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Abstract: In design matters, mechanisms with deformable elements are a step behind those with rigid
bars, particularly if dimensional synthesis is considered a fundamental part of mechanism design.
For the purposes of this work, a hybrid rigid–flexible four-bar mechanism has been chosen, the input
bar being a continuum tendon of constant curvature. The coupler curves are noticeably more complex
but offer more possibilities than the classical rigid four-bar counterpart. One of the objectives of
this work is to completely characterize the coupler curves of this hybrid rigid–flexible mechanism,
determining the number and type of circuits as well as constituent branches. Another important aim
is to apply optimization techniques to the dimensional synthesis of path generation. Considerable
progress in finding the best design solutions can be obtained if all the acquired knowledge about the
coupler curves of this hybrid mechanism is integrated into the optimization algorithm.

Keywords: continuum rod; constant curvature; rigid–flexible mechanisms; path generation; dimensional
synthesis; optimization

MSC: 14H05

1. Introduction

Unlike rigid link mechanisms—where positions can be determined considering geometry
and joints configuration by means of a purely kinematic analysis—compliant mechanisms
require consideration of elasticity for defining their configuration [1,2]. Hence, a model of the
deformation of parts of the mechanism must be considered along with forces and moments
applied to the mechanism by its own actuators and the external environment. In this sense,
obtaining closed-form solutions to classical kinematic problems becomes a difficult task.

Continuum mechanisms, where deformation of slender elements is the source of
mobility, include open-loop devices based on a flexible backbone actuated along the length
to introduce bending [3], and closed-loop systems, where multiple flexible rods and rigid
bodies are coupled [4]. General-purpose approaches to their comprehensive position
analysis employ numerical methods to solve statics and dynamics [5–10]. Nevertheless,
certain assumptions and approximations can be sufficiently accurate to obtain useful
closed-form solutions in some of those applications.

Regarding open-loop continuum mechanisms, one option is to approximate the deformed
shape of elements of the mechanism using specific curves. For example, Hirose [11] employed
serpenoid curves, assuming that curvature changes sinusoidally along the length, fitting
well with the biological motion of snakes. Alternatively, Chirijkian [12,13] describes the
backbone curves by means of shape functions that are restricted to a modal form. Then, the
inverse kinematic problem reduces to determining the time-varying backbone curve behavior.
Possibly the most common approach is to approximate backbone deformation as a series
of arcs of constant curvature that are mutually tangent. This is a good approximation in
many cases, such as active cannulas based on concentric pre-curved tubes [14]. Further,
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pneumatically actuated trunks [15] can behave like a piecewise constant curvature system.
A comprehensive review of the state of the art on constant curvature rods can be found
in [16]. Moreover, the work in [17] shows that a constant torque can be applied by means
of a wire attached to the end of a flexible rod, passing through a sufficient number of guide
discs fixed to the rod. The latter case, based on tendons and guide discs, is possibly the most
straightforward and simplest way to implement an active flexible rod. Many continuum
robots consist of a multiply actuated single member, which is capable of tracing curvilinear
trajectories suitable for applications in confined spaces and tasks such as non-destructive
inspection or minimally invasive surgery.

More recent works have focused on the inclusion of flexible rods in closed-loop systems
(such as parallel robots) to benefit from advantages such as good maneuverability, minia-
turization, low weight, and inertia. Following the rationale of parallel kinematic machines,
the actuation is distributed among the parallel members and placed in the fixed frame when
possible. Usually, flexible members play a passive role, and the actuation is applied to the
first end-tip of rods by controlling displacement or orientation. In this regard, works focusing
on continuum hexapods [18] and their implementation in surgical devices [5] have been
conducted. The authors of this paper have investigated the position problem of closed-loop
flexible mechanisms [19] and the multiplicity of the buckling mode of slender links on planar
parallel continuum mechanisms [20]. Additionally, [21] presents a 3-DOF planar parallel
continuum robot, suitable for high-precision applications, achieving nanometer repeatability.

In the aforementioned examples, flexible rods enable the movement of the mechanism,
but they are not the actuating members themselves. However, active flexible rods used in
open-loop continuum mechanisms can also play an active role in such parallel devices if
they are implemented to actuate the mechanism. This idea has been exploited in parallel
soft robot manipulators manufactured with rubber bars containing pneumatically actuated
chambers [22]. Another example [23] uses a platform attached to pneumatically actuated
chains made of polyimide material through spherical joints. More recently, the authors
of [24] developed an approach consisting of employing tendon-driven rods to actuate
parallel kinematic mechanisms. In this latter case, the kinematic analysis problem of a
3-RF[b]R parallel robot was addressed by taking advantage of the simplifications related to
working with constant curvature deformable rods.

Most of the multi-degree-of-freedom flexible devices have been developed from analo-
gies with rigid-link mechanism counterparts. Indeed, there is limited research activity
in the field of dimensional synthesis [2], and much of the work related to the design
of mechanisms with deformable elements is supported by the synthesis of a compliant
mechanism. The main methods used to synthesize compliant mechanisms include the
freedom and constraint topologies (FACT) [25,26], topology optimization [27], the practical
method of rigid-body replacement [28], and the building-block approach [29]. Research
on dimensional synthesis of such systems is even more scarce and is usually reduced to a
limited optimization of a set of elastic parameters.

The authors of this paper are interested in studying the possibility of applying dimen-
sional synthesis optimization methods of rigid-bar mechanisms to flexible-bar mechanisms.
Precisely, the four-bar hinged linkage is undoubtedly the mechanism most used by the
scientific community for its verification. It has been used for function generation, path
generation, and motion generation using local, global, and hybrid optimization methods.
A small sample of these works can be found in the following references: [30–34].

For all these reasons, in the present study, the authors selected a hybrid four-bar
hinged linkage where the crank (or rocker) input has been replaced by a driven continuum
rod. The dimensional synthesis of this mechanism is focused on path generation. The
following abbreviated nomenclature will be used hereafter:

• RFB: Rigid Four-Bar Hinged Linkage
• FFB: Tendon-Driven Hybrid Rigid–Flexible Four-Bar.

