 

between the lines, and Eq. (13) defines a decision binary variable [7]. j is the number of 

parks using the parking lot. 

To pursue the problem further, it is necessary to analyse how the fluctuation of cars will 

vary over time, i.e. to propose a scenario describing the behaviour of cars using the car 

park to charge EV batteries. For each car arriving at the car park, it is necessary to know 

the following data: 

• Arrival time: Describes the arrival time of the car at the car park in minutes.  

 

Charging time left: Describe how much charging time is needed for each car to 

reach 100% charge of its batteries, taking into account that the charging point has 

2.3 kW of charging power and the batteries have a capacity of 23kW. 

 

• Due date. Describe the time when the car has to leave the car park. 

The three parameters shown above follow the following normal or uniform distributions 

as shown in the tables below (Table 1 Table 2 Table 3). The first column of the tables 

shows the percentage of cars arriving at the car park and the second column shows the 

distribution that follow each group of cars. 

It can be seen that Table 2 does not directly show the remaining charging time to charge 

the battery of the cars arriving at the car park to 100% (N(C,D)). In order to calculate this 

data, the following equations have been used (14) (15). 

 
𝑐 =

(100 − 𝐴) ∗ 0.01 ∗ 60 ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑜𝑤𝑒𝑟
 

(14) 

 

 

 
𝐷 =

𝐵 ∗ 0.01 ∗ 60 ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑜𝑤𝑒𝑟
 

(15) 

 

 

The data shown in the tables (Table 1 Table 2 Table 3) has been plotted to get a better 

understanding of what the different probability distributions mean.  
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% VEHICLES ARRIVAL TIME (MINUTES) 

10 U (0,1440) 

20 N (510,15) 

10 N (720,15) 

50 N (1170,15) 

10 N (1350,15) 

TABLE 1 ARRIVAL TIME DISTRIBUTION 

 

 

 

FIGURE 18 GRAPHICAL DIAGRAM EVS ARRIVAL TIME 

 

 

% VEHICLES INITIAL CHARGE (%) 

10 N (80,10) -> N(A,B) 

30 N (50,15) 

30 N (35,7.5) 

30 N (12,6) 

TABLE 2 INITIAL CHARGE DISTRIBUTION 
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FIGURE 19 GRAPHICAL DIAGRAM OF THE TABLE 2 

 

% VEHICLES DUE DATE (MINUTES) 

10 N (240,120) 

30 N (360,120) 

30 N (480,120) 

30 N (660,120) 

TABLE 3 DUE DATES DISTRIBUTION 
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FIGURE 20 GRAPHICAL DIAGRAM OF THE TABLE 3 

 

It should be noted that these distributions have been obtained by means of a simple model 

generator based on the statistical distributions, by means of which the data necessary to 

pose the problem are obtained. Now, having described the scenario on which the project 

is based, it is time to explain how do the algorithm created to solve the problem works. 

6.3 Adapted ACO algorithm for EV charging 
 

Having described the scenario in which the project will be carried out, a detailed 

description of the algorithm that I have programmed to optimise the charging of the EVs 

that come to the aforementioned car park will be given. For this, the first thing to do is to 

show the pseudocode of the algorithm (Figure 21). It serves to represent the logical and 

detailed process of an algorithm in a clear and concise way, and facilitates the 

understanding of the algorithm by programmers and developers who can work on the 

actual implementation of the algorithm in different programming languages. 
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FIGURE 21. PSEUDOCODE OF ACO ALGORITHM 



 

 

33 

 

 

 

Each block shown in the pseudocode is explained in more detail below. 

6.3.1 Get information of each car 
 

In this part of the algorithm the objective is to obtain an array called "sample" which 

stores the following information: 

• Car identificatory 

• Arrival time 

• Charging time left 

• Due date 

This information is essential for the algorithm to find the best sequence to optimise the 

charging of the 30 EVs arriving at the car park. 

