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Abstract: This study focuses on assessing the accuracy of supervised machine learning regression
algorithms (MLAs) in predicting actual crop evapotranspiration (ETc act) for a deficit irrigated vine-
yard of Vitis vinifera cv. Tempranillo, influenced by a typical Mediterranean climate. The standard
approach of using the Food and Agriculture Organization (FAO) crop evapotranspiration under
standard conditions (FAO-56 Kc-ET0) to estimate ETc act for irrigation purposes faces limitations in
row-based, sparse, and drip irrigated crops with large, exposed soil areas, due to data requirements
and potential shortcomings. One significant challenge is the accurate estimation of the basal crop
coefficient (Kcb), which can be influenced by incorrect estimations of the effective transpiring leaf
area and surface resistance. The research results demonstrate that the tested MLAs can accurately
estimate ETc act for the vineyard with minimal errors. The Root-Mean-Square Error (RMSE) values
were found to be in the range of 0.019 to 0.030 mm·h−1. Additionally, the obtained MLAs reduced
data requirements, which suggests their feasibility to be used to optimize sustainable irrigation
management in vineyards and other row crops. The positive outcomes of the study highlight the
potential advantages of employing MLAs for precise and efficient estimation of crop evapotran-
spiration, leading to improved water management practices in vineyards. This could promote the
adoption of more sustainable and resource-efficient irrigation strategies, particularly in regions with
Mediterranean climates.

Keywords: grapevine; vineyard irrigation; actual crop evapotranspiration; machine learning algorithms;
decision support systems

1. Introduction

Viticulture is a vital socio-economic activity for Mediterranean countries, but it faces
significant challenges due to climate change and extreme weather conditions. More severe
droughts and higher temperatures are expected [1], leading to increased evaporative
demand and reduced water availability for irrigation. In this context, efficient irrigation
management is crucial for optimizing yield and berry composition in vineyards. Such
a scenario brings new challenges to Mediterranean viticulture, as irrigation emerges as
an adaptation strategy aimed at optimizing yield while improving ripening and berry
composition [2,3].

Grape ripening is a critical phenological phase that greatly influences berry composi-
tion at harvest time. Moderate water stress during this period benefits grapevine water-use
efficiency and grape quality [2]. Accurate quantification of this condition requires moni-
toring actual crop evapotranspiration (ETc act), which allows for the implementation of
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efficient irrigation management schemes. To ensure optimal plant water status, irrigation
protocols must be based on accurate knowledge of weather, soil, and plant variables. Never-
theless, there is some debate among plant physiologists and micrometeorologists regarding
the factors contributing to plant water loss through transpiration. Plant physiologists
emphasize the role of stomata in this process [4–6], while micrometeorologists focus on the
high energy required for water evaporation [7].

Several methods to estimate evapotranspiration (ET), incorporating various factors
from soil to vegetation and based on weather variables, have been developed [8]. Some are
derived from the Penman–Monteith equation, which describes the ET process considering
the soil and air moisture, mass transfer, and the energy required for the process [7]. The
Food and Agriculture Organization (FAO) recommends crop evapotranspiration under
standard conditions (FAO-56 Kc-ET0) as the standard approach for defining and calculating
reference ET (ET0). Since ET0 reflects the weather-related effects on water use by a reference
crop [9,10], in order to be applicable to different crops, the method needs to scale ET0
by a crop coefficient (Kc), which accounts for the physical and physiological differences
from the reference crop, their impact on ET0, and their variability during the growing
season [9]. Several simplifications were incorporated into the Kc coefficients, including
plant transpiration and soil evaporation [11]. To avoid incorrect estimation of crop ET
(ETc) in orchards and sparse crops with drip irrigation and large exposed soil areas, the
FAO-56 Kc-ET0 method was adapted to separate plant and soil components of Kc, the
basal crop (Kcb) and the soil evaporation coefficient (Ke) [9]. However, for crop species
with tight stomatal control of water loss and regulation of leaf water potential, such as
grapevine, literature has reported major accuracy limitations in using the FAO-56 Kc-
ET0 method [11–15]. These inaccuracies are mainly related to the surface resistance and
incorrect estimation of Kcb [16–18]. In fact, the procedure for the practical estimation of
the ETc act, must take into account the effective transpiring leaf area, and additionally
include auxiliary sub-models for aerodynamics and surface conductance, which must be
parameterized for each new measurement, location, and condition [15,19–22].

To overcome the limitations of the FAO-56 Kc-ET0 method, alternative approaches,
such as employing machine learning regression algorithms (MLA) can be considered [23,24].
Indeed, MLAs have the capacity to map input-dependent variables to output-independent
ones by learning patterns from training datasets with known pairs of input-output data [25].
Previous studies in the literature describe the use of MLA approaches to estimate ET0, but
to the best of our knowledge, none of them relates to farm scale calculation of the ETc act
for grapevines [24,26–29].

This research assesses the performance of eight state-of-the-art supervised machine
learning regression algorithms (MLA), using three main atmospheric variables (net
radiation—Rn, wind speed—U, and vapor pressure deficit—VPD) and a plant variable
(stomatal conductance to water vapor—gsw), to predict ETc act as key information for
designing optimal irrigation management systems in vineyards. To assess the accuracy
of the algorithms, ETc act estimates by MLA are compared to the accuracy of the ETc act
computed by the FAO-56 Kc-ET0 method, using the actual crop ET recorded by the Eddy
covariance tower flux installed in the field as an external validation variable.

The findings suggest that MLA models can be effective in estimating the ETc act
and optimizing irrigation management in vineyards. These models can continuously
improve and expand their knowledge by incorporating new data from agronomic cam-
paigns. The application of MLA in arid climates can significantly benefit viticulture in
Mediterranean regions.

