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ABSTRACT

We introduce a context-based tableau method to solve the problem of satisfiability
and model checking for temporal logic. In particular, we apply the method to the
propositional linear-time temporal logic (PLTL), the computation tree logic (CTL) and to
one of its extensions (ECTL). The main feature of our method is that it does not require
auxiliary constructions or extra-logic rules, which allow us to maintain the classical
duality between tableaux and sequent calculi. Context-based tableaux work as follows:
for any input formula, ϕ, a closed tableau represents a formal sequent proof that certifies
the unsatisfiability of ϕ, whereas an open tableau provides at least one model that
certifies the satisfiability of ϕ. Therefore, in this framework satisfiability and model-
checking tests can be performed and complemented by two types of certificates: proofs
and models.

In this thesis, we specialise the general method when apply to PLTL (symbolic)
model checking. Concretely, we propose the use of a SAT solver to deal with those
formulae that specify transitions systems. In this scenario, we also explore the use of
the interactive theorem prover, called Isabelle, to perform two certification-related tasks.
The first is to certify the method itself. As an example of this, an automated proof that
our method is sound (performed in Isabelle) is presented. The second is the possibility
offered by Isabelle to re-verify the certificates produced by the tableaux. We provide an
example where the output of a closed tableau is a refutational proof with a syntax that
Isabelle understands and then, invoking Isabelle the proof can be replicated.

The proposed specialization in addressing PLTL model checking applies immediately
to PLTL satisfiability, since the latter problem can be reduced to the problem of PLTL
model checking. As a result, the same mechanism is suitable for certifying both PLTL
model checking and PLTL satisfiability. However, in the context of branching-time tem-
poral logics, the satisfiability problem cannot be reduced to the model-checking problem.
Hence, model-checking algorithms for these logics cannot be adapted for testing satisfi-
ability.

In this dissertation, we study in depth the satisfiability for (CTL) and (ECTL) and
propose two context-based tableau methods to solve both problems. The proof of the
correctness (soundness, completeness and termination) of the methods are provided.
We define algorithms for obtaining tableaux which produce models and formal proofs
depending on whether the input formula is satisfiable or not. Our proposal is again
suitable for certifying the model checking for branching-time temporal logics. This is
due to the fact that model checking always reduces to satisfiability.

Finally, we describe in detail the algorithm for CTL, present a real implementation,
and provide experimental results. The prototype has been done using the Dafny lan-
guage, which is a verification-ready programming language that constantly flags any



errors and gives the go-ahead when the code matches its specification. Dafny can com-
pile the final code to C#, Java, JavaScript or Go. We have generated Java code, but
also and more importantly, Dafny has allowed us to prove critical properties that give
confidence in the validity and accuracy of the prototype.
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1. INTRODUCTION

In this thesis, we apply the approach to deduction methods for Propositional Linear-
time Temporal Logic (PLTL), introduced in [40, 41], to the decision problems of model
checking and satisfiability in various temporal logics. The proposal presented in [40, 41]
was based on an inductive definition of eventualities that was different from the usual
one. There, dual systems of tableaux and sequents for PLTL were presented. Here, we
take up these systems and adapt them to both PLTL and branching-time temporal logics
with two goals in mind. The first is to make these systems able to provide certificates.
The second is to implement them so that they can compete with current automated
solvers.

Temporal logics are formal systems for reasoning about time. Due to the fact that
time has an important role in both hardware and software behaviour, temporal logics
have found extensive application in computer science. A major distinction between
temporal logics is whether they see time as linear or branching. This is reflected in the
classes of structures that interpret formulae in these logics: linear orderings or trees. In
PLTL, all instants are linearly ordered from past to future and there is only one possible
future. In branching-time logics, the future is not determined and any given instant
may have several distinct immediate successors.

Model checking and satisfiability are two of the most important decision problems
in logic. Many questions in several fields of computer science, can be solved by en-
coding them as instances of these two problems. In general, given a logic L, a class
of structures C over which L is interpreted, and a formula ϕ ∈ L, the model-checking
problem asks whether a given structure M ∈ C makes the formula ϕ true, while the
satisfiability problem decides whether such a structure exists. The first problem is, then,
a verification problem, where a proposed solution, namely the structure M , is checked
for correctness w.r.t. the formula ϕ. On the other hand, the satisfiability corresponds
to a solution problem, where a correct solution, some structure M satisfying ϕ, has to
be founded.

One measure to increase confidence in automated solvers, particularly those dedi-
cated to solving model-checking and satisfiability problems is to make them output a
certificate. This certificate is then used to verify the answer of the solver using a dif-
ferent mechanism. In the case of satisfiability, most solvers, given a formula as input
that is satisfiable, output a structure that is a model of the input formula. Such struc-
ture is an easily checkable certificate. Certificates for unsatisfiability are usually more
complicated: the solver output must be a deductive proof showing that any structure
is not a model of the input formula. The case of model-checking is similar. Automated
model checkers determine whether a given structure is a model of a given formula. They
provide a counterexample as a certificate when the structure does not satisfy the for-
mula. However, no such certificate is usually produced if the structure is a model of the
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formula. Again, a deductive proof is needed to show this fact.
After outlining the most significant concepts of this thesis, we present some important

elements that will be used and explained more deeply throughout this dissertation.

1.1 SAT Solvers and SMT Solvers

Propositional satisfiability (SAT) is the problem of determining, for a formula in the
propositional calculus, whether there exists a satisfying assignment for its propositional
variables.

SAT solvers are nowadays very efficient tools for deciding SAT (see [76] for a sur-
vey). In the positive case, they provide the models of the formula. The numerous
applications of SAT solvers have fueled computing research with more efficient and scal-
able methods. Satisfiability Module Theories (SMT) generalizes pure propositional
satisfiability (SAT) adding other first-order theories. The SMT framework is extensi-
ble, meaning that new theories can be defined and added to deal with different sort of
problems. Further information about SMT can be found in [57, 80]. An SMT-solver is
an automatic software deciding tool that checks the satisfiability of a formula expressed
in a combination of these first-order theories. More specifically, given a (quantifier-free)
formula ϕ and a theory T (a set of sentences), they check whether there exists a model
of T that satisfies ϕ. Most SMT-solvers also give the model (if there exists) that sat-
isfies ϕ. The power of SMT-solvers comes from their ability to automatically reason
about arithmetic, boolean operators, arrays, matrixes, digital circuits, character strings,
software data structures, such as lists, trees, etc. There are many available SMT-solvers
for the main operative systems, such as, ABSolver [11], Yices [31], Z3 [30], OpenSMT
[17], etc.

Over the last years, the increase in power of modern SAT/SMT solvers has been so
remarkable that they have become the key enabling technology for symbolic model check-
ing tools. Indeed, the reimplementation of the model checker SMV, called NuSMV [22],
integrates SAT solving technology (in combination with Ordered Binary Decision Dia-
grams - OBDDs) since the second version (NuSMV2 [21]). The model checker NuSMV
is open source and is released by IRST in Trento, Italy.

Throughout this thesis, we use a SAT solver instead of an SMT solver, because the
considered languages do not include more than propositional variables, i.e. we have not
yet considered other elements such as integers, arrays, etc. Nevertheless, adding them
would be straightforward by using an SMT solver instead of a SAT solver.

1.2 Tableau Techniques for Temporal Logics

Temporal logic is nowadays essential for the specification and verification of concurrent
and reactive systems. There are two types of temporal logics in relation to the treatment
of the future at a given instant of time. First type, when each instant of time has a unique
possible future we have timelines as linear sequences of this instant (or state). Thus,
linear temporal logics extend classical propositional logic by future time temporal oper-
ators such as ◦ - ‘at the next instant of time’, ♦ - ‘eventually in the future’, � - ‘always
in the future’ U - ‘from now until’, and R - ‘releases’. Second type, when each instant
of time is allowed to have several possible futures (or paths) we have branching-time
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temporal logics. The language of branching-time temporal logics extends the language
of the linear ones with paths quantifiers A - ‘for all paths’ quantifier, and E - ‘there
exists a path’ quantifier. Thus, in linear temporal logics, the underlying models of time
are discrete, linear sequences of states, finite in the past and infinite in the future. For
branching-time temporal logics the underlying models of time are trees (or computation
trees) where each branch is a discrete, linear sequence of states, finite in the past and
infinite in the future. Note that the formulation of temporal logics with only future-time
operators is based on the remarkable Gabbay’s separation result [38, 39].

The method of semantic tableaux, invented in the 1950’s by Beth and Hintikka and
later perfected by Smullyan [82] and Fitting [37], is nowadays well established in the
field of automated deduction. It brings together the proof-theoretical and the semantic
approaches to the presentation of a logical system as a set of inference rules. A tableau
is a tree-like structure designed to make semantic reasoning fully systematic to decide
whether a set of formulae is satisfiable or not. The construction of a tableau is guided by
a set of rules that decompose formulae according to the semantics of its logical operators.

Temporal tableaux, first introduced in [83], tackling the problem that formulae
must be analysed in a infinite sequences of states, introduce a mechanism which controls
repeated appearances of formulae and identify periodic situations in finite time. Later,
we explain the two options to cope with this problem. For the survey of the tableau
method for temporal logic we refer an interested reader to [45].