It should be noted that the scenario described in section X has been slightly modified. In 

the case of "due date", 1440 minutes have been added to the distribution, the equivalent 

of 1 day, in case one of the cars has to leave the day after arrival. This makes the new 

distribution the same as the previous one but shifted 1440 minutes to the right. The 

distribution used is as follows (Figure 22): 

 

FIGURE 22. NEW DISTRIBUTION OF DUE DATE 
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6.3.2 Initialize ACO parameters and pheromone and fitness matrices 
 

These blocks are already part of the ACO algorithm. The first thing to do is to initialise 

the main parameters, which are as follows: 

 
• MaxIt: Maximum Number of Iterations 
• nAnt: Number of Ants (Population Size) 
• q0: that controls the exploration of the decision rule 

• tau0: Initial Pheromone value 
• alpha: Pheromone Exponential Weight, parameter that controls the 

influence of the pheromone trails 
• beta: Parameter that controls the influence of the heuristic information 
• rho: Pheromone evaporation Rate 

• ksi: Parameter that controls the influence of the local pheromone update 
• N: Number of EVs arriving. 
 

Then, the pheromone (Tauij) and fitness (eta) matrices are initialised. Tauij is the matrix 

that stores the number of pheromones in each path, which will be updated as the ants find 

a better solution. It is a matrix of NxN dimensions. When it is initialised, the same number 

of pheromones is deposited in all the paths, tau0. Given that the probability of going from 

point A to the same point A is 0, the main diagonal of this matrix is all 0. 

 

Eta is the matrix that stores the fitness of each car, which is calculated by the equation 

15. It has been multiplied by 1000 because of otherwise its value is very low, causing 

computing problems in the algorithm. This matrix is also of NxN dimensions. 

 

 
𝑒𝑡𝑎 =

1

𝐷𝑢𝑒 𝐷𝑎𝑡𝑒
∗ 1000 

(16) 

 

 

6.3.3 Locate ants randomly 
 

Each ant is randomly assigned the value of a car, which will be the vehicle that starts the 

charge first, thus setting the timeframe to calculate the tardiness. This means that each 

ant will start creating a solution from a random car. In this way different ants will explore 

different paths, i.e. different loading sequences of all cars. Thus, the sequence with the 

shortest total loading time, i.e. minimum tardiness will be the best solution to the problem, 

and more pheromones will be deposited on the paths made by the ants in that sequence. 
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6.3.4  Ant Colony Optimization: State Transition Ruler and Global Pheromone 

Updating Rule. 
 

Three different for loops have been used in the main loop. The first one indicates the 

number of iterations to be performed in the algorithm. That is, how many different 

solutions will be obtained in total. So, this first loop establishes how many times the ants 

will do the search throughout the search space. The second one indicates the number of 

ants that are going to conduct the search in each iteration. This means that in each iteration 

as many solutions as ants there are will be obtained, to later choose the ant which obtains 

the best solution among all of them. The last one serves to build the solution, so the search 

process will be repeated for the number of EVs to be charged in the car park. In this 

project, a number of 30 iterations, 3 ants and 30 EVs have been set. It is worth noting that 

the more iterations there are, the more likely it is that a better solution will be obtained. 

However, this greatly increases the computational execution time of the algorithm, which 

is why a  lower number of iterations has been used. An equilibrium has to be maintained 

between effective computation time and optimal solution building. This leads to the 

application of the Global Pheromone Updating rule, by which the path chosen by the best 

global ant is chosen. The main loop is the one that goes from it=1: MaxIt and inside this 

loop is the ite=1:nAnts loop. The main loop consists on the State Transition Rule 

according to which the search process is conducted. Below is a brief explanation of what 

each loop contains. 

• Loop it=1: MaxIt 

 

o Loop “ite=1: nAnts” 

o Loop “iteration=1: N” 

 

▪ The first thing in this loop is to place each ant at a different starting point, i.e. at a 

different car. That is, each ant takes a random value from 1 to the number of cars 

(in this case 30). This means that each ant starts the EV charging process in the 

car that has been randomly assigned to it, so the first value of the solution of each 

ant will be this number. After that, each ant will build up the solution 

 

▪ The next thing to be done in this loop is to apply the state transition rule. With 

this rule, it is decided whether each ant will perform an exploration or an 

exploitation. At the beginning of the program, the parameters necessary for the 

program to work have been initialised. Among them is the parameter q0. This 

parameter sets the probability that each ant will perform a scan or an exploit. 

In this part of the algorithm, a random number "q1" is generated at each iteration.   