In general, optimization procedures applied to the dimensional synthesis of
mechanisms—both global and local methods—function like closed boxes. Once the opti-
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mization algorithm comes into action, the designer loses control. Our experience indicates
that a good direction of descent in minimization is sometimes penalized by a default that
could be easily resolved if the geometry of the path in the current iteration were known.
Often, excessive use of penalty functions places too many restrictions on the design space.

Therefore, the first part of this paper is devoted to examining the trajectories of the
FFB coupler point, the composition of its circuits, and the existence of one or two branches
within the circuits. The results obtained reveal fundamental differences with respect to the
RFB. In fact, the FFB can have “open” circuits, while paths with more than two circuits
also exist; and no (closed) circuit exists with only one branch. This, in itself, constitutes a
contribution toward knowledge of the paths of the FFB coupler point, like its previously
studied RFB counterpart.

The second part of the article characterizes the coupler curves by incorporating these
into an optimization algorithm, with two aims in mind. The first is to avoid circuit and
order errors. To perform this, the optimization algorithm must know, at each iteration,
in which circuit and in which branch the coupler point is located. The second aim is to
integrate knowledge about the number and type of circuits that make up the path into the
optimization algorithm. The idea is that the optimization algorithm itself presents tools of
intelligent assistance in the search for the best solution. The significant differences between
the coupler curves of the FFB and the RFB condition largely determine the optimization
process of the path generation of the FFB. Therefore, in our opinion, this second part
constitutes another important contribution to the existing knowledge of the dimensional
synthesis of mechanisms with continuum rods.

Finally, throughout the paper, a comparison of the FFB with its rigid bar counterpart
is made in order to establish analogies and differences between the two.

2. Materials and Methods

In this section, the characterization of the coupler curves of the FFB as well as the
functioning of the optimization procedure are presented.

2.1. Kinematics of Continuum Rod with Uniform Curvature

A particularly interesting flexible body, which cannot be modeled with pseudo rigid
body models, is the driven continuum rod [24]. This device is composed of a series of disks
connected together by a flexible central spine and two cables, as shown in Figure 1. A
uniform curvature can be achieved along its entire length by picking up length in one cable
and releasing the other by the same amount (Figure 2). Curvature varies with time, thus
achieving motion.
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From the geometry shown in Figure 2, the following equations can be formulated:

l = ρ·β (1)

∆l = r·β = r· l
ρ
= r·l·κ (2)

It is interesting to note here that the deformed configuration of the rod shown in
Figure 3 can be described as a function of the rod length (l) and the curvature (κ) by means
of simple expressions, being able to integrate this element into kinematic calculations
without the need to consider the forces and moments involved.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 3. Variables describing the kinematics of continuum rod. 

From the geometry of Figure 3, the expressions for the coordinates of point A de-
scribing the position of the rod tip in the reference frame (𝐴 𝑋 𝑌 ) are 𝑥 = 𝐴 𝐴 · 𝑐𝑜𝑠(𝜑) = 2 · 𝜌 · 𝑐𝑜𝑠 (𝜑)  (3)𝑦 = 𝐴 𝐴 · 𝑠𝑖𝑛(𝜑) = 𝜌 · 𝑠𝑖𝑛(2 · 𝜑)  (4)

If 𝜑 is expressed as a function of 𝜅, then 𝑥 = 2 · 𝜌 · ( · ) = · (1 + 𝑐𝑜𝑠(𝜋 − 𝑙 · 𝜅))  (5)

𝑦 = 𝜌 · 𝑠𝑖𝑛(2 · 𝜑) = · 𝑠𝑖𝑛(𝜋 − 𝑙 · 𝜅)  (6)

In the case of the continuum rod, when monotonically increasing or decreasing the 
value of input 𝜅 from a starting position, the connecting rod will never return to that 
starting position, unlike in the case of the rigid rod. Indeed, in RFB linkage, it is usual to 
impose the Grashof condition on the early design phase to ensure the complete rotation 
of the input element, since this facilitates the work of the actuator, as there are no blocking 
positions. However, in FFB, the input continuum rod will never behave as a fully rotating 
crank since its kinematic equations do not show cyclic behavior. 

The aforementioned situations are depicted in Figure 4a,b, showing the displace-
ments of two rods of unit length (𝑙 = 1): the rigid and the continuum rod, respectively. 
These figures also represent the trajectories described by the ends of both rods for input 
values in the interval [0, 2π]. Consequently, as known, the RFB can have circuits com-
posed of a single branch because the input element can make complete turns, returning to 
its starting configuration. However, this is not possible in a FFB, because of the concept of 
closed that the word “circuit” entails. 

In the case of the continuum rod, it follows from its equations that for |𝜅| > 2π/𝑙, the 
continuum rod turns back on itself, obtaining configurations that, although valid from a 
mathematical standpoint, lack practical interest. Since we are working with planar mecha-
nisms, the continuum rod would interfere with itself. On the other hand, excessive curvature 
is not possible in a structure with cables and disks, such as the one shown in Figure 1. 

Figure 3. Variables describing the kinematics of continuum rod.

From the geometry of Figure 3, the expressions for the coordinates of point A describ-
ing the position of the rod tip in the reference frame (A 0X′Y′) are

x′A = A0 A·cos(ϕ) = 2·ρ·cos2(ϕ) (3)

y′A = A0 A·sin(ϕ) = ρ·sin(2·ϕ) (4)
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If ϕ is expressed as a function of κ, then

x′A = 2·ρ· 1 + cos(2·ϕ)
2 = 1

κ ·(1 + cos(π − l·κ)) (5)

y′A = ρ·sin(2·ϕ) = 1
κ
·sin(π − l·κ) (6)

In the case of the continuum rod, when monotonically increasing or decreasing the
value of input κ from a starting position, the connecting rod will never return to that
starting position, unlike in the case of the rigid rod. Indeed, in RFB linkage, it is usual to
impose the Grashof condition on the early design phase to ensure the complete rotation of
the input element, since this facilitates the work of the actuator, as there are no blocking
positions. However, in FFB, the input continuum rod will never behave as a fully rotating
crank since its kinematic equations do not show cyclic behavior.