There exists many tableau techniques for a rich variety of temporal logics: PLTL;
Computation Tree Logic (CTL); (CTL?) which generalizes PLTL and CTL, etc. (an
excellent survey can be found in [45]). The most difficult task in tableaux methods
for temporal logics is to check out the fulfilment of eventualities, i.e., formulae of the
form ‘eventually ϕ’ or ‘ϕ until ψ’. Traditional tableaux methods require two phases
to perform this test. In the first phase, they construct a graph of states. This graph
represents all possible pre-models. In the second phase, for each state s that contains
some eventuality, ϕ, a graph-theoretic algorithm should look for a state, reachable from s,
that satisfies ϕ. Moreover, nodes with negative test should be pruned. The two-pass
tableau methods fail to carry out the classical correspondence between tableaux and
sequents that associates a sequent-proof to any closed tableau.

To avoid the second phase and, hence, to keep generating (sequent) proofs from
tableaux, in [40, 41], dual systems of tableaux and sequents for PLTL, were pre-
sented. Every system defined in [40, 41] was proved to be sound and complete. In
particular, [41] contains a detailed proof showing that the tableau system is a decision
method for PLTL, i.e., it is sound, refutationally complete, and terminating. The ter-
mination property is achieved on the basis of any fair selection strategy. The tableau
method in [41] makes use of the so-called context of an eventuality to force its fulfilment.
The context of an eventuality is simply the set of formulae that ‘accompanies’ the even-
tuality in the label of a node in the tableau. From now on, we call this tableau method
one-pass context-based tableaux or simply context-based tableaux.

An extensive search on tableau techniques for CTL has not shown a great variety
of systems. For example, [12] presents a two-pass tableau, where in the first pass the
tableau rules are applied creating a cyclic graph. In the second pass, ‘bad loops’ are
pruned (where a ‘bad loop’ is a loop containing some eventuality that is not fulfilled
along it). In [1, 46] the authors introduce a single-pass tableaux decision procedure for
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CTL. It is based on Schwendimann’s one-pass procedure for PLTL [79]. This tableau
method uses an additional mechanism for collecting information on the set of formulae
in the nodes, and passing it, to subsequent nodes along branches. The information on
previously generated nodes helps detecting ‘bad loops’ without constructing the whole
graph.

1.3 Model Checking

Although Model Checking is a more general concept, it is commonly understood [24,
77, 28, 10, 27] as an algorithmic method for determining whether a complex hardware
or software system satisfies a given property. Many important properties to be verified
reflect the system’s dynamics and are expressed in some temporal logic. Thus, a model
checker receives as input a system (usually called the transition system) and a temporal
formula (the property). If the property does not hold, the checker returns a counterex-
ample: a trace/model of the transition system that does not satisfy the property. This
counterexample acts as a ‘certificate’ of the failure and its role is to help the user to
identify the source of the problem which could be in the transition system design, in the
property, and even in the model checker.

Model checking using formulae to represent the transition system is called Symbolic
Model Checking [19, 71]. The term emphasizes that the specification of the transition
system is represented symbolically, namely, by a formula. The earliest symbolic model
checker SMV [71] applies Ordered Binary Decision Diagrams (OBDDs) [18, 19] as a
canonical form for boolean formulae that is very compact because of variable-sharing.
Very efficient algorithms have been developed for manipulating OBDDs. This made
possible to verify transition systems with an extremely large number of states –some
orders of magnitude larger than could be handled by the explicit-state model checkers
(e.g. SPIN [50]). In symbolic model checking, two-pass tableaux are extensively used to
construct different kinds of state machines (graphs) for representing transition systems
and properties (cf.e.g. [28]). These graphs are indeed the result of the first pass of a
two-pass tableau method and they are represented using OBDDs. However, for larger
transition systems, the OBDDs generated during model checking become too large,
and the generation of a variable ordering that results in small OBDDs is often time
and space consuming or needs manual intervention. For many examples no efficient
variable ordering exists. In other words, the bottleneck of these methods is the amount
of resources that are required for storing and manipulating OBDDs.

1.4 Certified Model Checking

For years, model checkers do not produce a certificate when the transition system meets
the property. Hence, for positive answers, the model checkers do not provide any hint of
the truth of the property nor do they help the user find a problem when the property is
not expected to be true. In this context, the sequential calculus associated with context-
based tableaux allow us to generate formal proofs certifying that a particular transition
system satisfies a property.

On the other hand, given the high complexity of the implementation of model check-
ers, a natural question that arises is: who checks the checker? An alternative consists
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on proving, only once, the correction of the underlying algorithm of the model checker.
For this task, interactive proof assistants such as Coq or Isabelle [75] are good tools.
They allow us to certify a model checker and even to obtain an executable program by
the refinement of some extraction mechanism. For instance Amjad [7] described how to
code BDD-based symbolic model-checking algorithms into an automatic theorem prover.
More recently, Esparza et al. [36] have verified an automata-based model checker with
Isabelle theorem prover.

As just mentioned, another option is to return a proof evidence for every positive
answer [74, 72] that could help the user –maybe using an auxiliary theorem prover– to
trust the model checker or not. In this scenario, symbolic model checking is especially
suitable, because the transition systems are specified by formulae. In this way, the
model-checking problem can be seen as a particular case of satisfiability, since deciding
whether a transition system M meets a property ϕ is logically equivalent to deciding
whether (M ∧ ¬ϕ) is unsatisfiable. And vice versa, the fact that M does not meet a
property ϕ is logically equivalent to the fact that (M ∧ ¬ϕ) is satisfiable.

1.5 Contribution

This dissertation contributes in several aspects related to certified model checking and
certified satisfiability of temporal formulae. The logics worked on the thesis are PLTL,
the Computation Tree Logic (CTL), and the Extended Computation Tree Logic (ECTL),
which enriches CTL with simple fairness formulae. CTL and ECTL were introduced in
[33] and [35] respectively.

1.5.1 Certified Model Checking for PLTL

In this thesis a Certified Model Checker (CMC) for PLTL is proposed based on dual sys-
tems of context-based tableaux and sequent calculus, originally introduced in [40, 41].
It produces certified proofs - formal proofs in the sequent calculus, and counterexam-
ples - open branches in the tableau. One of the main advantages of this approach is
that the same reasoning mechanism applies for both certificates - formal proofs and
counterexamples.

The most remarkable difference of our proposal (regarding [66, 67]) is that CMC
generates deductive proofs thanks to the use of the context-based tableau along with its
dual sequent calculus. It should be noted that the context-based tableau is particularly
well suited for dealing with the specifications of transition systems (‘always’-formulae).
The context plays the role ‘of forcing eventualities to be fulfilled as soon as possible’
and acts as a semantic constraint that prevents the generation of many states that are
produced in the two-pass approach.

In building the proof, Isabelle [75] is invoked to verify the construction of the
tableaux. This external validation is carried out by a sequent calculus TTC (Tait-
style Temporal Calculus) which is formalized in Isabelle (see the file TTC Calculus.thy

in http://github.com/alexlesaka/OnePassTableau). This calculus is dual to a variant
of the context-based tableau method that works with formulae in negation normal
form. The formalization has been codified as an Isabelle theory and we also provide
(in Isabelle) the soundness proof of such theory (see the file TTC Soundness.thy in

http://github.com/alexlesaka/OnePassTableau
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http://github.com/alexlesaka/OnePassTableau).
The author’s experience implementing a previous prototype of the context-based

tableau method 1 revealed that a large proportion of the computational effort is spent
doing classical propositional reasoning (e.g. analysing boolean combinations of literals.),
for which SAT/SMT-solvers are very efficient tools.

The idea of encoding transition systems into propositional formulae were first pro-
posed in [54] for AI planning problems. The authors show that SAT algorithms scale
much better on the SAT-encodings than planing algorithms on the original graph for-
mulation. Following this success, SAT solvers have been also used in Bounded Model
Checking (BMC) [13]. In both frameworks, a propositional formula is used to encode
the input problem. Planning problems deal with finite traces along a finite graph, hence
the encoding is complete w.r.t. the original problem. However, in model checking,
traces within the transition systems are, in general, infinite. SAT-based BMC works as
follows: the propositional encoding expresses that there exists a length-k trace (along
the transition system) that does not satisfy a given property. The BMC increases k
until either the SAT’s answer is a counterexample or k reaches a certain bound. The
original SAT-based BMC algorithm [13], although complete for finite traces, is limited
in practice to falsification. Many additional strategies have been introduced to make
BCM complete, see [14] for a good survey.

There is also a large amount of work, starting with [78], on using SAT solvers for
improving the satisfiability test of the full PLTL. Recent papers [66, 67] use SAT solvers
to seek for a model of an input formula. This model is essentially a graph/automaton
produced by the first pass of a two-pass tableau method, which should be followed for
testing the fulfilment of eventualities. SAT solvers are called for the generation of all
(different) successors of every state in the graph. The authors use well-known temporal
equivalences (like pUq ≡ (q∨ (p∧◦(pUq))) to compute the successors of the given state.
They propose a method that utilises the renaming of subformulae containing temporal
operators (such as pUq) by fresh propositional variables and uses the SAT solving to
calculate different successor states of each state in the transition system. This prevents
the repeated generation of ‘propositionally equivalent’ states. The relevant heuristics
for pruning the search-space and on-the-fly mechanism for testing eventuality fulfilment
are introduced in the implementation.

