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Abstract: The use of continuous monitoring systems to control aspects such as noise pollution has
grown in recent years. The commercial monitoring systems used to date only provide information
on noise levels but do not identify the noise sources that generate them. The identification of noise
sources is an important aspect in order to apply corrective measures to mitigate the noise levels.
In this sense, new technological advances like machine listening can enable the addition of other
capabilities to sound monitoring systems such as the detection and classification of noise sources.
Despite the increasing development of these systems, researchers have to face some shortcomings.
The most frequent ones are on the one hand, the lack of data recorded in real environments and on the
other hand, the need for automatic labelling of large volumes of data collected by working monitoring
systems. In order to address these needs, in this paper, we present our own sound database recorded
in an urban environment. Some baseline results for the database are provided using two original
convolutional neural network based sound events classification systems. Additionally, a state of the
art transformer-based audio classification system (AST) has been applied to obtain some baseline
results. Furthermore, the database has been used for evaluating a semi-supervised strategy to train a
classifier for automatic labelling that can be refined by human labellers afterwards.

Keywords: machine listening; supervised and semi-supervised learning; noise monitoring systems;
urban sounds database; sound classification; deep neural networks

1. Introduction

Community noise (also called environmental, urban, or residential noise) is one of
the main problems that cause a negative impact on health. Since the 1990s, the World
Health Organization (WHO) has developed different guidelines to serve as a basis for the
standards in the management of environmental noise. In the European Union, since the
publication of the Environmental Noise Directive 2002/49/EC (END) [1], the European
Member States have developed their own legislation to reduce the noise levels to which their
populations are exposed. Although considerable efforts have been made to reduce noise
levels, the latest report published by the European Environmental Agency [2] indicates
that this has not been accomplished. This concern to control and manage noise pollution in
general, has resulted in the advent of smart cities, which have boosted the deployment of
monitoring systems.

Monitoring systems are effective tools for the evaluation and management of acoustic
pollution, which complement noise strategic maps, the main tool currently in use. Noise
maps have certain limitations for noise-source assessment: only a few noise sources are
taken into account and they use averaged data over long periods for calculating the acoustic
emission of the sources. The use of monitoring systems would overcome those limitations
and contribute to obtain a more realistic approximation of noise levels, especially in cities.
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The data provided using real-time monitoring systems allow other types of analysis, such
as the characterization of behavioural patterns and detection of high-level short-duration
noise events that can cause annoyance and negative health effects.

However, current monitoring systems have the downside of not identifying the sound
sources that generate the noises, making it difficult to take corrective actions. This prob-
lem arosed in one of the earliest research projects on the use of sensors in a continuous
monitoring system for evaluating noise pollution, conducted in Palma de Mallorca [3].
This project’s objective was to assess how sound pressure levels (SPL) and particulate
matter (PM10) particles produced by port activity were related to one another. They were
unable to establish a clear connection between the noise levels recorded and the noise
sources responsible for them. Sound-classification techniques can be used to solve this
issue, making it possible to identify the noise source responsible for a specific sound event.

New approaches to age-old problems in the analysis and processing of sound signals,
like speech recognition and sound categorization, have been made possible by the appli-
cation of machine learning techniques. Machine learning is a set of techniques that allow
computer programs to automatically improve doing a task through experience. These
systems are able to extract and identify complex patterns in the data (in our case sound)
that could not be processed using traditional processing and handcrafted features. More
specifically, the term Machine Listening or Machine Audition [4], encompasses the study of
techniques and systems that allow computers to automatically identify sounds as humans
do. There are many uses for machine listening, but two of the most important ones are
the sound event detection [5], which identifies the beginning and end of a sound event
in a recording, and audio classification which aims to categorize or label a recording.
There are many application fields for audio classification, including the categorization
of environmental sounds (both urban and nature) [6], bioacoustics signal classification
and detection [7,8] and the classification of urban sound events in noise monitoring
systems [9–11], our research topic.

A lot of the research in this area has been promoted by the Detection and Classification
of Acoustic Scenes and Events (DCASE) community, which has been organising challenges
and workshops for the last years. The aim of the DCASE community is the support
development of computational scene and event analysis methods by providing public
datasets [12,13], and giving researches the opportunity to continuously compare different
approaches on the same datasets, using consistent performance measures. The challenges
“Urban Sound Tagging with Spatiotemporal context”, organized in 2020, and “Acoustic
Scene Classification”, organized in 2021 [14], had important contributions in the sound-
classification area.

For these classification tasks, the majority of researchers use deep neural network
(DNN) architectures that perform rather well as they have the ability to extract discrimina-
tive feature representations. The most popular architectures are based in Convolutional
Neural Networks (CNN) [6,15,16]. Some other researches, motivated by the fact that the
CNNs do not learn long-term dependencies, propose solutions based on CNNs combined
with Recurrent Neural Networks (RNN) [17–19]. However, the RNNs suffer from the van-
ishing gradient problem. To overcome this problem the ResNets [20–22] were introduced,
as they use residual blocks that enable training a large number of layers. More recently,
transformer architectures purely based on attention mechanisms [23–25] and hybrid archi-
tectures combining transformers with RNNs [26] and ResNets [27], have been proposed.
Most of the systems apply data augmentation and transfer learning techniques. Some other
systems propose the fusion of different classifiers [28–31] and features [32,33].