2. Materials and Methods
2.1. Experimental Layout

The trials were carried out in a commercial vineyard (Herdade do Esporão) in Reguen-
gos de Monsaraz, Alentejo wine region, southern Portugal (lat. 38◦23′55.00′′ N; long.
7◦32′46.00′′ W). Specifically, a 17-year-old commercial vineyard of the red Vitis vinifera cv
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Tempranillo (syn. Aragonez), grafted on 1103 Paulsen rootstock, was chosen for the study.
The vines are 1.5 m within and 3.0 m between rows (2220 vines/ha), north-south oriented,
trained to vertical shoot positioning, and spur-pruned on a bilateral Royat cordon system.
All vines were pruned evenly, with 15–16 buds per vine. A Eutric Cambisol (CM) with
a depth of 1.0 m and a silty-clay texture was found, with a pH ranging from 7.0 to 7.6, a
low organic matter content, and a high content of phosphorus and potassium. Standard
cultural practices in the region were followed, and the vines were irrigated weekly with
drip irrigation, using 2.4 L·h−1, 1.0 m spaced emitters, in accordance with owners’ practices.

For the study, 20 adult and healthy vines were randomly selected from two adjacent
rows, with 10 vines per row. This criterion of narrow sample selection increases confidence
in the coherence of the measurements, as it ensures an optimal data acquisition procedure
under conditions of low temporal and spatial variability within each measurement, without
compromising the variability observed in the field. This experimental design also allowed
for the assessment of solar radiation effects, as both sides of the canopy (east and west)
were studied under contrasting incident radiation.

The field trial, detailed in Section 2.2.1, was carried out during the ripening period in
2019 (20 and 22 July) and 2020 (24, 29 and 31 August), from 8 a.m. to 7 p.m.

2.2. Field and Reference Measurements
2.2.1. Field Measurements

Wind speed (U) was measured with a 3D sonic anemometer (Gill Windmaster Pro,
Gill Instruments Limited, Hampshire, UK). To avoid gust peaks, the wind speed was
recalculated using a 300-s running average over the incoming wind signal [30] and corrected
by applying Equation (1) to wind speed measured 3 m above the ground surface [9]:

U = Uz.
4.87

ln(67.8 z− 5.42)
(1)

where U is the wind speed (m·s−1) measured at 2 m above the ground surface, Uz is the
wind speed (m·s−1) measured in z m above the ground surface, and z is the height above
the ground surface (m) at which the wind speed is measured. Air temperature (Tair) and
relative humidity (RH) were recorded using a thermohygrometer (CS215-PWS Campbell
Scientific, Logan, UT, USA) placed 2 m above the soil surface. Net radiation (Rn) was
measured with a net radiometer (NR2, Delta-T Devices, Cambridge, UK), installed above
the top of the canopy. Soil heat flux (G) was measured with six heat flux plates (Hukseflux
HFP01, Hukseflux Thermal Sensors, Delft, The Netherlands), placed at 5 mm depth, one
under the canopy, and the others 0.5 m apart, perpendicular to the vine row and covering all
the inter-row. Soil heat flux data are presented as the average of all six measurements. Soil
and meteorological sensors were connected to a datalogger (CR1000, Campbell Scientific,
Logan, UT, USA) and data was collected every minute and averaged every five minutes.
Plant water status was assessed by pre-dawn leaf water potential (ΨPD) measurements on
each sampling date using a Scholander-type pressure chamber. Water vapor gas exchange
was also monitored by measuring stomatal conductance to water vapor (gsw) on adult
leaves from each side of the canopy, from 8 a.m. to 7 p.m., using a steady state porometer
(LI-1600, LI-COR, Lincoln, NE, USA). A summary of the field measurements is shown in
Table 1.

2.2.2. Characterization of the Climate and Grapevine Water Status

The study zone’s climate is Mediterranean, with hot and dry summers and mild rainy
winters. Accumulated rainfall from October to August ranged from 341 to 466 mm in 2019
and 2020, respectively (Table 2).
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Table 1. Summary of field measurements and instrumentation.

Measurement Periodicity and Data
Integration Units Source

Stomatal conductance to
water vapor (gsw)

Hourly from 8 a.m. to
7 p.m. m·s−1 Steady-state porometer (Model LI-1600, LI-COR, Lincoln, NE, USA

Air temperature (Tair) Every minute and averaged
every 5 min

◦C Temperature and relative humidity probe, model CS215-PWS
(Campbell Scientific, Logan, UT, USA) connected to a datalogger

(CR1000, Campbell Scientific, Inc.)Air relative humidity (RH) %

Wind speed (U) Every 1/10 s and averaged
every minute m·s−1 3D sonic anemometer (model Gill Windmaster Pro, Gill

Instruments Limited, Hampshire, UK)

Net radiation (Rn) Every minute and averaged
every 5 min W·m−2

Net radiometer, model NR2, (Delta-T Devices, Cambridge, UK)
connected to a datalogger (CR1000, Campbell Scientific, Inc., Logan,

UT, USA)

Soil heat flux (G) Every minute and averaged
every 5 min W·m−2

Hukseflux heat flux plate, model HFP01 (Hukseflux Thermal
Sensors, Delft, The Netherlands) connected to a datalogger

(CR1000, Campbell Scientific, Inc., Logan, UT, USA)

Vapor pressure deficit
(VPD)

Every minute and averaged
every 5 min kPa

VPD = es − ea (2)
ea = eo(T). RH

100 (3)

eo(T) = 0.6108.exp
(

17.27×T
T+237.3

)
(4)

es = eo(Tmin)+eo(Tmax)
2 (5)

where (es) is the saturation and (ea) is the actual vapor pressure, for
a given period [9]

Table 2. Characterization of rainfall patterns. Accumulated rainfall during grapevine dormancy, from
October (Oct) to December (Dec) of the previous year’s vintage (year (i − 1)), dormancy to flowering
(January–May), and berry development to grape ripening (June (Jun) to August (Aug)) of the harvest
year (year (i)) and the cumulative rainfall from October of the previous year to August.