In our setting, we delegate to a SAT solver the non-temporal reasoning part of the
tableau construction. The main reason is that context-based tableaux are much simpler
to construct when their inputs are formulae that specify a transition system (along with
a temporal property to test). Only a very restricted subset of temporal formulae can be
used to design such transition systems. Coding them into classical propositional formulae
allows us to leave the temporal reasoning only in the scope of the properties to be checked
and not in the systems to be tested. In contrast to proposals that translate the whole
model checking problem on one SAT-solver query (e.g. [72]), our method combines
SAT solving with tableau-based temporal reasoning. As a consequence, the certified
proof that is generated shall contain the trace of the temporal reasoning, which provides
hints that are close to the tested transition system. Moreover, context-based tableau
method (helped, for efficiency, by a SAT solver) is complete for deciding (unbounded)

1 The prototype is available in http://www.sc.ehu.es/jiwlucap/TTM.html

http://github.com/alexlesaka/OnePassTableau
http://www.sc.ehu.es/jiwlucap/TTM.html
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model-checking problems and works on infinite traces.
To summarize, first we adapt the original dual method for formulae in negation

normal form. Second, we present an optimized version of this adaptation by using a
SAT solver, which performs the CMC for PLTL. Finally, we use Isabelle to prove the
soundness of our method.

1.5.2 Certified Satisfiability Checking for CTL and ECTL

The context-based tableau method [41] was extended to a concurrent constraint logic
in [29], and also to ECTL# - a branching-time sublogic of CTL∗ in [15]. This thesis
continues the development of such technique for other temporal logics, this time for
the branching-time temporal logics CTL and ECTL. These two logics are simpler than
ECTL#, but the application of the general method for ECTL# to the simpler cases of
CTL and ECTL would become too ‘non-intuitive’ due to the complexity of the rules
that are necessary for this richer logic. It is worth noting that the distinguished (and
unavoidable) feature of the context-based technique for ECTL# is the utilisation of two
types of contexts, unlike in the case of PLTL. These types of contexts are the so-called
‘outer’ context, which is a collection of state formulae, and the so called ‘inner’ context,
a collection of path formulae. Therefore, the development of a simpler context-based
tableau method for CTL and ECTL is an important task. The method we present for
these simpler logics, similarly to PLTL, only needs the ‘outer’ context.

Obviously, the classical duality between tableaux and sequent calculi is maintained
for CTL and ECTL. This allows us to return deductive proofs in a sequent calculus when
the CTL or ECTL formula to be checked is unsatisfiable. We include the soundness and
completeness proofs of both methods: the context-based tableaux and its dual sequent
calculus for CTL and ECTL.

A remarkable observation about PLTL is that the satisfiability checking can be re-
duced to model checking. Consider a formula ϕ over a set, Prop, of propositional
variables. If a model M is universal, that is, it contains all possible traces over Prop,
then ϕ is satisfiable precisely when the model M does not satisfy ¬ϕ. Thus, it is easy
to add a satisfiability-checking feature to PLTL model-checking tools. Both the satis-
fiability and the model-checking problems are PSPACE-complete [81]. However, the
CTL satisfiability problem cannot be reduced to the CTL model-checking problem. In
particular, a model checking algorithm for CTL (for example the one implemented in
NuSMV [19]) cannot be adapted for testing CTL satisfiability. This contrasts with what
we have pointed out above: the model checking problem always reduces to the satis-
fiability problem, but not the other way around. In fact, the model checking problem
for CTL is known to be P-complete [26], while the satisfiability problem for CTL is
EXPTIME-complete [34].

We have applied all the knowledge in the development of the PLTL certified model
checker in the creation of the dual satisfiability method for CTL and ECTL that is able
to return certificates. Our method is already optimized for ‘always’-formulae (used for
the transition systems in the context of model checking). Thus, the presented technique
is also able to provide certificates for model checking in CTL and ECTL.

We think this is the main contribution of the thesis. We develop an intuitive tableau
method that serves as a decision procedure for CTL and ECTL satisfiability. The method
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provides certificates and can also be used in model checking for CTL and ECTL. We
prove the effectiveness of the approach that now covers both linear-time and a range
of branching-time temporal logics. Moreover, the results give us formalisms, which are
well suited for automation and are amenable to implementation.

1.5.3 Implementation and Experimental Results

This dissertation presents a Java prototype called MomoCTL that performs certified sat-
isfiability checking for CTL. The prototype is available in http://github.com/alexlesaka/

MomoCTL. Most of the code is automatically generated from the language Dafny [60],
which is a program verifier of functional correctness. Thanks to Dafny we are able to
verify crucial properties of MomoCTL.

We test our prototype on the collection of benchmarks borrowed from http://users.

cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/, which was created for the comparison
of various CTL provers in [48]. Also, we report on our performance results and compare
them with the single-pass tableau for CTL ([1]) known as the Gore’s tableaux. MomoCTL
returns either a tree model when the input is a satisfiable CTL formula or a deductive
proof in the dual sequent calculus. This is the main feature of our prototype compared to
previous CTL provers. Moreover, since model checking reduces to satisfiability checking,
MomoCTL is a model checker for CTL capable of providing both types of certificates.

1.6 Outline of the Thesis

This thesis is organized in five chapters as follows:

• In Chapter 2, we introduce the PLTL logic and point out that our tableaux and
sequent proofs work only with temporal formulae in Negation Normal Form for
efficiency reasons. This differentiates us from the initial proposal of [40, 41]. We
explain the adaptation of the dual method for formulae in Negation Normal Form.
We provide some examples of tableaux and also proofs in the associated sequent
calculus. The chapter ends with the formalization of the sequent calculus in Is-
abelle and the interactive proof (again done in Isabelle) that the calculus is sound.
This last part of the chapter aims to show the potential of proof assistants like
Isabelle or Coq. The contents of this chapter is based on [6, 2, 3].

• In Chapter 3, we present a new PLTL Certified Model Checking procedure. We
explain the optimization with SAT solvers of the original dual method of context-
based tableaux and sequents. Finally, we present a prototype that is able to
generate deductive proofs in Isabelle in case the property is satisfied. The contents
of this chapter is strongly based on [6, 3]

• In Chapter 4, we focus on CTL and ECTL logics and introduce a new context-
based tableau method with its associated sequent calculus. The method decides
the satisfiability of CTL and ECTL formulae and provides certificates. We include
illustrative examples and prove the soundness and completeness of the method.
We also justify that our proposal can solve the model-checking problem for CTL
and ECTL with the additional benefit of producing certificates. The contents of
Chapter 4 is strongly based is [4, 5].

http://github.com/alexlesaka/MomoCTL
http://github.com/alexlesaka/MomoCTL
http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/
http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/
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• In Chapter 5, we introduce the Dafny language. Next, we present a Dafny imple-
mentation of the method explained in Chapter 4 for CTL. Finally, we compare the
performance of our implementation with Gore’s CTL-prover [1, 47]. The contents
of Chapter 5 is strongly based is [4, 5].

• In Chapter 6, we summarise the contributions of the thesis and define future work.
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2. PROPOSITIONAL LINEAR TEMPORAL LOGIC

This chapter is divided into three main sections: Section 2.1 introduces the Proposi-
tional Linear Temporal Logic PLTL. In Section 2.2, we propose the adaptation of the
dual systems of context-based tableaux and sequents for PLTL (introduced in [39]), to
Negated Normal Form formulae. Finally, in Section 2.3 the formalization of the sequent
calculus for PLTL and the proof that the calculus is sound, both done in Isabelle, are
presented.

2.1 The Logic PLTL

The main goal of this section is to introduce how PLTL extends the syntax of classical
propositional logic by allowing the use of temporal operators.

Definition 1 (Syntax of PLTL). Let Prop be a fixed set of propositional variables and
let p ∈ Prop. We define a PLTL formula ϕ over Prop as follows:

ϕ :: T | F | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ◦ϕ | ϕ1Uϕ2 | ♦ϕ | �ϕ | ϕ1Rϕ2.

Note that the set {¬, ∧, ◦ and U} is known to be sufficient to represent all other
connectives: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ♦ϕ ≡ TUϕ, �ϕ ≡ ¬♦¬ϕ, ϕRψ ≡ ¬(¬ϕU¬ψ). PLTL
formulae will be named in lower-case Greek letters like ϕ or ψ. Formulae of the form
ϕUψ and ♦ϕ are called eventualities. Those of the form ◦ϕ are next formulae. Formulae
of the type �ϕ are called always formulae.

The upper-case Greek letters like ∆ or Σ denote finite set of formulae. Given a set
of formulae Σ = {σ1, ..., σn} we use ¬Σ to denote the formula ¬(σ1 ∧ ... ∧ σn). When Σ
is empty, ¬Σ is the constant F.

Formulae are interpreted in the states of PLTL-structures.