Good outcomes depend on the network architecture selected, which is influenced by
the problem to be solved, the quantity and quality of the data available and other factors.
Despite the widespread use of DNNs, researchers are still facing some challenges as the
lack of annotated data for certain tasks, especially for real-world applications. The ESC
dataset [34], UrbanSound8k [35], AudioSet [36], and the more recently released SONYC-
UST [13] and SONYC-USTv2 [37] datasets are the most popular and openly accessible
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datasets that are frequently utilized in the development and evaluation of urban sound
classification systems. The ESC dataset consists of three parts. Two of them, ESC-10 and
ESC-50, comprise a labelled set of 10 and 50 classes of different environmental sounds while
the third part, ESC-US, is a set of non-labelled data. All clips were extracted from the public
field recordings available in the Freesound project [38]. UrbanSound8k contains labelled
recordings for 10 classes of urban sounds, also extracted from the Freesound project.
In turn, AudioSet corpus consists of labelled sounds from different sources (domestic,
environmental, nature, music, ...) drawn from YouTube.

The majority of the aforementioned datasets have the drawback of not having been
recorded for monitoring urban noise. SONYC project [9], addresses this problem, deploying
a number of noise monitoring sensors for collecting data. The aim of collecting the data was
to develop a classification system for a specific task, namely to confirm that the complaints
made by residents about violations of the noise code of New York City were true. SONYC-
UST and SONYC-USTv2 are multi-label datasets for urban sound tagging that comprise
a fine labelled set of 23 classes that are grouped into 8 coarse classes with more general
descriptors. The main difference between them is that the latter includes spatio-temporal
context information about the recording event. More recently, the so called SINGA-PURA
database has been published [39] following the structure of SONYC-UST V2 taxonomy and
expanding some classes in more detail.

In any case, more datasets with samples from real application scenarios are still needed
in this area. In this line, we present a novel audio database, the so called NoisenseDB, with
real urban sound events intended to be used in sound-classification tasks. The recording of
this database was performed by deploying a continuous monitoring system developed by
the company NOISMART in real urban locations.

Another problem that researchers have to face is how to label the great amount of
acquired material generated by a sensor recording continuously. Manual identification of
sound sources in large audio files takes up a significant amount of research time. Some
projects have used crowdsourcing [40], where volunteers tagged the audio files using inter-
net platforms like Zooniverse. Since this method of labelling often produces low-quality
results, other approaches, such as Active Learning [41] or Semi Supervised Learning [42]
are very interesting. These methods are grounded on the idea that by means of actively
choosing the most accurately predicted data, algorithms can increase their performance
while utilizing less training data. Pseudo-labelling [43], also called self-training [44] is
one of the techniques that has garnered the greatest interest in recent years. This method,
involves training a classifier on labelled data, predicting the labels for the unlabelled data
and retraining the model adding confident predicted data to the training data.

In this paper, besides presenting the new NoisenseDB, we propose several state-of-
the art urban sound events classification systems. We also analyse the feasibility of a
semi-supervised training approach to cope with the labelling of the large amounts of data
produced by such continuous monitoring systems.

This paper is organized as follows: Section 2 describes the data-acquisition device
and recording locations; Section 3 explains the creation of the NoisenseDB database, its
taxonomy and structure; Section 4 introduces the tested sound event classification systems;
Section 5 shows the experimental results using these systems with NoisenseDB. Finally,
some conclusions are presented in Section 6.

2. Audio Data Acquisition
2.1. Recording Device

The audio of the database was recorded using a noise-monitoring sensor developed
by NOISMART, which includes a recording module (Figure 1). The noise-measuring sen-
sor registers the ambient sound pressure level (SPL) and can also record audio clips.
It is based on a commercial printed circuit board (PCB) and includes an omnidirec-
tional pattern microphone with a frequency response of 20 Hz–20 kHz that replaces the
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standard micro-electro-mechanical (MEM) microphone on the PCB. The microphone is
externally mounted.
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Each audio file was recorded in wav format with constant gain settings, mono config-
uration, and a sampling rate of 48 kHz and 16-bit coding.

2.2. Recording Locations

The recording of the database was carried out placing the device at two different
locations in order to capture different sound sources. In both locations, the device was
mounted on the façade of a building at an approximate height of 4 m over the street level.

The first location was in the city centre of Algorta (Biscay). It was chosen with the
aim of collecting sounds related to traffic, street works and usual sounds of an urban area.
The equipment was in use during 31 days between May and June of 2021, recording 600 h
of data.

The second location was in Portugalete (Biscay), and it was intended to record urban
sounds related to leisure. Between the end of June and the beginning of August 2021,
the device was deployed for 31 days, capturing 687 h in total. NoisenseDB was built
from selected audio segments from this large set of recordings, as it is explained in the
next section.

3. NoisenseDB
3.1. Sound Event Extraction

Obviously, not all the recorded data (more than 1200 h) contained meaningful and
identifiable sound events, and thus, we had to establish an efficient way to extract these
interesting sound events for the creation of the database. The criteria was to use the SPL
measures to determine where these sound events were, assuming that sounds with higher
SPL will be easier to identify and also easier for an automatic classification system to learn.

From the total of the recorded hours, we extracted a set of variable-length audio clips
corresponding to the sound events that registered a peak level equal or greater than 71
dB(A) and kept above 60 dB(A) during at least 3 consecutive seconds.

