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Abstract

The gap equation in quantum chromodynamics is solved by incorporating differ-

ent gluon dressing functions, some of them derived from a quark-diquark potential

that exhibits a conformal symmetry. By using the bare vertex and working in the

Landau gauge, the quark mass function is found to have an infrared enhancement

that smoothly transitions to an asymptotically free behavior at high momentum,

which is consistent with the predictions of Schwinger-Dyson equations. Addi-

tionally, these quark propagators violate reflexion positivity, indicating that the

gluon dressing provides clear evidence of quark confinement.
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1 Introduction

The study of the gluon propagator is important because it is a key ingredient in
understanding the non-perturbative aspects of Quantum Chromodynamics (QCD),
the theory that describes the strong interactions between quarks and gluons, which
is one of the fundamental forces of nature [1]. The gluon is responsible for confining
quarks into hadrons, and the gluon propagator plays a crucial role in determining the
behavior of quarks at low energies, where perturbative methods are not applicable
[2–14], . Additionally, the gluon propagator is closely related to the phenomenon of
chiral symmetry breaking, which is responsible for the generation of mass in hadrons
[15–17]. Therefore, understanding the analytic behavior of the gluon propagator is
essential for a complete understanding of the strong interactions and for predicting
the properties of hadrons.

A recent approach consists in studying the presence of a conformal symmetry in
massless QCD which has been crucial in improving our comprehension of the quark-
gluon interactions in the ultraviolet region, where it is applicable to the first order and
has been frequently used in calculating hard exclusive pQCD sum-rules. The strong
coupling’s walking behavior towards a constant value in the infrared region has been
experimentally observed [18], which implies the existence of a conformal window.

The importance of conformal symmetry in QCD is also suggested by the gauge-
gravity duality, which was first introduced by Maldacena [19]. According to this
duality, a conformal theory at the boundary of AdS5 space can be related to non-
zero temperature QCD. The AdS5 boundary has various conformal geometries, one of
which is the compactified Minkowski space R × S3. This geometry is well-suited for
introducing temperature, which is associated with the inverse radius of S3 [20, 21].
This radius is expected to be significantly larger than ΛQCD.

In addition, the R×S3 geometry is a useful framework for exploring the potential
conformal symmetry properties of hadrons. This is because a two-particle system that
displays excitation patterns consistent with conformal symmetry (such as a qq̄−pair)
can be easily modeled in R × S3 as one particle moving freely on S3 while carrying
the reduced mass of the system.

In this way, the conformal symmetry patterns observed in high-energy unflavored
mesons with masses greater than 1400 MeV were modeled in a study by Kirchbach
et.al. [22]. However, the motion can be refined by allowing for perturbations of the free
motion through potentials that maintain the degeneracy patterns. In the same article,
it was argued that the free motion of a scalar particle on S3, when perturbed by a
cotangent interaction, is well-suited for describing the aforementioned meson spectra.

Furthermore, the tuning of the radius of S3 in accordance with the spectra resulted
in a temperature value that was reasonable and at least twice the value of ΛQCD. The
cotangent interaction, also known as the “curved Coulomb” potential, is unique to the
compactified Minkowski spacetime. The idea is that motion on S3 that is perturbed
by a cotangent function of the second polar angle can be transformed into a Casimir
invariant of an algebra with the same commutation relations as so(4) [23]. However,
the components of this algebra are no longer Hermitian, which is why they cannot be
included in the generator set that produces the conformal group.
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All of this has motivated the proposal of various models the dressed gluon propa-
gator which can have important implications for the behavior of the quark propagator
and the phenomena of confinement and chiral symmetry breaking in QCD. Some of
these models include:

1. Sinc model: This model is based on a Fourier transform of the Rosen-Morse trigono-
metric potential used to describe a quark-diquark potential. It is finite in the
infrared and falls as 1/q2 at large momentum [24].

2. Struve model: This model is similar to the Sinc model, but the instantaneous prop-
agator is obtained from first projecting the hyperspherical motion on the equatorial
disk, a plane 3D space, and then performing a standard 3D Fourier transform to
momentum space [25–27].