The aforementioned situations are depicted in Figure 4a,b, showing the displacements
of two rods of unit length (l = 1): the rigid and the continuum rod, respectively. These
figures also represent the trajectories described by the ends of both rods for input values
in the interval [0, 2π]. Consequently, as known, the RFB can have circuits composed of a
single branch because the input element can make complete turns, returning to its starting
configuration. However, this is not possible in a FFB, because of the concept of closed that
the word “circuit” entails.
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In the case of the continuum rod, it follows from its equations that for |κ| > 2π/l, the
continuum rod turns back on itself, obtaining configurations that, although valid from
a mathematical standpoint, lack practical interest. Since we are working with planar
mechanisms, the continuum rod would interfere with itself. On the other hand, excessive
curvature is not possible in a structure with cables and disks, such as the one shown in
Figure 1.

2.2. Path Characterization of the Coupler Point of a FFB; Comparison with RFB

The kinematic analysis of the four-bar hinged linkage on both rigid and flexible
versions will be discussed below, describing the analogies and differences between them.
Figure 5 identifies the dimensional parameters aj and the passive variables (θ, ψ) in both
rigid and flexible designs, as well as the corresponding input (ϕ in RFB and κ in FFB).
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At a glance, we can observe two differences between them. First, the different nature
of the input variables in the RFB and FFB, ϕ and κ, respectively, will have consequences
for the complexity of the equations, particularly in the case of the FFB. Second, the RFB
has 9 dimensional parameters, and the FFB has 10. The additional dimensional parameter
of the FFB (a10) defines the offset between the fixed joint and the floor of the continuum
rod embedment.

To characterize the FFB coupler curves, it is necessary to solve the position problem.
This characterization does not depend on operations such as translation and rotation of
the mechanism, and thus, the coupler curve can be determined in the local reference frame
(A 0X′Y′). Considering Equations (5) and (6) of the continuum rod and projecting the loop

equation
( →

A0 A +
→

AB +
→

BB0 +
→

B0 A0 =
→
0
)

of the FFB (Figure 5b) on the axes of this local

system, we obtain 
1 − cos(κa1)

κ
+ a2·cos(θ)− a4 − a3·cos(ψ) = 0 (7)

sin(κa1)

κ
+ a2·sin(θ)− a10 − a3·sin(ψ) = 0 (8)

By combining Equations (7) and (8), ψ can be removed, resulting in the following
equation:

H1cos(θ) + H2sin(θ) + H3 = 0 (9)

where:

H1 = 2a2

(
1− cos(κa1)

κ
− a4

)
(10)

H2 = 2a2

(
sin(κa1)

κ
− a10

)
(11)

H3 = 2
(

1
κ
− a4

)
1− cos(κa1)

κ
− 2a2

sin(κa1)

κ
+ a2

2 + a2
4 + a2

10 − a2
3 (12)

By isolating the variable θ from Equation (9), the following expression is obtained:

θ = 2arctan
(
−H2 + K

√
Q

H3 − H1

)
(13)

where:
Q = H2

1 + H2
2 − H2

3 (14)

The index K in Equation (13), which has a similar meaning to that in [35,36] for the
RFB linkage, can take the values ±1, giving rise to two values of θ. Each value of θ
corresponds to one mechanism configuration (see Figure 6). The configurations belonging
to the same branch correspond to values of θ obtained with the same value of K. A branch
can have limits or not. Beyond these limits, the variable θ ceases to have real values.
This mathematical situation occurs when the mechanism reaches a configuration where,
beyond it, the mechanism can no longer be assembled, that is, the mechanism has reached
a blocking position.

2.2.1. Blocking Positions

Consider a FFB defined by a dimensional vector d = {a1, a2, a3, a4, a10}. Note that only
these dimensions influence the branches and circuits. Indeed, a5 and a6 simply define the
relative position of the coupler point, while a7, a8, and a9 are responsible for the rotation
and translation transformations of the mechanism.
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The valid values of the input parameter κ are those for which the mechanism can be
physically assembled. Only for those values will the passive variable θ take a real value.
Then, the function Q under the root of Equation (13) must be greater than or equal to zero:

Q (d, κ) ≥ 0 (15)

Therefore, the values of κ that give rise to blocking positions in FFB are those in which
Q(d, κ) is null.

The blocking positions can occur for any value of the input variable. Thus, the domain
to be analyzed in RFB is ϕ ∈ [0, 2π], while in FFB, it is κ ∈ [−∞,+∞].

To illustrate these ideas, Example 1 of Figure 7 will be used, of which the dimensions
aj of the corresponding mechanism are shown in Table 1. Figure 7 represents the domain of
the input κ, showing the existence of intervals of the variable, as well as its extremes.
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Figure 7. Example 1. Q(d, κ) analysis for a specific FFB defined by dimension d.