The segmentation of the audio clips with sound events in the original recordings was
done taking 3 s before the SPL threshold was surpassed. This criterion was applied because
for some events the onset of the noise gives important information about its source. The
downside is that this additional period can introduce noise into the system since other
unlabelled sound events may appear.

The resulting audio clips have variable length depending of the sound event and make
a total of 692 sound clips. A single trained person labelled all the audio clips, assigning one
single label to the entire audio clip. This is known as monophonic labelling, and implies
the assumption that each audio clip included just one type of sound. Thus, sometimes we
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will use event as synonym for audio clip in the following sections. Actually, sometimes
two different audio events occur within the same clip. This happened in the 20% of the
clips, especially when mixing “Music” and “Voice” categories. In these cases, the clip is
labelled with the most prominent of both events. The criterion is to use first the length of
each event and, if their length is similar, their intensity.

Exceptionally, in the case of very scarce sound events (dog barking and impact sounds),
the annotation criteria has been to prioritise these events for labelling, even though other
possible sounds in the clip can even last longer. Thus if any of these events appear in the
clip the whole clip is assigned to that event.

3.2. NoisenseDB Taxonomy

In order to define our taxonomy, we analysed the semantic classification of sounds
carried out by J. Salomon et al. [35]. They created an extensive taxonomy, with more than 50
sound events, distributed in different levels with four higher-level categories. The SONYC
project defined a simpler taxonomy with just two levels [13]. Both these taxonomies have
more types of events than our recorded data, so we defined a simpler taxonomy.

NoisenseDB taxonomy can be seen in Table 1. It consists of nine different (fine)
categories gathered in four higher-level (coarse) categories, grouping those sound events
with similar origin. This taxonomy was used for labelling the NoisenseDB.

Table 1. NoisenseDB Taxonomy.

Coarse Categories Fine Categories

traffic
car

motorbike
cleaning truck

human
voice
music

nature
dog

storm

mechanical
impact

machinery

3.3. Database Structure

NoisenseDB is divided into two datasets, using the peak SPL of the event as criterion.
The main one is called supervised dataset (SD) and it is designed for supervised learning.
It is composed of the audio clips of sound events with highest SPLs, namely greater than or
equal to 72 dB(A). Its 432 audio clips are distributed in 5 folds that can be used as training,
validation and evaluation partitions in cross validation experiments. The audio clips, and
consequently the sound events, are never divided into different folds. The audio clips have
been distributed in folds trying to keep a balance in the total duration of the audio samples
for each class. For the class “Machinery” this approach was not possible due to the small
number of events and their different duration, and in this case, the distribution was done
keeping the number of events balanced in each fold independently of their duration.

The second dataset, the so-called unsupervised dataset (UD), is intended to be used as
evaluation set for unsupervised learning. It included 260 audio clips of sound events with
the highest SPL values equal or greater than 71 dB(A) and less than 72 dB(A).

The distribution of sound events per class is shown in Table 2 along with some statistics
related to their length. The minimum possible length is 6 s corresponding to 3 s over the
SPL threshold limit plus the previous 3 s. The maximum length is also bounded to 3 + 120 s.
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Table 2. SD and UD events length and distribution by class. Length in seconds.

Supervised Dataset (SD) Unsupervised Dataset (UD)

Categories
Total Min Max Average Total Total Min Max Average Total

Length Length Length Length (±σ) Events Length Length Length Length (±σ) Events

car 1795 6 123 17.1 ± 17.4 105 918 6 56 14.8 ± 8.4 62
motorbike 2240 6 123 21.5 ± 20.1 104 511 8 39 14.6 ± 5.9 35

cleaning-truck 1164 20 123 77.6 ± 38.6 15 441 6 123 55.1 ± 39.7 8
voice 7004 6 123 71.4 ± 49 98 11420 7 123 88.5 ± 43.5 129
music 4813 6 123 104.6 ± 34 46 21 6 15 10.5 ± 4.5 2
dog 183 7 29 13. ± 7.1 14 128 6 24 12.8 ± 6.1 10

storm 831 6 123 51.9 ± 48.8 16 11 11 11 11 ± 0 1
impact 184 6 26 12.3 ± 6.2 15 79 6 20 11.3 ± 4.3 7

machinery 501 6 123 26.4 ± 35.4 19 232 6 123 38.6 ± 39.3 6

Table 2 shows that the classes are heavily unbalanced both in the SD and UD sets.
In the SD part, five categories have less than 20 events, while the others have more than
40. The length of the events is also very different. The categories of “Impact” and “Dog”
are really scarce both in terms of number of events and length of the samples. In the UD
part the imbalance is still worse but in this case the less represented ones are “Storm”
and “Music”. We have not taken any measure to reduce the original imbalance of the
database, because the aim of this work was to obtain a database representing the real-world
difficulties of the urban sound events classification task. Thus, the database contains all the
sound events that have been registered during the two months of the monitoring period.

4. Sound Event Classification Systems

We have tested three different DNN architectures to provide some baseline classifica-
tion results for the database. Two of them are novel systems proposed by us, which are
based on convolutional neural networks (CNNs). The third one is a transformer based
neural network, the so called, Audio Spectrogram Transformer, proposed in [23] and it is
included to provide a reference to allow comparison with a state of the art system. They
are briefly described below.