Definition 2 (PLTL-structure). A PLTL-structure M is a pair (SM , VM ) where SM is

a enumerable sequence of states s0, s1, s2, . . . and VM : SM → 2Prop maps each state
si ∈ SM into a subset of Prop.

Intuitively, VM specifies which propositional variables are necessarily true in each
state. Definition 3 introduces how a PLTL formula is evaluated over a PLTL-structure.

Definition 3. The truth of a formula ϕ in the state sj ∈ SM of a PLTL-structure M ,
which is denoted by 〈M, sj〉 |= ϕ, is inductively defined as follows:

〈M, sj〉 6|= F

〈M, sj〉 |= p if and only if p ∈ VM (sj) for any p ∈ Prop
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s0 s1 s2 sj sk… …R R R R R R

R

Figure 2.1: Cyclic sequence of states.

〈M, sj〉 |= ¬ϕ if and only if 〈M, sj〉 6|= ϕ

〈M, sj〉 |= ϕ ∧ ψ if and only if 〈M, sj〉 |= ϕ and 〈M, sj〉 |= ψ

〈M, sj〉 |= ◦ϕ if and only if 〈M, sj+1〉 |= ϕ

〈M, sj〉 |= ϕUψ if and only if 〈M, sk〉 |= ψ for some k ≥ j and 〈M, i〉 |= ϕ for every
j ≤ i < k

The extension of the above formal semantics to other connectives yields:

〈M, sj〉 |= T

〈M, sj〉 |= ϕ ∨ ψ if and only if 〈M, sj〉 |= ϕ or 〈M, sj〉 |= ψ

〈M, sj〉 |= ♦ϕ if and only if 〈M, sk〉 |= ϕ for some k ≥ j

〈M, sj〉 |= �ϕ if and only if 〈M, sk〉 |= ϕ for every k ≥ j

〈M, sj〉 |= ϕRψ if and only if for every k ≥ j, either 〈M, sk〉 |= ψ or there exists i such
that j ≤ i < k and 〈M, si〉 |= ϕ

In addition, for any set Σ of formulae, 〈M, sj〉 |= Σ if and only if 〈M, sj〉 |= σ, for all
σ ∈ Σ.

Definition 4 (Satisfiability). For a set of PLTL formulae Σ, the set of its models,
Mod(Σ), is formed by all pairs 〈M, s〉 such that 〈M, s〉 |= Σ. Σ is satisfiable (Sat(Σ)) if
Mod(Σ) 6= ∅, otherwise Σ is unsatisfiable (UnSat(Σ)).

Definition 5 (Logical equivalence). Two PLTL formulae ϕ and ψ are logically equiva-
lent, denoted as ϕ ≡ ψ, when Mod(ϕ) = Mod(ψ). Two sets of PLTL formulae Σ and ∆
are logically equivalent when Mod(Σ) = Mod(∆).

Any infinite sequence s0, s1, ..., sk, ... involves an implicit successor relation, namelyR,
such that (si, si+1) ∈ R for all i ∈ N. A finite sequence gives also a corresponding implicit
successor relation with a pair for each element except for the last one.

In order to construct models for satisfiable sets of formulae, we use cyclic PLTL-
structures that we define in terms of cycling sequences.

Definition 6 (the authors presented a dual method to analyse Path). Let π be a finite
sequence of states π = s0, s1, . . . , sj. Then

• π is cyclic if and only if there exists si, 0 ≤ i ≤ j such that (sj , si) ∈ R.
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• The sequence si, . . . , sj is called the loop of π.

• A cyclic path over a cyclic sequence π is the infinite sequence

path(π) = s0, s1, . . . , si−1, 〈si, si+1, . . . , sj〉ω

where 〈si, si+1, . . . , sj〉ω denotes the infinite sequence that results by repeating the
loop of π infinitely many times.

A PLTL-structure M is cyclic if its sequence of states is a cyclic path over a cyclic
sequence.

¬p ¬p p ¬p

Figure 2.2: PLTL-structure

Example 1 (M |= {�(♦p ∧ ♦¬p)}). Let ϕ be the formula �(♦p ∧ ♦¬p). Let M be
the PLTL-structure defined as VM (s0) = { }, VM (s1) = { }, VM (s2) = {p}, VM (s3) =
{ }, VM (s2k) = VM (s2) and VM (s2k+1) = VM (s3) for every k ≥ 2 (graphically in Fig-
ure 2.2). It is easy to see that M is a cyclic PLTL-structure and M |= {�(♦p ∧ ♦¬p)}.
We can represent M as the cyclic path { }, { }, 〈{p}, { }〉w. From now on, we will use
this representation for cyclic PLTL-structures.

Below we present the syntax of PLTL in negation normal form (shortly, NNF).

Definition 7 (Syntax of PLTL in NNF). Let Prop be a fixed set of propositional variables,
let p ∈ Prop and let Lit ::= F | T | p | ¬p be the set of literals. The set of PLTL formulae
in NNF over Prop is given by the grammar

ϕ :: Lit | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ◦ϕ | ϕ1Uϕ2 | ♦ϕ | �ϕ | ϕ1Rϕ2.

Therefore, a PLTL formula ϕ is in NNF whenever every occurrence of the negation
connective ¬ is in front of a propositional variable. The following result [68] can be
easily established.

Proposition 1. For any PLTL formula ϕ there exists a PLTL formula, NNF(ϕ), which
is in NNF such that Mod(ϕ) = Mod(NNF(ϕ)).

Proof. By structural induction on the formulae, using the following well known equiva-
lences (e.g. [32]):

¬T ≡ F ¬F ≡ T ¬¬ϕ ≡ ϕ ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬◦ϕ ≡ ◦¬ϕ ¬�ϕ ≡ ♦¬ϕ ¬♦ϕ ≡ �¬ϕ
¬(ϕUψ) ≡ ¬ϕR¬ψ ¬(ϕRψ) ≡ ¬ϕU¬ψ

Definition 8 (Notation). Let ϕ be a PLTL formula. The formula NNF(¬ϕ) is denoted
as ∼ϕ.
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Note that the set of PLTL formulae in NNF is closed under the operation ∼, i.e., if
ϕ is in NNF, then ∼ϕ is also in NNF.

Example 2 (Transformation to NNF). The following are examples of the transformation
of PLTL formulae to NNF:

• ∼(♦a ∧ �b) = �¬a ∨ ♦¬b

• ∼◦(�a ∧ (�b)Uc) = ◦(♦¬a ∨ (♦¬b)R¬c)

• ∼(aU((�¬b)Rc)) = (¬a)R((♦b)U¬c)

• ∼◦(((a ∨ ♦b) ∧ �c)U(�b)) = ◦(((¬a ∧ �¬b) ∨ ♦¬c)R(♦¬b))

Tableaux are refutational methods based on symbolic handling of set of formulae for
detecting syntactic inconsistencies on them, in the sense of the following definition.

Definition 9 (Syntactically consistent set of formulae). A set Σ of PLTL formulae is
syntactically consistent if and only if F /∈ Σ and {ϕ,∼ϕ} 6⊆ Σ for any PLTL formula ϕ.
Otherwise, Σ is inconsistent.

2.2 Dual Methods for PLTL: Context-Based Tableaux and Sequent
Calculus

The exposition of the Dual System of Tableaux and Sequents for PLTL is structured
in two parts. In the first part, Section 2.2.1, the tableau method is presented. In the
second part, section 2.2.2, the sequent calculus is introduced.

2.2.1 Systematic Tableaux Construction

In [41], the authors presented a dual method to analyse the satisfiability of a set of
PLTL formulae: the TTM Tableaux method (Temporal Tableaux Method) and its dual
TTC sequent calculus (Tait-style Temporal Calculus). The completeness, soundness and
termination of both methods were given in [41].

In this thesis we present an adaptation of TTM and TTC to work with PLTL formulae
in NNF. It is worth noting that the temporal tableaux in TTM are one-pass [41], in the
sense that they do not require to check an auxiliary graph of states in order to determine
if every eventuality is satisfied. As a consequence, temporal states are represented
inside the branches of the tableaux instead of in an auxiliary graph. This fact keeps
the formulation of a sequent calculus as dual to the tableau method and allows us to
provide certifications for both possibilities of an input formula - its satisfiability and
unsatisfiability.

Another feature of TTM is that the tableau construction is based on the concept of
a context of an eventuality, which is a set of formulae that accompanies the eventuality
in the label of a node of a tableau tree. Our specific tableau rules, which involve context,
force the earliest fulfilment of eventualities. For that reason, we call our tableau-method
context-based tableaux.

In this section we overview the construction of the context-based tableaux.
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Definition 10 (Tableau, Consistent Node, Closed branch). A tableau for a set of PLTL
formulae Σ is a tree, T , where nodes are labelled with sets of formulae, such that the
following two conditions hold:

(a) The root is labelled by the tableau input, Σ.

(b) Any other node, m, is labelled with sets of formulae as the result of the application
of one of the expansion rules to the parent node of m 1.

A node n of T is consistent, if its label is a consistent set of formulae, else n is inconsis-
tent. Any sequence of consecutive nodes, whose first element is the root of the tableau, is
called a tableau branch. If a branch, b, of T , contains a syntactically inconsistent node,
then b is closed else b is open. Closed branches are not further expanded, i.e. expansion
rules only apply to open branches.