As can be observed in Figure 7, three intervals verify Q(d, κ) > 0 (depicted in green
color). Each contains the set of configurations through which the mechanism can move
without being physically disassembled. Note that, for the FFB, the extremes are not
necessarily finite values, but they may reach κ = −∞ or κ = +∞. Then, extremes of the
intervals can correspond to configurations whose input takes infinite value or to a blocking
position. In physical terms, each interval corresponds to one circuit of the coupler curve
of the mechanism. Depending on the type of extremes, the circuits are composed of one
or two branches, as shown below. Intervals having an infinite extreme result in “open
circuits”, which cannot occur in the RFB. Note that, although “open circuits” might sound
semantically contradictory, this terminology will be kept to distinguish between these two
different situations (open and closed curves).
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Moreover, in the example shown in Figure 7, there are another two intervals, depicted
in pink color, for which Q(d, κ) < 0. The mechanism cannot be assembled within the
ranges of these input values. The boundaries between valid and invalid input values are in
fact the four blocking positions denoted in Figure 7 as κb1, κb2, κb3, and κb4, where Q(d, κ)
changes sign. To better illustrate this scenario, the second blocking position, κb2 = −1.67, is
depicted in Figure 8, where the alignment of the bars is clearly evident, as in the case of the
RFB. Figure 8 also shows how the two blocking positions delimit the two branches that
make up the circuit. The first branch is obtained with the index K = −1 and the second
branch with K = +1.

Table 1. Dimensional parameters for Examples 1, 2, and 3.

Dimensional Parameters

Example 1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 1 0.67 1 1 1 0 0 0 0.4

Example 2

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

0.67 1 1 0.33 0.5 0.5 0 0 0 −0.67

Example 3

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 0.4 0.6 0.7 0.2 0.2 0 0 0 0.7
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Another difference between the RFB and the FFB lies in the difficulty in obtaining the
values of the input variable at which the blocking positions occur. In an RFB, these are
extracted analytically from a second-degree algebraic equation [36]. In contrast, in a FFB,
these values are obtained from Q(d, κ) = 0, where Q(d, κ) is a highly complex expression
(see Equations (10), (11), (12), and (14)), bearing in mind that the input κ appears both
inside and outside the trigonometric functions. Therefore, the values of κ associated with
the blocking positions in FFB can only be extracted numerically.
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2.2.2. Branches and Circuits in the FFB Coupler Curves

In an RFB, closed circuits are always obtained, which may be composed of one or two
branches depending on the range of motion of the input in each circuit:

• For a crank input, two circuits will always exist, each one composed of one unique
branch.

• For a rocker input, there may be one or two circuits. Each circuit has two branches,
which are connected at blocking positions.

While a FFB shares certain similarities with an RBF, significant differences also appear
due to Equation (15). On the one hand, each circuit may be composed of one or two
branches. On the other hand, each circuit can be “open” or closed depending on the range
of motion of the input κ ∈ [κ1, κ2]. The following three cases can be distinguished:

• Case I: If the range is bound by two blocking positions, i.e., two finite values of κ, this
leads to a closed circuit with two branches.

• Case II: If the range has one single blocking position, i.e., it is bound by a finite value κ1
while the other extreme is κ2 = +∞ or−∞, this leads to an open circuit with two branches.

• Case III: If the whole range κ ∈ [−∞,+∞] is valid, there are no blocking positions,
and two single-branch open circuits are obtained.

In the light of these three cases, further differences between an RFB and a FFB can be
pointed out. First, as long as the curvature κ is the input variable—which is the premise of
this work—single-branch closed circuits cannot be obtained since κ is not a cyclic variable,
unlike ϕ in the case of the RFB. Second, in Case II, the curvature increases to infinity
without reaching the blocking position, so that the coupler curve reaches its end point when
κ = +∞ or −∞ without closing. These types of positions are not achievable in practical
applications, since the rod would suffer a significant bending moment and eventually
break. Moreover, for |κ| > 2π/a1, the rod would interfere with itself, assuming an in-plane
motion. Furthermore, with respect to the solutions of Equation (15), a mechanism may give
rise to several intervals of valid input values, each of which will correspond to a circuit
that may fall into any of the three typified cases. Consequently, a mechanism may have
multiple circuits that can be open or closed, some with two branches and some having only
one. Unlike in an RFB, where there can be a maximum of two circuits, in a FFB, many more
can be obtained. These conclusions will be illustrated subsequently with several examples.

Continuing with the previous Example 1, this mechanism has a coupler curve with
three circuits, as represented in Figure 9. Two of the circuits correspond to Case II, and
the remaining one to Case I. In this example (as in subsequent ones), the first branch is
obtained with index K = −1 and the second branch with K = +1.

To illustrate Case III, the mechanism of Example 2, shown in Figure 10, will be used.
The corresponding dimensional parameters are listed in Table 1. As can be observed, in
this second example, the curvature κ takes valid values in the whole domain. The coupler
curve is composed of two single-branch open circuits. It is worth noting, in this case, that
if the ideal non-practical values of κ were accepted, κ < −2π/a1 and κ > +2π/a1, the
extremes of each single-branch open circuit, corresponding to the values κ = −∞ and
κ = +∞, would coincide. In this sense, it appears that the circuit becomes closed. However,
we prefer to be consistent with what has been described so far, and not consider impractical
values of κ. Therefore, we will assume that the circuits are open.
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The maximum number of circuits in a FFB still remains to be verified, since this is
directly related to the maximum number of real solutions of Equation (15). The extreme
complexity of this equation has already been pointed out. It is probable that in an equation
of this mathematical complexity it is not possible to determine the maximum number of
real solutions and, therefore, the maximum number of blocking positions and circuits.
This contrasts with the well-established maximum of 2 circuits in the RFB. Nevertheless,
the authors conducted an automatic study on 106 FFB linkages, obtained by randomly
combining the components of dimensional vector d. This study established a maximum of
4 circuits within the practical utility domain κ ∈ [−2π/a1,+2π/a1]. Extending this study
to the whole domain κ ∈ [−∞,+∞] yielded a maximum of 10 circuits.

Figure 11 shows a new example (Example 3) with 4 closed circuits, each with two
branches. The dimensions of the mechanism corresponding to this third example are listed
in Table 1. Despite having four circuits, it is worth noting that Circuits 1 and 4 are not
entirely useful in practice. In the case of Circuit 1, the values κ ∈ [−7.79,−2π] are of no
interest, as they lie outside the aforementioned domain of practical utility. The same occurs
for Circuit 4, with the interval κ ∈ [2π, 11.03].
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2.3. Optimization Method for Path Generation of a FFB

This section will describe a methodology for the dimensional synthesis of FFB path genera-
tion. This methodology can be easily adapted to the cases of function and motion generation.