4.1. CNN-Based Models

The first two systems that we propose are based on a classifier fed by the combination
of audio features extracted using CNNs and embeddings of the audio segments obtained
using OpenL3, an embedding model trained using the environmental subset of AudioSet
video database [45]. Two systems with different CNN architectures have been tested, one
based on convolutional blocks and the other one based on ResNets [21]. Each system will
be described with more detail in the following subsections. Figure 2 shows a diagram of
both systems.

4.1.1. Audio Processing and Data Augmentation

Due to the varying length of each sound clip in the database, the audio files have
been cut into fixed length analysis fragments of 1 s, with 0.5 s hop size. The original
sampling frequency of 48 kHz has been kept. All the fragments from the same audio
clip inherit the label of the whole clip, so all of them have the same label. All the pro-
gramming for processing and implementing the classifiers has been done using Python as
programming language.

To feed the CNN branch, the log-Mel spectrogram of each fragment is calculated using
the Librosa [46] library, with 128 Mel filters and a window length of 21 ms and a frame
shift 10.5 ms (resulting in 94 frames). These log-Mel spectrograms are used as input to the
convolutional layers.
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The other branch uses OpenL3 embeddings. These embeddings are obtained using
Mel-spectrograms calculated as explained before as an input for the embedding model
which returns an embedding vector of 512 values.

Mixup is used as an augmentation technique for the training data. This technique [47]
generates a weighted combination of random pairs of vectors from the training data
with their corresponding labels. The input vector pairs (both log-Mel spectrograms and
embeddings) are combined with a weighting value within the [0, 1] range, sampled from a
Beta distribution with α = 0.4, and the one-hot encoded labels are also combined applying
the same weight.

4.1.2. Architecture of the Classifiers

Both proposed novel systems take the input data described before, but the difference
between them is the CNN branch that processes the log-Mel spectrogram part. The first
architecture, Figure 2a, uses three blocks of convolutional layers (ConvBlock), while the second
one, Figure 2b, uses a ResNet. They are described in detail in the following subsections.

For both systems, the output of the CNN branch was concatenated with the OpenL3
embeddings. The resulting combined parameter vector was used as input for a fully
connected layer with 128 neurons with 50% dropout. Finally, a softmax layer was used to
produce the classification scores. The systems were implemented using the Keras API.

ConvBlock Branch

The first of the systems used a CNN branch based on three convolutional blocks. Each
convolutional block (Figure 3) consisted of a 2D convolutional layer with a kernel size of
(3 × 3), and a (2,2) stride. After each convolutional layer, we applied batch normalization,
ReLU activation and max pooling with a pool size of (3 × 2) and a stride of (1,2). Each of
the blocks had a decreasing number of convolutional filters (f): 256, 128 and 64.
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ResNet Branch

The CNN branch of the second system was based on a ResNet. We developed this
architecture based on ResNet50 [21] with some design and implementation details inspired
by [48].

The ResNet branch (shadowed in grey in Figure 2b) consisted of an input stage,
10 groups of convolutional and identity blocks (CBIB) and a MaxPooling layer. The input
stage Figure 2b consisted of a 2D convolutional layer with 256 filters, a kernel size of
(3 × 3) and a stride of (1,1). After the convolutional layer, we used batch normalization,
ReLU activation and a MaxPooling layer with a pool size of (2,2) and the same stride size.

After the input stage, 10 CBIB blocks were stacked. Each CBIB block consisted of a
Convolutional Block (CB) followed by an Identity Block (IB). The number of blocks, the
number of layers and their respective number of filters were chosen after carrying out
different tests in which we modified these hyperparameters. Those experiments were
performed in previous works with other datasets and in this paper, we presented the
architectures that obtained the best results. The CB block, Figure 4, consisted of three 2D
convolutional layers on the main branch and a shortcut with one 2D convolutional layer.
The Conv2D layers of the main branch had a decreasing number of filters (f1, f2, f3) with
(256, 128, 64) values. The first Conv2D layer and the shortcut had a different stride (s,s)
depending on the position of the CBIB block in the stack, while the rest of the layers had
a fixed value of (1,1). The stride (s) values assigned to the CB blocks were (2,2) for the
3rd, 6th and 9th CBIB blocks and (1,1) for the rest of them. The stride values followed the
original ResNet50 [21], but without downsampling on the 2nd, 5th and 8th CBIB blocks.
The shortcut consisted of a Conv2D with the same number of filters as the third Conv2D
(64), a kernel size of (1 × 1) and a stride of (s,s), which was 1 or 2 depending on the number
of blocks, as explained before. The outputs of the CB blocks and the shortcut branch were
added to use them as the input of the identity block, as shown in Figure 4.

The configuration of the identity block is similar to the convolutional block, except for
the stride value, which is 1 for all layers; and the shortcut, where there is no Conv2D layer.