Depending on the value of "q1" the ant searches for the next solution in one way 



 

 

36 

 

or another. In this case it has been programmed as follows; with probability q0 the 

ant makes the best decision as indicated by the pheromone trails and the heuristic 

information (exploitation) (equation 6), while with probability (1−q0) the ant 

makes a random decision biased by the pheromone trails and the heuristic 

information (exploration) (equation 7). [1]  

 

 

 

 

FIGURE 23. CUMULATIVE FREQUENCY OF EXPLOITATION AND EXPLORATION 

 

o End Loop “iteration=1:N” 

o Loop “ite=1: nAnts” 

 

Once the 2 and 3 loops have been finished, it is time to apply the Global Pheromone 

Updating Rule. By means of this rule, the pheromone matrix is updated taking into 

account the best solution in each iteration. In this way, in the following iterations, the 

sequences used by the ants that have obtained the best solution will have more probability 

of being chosen, thus minimising the objective function. 

 

7 Results 
 

Having described how the algorithm works, this section will analyse the results obtained, 

as well as the influence of the initialisation parameters on the results obtained. The best 

result will be taken as the one that obtains the best value of the objective function 

described above (equation 15). Hence, the best result is the one with the lowest tardiness 

value. This implies that in the best sequence (result), the time between a car finishing 

loading and its due date will be the longest, making that car loading sequence the most 

efficient. 

In order to obtain results, a programme which describes the problem scenario has been 

developed. That is to say, the data of 30 EVs arriving at the car park to charge their 
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batteries has been obtained. The sequence of arrival and the necessary information for 

each EV has been tabulated in Table 4. 

 

 

Table 4. Information of each car arriving at the charging station 

Vehicle id Arrival Time 

(Minutes) 

Chargin time left 

(Minutes) 

Due date 

(Minutes) 

1 1197,51 377,60 1763,08 

2 515,14 627,70 2164,19 

3 1349,05 520,62 2098,76 

4 1191,26 335,66 2295,63 

5 1185,52 517,08 1825,53 

6 1152,79 227,15 1852,61 

7 1158,68 466,39 1891,03 

8 1174,69 297,30 1995,32 

9 1186,64 306,96 1666,38 

10 1192,99 333,42 1934,08 

11 510,49 439,53 2110,31 

12 498,87 511,54 1889,77 

13 523,33 173,80 1858,58 

14 1167,06 538,50 2110,52 

15 520,45 519,23 1780,10 

16 765,00 621,08 1822,48 

17 1141,00 138,48 1993,44 

18 1161,83 362,99 2008,72 

19 1167,09 69,62 1971,34 

20 1171,86 457,41 1775,06 

21 1362,38 489,91 1767,30 

22 1165,83 454,13 1701,17 

23 517,62 391,51 1935,30 

24 1165,51 378,21 1645,72 

25 495,31 251,98 1795,71 

26 1349,70 354,08 2084,01 

27 530,27 246,99 1818,25 

28 547,89 539,07 1576,14 

29 731,87 -19,79 1840,02 

30 1176,78 398,27 1903,44 

. 

Next, a study of the influence of the initial parameters used in the ACO has been carried 

out. Starting from some standard values of these parameters (Table 5), in each of the 

following sections a parameter has been modified to see its influence on the results. 
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The results of the algorithm are the total tardiness of each EV, i.e. the difference between 

the time it has to leave and the time it finishes charging. Therefore, the smaller the 

tardiness, the better the result. Notice that, for simplicity’s sake, the tardiness is given and 

represented in absolute values, as in this scenario all tardiness values were negative (thus 

achieving the objective of tardiness minimization.) 

 

 

 

Initialisation parameters value  

MaxIt (Number of iterations) 30 

Nant (Number of ants) 3 

N (Number of cars) 30 

q0 0,5 

tau0 0,5 

Α 1 

Β 2 

Ρ 0,1 

TABLE 5. STANDARD VALUES FOR ACO. 

 

7.1 Influence of q0 
 

Using the parameters in the above table 5 as a reference, the value of q0 has been modified 

and the following results have been obtained. Table 6 tabulates the best tardiness of each 

iteration for each value of q0 used. In that table, the absolute values have been tabulated 

in order to simplify the table. It should be noted that all the values are negative, i.e. all 

cars leave the car park before their departure time. 