Rainfall (mm)

Year (i − 1) Year (i) Accum

Year (i) Oct–Dec Jan–May Jun–Aug Oct–Aug

2019 204.4 133.6 3.4 341.4
2020 226.0 239.0 1.2 466.2

Hourly averaged net solar radiation above the canopy (Rn, W·m−2), soil heat flux
(G, W·m−2), air temperature (Tair, ◦C), wind speed (U, m·s−1), and air vapor pressure
deficit (VPD, kPa), during the experimental period and measured on the experimental
plot, are shown in Figure 1. All measurements were taken under clear-sky conditions.
Tair and VPD followed a similar daily pattern. In the afternoon, the VPD was always
above 3 kPa and reached 4.5 to 5 kPa between 5 p.m. and 6 p.m. The wind speed, U, was
moderate, with a maximum of 4.4 m·s−1. The vineyard row orientation and the apparent
daily course of the sun influenced the soil heat flux. The G increased from the early hours
of the day until 2 p.m., when it almost reached its maximum value, and decreased after
3 p.m. when Rn decreased. Rn, soil G, Tair, and VPD showed a similar diurnal pattern
during all measurement periods.

Predawn leaf water potential (ΨPD) varied between−0.4 and−0.6 MPa, corresponding
to a condition of moderate to severe stress in grapevine, considered adequate to produce
high-standard wines [2,31] (Table 3). A moderate recovery in ΨPD was observed after each
irrigation event, with an increase of more than 0.1 MPa, (e.g., on 22 August 2019, and
on 24 and 29 July 2020).
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Figure 1. Atmospheric and Soil Variable Patterns on the Measurement Days. The figure illustrates the
measurements of net solar radiation above the canopy (Rn, W·m−2), Soil heat flux (G, W·m−2), air
temperature (Tair, ◦C), wind speed (U, m·s−1), and air vapor pressure deficit (VPD, kPa) measured
on 20 and 22 August 2019 and 24, 29 and 31 July 2020 on the experimental plot is presented. The
values represent means, and the vertical bars indicate the standard error of the mean plots (n = 12).
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Table 3. Predawn leaf water potential (ΨPD) of grapevines on the measurement days. The table
displays measurements of predawn leaf water potential (ΨPD) of grapevines on specific measurement
days. Measurements were conducted on 20 August (before irrigation) and 22 August 2019 (after
irrigation) at 4–5 a.m., as well as on the 24 July (after irrigation), 29 July 29 (before irrigation), and
31 July 2020 (after irrigation). The data is presented as the mean (Avg) and standard error of the
mean (SE) of five replicates per day.

ΨPD (MPa)
DAY Avg SE

20 August 2019 (before irrigation) −0.60 0.012
22 August 2019 (after irrigation) −0.52 0.021

24 July 2020 (after irrigation) −0.42 0.020
29 July 2020 (before irrigation) −0.55 0.017
31 July 2020 (after irrigation) −0.47 0.017

2.2.3. Reference Actual Crop Evapotranspiration Measurements

An EC system installed on the experimental plot was used to record actual crop
evapotranspiration (ETc act meas) simultaneously with U. A part of the collected data was
used as a target variable in the model training phase and a part as an external validation
dataset. The EC system consisted of a fast response, 0.1 Hz, open path CO2/H2O analyzer
(LI-6500 DS, LI-COR Inc., Lincoln, NE, USA) and a 3D sonic anemometer (Gill Windmaster
Pro, Gill Instruments Limited, Hampshire, UK) connected to a Smartflux 3 system (LI-COR
Inc., Lincoln, NE, USA). The sonic anemometer and the open path CO2/H2O analyzer
were installed at a height of 3.0 m above the ground surface, over the top of the canopy. A
fetch of at least 300 m, facing the prevailing north winds and covering the experimental
field ensured that all fluxes within the area of interest were measured. The quality of
the recorded data was tested and analyzed with the EddyPro software v7.0.6 (LI-COR
Inc., Lincoln, NE, USA). The measurements enabled us to record the registered actual
evapotranspiration (ETc act meas) at a high temporal resolution, every 1/10 s.

More than 90% of the daily data flux of the dataset analyzed here had an energy
balance closure greater than 0.95. Consequently, the uncertainty of the measured ETc
act meas values was less than 5%, which corresponded to an ETc act meas measurement
uncertainty of less than 0.002 mm h−1 on the hourly flux determination of 90% of the data.

Despite the significant differences between the ETc act meas recorded before and after
irrigation days, similar patterns were found in the ETc act meas recorded before irrigation
and in the ETc act meas recorded after irrigation (Figure 2). Irrespective of the irrigation
difference, the ETc act meas increased exponentially from the early morning hours, reaching
its peak between 11 a.m. and 12 p.m. In 2020, when the grapevines were less stressed
after irrigation (Table 3), the maximum ETc act meas reading was recorded at 1 p.m., when
the air VPD reached 3.5 MPa, and decreased towards the end of the day, regardless of
the energy available for water evaporation. In both years, prior to irrigation, and under
more severe water stress conditions, the maximum ETc act meas reading was registered at
11 a.m. and was maintained at a similar level for an extended period, only decreasing after
5 p.m. to 6 p.m. (Figure 2). These results are consistent with the strong regulation of gsw on
grapevine transpiration [4], and the large contribution of plant transpiration compared to
soil evaporation to total evapotranspiration in vineyards. While before irrigation, ETc act
meas ranged from 0.06 to less than 0.2 mm·h−1, the recorded ETc act meas after irrigation
was on average 1.3 to 1.4 times higher, thus suggesting larger stomata opening and greater
water loss through transpiration.