The coordinates of the coupler point of the FFB (Figure 5b), which refer to the global
frame (OXY), can be expressed as follows:

xP = x′P·cos(a7)− y′P·sin(a7) + a9 (16)

yP = x′P·sin(a7) + y′P·cos(a7) + a8 (17)

where (x ′P, y′P) are the coordinates of the coupler point referring to the local system
(A0X′Y′):

x′P =
1− cos(κa1)

κ
+ a5·cos(θ)−a6·sin(θ) (18)

y′P =
sin(κa1)

κ
+ a5·sin(θ)+a6·cos(θ) (19)
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By adopting the sum of squared distances between generated Pi(xi, yi) and prescribed
Pd

i (xd
i , yd

i ) points as the error function E, then

E = ∑N
i=1

[(
xi − xd

i

)2
+
(

yi − yd
i

)2
]

(20)

N being the number of the precision points of the prescribed trajectory.
From here on, the main steps of the optimization procedure proposed in [35] will be

followed, but by incorporating the knowledge acquired regarding the branches and circuits
of the FFB, as will be explained in subsequent sections. Therefore, in this work, only those
aspects of this procedure that the authors consider essential for its understanding will
be indicated. Note that, since this procedure follows a local optimization, the choice of
an initial design is a relevant step and will have an important effect on the quality of the
solution obtained. In our case, a candidate mechanism is manually identified, and can be
used directly in the initial iteration, or can be manually adjusted by “trial and error” to try
to improve the quality of the approach.

It is essential to obtain the derivatives of the synthesis equations, in our case
Equations (16) and (17), with respect to each of the dimensional parameters aj and the
input variable κ. By following the tree derivation rule, according to the functional depen-
dence law, implicit derivatives of the type ∂θ

∂aj
and ∂θ

∂κ appear, which are the most difficult
to obtain. In this case, instead of deriving Equations (7) and (8) implicitly, it is simpler
to derive Equation (13) explicitly but taking into account the functional dependencies of
H1, H2, H3, and Q with respect to aj and κ.

2.3.1. Incorporating Knowledge of FFB Branches and Circuits into Path-Generation
Synthesis; Avoiding Circuit Error

At each iteration of the synthesis process, it is necessary to construct the map of circuits
and branches of the mechanism. With the input κi of each i generated point Pi(xi, yi), it
is possible to determine the circuit of the mechanism in which it is located. To evaluate
the position of a generated point Pi(xi, yi) with respect to its corresponding prescribed
point Pd

i

(
xd

i , yd
i

)
, it is sufficient to obtain from Equation (13) the two values of the passive

variable θ and enter these into the synthesis Equations (16) and (17), and then place the two
solutions on the circuit or circuits at the current iteration mechanism. From here on, any of
the cases described in Section 3.2 can be treated as follows:

• Case I: A closed circuit with two branches. The values of the index K give rise to two
solutions, one in each branch. Clearly, the one with the smallest distance from the
prescribed point Pd

i must be taken. Once the branch is detected, the rest of the points
of the synthesis are evaluated on the same branch (with the same value of K). By
adopting this approach, the order error is avoided.

• Case II: An open circuit with two branches. The functioning is the same as in the
previous case.

• Case III: Two single-branch open circuits. In this case, the K index values determine
both the branch and the circuit. As in Cases I and II, the value of K with the smallest
distance from the prescribed point Pd

i is selected. This determines the circuit in which
the synthesis has to be performed, thus avoiding the circuit error.

Note that, in cases where it is possible to pass through the blocking positions, the
procedure could work with points belonging to the two branches, provided that both are
part of the same circuit (Cases I and II). One way to pass through a blocking position is to
transiently change the input to the rigid bar and then immediately return the actuation to
the tendon.
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2.3.2. Avoiding Order Error

Order error occurs when the coupler point of the mechanism resulting from the
synthesis does not follow the previously established ordered sequence of prescribed points.
When a circuit is composed of a single branch (Case III), it is very easy to avoid the
order error: it is sufficient to assign to the prescribed points an ordered sequence of input
parameter values in increasing (or decreasing) order. Clearly, all the points generated must
have the same K index value.

For the remaining cases (I and II), where the circuits consist of two branches, avoiding
order error can be achieved as follows. For case II (open circuit with two branches), it is
sufficient to take the ordered sequence following the direction from the blocking position
to +∞ (or to −∞, depending on the branch). However, for Case I (closed circuit with
two branches), to be able to use points located on both branches of the circuit, it will be
necessary to follow the strategy represented in Figure 12.
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Figure 12. Illustrative example demonstrating how to avoid order error.

Figure 12 represents a circuit with two branches, separated by the blocking positions
κb1 and κb2. The pink colored branch (K = −1) is traversed in the direction of input
variation from κb1 to κb2, while the blue-colored branch (K = +1) is traversed when the
input goes from κb2 to κb1. Let us assume that the ordered sequence of points to be generated
by the mechanism falls on both branches, the starting point P1 being located on the pink
branch. For the mechanism to follow the ordered sequence, the continuum rod must
deform clockwise to the blocking position κb2. Then, the continuum rod reverses its input
by continuing along the blue branch until it reaches the last point PN . The optimization
algorithm is able to detect the blocking positions in which one branch is changed to another,
so that the direction of the input is reversed once the boundary defined by these blocking
positions is crossed. This is possible due to the acquired knowledge regarding the branches
and circuits of the coupler curve of the FFB.

3. Results

In this section, two demonstrative examples of a path-generation optimum dimen-
sional synthesis of a FFB will be shown.