 

 

TABLE 6. INFLUENCE OF Q0 IN THE RESULTS 

  q0 

Iteration 0,00 0,50 0,95 1,00 

1,00 6271 6674 6103 6540 

2,00 5405 6327 5837 5906 

3,00 7984 6877 6217 5855 

4,00 6558 6020 7163 5856 

5,00 7993 6901 6636 6321 

6,00 6113 7983 9242 6741 

7,00 7084 6908 7201 6336 

8,00 5882 8380 5999 6741 

9,00 7167 7506 7427 5710 

10,00 7027 7003 8137 6055 



 

 

39 

 

11,00 6962 8711 6528 7776 

12,00 8174 6792 7015 8206 

13,00 5944 6875 6639 6577 

14,00 5553 6139 6855 7165 

15,00 6709 6694 7532 6336 

16,00 6300 7069 7227 6540 

17,00 7438 6214 8103 5398 

18,00 7157 6423 5981 5694 

19,00 8294 7209 5708 6745 

20,00 6871 5847 6359 6101 

21,00 6804 5855 6566 10007 

22,00 6758 6739 7363 9835 

23,00 6037 6030 7999 6222 

24,00 7963 7173 7208 7539 

25,00 7454 6554 7144 8395 

26,00 6028 6846 7988 5807 

27,00 4860 7152 6701 6345 

28,00 6530 6510 6745 7891 

29,00 7560 6682 6779 6741 

30,00 6105 6923 6333 6112 

Average 
(Minutes) 6766 6834 6958 6783 

Best 
(Minutes) 8294 8711 9242 10007 

 

In order to have a better perspective of the obtained results, the following graph (Figure 

24) has been made. 
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FIGURE 24. INFLUENCE OF Q0 IN THE RESULTS 

It can be seen that very similar results are obtained with different values of q0. In the 

theory, if the value of Q0 increases, ants will tend to make more "selfish" decisions, 

meaning that they will follow the shortest and most efficient route more directly, rather 

than exploring other options in search of a better solution. This can lead to premature 

stagnation in the search for solutions, as ants will not explore the solution space 

exhaustively. On the other hand, if the value of Q0 decreases, ants will be more likely to 

explore different options and follow the pheromone path, which may improve the 

diversity of solutions found, but may also increase the search time. 

In this case Figure 24 shows that a higher q0 value delivers slightly better results. So, it 

is possible to say that to favour exploitation and heuristic results in a better search process. 

The best result has been obtained with q0=1. However, it is most likely that this result 

has been obtained randomly, since in this case the ants do not explore anything and there 

is very little probability of finding the solution the first time. Thus, it can be said that the 

best solution building and search has been done when q0=0.95. In this case, although it 

is possible to see that the heuristic and pheromone accumulation are strong drivers of the 

search the introducing some exploration avoids stagnation. However, for smaller zero 

values, the pheromone accumulation scatters (as can be seen in Figure 25) and this leads 

to poorer searches and results. Since all the tardiness averages have a similar value, the 

algorithm tends to get locked in near-optimal solutions. Although it leads to a feasible 

solution, it is not the best possible. This is one recurring problem in meta-heuristic 

methods. In order to be able to observe the influence better, a very high number of 

iterations would have to be set, something that would decrease the efficiency of the 

algorithm.. 

On the other hand, it is interesting to note the influence of q0 on the final pheromone 

matrix. In this matrix we can appreciate the number of pheromones that the ants deposited 

in each path. That is to say, the ants will deposit a lot of pheromones in the position (13,5) 
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of the matrix if it is interesting to load the car number 5 after 13. However, if that loading 

sequence does not give a good solution, no large amount of pheromone will be deposited 

at that point of the matrix. The final pheromone matrix for each simulation performed in 

this section is shown below. 

 

 

These images follow the explanation given for the influence of q0 on the results of the 

algorithm. Clearly it can be seen that when q0 takes a very high value, the ants instead of 

exploring always take the similar paths, and the search stagnates and finishes delivering 

a near-optimal solution, so they deposit all the pheromones in that path and in the others, 

they do not deposit anything. On the contrary, when q0 is equal to 0, the ants explore all 

the time, so all the paths have some pheromone deposited. 

 

 

7.2 Influence of ρ 
Using the parameters in the above table 5 as a reference, the value of ρ has been modified 

and the following results have been obtained. Table 7 tabulates the best tardiness of each 

iteration for each value of q0 used. They also are shown in Figure 26. 