Agronomy 2023, 13, 2463 7 of 18

Agronomy 2023, 13, x FOR PEER REVIEW 7 of 19 
 

 

decreasing after 5 p.m. to 6 p.m. (Figure 2). These results are consistent with the strong 
regulation of gsw on grapevine transpiration [4], and the large contribution of plant 
transpiration compared to soil evaporation to total evapotranspiration in vineyards. While 
before irrigation, ETc act meas ranged from 0.06 to less than 0.2 mm·h−1, the recorded ETc 
act meas after irrigation was on average 1.3 to 1.4 times higher, thus suggesting larger 
stomata opening and greater water loss through transpiration. 

 
Figure 2. Actual crop evapotranspiration (ETc act meas) measured in the experimental plot. The 
figure displays the actual crop evapotranspiration (ETc act meas) measured in the experimental plot 
using an Eddy covariance flux tower. Measurements were taken on the 20 and 22 August 2019, 
before and after irrigation, respectively, as well as on the 24 July,after irrigation, 29 July, before 
irrigation, and after irrigation on 31 July 2020. The values represent means, and the vertical bars 
indicate the standard error of the mean plots. 

2.3. Developed Methodology 
2.3.1. Data Processing and Analysis 

In order to estimate actual crop evapotranspiration, under non-standard conditions 
(ETc act est), from weather and plant variables using machine learning techniques, the 
initial field measurement data underwent a transformation to create a suitable data 
structure for processing and analysis. The original data were structured into a nine-
dimensional vector composed of the seven measured variables (gsw, ETc act meas, Tair, 
RH, U, Rn, and G) and two derived variables (Rn—G and VPD), with 600 measurements 

8 9 10 11 12 13 14 15 16 17 18 19
Time of the day (h)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ET
c 

ac
t m

ea
s (

m
m

.h
-1

)

2019
 20 August
 22 August

8 9 10 11 12 13 14 15 16 17 18 19
Time of the day (h)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ET
c 

ac
t m

ea
s (

m
m

.h
-1

)

2020
 24 July 
 29 July
 31 July 

Figure 2. Actual crop evapotranspiration (ETc act meas) measured in the experimental plot. The
figure displays the actual crop evapotranspiration (ETc act meas) measured in the experimental plot
using an Eddy covariance flux tower. Measurements were taken on the 20 and 22 August 2019, before
and after irrigation, respectively, as well as on the 24 July, after irrigation, 29 July, before irrigation,
and after irrigation on 31 July 2020. The values represent means, and the vertical bars indicate the
standard error of the mean plots.

2.3. Developed Methodology
2.3.1. Data Processing and Analysis

In order to estimate actual crop evapotranspiration, under non-standard conditions
(ETc act est), from weather and plant variables using machine learning techniques, the initial
field measurement data underwent a transformation to create a suitable data structure for
processing and analysis. The original data were structured into a nine-dimensional vector
composed of the seven measured variables (gsw, ETc act meas, Tair, RH, U, Rn, and G)
and two derived variables (Rn—G and VPD), with 600 measurements per variable. VPD
was calculated using Tair and RH as described in Equations (2)–(5) (Table 1). To train
the machine learning models (MLA) to estimate actual crop evapotranspiration, ETc act
est, the ETc act meas recorded in the experimental plot was used as the label/dependent
variable (target), and the variables gsw, VPD, Rn, G, U, and Tair were initially considered
as predictors, subject to the results of the pre-processing analysis. The predictor variables
were selected from the crop and meteorological variables with the greatest influence on ETc
act according to the literature.
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Data pre-processing included outlier analysis, variable correlation analysis, and data
structuring into an internal training and testing set, and an external validation dataset.
Outliers were identified by the interquartile range (IQR) method with a cut-off of 1.5× IQR.
Scores that fell below 1.5 × IQR − Q1 (the 1st or 25% quartile) or above 1.5 × IQR + Q3 (the
3rd or 75% quartile) were considered as outliers and removed from the dataset. To avoid
multicollinearity of the model, the correlation of the variables was analyzed by a Pearson
product-moment correlation test. Variables not correlating below −0.6 or above a threshold
of 0.6 were selected as good candidates for ETc act predictors. Consequently, the variable
Tair was removed based on this criterion. After removing the outliers and discarding the
variable, the data were randomly split into three datasets: A training and testing dataset
containing 40% of the 2019 and 2020 data, and two validation datasets, one containing the
remaining 2019 data, and the other containing the remaining 2020 data (Figure 3). The
three datasets were configured to maintain similar data patterns (Table 4).
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2.3.2. Modeling Vineyard Actual Evapotranspiration under Non-Standard Conditions

The pooled training dataset (Figure 3) was used to train and fit a set of supervised
machine learning regression models to predict ETc act pred, employing a five-fold cross-
validation scheme to protect against overfitting. The selected model predictors, as detailed
above, were the daily course of net radiation (Rn, W·m−2), soil heat flux (G, W·m−2), air
vapor pressure deficit (VPD, kPa), wind speed (U, m·s−1) measured above the canopy, as
well as the stomatal conductance to water vapor (gsw, m·s−1). The pooled training dataset,
ETc act meas data, recorded in the field (Figure 3), was used as the target variable. For
modeling purposes, the units of gsw were converted to m·s−1 using the molar density of
the air (mol.m−3), and Rn after subtracting G to determine the energy available for crop
ET processes.