The generation of new nodes in the tableau is made according to a set of expansion
rules: α rules that result in a single node, β rules that cause branching, next-state
rule which applies to the whole set of formulae in the label of the node and finally β+

rules. In the presentation of the rules, ϕ and ψ represent the subformulae of the formula
to which the rule is applied. The set Σ represents the context, set of formulae that
accompanies the formula to which the rule applies.

Before presenting the expansion rules, we introduce the PLTL basic modalities in
Definition 11. It reflects the restrictions on forming admissible combinations of temporal
operators.

Definition 11 (PLTL Basic Modalities).
MPLTL ::= c | ◦M | �M | MUM | ♦M | MRM. where c stands for a purely classical

formula (we can consider a purely classical formula as a zero-degree basic modality) and
M stands for any basic modality of PLTL.

Our α and β rules are based on fixpoint characterisation of its basic modalities (in the
equations below ν and µ stand for ‘minimal fixpoint’ and ‘maximal fixpoint’ operators,
respectively):

�ϕ = νρ(ϕ ∧ ◦ρ) ϕUψ = µρ(ψ ∨ (ϕ ∧ ◦ρ))
♦ϕ = µρ(ϕ ∨ ◦ρ) ϕRψ = µρ((ψ ∧ ϕ) ∨ (ψ ∧ ◦ρ))

This fixpoint characterisation of basic PLTL modalities as maximal or minimal fix-
points give rise to their analytical classification as α- or β-formulae which are associated,
in the tableau with α- and β rules: � is maximal fixpoint and is classified as α-formulae
while ♦, U and R as minimal fixpoints are β-formulae. This is also reflected in the
known logical equivalences:

�ϕ ≡ ϕ ∧ ◦�ϕ ϕUψ ≡ ψ ∨ (ϕ ∧ ◦(ϕUψ))
♦ϕ ≡ ϕ ∨ ◦♦ϕ ϕRψ ≡ (ψ ∧ ϕ) ∨ (ψ ∧ ◦(ϕRψ))

1 We explain the expansion rules in the next subsection.
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α and β rules

(∧)
Σ, ϕ ∧ ψ
Σ, ϕ, ψ

(�)
Σ,�ϕ

Σ, ϕ, ◦�ϕ

Figure 2.3: α rules

There are two α rules (Figure 2.3): And (∧) and Always (�). The (∧) rule applies to
ϕ ∧ ψ and separates ϕ and ψ creating a new node {Σ,ϕ,ψ}. The (�) rule applies to �ϕ
formula and unfolds the formula: in the current state ϕ is true (ϕ) and from the next
state always ϕ is true (◦�ϕ).

a ∧ b,�c

a, b,�c

(∧)

a, b,�c

a, b, c, ◦�c
(�)

Figure 2.4: Examples of the application of α rules.

In Figure 2.4 there are two examples of the application of each of the rules (∧) and (�).

(∨)
Σ, ϕ ∨ ψ

Σ, ϕ | Σ, ψ
(U)

Σ, ϕUψ
Σ, ψ | Σ, ϕ, ◦(ϕUψ)

(♦)
Σ,♦ϕ

Σ, ϕ | Σ, ◦♦ϕ (R)
Σ, ϕRψ

Σ, ϕ, ψ | Σ, ψ, ◦(ϕRψ)

Figure 2.5: β rules

There are four β rules (Figure 2.5): Or (∨), Until (U), Release (R) and Eventually
(♦). The (∨) rule applies to ϕ ∨ ψ and creates two branches where in the first branch
ϕ is true and in the second branch ψ is true. The (U) rule applies to ϕUψ and creates
two branches with the two possible cases: in the first one the eventuality is fulfilled, ψ
is true; in the second one, the fulfilment of the eventuality is postponed. In that case ϕ
is true and the eventuality is checked again in the next state (◦(ϕUψ)). The (R) rule
applies to ϕRψ and creates two branches where in the first one ϕ and ψ are true in the
current state (ϕ,ψ) and in the second one ψ is true and the release is checked again in
the next state (◦(ϕRψ)). The (♦) rule applies to ♦ϕ and works the same as TUϕ: a
branch is created when the eventuality is satisfied (ϕ) and when it is not satisfied, the
eventuality is checked in the next state (◦♦ϕ).

In Figure 2.6 there are four examples illustrating the application of the rules (∨),
(U), (R) and (♦).
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a ∨ �¬a, aRb

a, aRb �¬a, aRb
(∨)

aUb,¬c

b,¬c a, ◦(aUb),¬c
(U)

aRb, c

a, b, c b, ◦(aRb), c
(R)

♦a, b

a, b ◦♦a, b
(♦)

Figure 2.6: Examples of application of β rules.

Next-state rule

The next state rule is the only rule that applies to the complete set of formulae. It
jumps to the next state. The formulae that do not have a next operator are not passed
to the next state.

Definition 12 (Elementary formulae). Literals and formulae of the form ◦ϕ are called
elementary, the remaining formulae are called non-elementary. In addition, sets of
elementary formulae are also called elementary.

(◦) Σ1, ◦(Σ2)

Σ2

where Σ1 is formed by literals and Σ2 is formed by next formulae.

Figure 2.7: Next-state rule

The (◦) rule (Figure 2.7) applies when the set of formulae is elementary (Definition
12). The next formulae become the current state formulae.

a, ◦b, ◦�c

b,�c

(◦)

a, b, ◦�b, ◦(¬aUc)

�b,¬aUc
(◦)

Figure 2.8: Examples of the application of next-state rule.

In Figure 2.8 there are two examples illustrating the application of the rule (◦).

β+ rules

In the set of expansion rules, apart from the standard α and β rules, we also have β+

rules that are characteristic (and crucial!) for our construction. They were introduced
in [40, 41].
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(U+)
Σ, ϕUψ

Σ, ψ | Σ, ϕ, ◦((ϕ∧ ∼Σ′)Uψ)
(♦+)

Σ,♦ϕ
Σ, ϕ | Σ, ◦((∼Σ′)Uψ)

where ∼Σ′ =
∨

σ∈Σ\P
∼σ. If Σ is empty, ∼Σ′ = F.

Set P includes the persistent formulae, which are those of the form ◦i�δ with i ≥ 0.

Figure 2.9: β+ rules.

There are two β+ rules (Figure 2.9): (U+) and (♦+). Thank to these rules the
auxiliary graph created in two-pass tableaux method is unnecessary for context-based
tableaux. (U+) and (♦+) use the context, Σ. By the context of an eventuality, we
understand the collection of all other formulae within the label of the node except those
of the form ◦i�δ with i ≥ 0 and δ being any PLTL formula. We say that these formulae
are persistent

When the rule is applied, the first branch represents the fulfilment of the eventuality
and is identical to the (U) or (♦) rules. In the case that the eventuality is not satisfied
(second branch), indeed when the eventuality fulfilment is delayed, the negated context
prevents the same situation from being repeated: the eventuality is not satisfied and the
context had previously occurred.

n1 : Σ1, ϕUψ

Σ1, ψ n2 : Σ1, ϕ, ◦((∼Σ1 ∧ ϕ)Uψ)

Σ2, (∼Σ1 ∧ ϕ)Uψ

Σ2, ψ Σ2,∼Σ1 ∧ ϕ, ◦((∼Σ2∧ ∼Σ1 ∧ ϕ)Uψ)

n3 : Σ2,∼Σ1, ϕ, ◦((∼Σ2∧ ∼Σ1 ∧ ϕ)Uψ)

n4 : Σ1, (∼Σ2∧ ∼Σ1 ∧ ϕ)Uψ

Σ1, ψ n5 : Σ1,∼Σ2∧ ∼Σ1 ∧ ϕ, ◦((∼Σ2∧ ∼Σ1 ∧ ϕ)Uψ)

Σ1,∼Σ2,∼Σ1, ϕ, ◦((∼Σ2∧ ∼Σ1 ∧ ϕ)Uψ)

(U+)

(...)

⊗

(...) + (◦)

(U+)

(...)

⊗

(∧)

(...) + (◦)

(U+)

(...)

⊗

(∧) + (∧)

⊗
Figure 2.10: Use of context.