3.1. Path Generation Example 1 (PG-Example1)

The data according to the prescribed points for this PG-Example1 are taken from
reference [37], with the corresponding coordinates indicated in Table 2. In [37], path
generation was conducted using a double butterfly mechanism (eight elements including
the fixed one: four binary and four ternary) and without restriction of the input parameter
(unprescribed timing).
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Table 2. Coordinates of prescribed points of the objective path in Ref. [37].

xd
1 xd

2 xd
3 xd

4 xd
5 xd

6 xd
7 xd

8 xd
9 xd

10 xd
11 xd

12

5.88 5.74 5.38 4.79 4.05 3.45 3.14 3 3.02 3 3 3

yd
1 yd

2 yd
3 yd

4 yd
5 yd

6 yd
7 yd

8 yd
9 yd

10 yd
11 yd

12

9.92 10.61 11.23 11.55 11.63 11.27 10.61 9.84 9.12 8.32 7.49 6.44

In PG-Example1, an unprescribed timing path-generation optimization with a FFB
was carried out. Figures 13 and 14 show, respectively, the initial guess mechanism and the
optimal solution obtained. The value of the error function declines significantly from 22.02
to 0.0032 after design optimization. In both figures, the desired trajectory is depicted in red
color, while the initial trajectory (Figure 13) and the obtained optimal trajectory (Figure 14)
are depicted in black.
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Table 3 displays the dimensional parameters and input values associated with the
initial and optimal solutions, respectively.

Table 3. PG-Example1. Starting mechanism and optimal design parameters and inputs.

Starting Mechanism

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

2 1.34 0.66 1.34 2 2 0 10 0 0

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10 κ11 κ12

0.91 0.83 0.74 0.58 0.48 0.36 0.32 0.34 0.39 0.49 0.58 0.68

Optimal Design

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

5.60 3.89 2.61 4.52 3.45 2.52 0.32 6.44 −1.62 −1.22

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10 κ11 κ12

0.48 0.41 0.33 0.27 0.21 0.17 0.16 0.17 0.19 0.23 0.27 0.34

Finally, Figure 15 plots the error function against the number of iterations. Conver-
gence to a final solution was achieved after 80 iterations, with a total computation time of
just 0.5 s. Note that this and the subsequent example were solved using a mid-range laptop
(Asus Zenbook, Intel Core i7 8565 U CPU @ 1.80 GHz 1.99 GHz, RAM 16 GB).
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3.2. Path Generation Example 2 (PG-Example2)

In PG-Example2, the desired trajectory consists of tracing a right angle, as shown in
Figures 16 and 17. The data according to the prescribed points are shown in Table 4.

Table 4. Coordinates of prescribed points of the objective path of PG-Example2.

xd
1 xd

2 xd
3 xd

4 xd
5 xd

6 xd
7 xd

8 xd
9 xd

10 xd
11 xd

12

−0.50 −0.39 −0.28 −0.17 −0.06 0.06 0.17 0.28 0.39 0.50 0.50 0.50

xd
13 xd

14 xd
15 xd

16 xd
17 xd

18 xd
19

0.50 0.50 0.50 0.50 0.50 0.50 0.50

yd
1 yd

2 yd
3 yd

4 yd
5 yd

6 yd
7 yd

8 yd
9 yd

10 yd
11 yd

12

0 0 0 0 0 0 0 0 0 0 −0.10 −0.21

yd
13 yd

14 yd
15 yd

16 yd
17 yd

18 yd
19

−0.33 −0.44 −0.55 −0.66 −0.78 −0.89 −1
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Figures 16 and 17 show, respectively, the initial guess mechanism and the optimal
solution obtained. As in the previous example, the desired trajectory is depicted in red
color, while the initial trajectory (Figure 16) and the obtained optimal one (Figure 17) are
depicted in black.

In this example, the value of the error function falls from 1.7507 to 0.0026 after design
optimization.
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Table 5 displays the dimensional parameters and input values associated with the
initial and optimal solutions.
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Table 5. PG-Example2. Starting mechanism and optimal design parameters and inputs.

Starting Mechanism

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 0.33 1 0.33 1 1 0 0 0 0

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10 κ11 κ12

0.20 0.02 −0.16 −0.33 −0.51 −0.69 −0.87 −1.04 −1.22 −1.40 −1.58 −1.76

κ13 κ14 κ15 κ16 κ17 κ18 κ19

−1.93 −2.11 −2.29 −2.47 −2.64 −2.82 −3

Optimal Design

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1.01 1.99 1.51 1.66 2.38 −2.42 0.82 2.54 −0.49 −1.91

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10 κ11 κ12

0.34 0.19 0.05 −0.09 −0.22 −0.36 −0.49 −0.64 −0.80 −0.94 −1.21 −1.44

κ13 κ14 κ15 κ16 κ17 κ18 κ19

−1.62 −1.80 −2.00 −2.21 −2.45 −2.74 −3.10

For PG-Example2, convergence to a final solution is achieved after 50 iterations, with
a total computation time of just 0.45 s.

4. Discussion

This work presents a comprehensive study of the coupler curves of a hybrid rigid–flexible
four-bar hinged mechanism. Analogies and differences have been established with respect
to the well-known rigid four-bar hinged linkage coupler curves. The most notable differ-
ences between the hybrid and rigid mechanisms are as follows: in hybrid mechanisms, the
curves can contain more than two circuits, even up to ten; “open” circuits can appear; and
there cannot be closed circuits with only one branch.

From a classical optimizer based on the gradient of the error function, an optimization
algorithm has been created, incorporating this new knowledge about the branches and
circuits of the coupler curves of the hybrid rigid–flexible mechanism. Thus, the search for
the optimal solution is no longer blind, but is guided by a series of “intelligent” assistants
emerging from this new knowledge.

The two examples presented with this path-generation dimensional synthesis proce-
dure demonstrate the effectiveness of this new optimization algorithm, which achieves
high-quality solutions, given the possibilities offered by this simple mechanism. Moreover,
the algorithm ensures mechanisms that are free of circuit and order errors that are typical
of this type of synthesis.