Accordingly, a set of supervised machine learning models was developed, using
Matlab R2021b (The Mathworks Inc., Natick, MA, USA), which included:

(a) A non-parametric kernel-based probabilistic model (Gaussian process regression
model—GPR), using either an exponential kernel function or a squared exponential
kernel function;

(b) A support vector machine (SVM) regression model using either a linear kernel func-
tion, a quadratic kernel function, a cubic kernel function, or a medium Gaussian
kernel function;

(c) An ensemble of regression trees (ERT), either using least-squares boosting regression
trees learners or using bootstrap-aggregating (bagging) regression trees learners.
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Table 4. Model predictors and characterization of response variables. The table provides variable
characterization for each pooled dataset (training, testing, and validation). It includes stomatal
conductance to water vapor (gsw), net radiation above the canopy minus soil heat flux (Rn − G),
wind speed (U), air vapor pressure deficit above the canopy (VPD), and crop evapotranspiration
measured by the Eddy covariance method under non-standard conditions (ETc act meas). The data
are characterized by the total number of cases (N), the mean of the variable (Mean), the minimum
(Min) and maximum (Max) values, the standard deviation (SD), and the respective coefficient of
variation (CV, %).

Variable
Training and Testing Data Set

Valid N Mean Min Max SD CV

gsw (mol·H2O m−2·s−1) 236 0.081 0.004 0.254 0.041 50.5
Rn − G (W·m−2) 236 425.0 56.3 779.7 159.0 37.4

U (m·s−1) 236 1.69 0.57 4.16 0.72 42.2
VPD (kPa) 236 3.36 0.46 5.62 1.43 42.4

ETc act meas (mm·h−1) 236 0.167 0.020 0.388 0.066 39.5

Variable
2019 Validation Dataset

Valid N Mean Min Max SD CV

gsw (mol·H2O m−2·s−1) 174 0.085 0.014 0.249 0.050 58.6
Rn − G (W·m−2) 174 455.5 189.1 767.5 159.1 34.9

U (m·s−1) 174 1.81 0.52 4.45 0.83 45.6
VPD (kPa) 174 3.47 0.41 5.70 1.58 45.6

ETc act meas (mm·h−1) 174 0.176 0.025 0.369 0.072 41.0

Variable
2020 Validation Dataset

Valid N Mean Min Max SD CV

gsw (mol·H2O m−2·s−1) 185 0.079 0.004 0.149 0.030 38.0
Rn − G (W·m−2) 185 403.7 82.0 665.4 145.1 35.9

U (m·s−1) 185 1.59 0.73 3.05 0.49 31.2
VPD (kPa) 185 3.17 0.76 5.22 1.26 39.6

ETc act meas (mm·h−1) 185 0.157 0.043 0.280 0.058 37.3

2.4. Methodology to Evaluate the Predictive Accuracy of MLA Models in Estimating Actual Crop
Evapotranspiration

To assess the predictive accuracy of the proposed MLA models, the actual crop evap-
otranspiration predicted by the models, ETc act pred, was compared to the ETc act meas
measurements recorded in the field by the Eddy covariance method. To better examine
the performance of the proposed models, we also compared the predictive accuracy of ETc
act estimated by the FAO-56 Kc-ET0 method with the values from the same dataset of ETc
act meas recorded in the field using the Eddy covariance method. Finally, the accuracy of
MLA models for predicting ETc act was verified by comparison with the accuracy of the
recommended standard method FAO-56 Kc-ET0 for estimating ETc act.

2.4.1. Predictive Accuracy of MLA Models to Estimate Actual Crop Evapotranspiration

The accuracy of the MLA proposals for predicting ETc act was verified by comparing
the fitted values of all models with the ETc act meas measures recorded in the field by
the Eddy covariance method. The predictive accuracy of the MLA models was evaluated
according to the method described in Section 2.4.3.

2.4.2. Predictive Accuracy of the FAO-56 Kc-ET0 Model to Estimate Actual Crop
Evapotranspiration

The accuracy of the predicted ETc act using the recommended standard method FAO-
56 Kc-ET0 was compared to the ETc act meas measurements recorded in the field by the
Eddy covariance method.
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To predict ETc act using the FAO-56 Kc-ET0 standard method, ET0 was first calculated
according to the method proposed by [9] using data from the farm’s meteorological station.
A detailed description of the FAO-56 Kc-ET0 method can be found in the work by [9]. In
this study, the dual crop coefficient Kc approach was employed to assess crop evapotranspi-
ration (ETc). This approach involves splitting Kc into two factors that separately describe
the components soil evaporation (Ke) and grapevine transpiration (Kcb). The basal crop
coefficient (Kcb) was estimated by the Normalized Differential Vegetation Index (NDVI)
obtained from Sentinel 2 imagery time-series with a spatial resolution of 10 m, following
the model presented in [32] (Equation (6)).

Kcb = 1.44 × NDVI − 0.10 (6)

The model presented in [32] was developed for a vineyard with the same cultivar
and rootstock, and a similar climate and crop management, showing a high coefficient of
determination (R2 = 0.96). Thus, Equation (6) was selected to estimate Kcb from the NDVI
measured in the experimental plot.

As the grapevines in the study were subjected to some stress, a stress coefficient
(Ks) was applied to Kcb to assess ETc act according to the FAO-56 Kc-ET0 methodology,
following Equation (7):

ETc act = (Ke + Ks × Kcb) × ET0 (7)

The calculation of Ks was based on Equation (8), as described in [32]:

Ks = 1.217 × e(1.444×ΨPD) (8)

The predictive accuracy of the FAO-56 Kc-ET0 standard method was evaluated accord-
ing to the method described in Section 2.4.3.