3. Lattice-based models: This model are based on a lattice QCD inspired form for the
gluon propagator, which is characterized by an enhancement in the infrared and a
fall-off as 1/q4 at large momentum. As example we have the Maris-Tandy [28] and
the Qin [29] models

4. Algebraic models: These models are based on algebraic constraints imposed on
the gluon propagator, such as the requirement of conformal symmetry or the
requirement of infrared finiteness [30, 31].

On the other hand, the use of Schwinger-Dyson Equation (SDE) approaches has
been employed to study confinement and the dressing function of the gluon propagator
in the conformal window regime. SDEs are a powerful tool for understanding hadronic
physics, and significant progress has been made over the past two decades in describing
hadron physics using this framework. SDEs can rival and complement predictions
made by other non-perturbative approaches such as lattice QCD and constituent quark
models. A number of reviews on this topic can be found in the literature [2–14], and
these are summarized and extended in Ref. [15].

The framework of SDEs offers a viable explanation for how Dynamical Chiral
Symmetry Breaking (DCSB) and Confinement, both emergent features of QCD, are
related. In fact, it is believed that the former is a direct outcome of the latter. Fur-
thermore, the increased quark mass function in the infrared is thought to arise from
the gluon cloud that surrounds the quark at low momenta [32]. These phenomena can
be investigated by examining the gap equation of QCD.

In this contribution, we investigate the relationship between DCSB and Confine-
ment by using an effective model for the QCD gap equation. Our approach involves
minimalistic assumptions where we use the bare vertex and a model of the gluon dress-
ing function to examine the quark propagator in Landau gauge. The gluon dressing
function we use is based on the instantaneous propagator of the curved Coulomb poten-
tial, along with some variations that capture the infrared and ultraviolet properties
of the dressing function. We compare the predictions of relevant hadronic observables
derived from our model with established phenomenological values, and we find that
there are indications of compatibility between conformal and chiral dynamics for both
low and high momentum regions of QCD. The remaining of this contribution is orga-
nized as follows: In Sect. 2, we review the generally accepted phenomenological aspects
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of DCSB and Confinement from the gap equation. In Sect. 3 propose different effec-
tive gluon propagators and calculate and compare some relevant hadronic observables,
which are afterward contrasted against well established predictions in Sect. 2. A brief
summary and discussion our findings are provided in Sect. 4.

2 DCSB and Confinement: General aspects

We start from the Euclidean space 1 SDE for the quark propagator,

S(p)−1 = Z2(iγ · p+mb)

+ Z1

∫ Λ d4k

(2π)4
g2Dµν(q)

λa

2
γµS(k)

λa

2
Γν(k, p) , (1)

where q = k − p, λa represent the Gell-Mann matrices, mb stands for the current-
quark mass, g is the coupling constant, Dµν(q) is the dressed gluon propagator and
Γµ(k, p) is the full quark-gluon vertex. Moreover, Z1 and Z2 are, respectively, the

vertex and quark wave function renormalization constants. The symbol
∫ Λ

represents
a regularization of the integrals at a scale Λ. The quark propagator, S(p), has the
general form

S(p) = −iγ · pσv(p2) + σs(p
2)

≡ F (p2)

iγ · p+M(p2)
, (2)

such that the vector and scalar parts of the propagator, σv(p
2) and σs(p

2) are expressed
in terms of the wave function renormalization F (p2) and the renormalization-point
independent mass function M(p2) as

σv(p
2) =

F (p2)

p2 +M2(p2)
, σs(p

2) =
F (p2)M(p2)

p2 +M2(p2)
. (3)

The renormalized current quark mass

m = Z−1
4 Z2mb, (4)

where Z4 is the renormalization constant of the Lagrangian quark mass, corresponds to
the mass function at the renormalization scale. Therefore, the renormalization-group
invariant current quark mass,

m̂ = lim
p2→∞

[

1

2
log

p2

Λ

]γm

M(p2) , (5)

allows to take the chiral limit when m̂ = 0. Here, γm = 12/(33 − 2Nf ) is the mass
anomalous dimension and Λ is identified with ΛQCD = 0.234 GeV. In all the above, we

1In our conventions, {γµ, γν} = 2δµν , γ
†
µ = γµ, and a · b =

∑4
i=1

aibi.
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Fig. 1 Quark propagator for the MT model, Eq. (7). Left panel: Mass function. Right panel: Wave
function renormalization. The renormalization scale is set to ζ = 2 GeV and the quark bare mass is
set to m = 7MeV.

have omitted the explicit dependence on the renormalization point ζ on the relevant
quantities to avoid cumbersome notation.