Author Contributions: Conceptualization, A.H., A.M., M.U. and O.A.; methodology, A.H., A.M.
and M.U.; software, A.M.; validation, A.H., A.M., M.U. and O.A.; formal analysis, A.H. and O.A.;
investigation, A.H., A.M., M.U. and O.A.; resources, A.H. and A.M.; data curation, A.H. and A.M.;
writing—original draft preparation, A.H. and A.M.; writing—review and editing, M.U. and O.A.;
visualization, A.M. and M.U.; supervision, A.H. and M.U.; project administration, A.H., M.U. and
O.A.; funding acquisition, A.H., M.U. and O.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Spanish government through the Ministerio de Ciencia e
Innovación (Project PID2020-116176GB-I00), financed by MCIN/AEI/10.13039/501100011033, and
funded by the Departamento de Educación from the Regional Basque Government through Project
IT1480-22.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 4215 20 of 21

References
1. Howell, L.L. Compliant Mechanisms; Wiley: Hoboken, NJ, USA, 2001.
2. Howell, L.L.; Magleby, S.P.; Olsen, B.M. (Eds.) Handbook of Compliant Mechanisms; Wiley: Hoboken, NJ, USA, 2013.
3. Rao, P.; Peyron, Q.; Lilge, S.; Burgner-Kahrs, J. How to Model Tendon-Driven Continuum Robots and Benchmark Modelling

Performance. Front. Robot. AI 2021, 7, 630245. [CrossRef] [PubMed]
4. Bryson, C.E.; Rucker, D.C. Toward Parallel Continuum Manipulators. In Proceedings of the 2014 IEEE International Conference

on Robotics & Automation (ICRA), Hong Kong, China, 31 May–7 June 2014. [CrossRef]
5. Orekhov, A.L.; Black, C.B.; Till, J.; Chung, S.; Rucker, D.C. Analysis and Validation of a Teleoperated Surgical Parallel Continuum

Manipulator. IEEE Robot. Autom. Lett. 2016, 1, 828–835. [CrossRef]
6. Lilge, S.; Burgner-Kahrs, J. Kinetostatic Modeling of Tendon-Driven Parallel Continuum Robots. IEEE Trans. Robot. 2023, 39,

1563–1579. [CrossRef]
7. Trivedi, D.; Rahn, C.D.; Kier, W.M.; Walker, I.D. Soft robotics: Biological Inspiration, State of the Art, and Future Research. Appl.

Bionics Biomech. 2008, 5, 99–117. [CrossRef]
8. Rucker, D.C.; Jones, B.A.; Webster, R.J., III. A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum

Robots. IEEE Trans. Robot. 2010, 26, 769–780. [CrossRef]
9. Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum Robots for Medical Applications: A Survey. IEEE Trans. Robot. 2015, 31,

1261–1280. [CrossRef]
10. Gravagne, I.A.; Rahn, C.D.; Walker, I.D. Large Deflection Dynamics and Control for Planar Continuum Robots. IEEE/ASME Trans.

Mechatron. 2003, 8, 299–307. [CrossRef]
11. Hirose, S.; Yamada, H. Snake-like robots [Tutorial]. IEEE Robot. Autom. Mag. 2009, 16, 88–98. [CrossRef]
12. Chirikjian, G.S. Theory and Applications of Hyper Redundant Robotics Manipulators. Ph.D. Thesis, California Institute of

Technology, Pasadena, CA, USA, 1992.
13. Chirikjian, G.S.; Burdick, J.W. A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 1994, 10,

343–354. [CrossRef]
14. Sears, P.; Dupont, P. A Steerable Needle Technology Using Curved Concentric Tubes. In Proceedings of the 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006. [CrossRef]
15. Hannan, M.W.; Walker, I.D. Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style

Robots. J. Robot. Syst. 2003, 20, 45–63. [CrossRef]
16. Webster, R.J., III; Jones, B.A. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review. Int. J. Robot.

Res. 2010, 29, 1661–1683. [CrossRef]
17. Rahn, C. Design of continuous backbone, cable- driven robots. J. Mech. Des. 2002, 124, 265–271. [CrossRef]
18. Till, J.; Rucker, D.C. Elastic Stability of Cosserat Rods and Parallel Continuum Robots. IEEE Trans. Robot. 2017, 33, 718–733.

[CrossRef]
19. Altuzarra, O.; Solanillas, D.M.; Amezua, E.; Petuya, V. Path Analysis for Hybrid Rigid–Flexible Mechanisms. Mathematics 2021, 9,

1869. [CrossRef]
20. Altuzarra, O.; Urizar, M.; Cichella, M.; Petuya, V. Kinematic Analysis of three degrees of freedom planar parallel continuum

mechanisms. Mech. Mach. Theory 2023, 185, 105311. [CrossRef]
21. Mauzé, B.; Dahmouche, R.; Laurent, G.J.; André, A.N.; Rougeot, P.; Sandoz, P.; Clévy, C. Nanometer Precision with a Planar

Parallel Continuum Robot. IEEE Robot. Autom. Lett. 2020, 5, 3806–3813. [CrossRef]
22. Hopkins, J.B.; Rivera, J.; Kim, C.; Krishnan, G. Synthesis and Analysis of Soft Parallel Robots Comprised of Active Constraints.