2.4.3. Comparative Analysis of the Predictive Accuracy of MLA Models and the FAO-56
Kc-ET0 Method for Estimating Actual Crop Evapotranspiration

The models’ predictive accuracy was assessed for the pairs model—dataset by ex-
amining the coefficient of determination (R2) of the trained models and comparing the
goodness of fit measures of the simulated vs. observed ETc act. For this purpose, we used
the Root-Mean-Square-Error (RMSE), which is defined as follows:

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(9)

where ŷi and yi are the predicted and measured actual crop ET, respectively, for the i-th
segment of the dataset and n is the number of ETc act measurements used in each dataset.

To avoid the differences in ETc act between different datasets, the relative error (|E|)
was calculated and expressed as a percentage, from the expression:

|E| = |∑
n
i=1(ŷi − yi)|

∑n
i=1 yi

× 100 (10)

3. Results and Discussion
3.1. Characterization and Correlations of Actual Crop Evapotranspiration Predictors

Figure 4 shows the correlation between all variables trained as predictors of actual
crop evapotranspiration (ETc act) before data was split into datasets. Since air temperature
(Tair) showed a positive and significant correlation with air VPD (R = 0.97, p < 0.001), Tair
was not used as a predictor of ETc act to avoid multicollinearity. All variables correlated
positively and significantly (p < 0.001) with the target variable (ETc act meas). With the
exception of Rn-G, the energy available for the ET process, which showed a correlation
coefficient (R) value with ETc act meas twice that of the other predictors, all others correlate
in a similar order of magnitude. None of the predictors per se explained more than 40% of
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the variability of the ETc act meas, thus suggesting that non-linear relationships between
predictors and the ETc act meas may be involved, and/or the interaction between the
variables are the main contributors to the observed variability.
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Figure 4. Correlogram Showing Pearson Product-Moment Correlation Coefficients. The figure
displays the Pearson product-moment correlation coefficients between pairs of variables selected as
predictor candidates for actual crop evapotranspiration (ETc act). The variables include meteorological
variables such as Rn-G (the energy available for crop evapotranspiration processes, calculated as
the net solar radiation above the canopy (Rn) minus the soil heat flux (G)), U (the wind speed
above the canopy), VPD (the air vapor pressure deficit), and Tair (the air temperature). Additionally,
the grapevine variable gsw (stomatal conductance to water vapor) and field-measured actual crop
evapotranspiration (ETc act meas) are included in the correlation analysis. All correlation coefficients
are significantly different from zero (p < 0.001). Correlations of similar magnitude are depicted with
the same color, according to the color code shown below.

Table 4 shows the characterization of the datasets used for training and testing, as
well as for external validation of the MLA approach and FAO-56 Kc-ET0 models. The table
shows considerable variability within each variable across all datasets, as indicated by the
coefficient of variation (CV). This variability can be attributed to how the different variables
changed throughout the day. Despite the variability, the mean and the amplitude of data
variability, represented by the maximum (Max) and minimum (Min) values, as well as the
standard deviation (SD) of each variable (both predictor and target variables), were found
to be similar between datasets (Table 4).

3.2. Evaluation of MLA Models in Estimating Actual Crop Evapotranspiration

Table 5 shows the fitted supervised machine learning (MLA) models that were trained
and tested to estimate ETc act using the variables Rn, G, U, VPD, and gsw as predictors.
In the testing phase, all trained models achieved a high and significant coefficient of
determination (R2), thus indicating high efficiency in predicting the ETc act. The poorer
model was the SVM approach, using a linear kernel function, which yielded an R2 score
of 0.746. The two ERT approaches, the SVM model, using a medium Gaussian kernel
function, and the GPR, using an exponential kernel function, showed the best performance
in predicting the ETc act, with R2 values between 0.910 and 0.992. The high and significant
R2 of all MLA regression models (Table 5) indicates that the selected variables (gsw, Rn-G, U,
and VPD) account for a very high proportion of the observed ETc act variability, suggesting
that they are robust explanatory variables of the ETc act.
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Table 5. Fitted Machine Learning Algorithms for actual vineyard evapotranspiration under non-
standard conditions (ETc act). The table presents the results of fitted Machine Learning Algorithms
for actual vineyard evapotranspiration under non-standard conditions (ETc act) using the pooled
dataset for training and testing. The data was obtained from the years 2019 and 2020, based on actual
vineyard evapotranspiration measured by the Eddy covariance method in the field (n = 236). The
values of the coefficient of determination (R2) for all the algorithms are significant (p < 0.001).

Machine Learning Algorithms R2

GPR Exponential kernel function 0.992

GPR Squared Exponential kernel function 0.899

SVM Linear kernel function 0.746

SVM Quadratic kernel function 0.819

SVM Cubic kernel function 0.878

SVM Medium Gaussian kernel function 0.925

Ensemble Boosted Trees 0.934

Ensemble Bagged Trees 0.910

Table 6 presents the goodness-of-fit measures for the MLA approaches used to estimate
the ETc act using the validation dataset with the variables Rn, G, U, VPD, and gsw. The
results of the validation phase were consistent with those of training and testing. Except for
the SVM implementing a linear kernel function, the model validation process demonstrated
the high accuracy of the remaining MLA models for predicting the ETc act. The results
showed a correlation (R) between observed and fitted values greater than 0.880 and a
maximum root mean square error (RMSE) of 0.032 mm·h−1, which is below the minimum
ETc act value recorded in both years (as shown in Table 6 and Figure 5).