Figure 2.10 illustrates the use of the negated context. Note that the underlined
formula at each node is the one to which the rule applies. In the node n1 the context
is Σ1. (U+) is applied and the node n2 represents the case where the eventuality is
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not satisfied. In that case, the negation of the context Σ1 is included in the left-part
of the until-formula (inside the next formula) not to allow repetition of that context.
After applying the rest of the rules to the formulae that conform the node, next-state
rule is applied. Let’s consider that the context of this new node is different to Σ1 (Σ2).
Node n3 shows how when the eventuality is not satisfied, the previous negated context
and the left-part of the eventuality come out and they are separated using the (∧) rule.
Let’s assume there is no contradiction between ∼Σ1 and Σ2. Once again, the negated
context is introduced at the left part of the until-formula inside the next formula. Node
n4 represents a state where the context of the eventuality is exactly the same as in
node n1, Σ1. If the eventuality is not satisfied (node n5), the previous negated context
comes out and is separated using the (∧) rule. As Σ1 and∼Σ1 occur, the branch is closed.
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a, ◦c, ◦�a,♦¬a

a, ◦c, ◦�a,¬a a, ◦c, ◦�a, ◦((¬a ∨ ◦¬c)U¬a)

c,�a, (¬a ∨ ◦¬c)U¬a

c,�a,¬a

c, a, ◦�a,¬a

c,�a,¬a ∨ ◦¬c, ◦(((¬a ∨ ◦¬c) ∧ ¬c)U¬a)

c, a, ◦�a,¬a ∨ ◦¬c, ◦(((¬a ∨ ◦¬c) ∧ ¬c)U¬a)

c, a, ◦�a,¬a,
◦(((¬a ∨ ◦¬c) ∧ ¬c)U¬a)

c, a, ◦�a, ◦¬c, ◦(((¬a ∨ ◦¬c) ∧ ¬c)U¬a)

�a,¬c, ((¬a ∨ ◦¬c) ∧ ¬c)U¬a

�a,¬c,¬a

a, ◦�a,¬c,¬a

�a,¬c, (¬a ∨ ◦¬c) ∧ ¬c,
◦(((¬a ∨ ◦¬c) ∧ ¬c ∧ c)U¬a)

�a,¬c,¬a ∨ ◦¬c,
◦(((¬a ∨ ◦¬c) ∧ ¬c ∧ c)U¬a)

a, ◦�a,¬c,¬a ∨ ◦¬c,
◦(((¬a ∨ ◦¬c) ∧ ¬c ∧ c)U¬a)

a, ◦�a,¬c,¬a,
◦(((¬a ∨ ◦¬c) ∧ ¬c ∧ c)U¬a)

a, ◦�a,¬c, ◦¬c,
◦(((¬a ∨ ◦¬c) ∧ ¬c ∧ c)U¬a)

�a,¬c, ((¬a ∨ ◦¬c) ∧ ¬c ∧ c)U¬a

�a,¬c,¬a

a, ◦�a,¬c,¬a

�a,¬c, (¬a ∨ ◦¬c) ∧ ¬c ∧ c
◦(((¬a ∨ ◦¬c) ∧ ¬c ∧ c)U¬a)

�a,¬c,¬a ∨ ◦¬c,¬c, c
◦(((¬a ∨ ◦¬c) ∧ ¬c ∧ c)U¬a)

(♦)+

⊗ (◦)

(U+)

(�)

⊗

(�)

(∨)

⊗
(◦)

(U+)

(�)

⊗
(∧)

(�)

(∨)

⊗ (◦)

(U+)

(�)

⊗
(∧) + (∧)

⊗
Figure 2.11: Closed tableau for {a, ◦c, ◦�a,♦¬a}

Figure 2.11 is an example of the use of the negated context and how the pattern
explained in the previous example is met. Note that the formulae ◦�a and �a are
excluded from the negation of contexts because they are persistent formulae. The non-
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inclusion of persistent formulae in the negated contexts is based on Proposition 2.

Proposition 2. The formula (◦i−1
�δ) ∧ (◦i♦¬δ) for any i > 0 is unsatisfiable.

Proof.

(◦i−1�δ) ∧ (◦i♦¬δ) ≡ ◦i−1
(�δ ∧ ◦♦¬δ)

≡ ◦i−1
(δ ∧ ◦�δ ∧ ◦♦¬δ)

≡ ◦i−1
(δ ∧ ◦(�δ ∧ ♦¬δ))

≡ ◦i−1
(δ ∧ ◦F)

≡ F

Σ1, ◦i�δ, ϕUψ

Σ1, ◦i�δ, ψ

(...) Σ1, ◦i�δ, ϕ, ◦((ϕ ∧ (∼Σ1 ∨ ◦i♦¬δ))Uψ)

Σ2, ◦i−1
�δ, (ϕ ∧ (∼Σ1 ∨ ◦i♦¬δ))Uψ

Σ2, ◦i−1
�δ, ψ

(...)

Σ2, ◦i−1
�δ, (ϕ ∧ (∼Σ1 ∨ ◦i♦¬δ)), ◦(

γ︷ ︸︸ ︷
(ϕ ∧ (∼Σ1 ∨ ◦i♦¬δ) ∧ (∼Σ2 ∨ ◦i−1♦¬δ))Uψ)

Σ2, ◦i−1
�δ, ϕ,∼Σ1, ◦(γUψ)

(...)

Σ2, ◦i−1
�δ, ϕ, ◦i♦¬δ, ◦(γUψ)

(U)+

(...) + (◦)

(U+)

(∧) + (∨)

by Proposition 2

⊗

Figure 2.12: Exclusion of persistent formulae in the negated context

Proposition 2 ensures that tableaux for sets of formulae of form {Σ1, ◦i�δ, ϕUψ} (like
the one in Figure 2.12) can prune all branches corresponding to the persistent formulae
that are included in the negated context, since these branches will always close. In other
words, for all i ≥ 0, it always happens that the sets of formulae

{◦i�δ, ϕ,◦((ϕ ∧ (∼Σ1 ∨ ◦i♦¬δ))Uψ)} and {◦i�δ, ϕ,◦((ϕ∧ ∼Σ1)Uψ)}

are logically equivalent.
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At this end of this subsection we would like to point out that the application of the
β+ rules is so important that it determines when a tableau is open. A tableau is closed
if all its branches are closed. A tableau is open when one of its branches has a consistent
node n and the following holds:

• the label of n is included in the label of a previous node in the branch.

• Along the branch, from the root until node n, the β+ rule has been applied to all
eventualities occurring in the branch.

Any open branch represents a cyclic PLTL-structure that corresponds with a model of
the set of formulae labelling its root. The nature of our tableau rules guarantees that
the tableaux always end up being either closed or open. A closed tableau indicates that
the input does not have a model, hence it is unsatisfiable. An open tableau provides a
cyclic PLTL-structure that satisfies the tableau input.

Tableaux Construction

We now present the algorithm that constructs a context-based tableau from an initial
set of formulae. The management of eventualities is the core of the method, where the
β+ rules play the main role. Henceforth, we emphasise the details of the algorithm
related to eventualities and the β+ rules application.

Algorithm 1: Tableau
Input = ∆: set of formulae, selectedFormula: formula
Output = M : Model, b: boolean

1 if Incons(∆) then
2 M, b := ∅, false;
3 else if there exists ∆′, an ancestor of ∆, such that ∆ ⊆ ∆′ and all eventualities

in the branch has been already selected then
4 . where model is the model constructed from the branch where ∆′ and ∆ are.

5 M, b := model, true;

6 else if is elementary(∆) then
7 ∆′ = apply-next-state-rule(∆);
8 M, b := Tableau(∆′,selectedFormula);

9 else
10 selectedFormula = select formula(∆);
11 if selectedFormula 6= F then
12 M, b := apply-β+-rule(∆,selectedFormula);
13 Let ψ be any formula in ∆ which is not elementary;
14 if α is applicable(ψ) then
15 M, b := apply-α-rule(ψ,∆,selectedFormula);

16 else // β is applicable(ψ)
17 M, b := apply-β-rule(ψ,∆,selectedFormula);

18 end

19 end
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Algorithm 1 is a recursive procedure called Tableau whose input parameters are the
set of formulae, ∆, which is the label of the current node in the tableau, and a selected
eventuality (if there are any) to which apply the β+ rules. Initially, ∆ is the set of
formulae for satisfiability checking and selectedFormula is F (no eventuality selected
yet).

If ∆ is not syntactically consistent the branch is closed (line 2). On the contrary
if there is an ancestor of the current node, labelled by ∆′, where ∆ ⊆ ∆′ and all the
eventualities have been selected, a cycle from ∆ to ∆′ is created and the branch is open
(line 5). Otherwise, when ∆ is elementary (see Definition 12), Tableau applies the next-
state rule to jump to a new state and goes on from there with a recursive call (line 8).
When ∆ is a consistent non-elementary set of formulae, the algorithm must apply one
tableau rule to some non-elementary formula ϕ in ∆. The choice of ϕ (and hence the
applicable tableau rule) prioritizes eventualities and uses the selectedFormula to first
apply a (β)+ rule to exactly the selected eventuality (see Algorithm 2).