A common practice to truncate the gap equation is to perform the replacement
(Abelian approximation)

Z1g
2Dµν(q)Γµ(k, p) → g2effG(q2)Dfree

µν (q)γµ , (6)

where Dfree
µν (q) = (δµν−qµqν/q2)/q2 in Landau gauge, g2eff is chosen to reproduce static

and dynamic properties of hadrons below 1GeV and the interaction G(q2) is modeled
appropriately. For the sake of illustration, we select the well known Maris-Tandy model
(MT) [28]

g2eff
G(q2)
q2

=
4π2Dq2 exp

(

− q2

ω2

)

ω6

+
8π2γm

(

1− exp
(

− q2

4m2
t

))

q2 log
(

τ + (1 + q2

Λ2
QCD

)
2
) , (7)

where mt = 0.5 GeV, Nf = 4, τ = e2 − 1, D = (0.96GeV)2, and ω = 0.4 GeV. This
model has extensively been used in SDE studies of hadron phenomenology. With a
quark bare mass mb = 7MeV, choosing the renormalization scale at ζ = 2 GeV, the
solution to the gap equation is depicted in Fig. 1. Some important remarks are:

The infrared enhancement of the mass function is the smoking gun for DCSB. It describes

constituent quark masses with a value of 600 MeV 2, as expected for light-quark phe-

nomenology. Non-perturbative effects dominate in the region 0 < p
2
< 1 GeV2. At higher

energies, the mass function evolves smoothly toward the asymptotically free current quark

mass. This is a long-standing prediction of SDEs studies.

2In the chiral limit is obtained a mass of 500MeV
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Fig. 2 Spatially averaged scalar quark propagator for the MT model, Eq. (7). Cusp indicates
confinement.

Relevant hadron observables that can be obtained directly from the quark
propagator are, for instance, the vacuum chiral condensate

−⟨ψ̄ψ⟩ = lim
Λ→∞

Z4NcTrD

∫ Λ d4k

(2π)4
S(k)

∼ (0.27 GeV)3 . (8)

The trace in this expression is taken over Dirac indices in the chiral limit and Nc = 3.
A second example is the pion leptonic decay constant, which can be calculated from
the Pagel-Stokar equation [33]

f2π = − Nc

4π2

∫ Λ

dk2
k2F (k2)

(k2 +M2(k2))2

×
[

M2(k2)− k2

2
M(k2)

dM(k2)

dk2

]

∼ (0.09 GeV)2. (9)

Moreover, quark confinement is encoded in the quark propagator. We can observe it
through the violation of the Osterwalder-Schrader axiom of reflexion positivity [34].
Let us define the scalar part of the spatially averaged propagator via the function [35,
36]

∆(t) =

∫

d3x

∫

d4p

(2π)4
eip·xσs(p

2) . (10)

In Fig. 2 we draw log |∆(t)|. The cusp in this curve is related to a zero of ∆(t),
which indicates a change of sign of this function and provides a clear, visual, definitive
description of quark confinement. The inverse of the position of the cusp serves as an
order parameter for confinement [36], and for this model, it corresponds, precisely, to
the scale of the dynamically generated mass, namely, a few hundred MeV.
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Below we propose alternative effective models for the gap equation in order to study
their behavior and compare with the Maris-Tandy model. Our goal is to reproduce as
closely as possible the features just described.