Table 6. Statistical indicators of goodness-of-fit measures of the supervised machine learning regres-
sion algorithms. The table presents statistical indicators of goodness-of-fit measures for estimating
vineyard evapotranspiration under non-standard conditions (ETc act) using supervised machine
learning regression algorithms. The data validation was performed with two independent datasets:
observed (field recorded) vineyard evapotranspiration under non-standard conditions (ETc act meas)
and model-estimated vineyard evapotranspiration under non-standard conditions (ETc act est). The
datasets are from the years 2019 (n = 185) and 2020 (n = 174). The goodness-of-fit measures included
are root mean square error (RMSE) and relative error (|E|).

Machine Learning Algorithms Year Dataset RMSE
(mm·h−1)

|E|
(%)

GPR Exponential kernel function
2019 0.019 4.6

2020 0.026 1.8

GPR Squared Exponential kernel function
2019 0.020 6.3

2020 0.027 0.9

SVM Linear kernel function
2019 0.026 0.9

2020 0.042 1.1

SVM Quadratic kernel function
2019 0.022 1.9

2020 0.032 3.5

SVM Cubic kernel function
2019 0.022 4.9

2020 0.031 1.5

SVM Medium Gaussian kernel function
2019 0.019 5.4

2020 0.029 0.7

Ensemble Boosted Trees
2019 0.020 0.2

2020 0.030 5.1

Ensemble Bagged Trees
2019 0.020 4.5

2020 0.030 1.3
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recorded with an Eddy covariance flux tower, and the actual crop evapotranspiration (ETc act est,
mm·h−1) estimated by different supervised machine learning algorithms. Each subfigure shows
a specific algorithm used for estimation. (A) recorded ETc act meas value versus ETc act est value
estimated by a GPR using an exponential kernel function. (B) relationship estimated by a GPR
algorithm using a squared exponential kernel function. (C) relationship estimated by an SVM
algorithm with a linear kernel function. (D) relationship estimated by an SVM algorithm with a
quadratic kernel function, while (E) relationship estimated by an SVM algorithm with a cubic kernel
function. (F) relationship estimated by an SVM algorithm with a medium Gaussian kernel function.
(G) relationship estimated by an Ensemble boost tree algorithm, and (H) relationship estimated
by an Ensemble bagged tree algorithm. The data validation samples from 2019 are represented
with circles (n = 185), and data from 2020 are represented with triangles (n = 174). The dotted line
in each subfigure represents the 1:1 line, indicating perfect alignment between the observed and
estimated values.

The analysis of the goodness-of-fit measures of the models in Table 6 confirmed that
the MLA with a linear transformation had the poorest performance in estimating the ETc
act. However, the MLA models tested with the year 2019 and 2020 independent validation
datasets demonstrated high accuracy potential in predicting the ETc act, with R2 values
ranging between 0.629 (SVM using a linear kernel function, and the 2020 validation dataset)
and 0.915 (SVM using a medium Gaussian kernel function, and the 2019 validation dataset).
The relative error (|E|) of the predictions made with the 2019 validation dataset was in the
[0.2, 6.3] interval, while with the 2020 dataset, the range was [0.7, 5.1], both expressed in
percentage. Overall, the MLA models exhibited strong predictive capabilities for estimating
ETc act, as evidenced by their high R2 values and relatively low errors.

All algorithms explained more than 80% of the ETc act variability present in the
validation dataset. The GPR using an exponential and a squared exponential kernel
function, both ERT, using either least squares boosting or bootstrap aggregation methods
and the SVM with a medium Gaussian kernel function, showed the best accuracy in
estimating the ETc act. These algorithms explain between 80 and 90% of the variability
of the ETc act measured in the field while exhibiting an RMSE in the range of 0.019 to
0.030 mm·h−1. Excluding the SVM using a linear transformation, the MLA algorithms,
using plant and weather variables, showed a remarkable ability to learn the inner relations
between ETc act meas, Rn, G, U, and VPD, by predicting the actual vineyard ET variability
with high accuracy. Similar results were obtained by other authors [24,26,27,33–35] for
other crops.

3.3. Evaluation of FAO-56 Kc-ET0 Method to Estimate Actual Crop Evapotranspiration

Figure 6 depicts the scatter plot representing the relationship between the observed
actual crop evapotranspiration (ETc act meas) recorded with the Eddy covariance method
and the estimated actual crop evapotranspiration (ETc act est) obtained through the appli-
cation of the FAO 56 Kc-ET0 method (fitted values). The results reveal a noteworthy and
statistically significant correlation (R = 0.858, p < 0.001) between the observed and fitted
data. However, it is evident that the variability increases as the magnitude of the observed
values rises, as illustrated in Figure 6. Moreover, the FAO 56 Kc-ET0 method exhibits a
tendency to overestimate the actual crop evapotranspiration values, which is consistent
with findings in other studies concerning olive orchards [36] and peach orchards [16].
Consequently, the goodness-of-fit measures indicate an RMSE of 0.059 mm·h−1, a value
1.3 to 2.9 times higher than the minimum ETc act recorded in the field using the Eddy co-
variance method. Furthermore, the relative error (|E| = 26.5%) is relatively high, indicating
certain weaknesses of the FAO-56 Kc-ET0 method in accurately predicting ETc act in sparse
vegetation crops like vineyards. This observation underscores the method’s limitations in
simulating soil resistance and vine stomatal conductance under more stressful conditions,
as investigated in this study. The observed limitations of the FAO-56 Kc-ET0 method in



Agronomy 2023, 13, 2463 15 of 18

accurately estimating ETc act in vineyards are consistent with previous literature, including
studies by [15,16,19,22,36,37].
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Figure 6. Relationship between observed and estimated actual crop evapotranspiration. The fig-
ure illustrates the relationship between the observed actual crop evapotranspiration (ETc act meas)
recorded using the Eddy covariance flux tower, and the actual crop evapotranspiration estimated (ETc
act est) with the FAO-56 Kc-ET0 method. The coefficient of determination (R2) and goodness-of-fit
measures from data validation with two independent datasets of observed vineyard evapotranspira-
tion under non-standard conditions (ETc act meas) and estimated actual crop evapotranspiration (ETc
act est) with FAO 56 Kc-ET0 method from the year 2019 (n = 48, circles) and 2020 (n = 72, triangles)
are presented in the figure. The Goodness-of-fit measures include root mean square error (RMSE) and
relative error (|E|). The dotted line in the figure represents the 1:1 line, indicating perfect agreement
between the observed and estimated values.