4.2. Audio Spectrogram Transformer

We have also tested the Audio Spectrogram Transformer (AST) architecture proposed
in [23], a state of the art architecture that provides an independent baseline to compare
with our proposed convolutional architectures. This system uses a transformer-based
architecture to classify audio signals. Transformers require a great amount of training data,
much more than the amount required by CNNs. That is why the AST uses pretrained
models. Moreover, since spectrograms can be considered as images, the AST employs
cross-modality transfer learning training an initial model using the Vision Transformer
(ViT) [49] architecture trained with the ImageNet [50] database. This initial model was
retrained with spectrograms from the AudioSet database. This results in the AST-P public
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model [51] that we have used as pretrained initialization for the training of the network
with our database.
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The preprocessing of the sound event recordings for the AST was similar to that of the
convolutional systems (see Section 4.1.1): the audio files were cut into fixed-length analysis
fragments of 1 s, with a 0.5 s hop size, but in this case, as the AST uses pretrained models,
the audio files had to be downsampled to 16 kHz. Each fragment was converted into a
log-Mel-spectrogram using a Mel filter bank of 128 filters, with a framerate of 10 ms and a
window of 25 ms. The outcome was next divided into a set of 16 × 16 patches, which were
then linearly projected onto a set of 1D embeddings. Each patch embedding was added
to a learnable positional embedding. An additional classification token was appended to
the sequence. The resulting sequence was then used as an input to the transformer. Since
the AST is designed for classification tasks, it only uses the encoder part of the original
transformer architecture [52]. AST uses an encoder that has an embedding dimension of
768, 12 layers, and 12 heads. The output of the encoder of the transformer serves as the
audio spectrogram representation. A linear layer with sigmoid activation maps the audio
spectrogram representation to a label for classification.

5. Classification Experiments

We used the different parts of the NoisenseDB for two different objectives. First, we
used the SD to obtain baseline results for the three DNN classifiers presented in Section 4.
Second, we also used the UD of the NoisenseDB to evaluate the feasibility of a semi-
supervised learning strategy using convolutional classification systems.

5.1. Evaluation Metrics

Although accuracy is one of the most frequently used metrics to assess the performance
of a classification system, it is not suitable if the test database is unbalanced. In those cases,
the use of another metric such as recall is recommended. We have used the macro-average
recall [53] as main assessment metric. For calculating the macro-average recall, first, the
recall is computed for each class (1), and then we average all the recall values of the n
(number of classes) to get the macro-average recall (2).

Recall(R) =
True Positives

True Positives + False Negatives
(1)

macro− average recall = ∑i=n
i=1 Ri

n
(2)

For each of the evaluated architectures, we presented the baseline results in two
different ways. The first one calculated the macro average recall at the fragment level, while
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the second one calculated the metric for the entire sound clip, which was composed of
several fragments. For calculating the metrics for the entire audio clip, we used a modified
majority voting method.

Normally, in the majority voting method, the predicted output class for the whole
audio clip would be the class that has a greater number of predictions for the fragments
of that audio. Taking into account the criteria that we used during the labelling phase,
especially for “Dog” and “Impact” categories, we made some modifications on the majority
voting method. This modification consisted on assigning “Dog” or “Impact” category to
the whole audio clip if just one frame is classified as ”Dog” or “Impact”.

5.2. Classification of the Supervised Dataset

For the SD classification, we used five-fold cross validation using the distribution of
the database shown in Table 2. For each iteration, we used one fold for validation and the
remaining folds for training (approx. 80–20%). The convolutional classification systems
(ConvBlock and ResNet) were trained using an Adam optimizer with a learning rate of
1 × 10−4. L2 regularization with a factor of 1 × 10−5 was also used. We also applied a
learning rate reduction of 0.5 if the validation loss metric did not improve after 4 epochs.
The values of the aforementioned parameters were chosen from previous experiments
carried out with different databases. The AST model was trained using the Adam optimizer
for 25 epochs with an initial learning rate of 1 × 10−5 and decreasing it with a factor
of 0.85 every epoch after the 5th one. These are the recommended parameters of the
original architecture.

5.2.1. Baseline Results for Coarse Classification

We computed the metrics to evaluate the performance for the four-category taxonomy.
We have calculated the results both at fragment level and for the entire audio clip. We
applied majority voting without modification as “Dog” and “Impact” labels are not present
in the four-category taxonomy. Table 3 shows the mean and standard deviation of the
cross-validation iterations of the recall values (per class and macro-averaged) for each
system at fragment level.

Table 3. Recall values (mean and standard deviation) at fragment level classification averaged
through the cross-validation iterations. Data in %.

Category ConvBlock (m ± σ) ResNet (m ± σ) AST (m ± σ)

traffic 94.2 ± 1.9 95.7 ± 2.5 94.7 ± 1.8
human 97.7 ± 0.4 97.9 ± 0.5 97.4 ± 0.8
nature 84.2 ± 4.3 84.7 ± 0.4 86.1 ± 3.4

mechanical 53.9 ± 18.3 53.2 ± 18.4 51.5 ± 11.3

Macro recall 82.5 ± 5.7 82.9 ± 5.6 82.4 ± 2.4

Although the differences between the models are not statistically significant (confi-
dence intervals for p > 0.95: ConvBlock 4.9, ResNet 4.9, AST 2.1), ResNet achieves the best
overall result.

The results for all the most represented categories are very good for the three systems,
but the performance decays for the mechanical sounds category due to the scarcity of
training material for this category and the different kind of sounds that are included in it.

Table 4 shows the metrics for the entire audio classification. In this task, the overall
performance of the systems is worse compared to the fragment classification scores. This is
due to several factors: first, the number of audio clips is smaller than the number of frames
and this produces greater variability in the results for each iteration. Second, in the classes
where frame classification accuracy is worse (e.g., in short, punctual events) the frames
correctly classified can be easily outnumbered by frames wrongly classified in other classes.
This is the case for “Mechanical” and to a lesser extent for “Nature”. It would be worth
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evaluating other methods apart from majority voting to see if this performance can be
improved. Conversely the classes that have higher accuracy at fragment level are boosted
because the majority voting filters out the sporadic fragment-level classification errors.