3 Dressed Gluon Propagators

We consider the following gluon dreesing functions:

GI(q
2)

q2
= fz(ζ)

q2 +m2
0

q4 + q2m2
0 +m4

0

, (11a)

GII(q
2)

q2
= fz(ζ) Sinc2(q) , (11b)

GIII(q
2)

q2
= fz(ζ)

H1(q)

q2
, (11c)

GIV(q
2)

q2
= fz(ζ)

2/π

q2 +m2
1

, (11d)

where f = −b
√
2π. the factor z(ζ) is introduced such that at the renormalization

point Gj(ζ
2) = 1. We label the models for each j as follows: I (RGZ), II (Sinc), III

(Struve) and IV (Struve Lineal).
In the above expressions, the RGZ Model (Equation (11a)) is a refined version

which captures the scale of the transition of the 1/p2 behavior through the mass scale
m0 = 2.167GeV. This form advocates the non-perturbative, lattice inspired form of
the gluon propagator proposed in [31]:

G(q2)
q2

=
z(ζ)(q2 +M2)

q4 + q2M2 +M4
. (12)

were the non-perturbative scale is driven by M = 0.5 GeV. Again, the factor z(ζ) is
introduced to entail the MOM renormalization condition G(ζ2) = 1 is satisfied.

The Sinc Model is motivated by a Fourier Transform of the Rosen-Morse trigono-
metric potencial used to describe a quark-diquark interaction [27]. The Struve Model
is similar, but the instantaneous propagator has a different form obtained by project-
ing the hyperspherical motion onto the equatorial disk D3, a plane 3D space, and
then performing a 3D Fourier transform to momentum space. [25]. The Struve Lineal
model is a simplified version of the Struve dressing, which retains the infrared height
and ultraviolet fall-off with the scale m1 =

√
3GeV.

All the gluon models presented in Equations (11) and (12) have some common
properties: they are finite at low momentum and decrease as 1/q2 at high momentum.
The oscillations that are visible in the Sinc dressing for momentum values between
1 GeV and 10 GeV (in the Struve dressing, these oscillations are less visible) can be
explained by the finite volume of S3 compared to the infinite volume of E4. As a result,
our model is reliable only up to a scale of 1 GeV, where it can describe a gluon that
acquires a dynamically generated mass. For momentum values greater than 1 GeV,
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Fig. 3 Quark propagator with the effective gluon dressing function in Eq. (11) reproducing the
constituent quark masses of the MT model. Left panel: Mass Function. Right panel: Wave function
renormalization for different models.

Model M(0) [GeV] -⟨ψ̄ψ⟩ [GeV3] fπ [GeV]
MT 0.6 (0.506)3 0.108
RGZ 0.6 (0.451)3 0.270
Sinc 0.6 (0.413)3 0.195

Struve 0.6 (0.403)3 0.254
Struve Lineal 0.6 (0.460)3 0.265

Table 1 Observables computed with the effective model
contrasted against the MT predictions fitting to the height
of the mass function.

the constant f is replaced by a momentum-dependent function f(q2),

f
(

q2
)

≃ πγ

ln
(

e+ q2

Λ2
QCD

) , (13)

which smoothly drives the quark propagator towards its perturbative behavior. The
weaker enhancement of the mass function in the infrared in our models compared to the
lattice-inspired model in Equation (12) may be due to the choice of parameters used
to fit the unflavored meson spectra. Further work is needed to select an appropriate
value of g2eff for static and dynamic hadron phenomenology.

To start, we choose g2eff in the gap equation so that the height of the quark mass
function is similar to that of the MT model. Figure 3 shows the propagator for various
models. The effective dressing of the gluon leads to a non-perturbative enhancement
of the mass function at low momentum, which transitions to the expected behavior
in the domain of asymptotic freedom. The mass function for the effective models is
wider than that of the MT model, as neglecting vertex dressing causes broadening
due to the large support of the gluon propagator. This broadening results in a slight
underestimation of the values of the chiral condensate −⟨ψ̄ψ⟩ and fπ, as shown in
Table 1. The non-perturbative effects of the gluon dressing also impact the confinement
test on the dynamically generated quark propagator shown in Fig. 4, as the late
appearance of the cusp indicates that the confinement scale is slightly smaller in this
case but still in the same order as in the MT case.
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Fig. 4 Confinement test for the model fitting the constituent quark mass.
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Fig. 5 Quark propagator reproducing the chiral condensate, using Eqs. (11). Left panel: Mass
Function. Right panel: Wave function renormalization for different models.