3.4. Comparison of the Prediction Accuracy of MLA and FAO-56 Kc-ET0 Method to Estimate
Actual Crop Evpotranspiration

With the exception of SVM implementing a linear kernel, all MLA proposals demon-
strated superior performance in predicting ETc act compared to the FAO-56 Kc-ET0 method.
The scatterplots depicting the relationship between the observed ETc act values (recorded
with the EC method) and the estimated ETc act est values (obtained through MLA) showed
a close alignment with the 1:1 line, indicating a good fit of all MLA models (see Figure 5).
During the validation process, the MLA models exhibited a very high and statistically
significant coefficient of determination (R2) between the simulated and observed values.
Moreover, the intercept and slope of the MLA fitted values were very close to 0 and 1, re-
spectively, further confirming the accuracy of the predictions. In contrast, when compared
to the FAO-56 Kc-ET0 method, only the SVM with a linear kernel exhibited a lower R2 and
a less satisfactory fit to the observed data. This outcome suggests that the SVM with a
linear kernel might not be as effective as the other MLA models in accurately estimating
ETc act under the conditions considered in this study.

The comparison of accuracy between models, using the external validation dataset,
clearly indicates that the MLA models outperform the FAO-56 Kc-ET0 method. The MLA
models’ fitted values demonstrated significantly smaller errors (as measured by RMSE and
|E|) compared to the FAO-56 Kc-ET0 method. Specifically, the scatterplots between the
observed and the FAO-56 Kc-ET0 fitted values showed an RMSE that was 1.65 to 1.98 times
less accurate, in 2019 and 2020, respectively, when compared to the worst MLA proposal
(SVM with a linear kernel function). Moreover, the FAO-56 Kc-ET0 method was found
to be 2.2 to 2.8 times less accurate, in 2019 and 2020, respectively, when compared to the
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best MLA models, namely the GPR with an exponential kernel function, and the SVM
with a medium Gaussian kernel function. In terms of prediction capacity, all MLA models
exhibited higher accuracy compared to the FAO-56 Kc-ET0 model. The absolute value of
the error (|E|) in the MLA predictions was more than 6.8 times lower than the values
predicted by the FAO-56 Kc-ET0 model, as shown in Table 7.

Table 7. Comparison of prediction accuracy to estimate actual crop evapotranspiration recorded
in the field. The table provides a comparison of prediction accuracy to estimate actual crop evapo-
transpiration recorded in the field using the Eddy covariance method. It includes results from the
FAO-56 Kc-ET0 and the two best machine learning algorithms: GPR (Gaussian process regression)
using an exponential kernel function, and SVM (Support vector machine) using a medium Gaussian
kernel function. Prediction accuracy measures include the coefficient of determination (R2) of the
trained models, and the goodness-of-fit measures from the data validation process (root mean square
error—RMSE and relative error—|E|).

R2

RMSE
(mm·h−1)

|E|
(%)

2019 2020 2019 2020

FAO-56 Kc-ET0 0.736 0.043 0.083 37.0 22.6
GPR Exponential kernel function 0.805 0.019 0.026 4.6 1.8
SVM Medium Gaussian kernel function 0.812 0.019 0.030 5.4 0.7

These findings further strengthen the superiority of MLA models in accurately esti-
mating actual crop evapotranspiration compared to the traditional FAO-56 Kc-ET0 method.
The significant reduction in errors, as indicated by RMSE and |E| values, highlights the
enhanced predictive capabilities of MLA models in this study.

4. Conclusions

The present work demonstrates that machine learning regression algorithms, when
provided with gsw, G, and three meteorological variables (Rn, U, and VPD), can accurately
predict the ETc act. The five best-performing algorithms explain more than 89% of the
measured variability in ETc act recorded in the field, with RMSE values below 0.03 mm·h−1.
The results showcase the MLA’s capacity to estimate the ETc act with a simple parameteri-
zation and lower computational requirements compared to the traditional FAO-56 Kc-ET0
method while retaining robustness in calculations.

Furthermore, the findings highlight the limitations of the FAO-56 Kc-ET0 method in
accurately predicting ETc act for grapevines under deficit irrigation, where vine stomatal
significantly impacts water usage and soil surface water evaporation is limited. In contrast,
the presented MLA models, which incorporate gsw as input knowledge, proved to be
accurate in predicting ETc act under such conditions.

The study shows that the MLA models are well suited for application in semi-
automated or automated field data analysis for predicting vineyard ETc act. Their ability to
continuously process new data in near real time, retrain the algorithm, and adapt to new
data patterns and associations can enhance prediction accuracy and support more efficient
irrigation practices.

Additionally, the use of machine learning algorithms for monitoring the ETc act based
on grapevine and atmospheric parameters can provide valuable insights for decision
support systems aimed at optimizing vineyard irrigation management. However, further
optimization is required concerning the amount of available data and consideration of
climatic conditions.

In conclusion, the study demonstrates the efficacy of MLA algorithms in accurately
estimating vineyard ETc act, making them a promising approach for water management in
grapevine cultivation. Nonetheless, future research should focus on refining the models
with respect to data availability and varying climatic conditions.
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