Algorithm 2: apply-β+-rule

Input = ∆: set of formulae, selectedFormula: formula
Output = M : Model, b: boolean

1 Let nc the negated context of ∆ in NNF;
2 if selectedFormula == ϕUϕ′ then
3 ∆′1 := (∆ \ {ϕUϕ′})∪{ϕ′};
4 ∆′2 := (∆ \ {ϕUϕ′})∪{ϕ, ◦((nc ∧ ϕ)Uϕ′)};
5 selectedFormula′ := (nc ∧ ϕ)Uϕ′;
6 else // selectedFormula == ♦ϕ
7 ∆′1 := (∆ \ {♦ϕ})∪{ϕ};
8 ∆′2 := (∆ \ {♦ϕ})∪{◦(ncUϕ)};
9 selectedFormula′ := ncUϕ;

10 end
11 pair = Tableau(∆′1,F);
12 if pair 6= (∅, false) then
13 M, b := pair;
14 else
15 M, b := Tableau(∆′2,selectedFormula

′);
16 end

Algorithm 3: apply-α-rule
Input = ψ: formula, ∆: set of formulae, selectedFormula: formula
Output = M : Model, b: boolean

1 if ψ == ϕ ∧ ϕ′ then
2 ∆′ := (∆ \ {ψ})∪{ϕ,ϕ′};
3 else // ψ == �ϕ
4 ∆′ := (∆ \ {ψ})∪{ϕ, ◦�ϕ};
5 end
6 M, b := Tableau(∆′,selectedFormula);



2. Propositional Linear Temporal Logic 25

Algorithm 4: apply-β-rule
Input = ψ: formula, ∆: set of formulae, selectedFormula: formula
Output = M : Model, b: boolean

1 if ψ == ϕ ∨ ϕ′ then
2 ∆′1 := (∆ \ {ψ})∪{ϕ}; ∆′2 := (∆ \ {ψ})∪{ϕ′};
3 else if ψ == ϕRϕ′ then
4 ∆′1 := (∆ \ {ψ})∪{ϕ,ϕ′}; ∆′2 := (∆ \ {ψ})∪{ϕ′, ◦(ϕRϕ′)};
5 else if ψ == ♦ϕ then
6 ∆′1 := (∆ \ {ψ})∪{ϕ}; ∆′2 := (∆ \ {ψ})∪{◦♦ϕ};
7 else // ψ == ϕUϕ′
8 ∆′1 := (∆ \ {ψ})∪{ϕ′}; ∆′2 := (∆ \ {ψ})∪{ϕ, ◦(ϕUϕ′)};
9 end

10 pair = Tableau(∆′1,selectedFormula);
11 if pair 6= (∅, false) then
12 M, b := pair;
13 else
14 M, b := Tableau(∆′2,selectedFormula);
15 end

Before running Algorithm 2, Tableau makes sure that some eventuality (if any)
is selected (line 10). This task is performed by select formula, which works as fol-
lows. If selectedFormula is F and ∆ contains eventualities, one of them is assigned
to selectedFormula. Otherwise, selectedFormula does not change. In this way, two
purposes are achieved: (1) if ∆ contains one selected eventuality, then this selection is
preserved and (2) if ∆ contains at least one eventuality, some eventuality is selected. It
should be noted that the selection mechanism is random, but Tableau must be imple-
mented with a fair strategy, that is, an eventuality cannot remain unselected indefinitely.

Regarding Algorithm 2, it should be remarked that the application of the β+ rule
creates two new nodes with labels ∆′1 and ∆′2. The case of ∆′1 corresponds to the fact
that the selected eventuality is satisfied and consequently, another eventuality must be
selected. On the other side, if the eventuality is not satisfied (case of ∆2) the until-
formula inside the next formula must remain selected to be treated later.

From line 13 to the end, Tableau applies either an α-rule or a β-rule to a chosen
formula ψ in ∆ (see Algorithms 3 and 4). Note that all eventualities except the selected
one are treated with the (U) and (♦) rules.

Several examples of the algorithm are shown below. Examples 3 and 4 illustrate the
algorithm running with unsatisfiable and satisfiable sets respectively.

Example 3 (Examples of closed tableaux). Figure 2.13 and 2.14 illustrate the tableau
built from {pUF} and {�(a ∧ ¬b),♦¬a} respectively. Both sets of formulae are unsatis-
fiable and all the branches are closed. For readability, we mark the selected eventualities
with a gray box.



2. Propositional Linear Temporal Logic 26

pUF

F p, ◦( (p ∧ F)UF )

(p ∧ F)UF

F p ∧ F, ◦( (p ∧ F)UF )

p,F, ◦( (p ∧ F)UF )

(U+)

⊗
(◦)

(U+)

⊗ (∧)

⊗
Figure 2.13: Example pUF

�(a ∧ ¬b), ♦¬a

�(a ∧ ¬b),¬a

a ∧ ¬b, ◦�(a ∧ ¬b),¬a

a,¬b, ◦�(a ∧ ¬b),¬a

�(a ∧ ¬b), ◦( FU¬a )

a ∧ ¬b, ◦�(a ∧ ¬b), ◦( FU¬a )

a,¬b, ◦�(a ∧ ¬b), ◦( FU¬a

�(a ∧ ¬b), FU¬a

�(a ∧ ¬b),¬a

a ∧ ¬b, ◦�(a ∧ ¬b),¬a

a,¬b, ◦�(a ∧ ¬b),¬a

�(a ∧ ¬b),F, ◦( FU¬a )

(♦+)

(�)

(∧)

⊗

(�)

(∧)

(◦)

(U+)

(�)

(∧)

⊗

⊗

Figure 2.14: Example �(a ∧ ¬b),♦¬a
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pUq, ♦¬q

pUq ,¬q

¬q, q ¬q, p, ◦( (p ∧ q)Uq )

(p ∧ q)Uq

q

∅

p ∧ q, ◦( (p ∧ q ∧ F)Uq )

(...)

pUq, ◦( (¬pR¬q)U¬q )

(...)

(♦+)

(U+)

⊗ (◦)

(U+)

(◦)

Figure 2.15: Example of satisfiable set of formulae: {pUq,♦¬q}

Example 4 (Example of an open tableau). Figure 2.15 shows the systematic tableau
for {pUq,♦¬q}. The example is borrowed from [41]. In contrast to [41], the proce-
dure presented in Figure 2.15 is the adapted one for NNF formulae. From the leftmost
open branch of the tableau, a PLTL-structure can be obtained, meaning that the set is
satisfiable. In this case we obtain the PLTL-structure M such that M |= {pUq,♦¬q}:
VM (s0) = {p}, VM (s2k−1) = {q}, VM (s2k) = {} for every k ≥ 1. We represent M as
{p}, 〈{q}, { }〉w.

2.2.2 Sequent Calculus

The NNF version of TTC sequent calculus introduced in [41] is presented in this subsec-
tion.

Sequent calculus were introduced by Gentzen [42]. Similar to axiomatic systems, a
Gentzen system has axioms and inference rules. But, unlike a deductive system, the
basic building blocks in a Gentzen system are expressions called sequents, not formulae.
Sequents are formed by two sequences of formulae separated by `: ϕ1, ϕ2, . . . , ϕn `
ψ1, ψ2, . . . , ψm interpreted as

n∧
i=1

ϕi →
m∨
i=1

ψi

being → the classical implication connective. ϕ1, ϕ2, . . . ϕn is called the antecedent and
the sequent ϕ1, ϕ2, . . . , ϕm its consequent.

The inference rules in a sequent calculus indicate that a sequent may be inferred
from a set of sequents. In fact, TTC (Tait-style Temporal Calculus) provides sequent
rules for inferring false. In Figure 2.16 there is a table which relates each tableau rule
with its respective TTC rule. Note that TTC contains two axioms: (Ctd) and (F).
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Tableau Rules Sequent Calculus

(Ctd)
Σ, ϕ,∼ϕ

Closed branch Σ, ϕ,∼ϕ ` F

(F)
Σ,F

Closed branch Σ,F ` F

(∧)
Σ, ϕ1 ∧ ϕ2

Σ, ϕ1, ϕ2

Σ, ϕ1, ϕ2 ` F

Σ, ϕ1 ∧ ϕ2 ` F

(�)
Σ,�ϕ

Σ, ϕ, ◦�ϕ
Σ, ϕ, ◦�ϕ ` F

Σ,�ϕ ` F

(◦) Σ, ◦(Σ2)

Σ2

Σ1 ` F

Σ2, ◦(Σ1) ` F

(∨)
Σ, ϕ1 ∨ ϕ2

Σ, ϕ1 | Σ, ϕ2

Σ, ϕ1 ` F Σ, ϕ2 ` F

Σ, ϕ1 ∨ ϕ2 ` F

(R)
Σ, ϕ1Rϕ2

Σ, ϕ1, ϕ2 | Σ, ϕ2, ◦(ϕ1Rϕ2)

Σ, ϕ1, ϕ2 ` F Σ, ϕ2, ◦(ϕ1Rϕ2) ` F

Σ, ϕ1Rϕ2 ` F

(U)
Σ, ϕ1Uϕ2

Σ, ϕ2 | Σ, ϕ1, ◦(ϕ1Uϕ2)

Σ, ϕ2 ` F Σ, ϕ1, ◦(ϕ1Uϕ2) ` F

Σ, ϕ1Uϕ2 ` F

(♦)
Σ,♦ϕ

Σ, ϕ | Σ, ◦♦ϕ
Σ, ϕ ` F Σ, ◦♦ϕ ` F

Σ,♦ϕ ` F

(U)+ Σ, ϕ1Uϕ2

Σ, ϕ2 | Σ, ϕ1, ◦((ϕ1∧ ∼Σ′)Uϕ2)

Σ, ϕ2 ` F Σ, ϕ1, ◦((ϕ1∧ ∼Σ′)Uϕ2) ` F

Σ, ϕ1Uϕ2 ` F

(♦)+ Σ,♦ϕ
Σ, ϕ | Σ, ◦((∼Σ′)Uϕ)

Σ, ϕ ` F Σ, ◦((∼Σ′)Uϕ) ` F

Σ,♦ϕ ` F

Figure 2.16: Sequent calculus associated with the tableau rules.