FIGURE 25. FINAL PHEROMONE MATRIXES. 
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TABLE 7. INFLUENCE OF Ρ IN THE RESULTS 

Iteration 0,00 0,10 0,20 0,40 

1,00 6980 7278 6203 6974 

2,00 6659 8456 6204 6272 

3,00 6506 7265 6524 6072 

4,00 7308 6776 7115 6833 

5,00 7953 6172 6059 6277 

6,00 6115 8039 7145 6600 

7,00 6394 7329 7467 6645 

8,00 6831 6403 6671 6000 

9,00 6237 7492 6386 7198 

10,00 7255 7149 6689 5816 

11,00 5872 8129 5509 5895 

12,00 6515 7107 6986 6185 

13,00 6167 7443 7689 5808 

14,00 6252 6699 6393 6068 

15,00 6321 6228 7809 6459 

16,00 7328 6152 5745 6293 

17,00 6288 7976 7851 6664 

18,00 6098 6402 7689 6876 

19,00 7518 6193 6095 7591 

20,00 6352 7845 7649 6524 

21,00 6655 6180 6349 7820 

22,00 6660 6582 7729 10274 

23,00 5668 6863 6050 8018 

24,00 6360 7115 5689 7861 

25,00 6538 6573 6352 5901 

26,00 5790 6002 6816 7234 

27,00 6887 6180 5520 5448 

28,00 5442 6492 9134 8800 

29,00 7172 6554 6798 8087 

30,00 7473 6911 7353 7054 

Average 
(Minutes) 6586 6933 6789 6852 

Best 
(Minutes) 7953 8456 9134 10274 
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FIGURE 26. INFLUENCE OF Ρ IN THE RESULTS 

 

In addition, the pheromone matrix has also been plotted to highlight that the variation of 

the rho parameter also influences the pheromone matrix (Figure 27). The higher the rho 

parameter, the more the pheromones evaporate, so that, except for the points that are 

always in the best solution, the rest of the pheromone matrix contains a small amount of 

pheromone. 
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FIGURE 27. FINAL PHEROMONE MATRIXES   

As in the previous case, the algorithm gets locked in near-optimal solutions. 

Theoretically, if rho is too high, the pheromones may disappear too quickly and the ant 

colony agents may lose valuable information about previous solutions, which may lead 

to premature convergence and possibly a suboptimal solution. On the other hand, if rho 

is too low, pheromones may persist too long and ants may continue to explore sub-optimal 

solutions, which may lead to a longer runtime and possibly a sub-optimal solution.  

In this case, a better solution was again obtained when higher pheromone values, i.e., 

exploitation, were favoured. So, we are consistently seeing that heuristics and pheromone 

accumulation favour better results, in detriment of exploration and a higher degree of 

randomness. But this also shows that a certain stagnation happens in these cases, which 

is why the algorithm does not converge in the best solution and keeps production near-

optimal solutions.  
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7.3 Influence of β / α 
 

Using the parameters in the above table 5 as a reference, the relation of β / α has been 

modified and the following results have been obtained. Table 8 tabulates the best tardiness 

of each iteration for each value of q0 used. They also have been showed in Figure 28.  

 

TABLE 8. INFLUENCE OF Β / Α IN THE RESULTS 

Iteration 0,50 1,00 3,00 5,00 

1,00 7330 6667 6675 6228 

2,00 6487 5699 6459 5666 

3,00 6801 6507 6478 7300 

4,00 6529 7593 6376 6100 

5,00 5726 5800 6944 8093 

6,00 5518 6624 7254 6750 

7,00 5719 7045 6557 6726 

8,00 6630 6934 6999 7185 

9,00 7284 7968 7150 6683 

10,00 7053 9117 6273 7636 

11,00 5474 6132 6944 7898 

12,00 7908 6711 6632 6930 

13,00 6652 6839 6670 6831 

14,00 8381 6331 7012 5448 

15,00 7316 5378 7576 6509 

16,00 6995 7448 7369 6854 

17,00 6273 5517 7121 6684 

18,00 6605 6461 6001 7371 

19,00 6447 6856 6673 6233 

20,00 8179 5630 6931 6523 

21,00 6136 7994 7901 6716 

22,00 6465 8025 6400 6206 

23,00 7041 6225 6680 7187 

24,00 6040 9492 7019 6385 

25,00 6081 5352 6640 7201 

26,00 7118 5673 5734 7108 

27,00 7368 5932 7011 6154 

28,00 7279 6674 6693 6900 

29,00 6775 7128 7121 7222 

30,00 7304 6974 6532 5749 

Average 
(Minutes) 6764 6758 6794 6749 

Best 
(Minutes) 8381 9492 7901 8093 
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FIGURE 28. INFLUENCE OF Β / Α IN THE RESULTS 