Table 4. Recall values (mean and standard deviation) for the entire audio clip classification averaged
through the cross-validation iterations. Data in %.

Category ConvBlock (m ± σ) ResNet (m ± σ) AST (m ± σ)

Traffic 97.3 ± 1.7 98.3 ± 0.9 98.6 ± 1.9
Human 83.5 ± 3.1 87.0 ± 4.4 84.9 ± 5.3
Nature 63.3 ± 12.5 60.0 ± 17.0 70.0 ± 12.5

Mechanical 41.4 ± 11.4 29.5 ± 9.2 41.8 ± 15.1

Macro recall 71.4 ± 4.9 68.7 ± 4.4 73.8 ± 5.4

The results were similar for both ConvBlock and AST in most of the categories, but for
ResNet, the performance reduced more due to the fall in the most difficult classes (“Nature”
and “Mechanical”). Nevertheless, regarding the macro recall, the difference between the
models was not statistically significant (confidence intervals for p > 0.95: ConvBlock 4.3,
ResNet 4.3, AST 4.7).

Figure 5 shows the confusion matrix of the ResNet architecture for which we achieved
the best results at the fragment level. The rows represent the true labels while the columns
represent the predicted ones. The global confusion matrix was calculated considering the
classifications obtained in all the iterations by each class and divided by the total number
of elements in that class. Darker colors represent the highest scores.
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The results were good for all the categories except for the “Mechanical” one, for which
25.1% and 14.9% of the fragments were erroneously classified as “Traffic” and “Human”,
respectively. The differences between the values of the diagonal of the confusion matrix
(Figure 5) and the values of Table 3, corresponding to the ResNet, were due to the fact that
the former was calculated by adding all the classification results for the frames of every
iteration, whereas the latter was calculated averaging the recalls of each iteration.

5.2.2. Baseline Results for Fine Label Classification

We also trained the classifiers with the nine-category taxonomy, making decisions
both at fragment level and for the entire audio clip. In this last case, we used the modified
majority voting for “Dog” and “Impact” categories.

Table 5 shows the mean and standard deviation for all the iterations of the recall values
(per class and macro-averaged) at the fragment level. Once again, the difference between
the models was not statistically significant (confidence intervals for p > 0.95, ConvBlock 3.9,
ResNet 4.4, AST 3.2) but the best macro-average recall was obtained for the AST system.
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Table 5. Recall values (mean and standard deviation) for fragment-level classification averaged
through the cross-validation iterations. Data is in %.

Categories ConvBlock (m ± σ) ResNet (m ± σ) AST (m ± σ)

car 67.0 ± 10.5 64.0 ± 10.2 64.4 ± 8.3
motorbike 75.3 ± 6.8 79.4 ± 4.8 76.8 ± 9.5

cleaning-truck 78.5 ± 5.2 76.7 ± 5.6 77.1 ± 8.7
voice 87.3 ± 1.6 89.4 ± 3.2 87.5 ± 4.0
music 68.4 ± 8.1 64.8 ± 5.1 70.1 ± 3.8
dog 37.5 ± 13.8 40.4 ± 15.5 48.0 ± 9.4

storm 97.7 ± 3.1 97.5 ± 2.2 92.5 ± 8.8
impact 7.6 ± 8.6 3.6 ± 5.1 15.8 ± 9.5

machinery 63.8 ± 16.4 64.4 ± 18.5 64.2 ± 1.8

Macro recall 64.8 ± 4.3 64.4 ± 5.1 66.3 ± 3.7

In general, the performance was good for most of the classes. The main exceptions
were the “Dog” and especially the “Impact” classes, which had a very bad recall. This
is due to the scarcity of samples of this class and to the different kind of events (beats,
firecrackers, etc.) grouped under this label. The AST architecture performed better in these
categories, probably because it benefited from the transfer learning to compensate the lack
of training material. It is worth noting that if we exclude the “Impact” category from the
calculus of the global recalls, the results are very similar for all the systems: ConvBlock
71.9, ResNet 71.1 and AST 72.5.

Table 6 shows the metrics for the entire audio clip classification. The performance
in this case improves slightly for the ConvBlock compared to the fragment-by-fragment
classification, but decays for the others. The effects explained in the four-category case for
the entire audio clip classification, namely the small number of events of some classes and
the dispersion of results depending of the accuracy level of the class, apply also here. It
is worth mentioning the effect of the modified majority voting in the “Dog” and “Impact”
categories which boosts their accuracy in some cases.

Table 6. Recall values (mean and standard deviation) for entire audio clip classification averaged
through the cross validation iterations. Data is in %.

Categories ConvBlock (m ± σ) ResNet (m ± σ) AST (m ± σ)

car 75.1 ± 9.1 71.0 ± 14.9 68.2 ± 7.0
motorbike 81.4 ± 7.7 87.1 ± 8.8 70.1 ± 5.3

cleaning-truck 66.7 ± 0.0 86.7 ± 16.3 60.0± 13
voice 74.8 ± 5.4 73.6 ± 4.5 71.5 ± 3.9
music 67.6 ± 10.5 61.2 ± 6.1 58.2 ± 9.7
dog 45.0 ± 34.8 21.7 ± 19.4 100.0 ± 0.0

storm 93.3 ± 13.3 88.3 ± 14.5 88.3 ± 14.5
impact 51.7 ± 17.0 20.0 ± 24.5 21.6 ± 19.5

machinery 33.3 ± 16.7 20.0 ± 18.7 21.6 ± 11.3

Macro recall 65.4 ± 5.1 58.9 ± 8.0 62.2 ± 3.6

Overall, ConvBlock was the best performing system, although the difference between
the models was not statistically significant (confidence intervals for p > 0.95, ConvBlock 4.4,
ResNet 6.3, AST 3.1).