J. Mech. Robot. 2015, 7, 011002. [CrossRef]
23. Singh, I.; Lakhal, O.; Merzouki, R. Towards extending forward kinematic models on hyperredundant manipulator to cooperative

bionic arms. J. Phys. Conf. Ser. 2017, 783, 012056. [CrossRef]
24. Lilge, S.; Nuelle, K.; Boettcher, G.; Spindeldreier, S.; Burgner-Kahrs, J. Tendon Actuated Continuous Structures in Planar Parallel

Robots: A Kinematic Analysis. J. Mech. Robot. 2021, 13, 011025. [CrossRef]
25. Hopkins, J.B.; Culpepper, M.L. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint

topology (FACT)—Part I: Principles. Precis. Eng. 2010, 34, 259–270. [CrossRef]
26. Hopkins, J.B.; Culpepper, M.L. Synthesis of multi-degree of Freedom, Parallel Flexure System Concepts via Freedom and

Constraint Topology (FACT)—Part II: Practice. Precis. Eng. 2010, 34, 271–278. [CrossRef]
27. Frecker, M.; Ananthasuresh, G.K.; Nishiwaki, S.; Kikuchi, N.; Kota, S. Topological Synthesis of Compliant Mechanisms Using

Multi-Criteria Optimization. J. Mech. Des. 1997, 119, 238–245. [CrossRef]
28. Mattson, C.A.; Howell, L.L.; Magleby, S.P. Development of Commercially Viable Compliant Mechanisms Using the Pseudo-Rigid

Body Model: Case Studies of Parallel Mechanisms. J. Intell. Mater. Syst. Struct. 2004, 15, 195–202. [CrossRef]
29. Cappelleri, D.J.; Krishnan, G.; Kim, C.J.; Kumar, V.; Kota, S. Toward the Design of a Decoupled, Two-Dimensional, Vision-Based

µN Force Sensor. J. Mech. Robot. 2010, 2, 021010. [CrossRef]
30. Lee, W.T.; Russell, K. Developments in quantitative dimensional synthesis (1970–Present): Four-bar path and function generation.

Inverse Probl. Sci. Eng. 2018, 26, 1280–1304. [CrossRef]
31. Laribi, M.A.; Mlika, A.; Rhomdane, L.; Zeghloul, S. A Combined Genetic Algorithm–Fuzzy Logic Method (GA–FL) in Mechanisms

Synthesis. Mech. Mach. Theory 2004, 39, 717–735. [CrossRef]

https://doi.org/10.3389/frobt.2020.630245
https://www.ncbi.nlm.nih.gov/pubmed/33604355
https://doi.org/10.1109/ICRA.2014.6906943
https://doi.org/10.1109/LRA.2016.2525720
https://doi.org/10.1109/TRO.2022.3226157
https://doi.org/10.1155/2008/520417
https://doi.org/10.1109/TRO.2010.2062570
https://doi.org/10.1109/TRO.2015.2489500
https://doi.org/10.1109/TMECH.2003.812829
https://doi.org/10.1109/MRA.2009.932130
https://doi.org/10.1109/70.294209
https://doi.org/10.1109/IROS.2006.282072
https://doi.org/10.1002/rob.10070
https://doi.org/10.1177/0278364910368147
https://doi.org/10.1115/1.1447546
https://doi.org/10.1109/TRO.2017.2664879
https://doi.org/10.3390/math9161869
https://doi.org/10.1016/j.mechmachtheory.2023.105311
https://doi.org/10.1109/LRA.2020.2982360
https://doi.org/10.1115/1.4029324
https://doi.org/10.1088/1742-6596/783/1/012056
https://doi.org/10.1115/1.4049058
https://doi.org/10.1016/j.precisioneng.2009.06.008
https://doi.org/10.1016/j.precisioneng.2009.06.007
https://doi.org/10.1115/1.2826242
https://doi.org/10.1177/1045389X04033256
https://doi.org/10.1115/1.4001093
https://doi.org/10.1080/17415977.2017.1396328
https://doi.org/10.1016/j.mechmachtheory.2004.02.004


Mathematics 2023, 11, 4215 21 of 21

32. Kim, J.W.; Jeong, S.M.; Seo, T.W. Numerical Hybrid Taguchi-Random Coordinate Search Algorithm for Path Synthesis. Mech.
Mach. Theory 2016, 102, 203–216. [CrossRef]

33. Mariappan, J.; Krishnamurty, S. A Generalized Exact Gradient Method for Mechanism Synthesis. Mech. Mach. Theory 1996, 31,
413–421. [CrossRef]

34. Muñoyerro, A.; Hernández, A.; Urízar, M.; Altuzarra, O. A General Automatic Method for Mechanism Optimization Based on
Kinematic Constraints and Analytical Jacobian Matrix. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 3181–3197.
[CrossRef]

35. Hernández, A.; Muñoyerro, A.; Urízar, M.; Amezua, E. Comprehensive Approach for the Dimensional Synthesis of a Four-Bar
Linkage Based on Path Assessment and Reformulating the Error Function. Mech. Mach. Theory 2021, 156, 104126. [CrossRef]

36. Ma, O.; Angeles, J. Performance Evaluation of Path-Generating Planar, Spherical and Spatial Four-Bar Linkages. Mech. Mach.
Theory 1988, 23, 257–268. [CrossRef]

37. de Bustos, I.F.; Urkullu, G.; Marina, V.G.; Ansola, R. Optimization of Planar Mechanisms by Using a Minimum Distance Function.
Mech. Mach. Theory 2019, 138, 149–168. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.mechmachtheory.2016.04.001
https://doi.org/10.1016/0094-114X(95)00077-C
https://doi.org/10.1177/09544062221147829
https://doi.org/10.1016/j.mechmachtheory.2020.104126
https://doi.org/10.1016/0094-114X(88)90017-1
https://doi.org/10.1016/j.mechmachtheory.2019.04.002

	Introduction 
	Materials and Methods 
	Kinematics of Continuum Rod with Uniform Curvature 
	Path Characterization of the Coupler Point of a FFB; Comparison with RFB 
	Blocking Positions 
	Branches and Circuits in the FFB Coupler Curves 

	Optimization Method for Path Generation of a FFB 
	Incorporating Knowledge of FFB Branches and Circuits into Path-Generation Synthesis; Avoiding Circuit Error 
	Avoiding Order Error 


	Results 
	Path Generation Example 1 (PG-Example1) 
	Path Generation Example 2 (PG-Example2) 

	Discussion 
	References