 

In this case, the alpha parameter controls the degree of exploration, i.e. the propensity of 

the ants to use new paths(vehicle charging combinations). A high value of alpha will 

result in a greater focus on exploring new solutions, which can be useful at the beginning 

of the search process when potential solutions need to be found quickly and also to avoid 

stagnation and near-optimal solutions. On the other hand, the beta parameter controls the 

degree of exploitation, i.e., the propensity of ants to visit already used paths in search of 

promising solutions. A high value of beta will result in a greater focus on exploiting 

known solutions, which can be useful in later stages of the search process to improve 

existing solutions. 

In this case, the pattern of obtaining the best solution near iteration 22 is repeated again, 

so it will not be taken into account. There is a lot of variability in the results, but it is 

possible to see that ratios that favour a beta higher than alpha, tend to deliver slightly 

better solutions. Thus, when the heuristic value is favoured and guides the search, once 

again, better results are obtained.  

 

7.4 Best Solution parameters 
 

In this section, the values of the initial ACO parameters have been set in such a way as to 

obtain the best possible solution. In this case, the best solution has been obtained using 

the following parameters. (Table 9) 
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TABLE 9. PARAMETERS VALUE WHICH GIVES THE BEST SOLUTION 

Initialisation parameters value  

MaxIt (Number of iterations) 30 

Nant (Number of ants) 3 

N (Number of cars) 30 

q0 0,95 

tau0 0,5 

α 1 

β 2 

ρ 0,1 

 

8 Conclusions & future work 
 

In this master's thesis, exhaustive research has been carried out on electric car charging 

management and the use of metaheuristic algorithms to tackle optimisation problems in 

this context. From the detailed analysis and the results obtained, the following 

conclusions have been reached. 

On the one hand, in the coming years, the proper management of electric car charging 

will become a crucial task to avoid the collapse of the electricity system in the face of 

growing demand for EVs. The increasing adoption of EVs presents significant challenges 

in terms of energy demand and supply capacity. It is essential to implement efficient load 

management strategies to balance demand and avoid overload situations in the electricity 

system. 

On the other hand, metaheuristic algorithms have proven to be a powerful tool for solving 

optimisation problems related to electric car charging. These algorithms, such as ACO, 

BCO and genetic algorithm, offer a flexible and efficient approach to find optimal or 

approximate solutions to complex problems.  

The algorithm that has been developed was able to reach optimal solutions every time, 

however, they were near-optimal solutions, convergence to the best global solutions was 

not achieved, even after extensive parameterization tests. This raises the question if this 

kind of algorithm is really adequate for solving this problem and how can its behaviour 

be improved, without raising the computation time excessively and still keeping it simply. 

As has been seen in the results, the search is driven primarily by the heuristic, then 

pheromone accumulation and a limited explorative characteristic. 

Considering this, the proposals for future work that would improve the results would 

include: 

• One reason why good and similar solutions have always been obtained may be that 

the sample of cars generated by the "samplesimulator" is very simple. That is to say, 

all cars have a very large due date, so it is very easy that they are always going to be 

loaded before they have to leave the car park (very negative tardiness). Therefore, by 
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creating a sample with a tighter due date, it could be better appreciated if the algorithm 

is able to obtain the best solution and see that there is a much better solution than the 

rest, since, in this case, almost all the solutions obtained the same value of total 

tardiness. 

• Another way to improve the results could be to widen the sample of cars, so that there 

would be more possible results. 

• In this project, the local pheromone updating rule has not been taken into account 

when implementing the algorithm, so if it had been taken into account, better results 

could have been obtained. 

• Furthermore, a hybrid algorithm, which combines more than one type of optimisation 

mentioned above, could be used and see if it works better than this one. In addition to 

this, it could be possible to change the objective function to see how the change of the 

heuristic value affects to the search, and see if better results are obtained. 
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