Finally, in Figure 6, we present the overall confusion matrix at fragment level for the
best system, i.e., the AST architecture. The rows of the matrix represent the true labels while
the columns show the predictions. Darker colors represent the highest scores. It can be
said that the system classifies well the “Storm”, “Voice”, “Cleaning-truck” and “Motorbike”
categories. On the contrary, the “Impact” category presents the worst classification rate
with 14.2% of correct answers. Among the categories belonging to the traffic group (car,
motorbike and cleaning truck), it is observed that the fragments that have not been correctly
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classified are confused with the other categories of the same group. “Voice” and “Music”
categories are also mixed to some extent. This is probably due to the fact that many of the
occurrences of music are sung songs.
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5.3. Semi-Supervised Strategy for Automatic Labelling

As we have mentioned before, one of the issues of obtaining datasets to train urban-
sound-event classifying systems is the initial labelling of the sound events that are registered
by the monitoring devices. In this work, for the supervised part (SD) of the database, we
used the 72 dB(A) threshold to obtain a manageable set of clips that could be labelled
manually. However, we wanted to tackle the problem of automating the labelling for larger
datasets. With this objective, a new set of events, with SPLs between 71 and 72 dB(A)s, was
extracted from the recordings and manually labelled. This dataset was used to experiment
with unsupervised training and, thus, was called the unsupervised dataset (UD). We
presented a novel semi-supervised strategy to train a classifier for automatic labelling. Such
a strategy can be applied to create the final classifier directly, but also as a way of obtaining
an initial labelling that can be refined by human labellers afterwards. In order to evaluate
the proposed strategy, we carried out an experiment using the convolutional architectures.

The proposed semi-supervised training method consists of several training and la-
belling iterations using labelled data (SD part) and unlabelled one (UD part). In the process
the unlabelled data is automatically labelled and the accuracy of this labelling is refined
iteratively. We have applied cross-validation for the evaluation of the method and thus
the semi-supervised training iterative process that we describe bellow have been repeated
5 times using different folds of the SD part as train and validation data. The process is
depicted in Figure 7.

For a particular cross-validation iteration (k), we reserve one of the folds of the SD part
of the dataset for validation SDvk and the rest 4 folders are the labelled part for training
(SDtk). On the first iteration of the semi-supervised labelling process (iter0 or i = 0), we
train the system using the labelled part, SDtk. UDk

(−1) is not used in this initial training
because it has no labels, i.e., UDk

(−1) is empty. Once the training is finished, we obtain
the labels for two different groups of data. The first group is the unlabelled part (getting
the predicted labels UDk

(0)), and the second one is the reserved validation fold of SDvk
data, getting the corresponding SDvk

(0) labels. In the second iteration (i = 1), the model is
trained again but in this case the UD dataset with the new labels automatically predicted
in the previous iteration UDk

(0), is added to the initial training set (the SDtk part). The
resulting model, Modelk(1) is used to relabel the UD getting UDk

(1) and the validation
SDvk, getting a new set of labels, SDvk

(1). We repeat the process for four more iterations
and analyse the recall of the labelling obtained in each iteration for the UD part, for the
SDvk part and the combination of both (SDvk&UD) in order to see the overall effect in the
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classification performance. The idea is to check if the system is able to improve using its
own predictions of the unsupervised data in a self-convergence iteration sequence. As we
have mentioned before, in the following experiments this process has been performed 5
times using 4 different folds to compose the training dataset SDtk and the remaining fold
as validation dataset SDvk. The UD part is used entirely in every cross-validation iteration,
without dividing it in folds. We have decided to do so because its labelling ground truth
information is never used in the training process, and because the amount of samples of
this part was not very big. Note that although the UD audios are the same for each of the k
folds of the cross-validation, the labels predicted are different because the training material
for the Modelk has been different, that is why it is denoted by the subscript k in UDk

(i).
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Figure 7. Diagram representing the i-th iteration of the semi-supervised labelling process for the k-th
cross-validation fold. Filled boxes represent the audio of the datasets and unfilled boxes represent
the labels.

5.3.1. Results for Four-Class Taxonomy

Table 7 shows how the macro-average recall evolves with each iteration of the method
for each dataset. This value is actually the mean recall averaged for the k = 5 cross-
validation iterations.

Table 7. Recall results (mean and standard deviation) in the semi-supervised experiment at the
fragment level, coarse classes. Data in %.