Model M(0) [GeV] -⟨ψ̄ψ⟩ [GeV3] fπ [GeV]
MT 0.6 (0.506)3 0.108
RGZ 0.12 (0.505)3 0.079
Sinc 0.13 (0.509)3 0.071

Struve 0.081 (0.501)3 0.057
Struve Lineal 0.13 (0.506)3 0.085

Table 2 Observables computed with the effective model
contrasted against the MT predictions fitting to the
condensate.

Considering that the chiral condensate is the quantity that can be experimen-
tally measured and has an impact on hadron phenomenology rather than the quark
constituent mass, we proceeded to adjust the value of g2eff such that it matches the
chiral condensate of the MT model. The obtained results are illustrated in Fig. 5. The
growth of the mass function at low energies is reduced significantly, resulting in weaker
non-perturbative effects. This decrease is evident from the smaller predicted value of
fπ and the confinement test presented in Fig. 6, as the cusp in the confinement test
appears much later.
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Fig. 6 Confinement test for the model fitting the chiral condensate.

4 Summary and discussion

In this work, we adopt four different dressed gluon propagator models and use in the
kernel of the SDEs and compare the computed results with those obtained with the
Maris-Tandy model. With those dressing functions, we study DCSB and confinement
by means of the SDE for the quark propagator. We observe a dynamical enhancement
of the mass function M(p2) in the infrared driven by the effective gluon propaga-
tor, which also provides the expected 1/p2 attainable fall-off of this function in the
perturbative domain. However, for all models, this fall-off comes later than with the
Maris-Tandy model.

Instead of using a quark in the chiral limit, we adopted a quark bare mass mb =
7MeV and a renormalization scale at ζ = 2 GeV, and we obtained a dressed quark
mass of 600MeV. As a result, when we adjusted the constant f in the four models of
Eq. (11) to match the quark-dressed mass of the MT model, we obtained a condensate
that it does not match with the condensate in the chiral limit. This result can be
explained by considering that the dressed mass depends on the renormalization point.
However, a renormalization point invariant condensate can be defined [16] to have a
gauge invariance model.

The effects of unfolding the finite volume into an infinite space do not modify
the asymptotics of M(p2). All the tested propagators violate the axiom of reflexion
positivity, indicating that the same effective gluon dressing is responsible for quark
confinement in our model. However, those models still need an improvement to achieve
a full agreement for the predictions of the chiral condensate, pion decay constant and
quark constituent mass. We hope that considering static and dynamical properties
of hadrons could be included in the models to obtain a light meson spectra with
appropriate selection of the potential parameters. This open an opportunity to develop
extensions of the present work.

Acknowledgments. We acknowledge enlightening discussions from M. Kirchbach
and the organizers of Baryons 2022 for the excellent organization.
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[32] M. S. Bhagwat, I. C. Clöet and C. D. Roberts, (arXiv:0710.2059 [nucl-th]), in
Proceedings of the Workshop on Exclusive Reactions at High Momentum Transfer,

Newport News, Virginia, 21-24 May 2007, Eds. A. Radyushkin and P. Stoler
(World Scientific, Singapore, 2007).

[33] J.C. Taylor, Nucl. Phys. B33, 436 (1971).

[34] K. Osterwalder and R. Schrader, Commun. Math. Phys. 31, 83 (1973); ibid,
Commun. Math. Phys. 42, 281 (1975).

[35] L. C. L. Hollenberg, C. D. Roberts, and B. H. J. McKellar, Phys. Rev. C 46,
2057 (1992); F. T. Hawes, C. D. Roberts, and A. G.Williams, Phys. Rev. D 49,
4683 (1994)

[36] A. Bashir and A. Raya, Nucl. Phys. B 709, 307 (2005); A. Bashir and A.
Raya, Few-Body Syst. 41, 185 (2007); C. P. Hofmann, A. Raya, and S. Sanchez
Madrigal, Phys. Rev. D 82, 096011 (2010).

[37] M. P. Dabrowski, J. Garecki, and D. B. Blaschke, Ann. Phys. (Leipzig) 18, 13
(2009).

12


	Introduction
	DCSB and Confinement: General aspects
	Dressed Gluon Propagators
	Summary and discussion
	Acknowledgments