ConvBlock ResNet

Iterations UD (m ± σ) SDv (m ± σ) SDv&UD (m ± σ) UD (m ± σ) SDv (m ± σ) SDv&UD (m ± σ)

Iter0 66.6 ± 3.3 82.4 ± 5.7 75.5 ± 2.5 68.6 ± 1.9 82.9 ± 5.0 77.0 ± 2.2
Iter1 67.6 ± 2.8 82.2 ± 6.5 76.0 ± 3.1 69.0 ± 3.3 83.0 ± 4.5 77.3 ± 2.6
Iter2 68.2 ± 1.8 82.2 ± 5.6 76.7 ± 1.9 70.3 ± 2.9 81.8 ± 5.8 77.6 ± 2.7
Iter3 68.4 ± 3.4 82.3 ± 5.6 76.8 ± 2.6 69.8 ± 3.1 82.4 ± 3.5 77.4 ± 2.4
Iter4 69.4 ± 2.2 82.8 ± 4.4 77.5 ± 1.5 69.7 ± 2.9 82.4 ± 4.8 77.4 ± 2.0

The results show an improvement in both data sets and in both classifiers. If we look
to the ConvBlock results, the UD part improved by 2.8 points and the SDv&UD part by 2
points. It has to be noticed that this improvement did not impair the classification of the SD
part, which indeed improved by 0.4. If we take a look at the ResNet results, the UD part
was the one that improved most, by 1.7 points, followed by the SDv&UD part, which only
improved 0.6 points. In this case, this improvement was achieved at the expense of a slight
reduction (0.5 points) in the SDv part.
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In Figure 8, we can see the evolution of the recall values of the four categories through the
different iterations, considering the whole datasets (SDv&UD). The best performing classes
had slight improvements during the process while the worse ones behaved irregularly.
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5.3.2. Results for Nine-Class Taxonomy

Table 8 shows the recall results of each of the iterations for each of the datasets. We
calculated the metrics as described in Section 5.3.1.

Table 8. Recall results (mean and standard deviation) of the semi-supervised experiment at fragment-
level fine classes. Data in %.

ConvBlock ResNet

Iterations UD (m ± σ) SDv (m ± σ) SDv&UD (m ± σ) UD (m ± σ) SDv (m ± σ) SDv&UD (m ± σ)

iter0 56.5 ± 4.2 64.7 ± 4.3 59.2 ± 2.0 56.3 ± 1.8 64.4 ± 5.1 58.9 ± 3.2
iter1 61.2 ± 1.3 63.0 ± 2.7 60.5 ± 1.2 59.8 ± 1.5 64.5 ± 2.8 59.8 ± 2.1
iter2 61.3 ± 1.3 62.5 ± 2.5 60.1 ± 2.0 59.8 ± 1.8 62.2 ± 2.4 59.2 ± 1.7
iter3 62.6 ± 1.0 62.9 ± 3.5 61.0 ± 2.1 60.4 ± 2.7 62.3 ± 3.0 59.7 ± 2.5
iter4 62.7 ± 4.8 62.1 ± 5.2 61.0 ± 1.8 60.2 ± 1.7 60.2 ± 3.7 58.6 ± 1.5

For the ConvBlock system, an improvement was observed up to iter4 for the UD part
and up to iter 3 for the SDv&UD part. In the case of the ResNet, an improvement was
observed up to iter3 for the UD part and up to iter2 for the SDv&UD part.

The improvement rate is different for both system. For the ConvBlock system, the
UD part improves 6.2 points and the SDv&UD improves 1.8 points. While, for the ResNet
the UD part improves 4.1 and the SDv&UD part improves nearly 1 point. The SDv part
only improves in the first iteration and then loses recall. The improvement in the UD part
compensates the loss of accuracy of the SDv part on the SDv&UD result.

Figure 9 shows the evolution of the recall results for the different categories during the
different iterations for both architectures. We present the results for the SDv&UD dataset.
In both cases it can be seen that the good performing classes tend to improve with the
through the iteration whereas the worse performing class “Impact” degrades. The classes
with intermediate recalls vary in an unpredictable way.
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6. Conclusions

In this paper, we described a new sound-classification database, NoisenseDB. The
database was recorded in an urban environment and high-SPL events were extracted and
labelled by a single supervisor following a two-level taxonomy. The database is publicly
available for research upon request.

The database was used to evaluate and obtain baseline results for three different types
of neural network-based architectures, two of them developed expressly for this work,
and the third a state-of-the-art system (AST). Data-augmentation and transfer learning
techniques were applied in these systems. We tested the three architectures for the defined
taxonomy, both for the coarse and fine categories.

The results of the evaluation using the coarse level of the taxonomy (4 categories) gave
an overall performance around 82% for fragment level classification and 70% for entire
sound clip classification, with the two original neural architectures proposed by the authors
performing at the same level as the AST. For the fine level of the taxonomy, the results are
around 64% for all the systems.

The classifiers tended to confuse the categories belonging to the traffic group (“Car”,
“Motorbike” and “Cleaning truck”) and also “Voice” and “Music”. The databases were
very unbalanced and the categories with few samples (“Impact”, “Dog”) were very hard
to classify.

Trying to tackle the problem of the human labelling of the large amounts of audio
produced by a continuous monitoring system, we explored the possibility of a semi-
supervised procedure. This experiment has shown that the initial labelling of part of the
database can be used to effectively label other audio segments, and that this automated
labelled part can be used to retrain the system for two or more iterations so as the automated
labelling is refined. Including this new material in the training iterations does not impair
the performance of the system. Actually, it can slightly improve the overall performance of
the system in the first iterations.

The proposed semi-supervised labelling procedure can be used to obtain new auto-
matically labelled data that can be used for the refinement of the models in continuous
training applications. These preliminary experiments will be enhanced with more data to
better understand the behaviour of the procedure.
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