Thanks to the correspondence between tableau rules and sequents, it is possible to
obtain a refutational proof that is dual to a closed tableau. It starts from the closed
leaves of the tableau, contradiction or F, deriving F by applying the sequents (Ctd) or
(F) respectively. Then it continues applying the different rules until it arrives to the
root of the tableau. Finally the root derives F.

In Figure 2.17 there is a refutational proof that corresponds to the closed tableau in
Figure 2.14. In Figure 2.18 there is a refutational proof that corresponds to the closed
tableau in Figure 2.13.
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(Ctd)
a,¬b,◦�(a ∧ ¬b),¬a ` F

(∧)
a ∧ ¬b,◦�(a ∧ ¬b),¬a ` F

(�)
�(a ∧ ¬b),¬a ` F

(Ctd)
a,¬b,◦�(a ∧ ¬b),¬a ` F

(∧)
a ∧ ¬b,◦�(a ∧ ¬b),¬a ` F

(�)
�(a ∧ ¬b),¬a ` F

(F)
�(a ∧ ¬b),F,◦(FU¬a) ` F

(U+)
�(a ∧ ¬b),FU¬a ` F

(◦)
a,¬b,◦�(a ∧ ¬b),◦(FU¬a) ` F

(∧)
a ∧ ¬b,◦�(a ∧ ¬b),◦(FU¬a) ` F

(�)
�(a ∧ ¬b),◦(FU¬a) ` F

(♦)+
�(a ∧ ¬b),♦¬a ` F

Figure 2.17: Sequent proof for �(a ∧ ¬b),♦¬a

(F)
F ` F

(F)
F ` F

(F)
p,F, ◦((p ∧ F)UF) ` F

(∧)
p ∧ F, ◦((p ∧ F)UF) ` F

(U+)
(p ∧ F)UF ` F

(◦)
p, ◦((p ∧ F)UF) ` F

(U+)
pUF ` F

Figure 2.18: Sequent proof for pUF

2.3 Sequent Calculus in Isabelle

We have codified a version of the calculus TTC in Section 2.2.2 (for formulae in NNF)
as an Isabelle theory ([75]). Isabelle is a generic theorem prover, designed for in-
teractive reasoning in a variety of formal theories. All Isabelle files can be found
at http://github.com/alexlesaka/OnePassTableau. The file TTC Calculus.thy con-
tains the encoding of the sequent rules introduced in Figure 2.16, and another file
TTC Soundness.thy provides the soundness proof of them.

We use a datatype PLTL formula to define the syntax of the considered formulae,
which are the two boolean constants (T and F), the atoms (strings preceded by con-
structor Var, or shortly V), classical connectives (preceded by a dot, to avoid conflicts)
of negation (.¬), conjunction (.∧), disjunction (.∨), along with temporal operators for
next, until, release, eventually and always. To automate the Isabelle proofs, we add two
extra connectives ¨U¨ (the until operator surrounded by dieresis) to denote the selected
eventuality in goals and ¨◦¨ to mark the sequents formed by elementary formulae. In
addition, we include the implication connective (.−→) to facilitate the readability of the
proofs.

http://github.com/alexlesaka/OnePassTableau
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datatype PLTL_formula =

F

| T

| Var string ("(V _)" [80] 80)

| Not PLTL_formula ("(.¬ _)" [80] 80)

| And PLTL_formula PLTL_formula (infixl ".∧" 75)

| Or PLTL_formula PLTL_formula (infixl ".∨" 73)

| Imp PLTL_formula PLTL_formula (infixr ".−→" 70)

| X PLTL_formula ("(◦ _)" [80] 80)

| U PLTL_formula PLTL_formula (infixr "U" 72)

| R PLTL_formula PLTL_formula (infixr "R" 72)

| Alw PLTL_formula ("(� _)" [80] 80)

| Evt PLTL_formula ("(♦ _)" [80] 80)

(* Selected Next and Until ,

Extra -logic connectives for marking *)

| SelX PLTL_formula ("(¨◦¨ _)" [80] 80) (* Marked Next *)

| SelU PLTL_formula PLTL_formula (infixr "¨U¨" 72)

(* Selected Until *)

We also have a function that transforms any formula into its negation in NNF.

fun notInNNF :: "PLTL_formula ⇒ PLTL_formula" ("∼nnf") where

"∼nnf F = T" |

"∼nnf T = F" |

"∼nnf(V x) = (.¬(V x))" |

"∼nnf(.¬ phi) = phi" |

"∼nnf(phi .∧ psi) = ((∼nnf phi) .∨ (∼nnf psi))" |

"∼nnf(phi .∨ psi) = ((∼nnf phi) .∧ (∼nnf psi))" |

"∼nnf(phi .−→ psi) = ((phi .∧ (∼nnf psi))" |

"∼nnf(◦ phi) = ◦(∼nnf phi)" |

"∼nnf(¨◦¨ phi) = ¨◦¨(∼nnf phi)" |

"∼nnf(phi U psi) = (∼nnf phi) R (∼nnf psi)" |

"∼nnf(phi ¨U¨ psi) = (∼nnf phi) R (∼nnf psi)" |

"∼nnf(phi R psi) = (∼nnf phi) U (∼nnf psi)" |

"∼nnf(� phi) = ♦ (∼nnf phi)" |

"∼nnf(♦ phi) = � (∼nnf phi)"

We define the TTC rules by an inductive binary relation (predicate) TTC proves,
which is denoted “`” in infix notation. The first argument of ` is a set of PLTL
formulae (implemented as an ordered list without repeated elements) and the second is
a PLTL formula. By the construction of the calculus, the consequents of the sequents
are always the constant F, but (for clarity) we prefer to keep ` as a binary relation,
and to explicitly represent that falsehood. The Isabelle definition of ` includes the two
axioms:

TTC Ctd1 : ϕ .∈ ∆ =⇒ (∼nnf ϕ) .∈ ∆ =⇒ ∆ ` F

TTC Ctd2 : F .∈ ∆ =⇒ ∆ ` F

where .∈ is the user-defined infix operator for member of a list, and the user-defined
infix function ∼nnf computes the negation normal form of a negated formula. We also
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encode the traditional rules for classical connectives and temporal operators:

TTC T : ∆ ` F =⇒ T # ∆ ` F

TTC And : ϕ • ψ • ∆ ` F =⇒ (ϕ .∧ ψ) # ∆ ` F

TTC Or : ϕ • ∆ ` F =⇒ ψ • ∆ ` F =⇒ (ϕ .∨ ψ) # ∆ ` F

TTC Imp : (∼nnf ϕ) • ∆ ` F =⇒ ψ • ∆ ` F =⇒ (ϕ .−→ ψ) # ∆ ` F

TTC U : ψ • ∆ ` F =⇒ ϕ • ◦(ϕUψ) • ∆ ` F =⇒ (ϕUψ) # ∆ ` F

TTC R : ϕ • ψ • ∆ ` F =⇒ ψ • ◦(ϕRψ) • ∆ ` F =⇒ (ϕRψ) # ∆ ` F

TTC Alw : ϕ • ◦�ϕ • ∆ ` F =⇒ (�ϕ) # ∆ ` F

TTC Evt : ϕ • ∆ ` F =⇒ ◦♦ϕ • ∆ ` F =⇒ (♦ϕ) # ∆ ` F

where # is the standard cons constructor of lists and • is our user-defined operator
for insert an element ϕ in the correct position of an ordered list ∆ (if ϕ is already in
∆, then the result is ∆ itself). For automating proofs, we have defined an order on
the set of PLTL formulae where the minimal formulae are literals, and formulae with
connectives are lexicographic ordered according to the following order (from lowest to
highest): ¨◦¨, ◦, .∧, .∨, �, R, ♦, U , ¨U¨. We order the antecedent of the sequent, in
decreasing order, at the beginning of any proof using the following extra rule:

TTC Interchange : (sort ∆) ` F =⇒ ∆ ` F

Then, every application of a rule preserves the order in the generated subgoals by means
of the operator • that inserts each formula in the correct place. As a consequence,
the first formula of any sequent is a non-elementary formula, if there exists at least one.
Moreover, the first formula is the eventuality, if there exists at least one, and it is the
selected eventuality whenever the selection has already been done. The rules applied to
the selected eventuality are:

TTC Evt Plus : ϕ • ∆ ` F =⇒ ◦((negCtxt ∆)Uϕ) • ∆ ` F

=⇒ ♦ϕ # ∆ ` F

TTC U Plus : ψ • ∆ ` F =⇒ ϕ • ◦((ϕ .u. (negCtxt ∆))¨U¨ψ) • ∆ ` F

=⇒ ϕUψ # ∆ ` F

TTC U Sel : ψ • ∆ ` F =⇒ ϕ • ◦((ϕ .u. (negCtxt ∆))¨U¨ψ) • ∆ ` F

=⇒ ϕ¨U¨ψ # ∆ ` F

where (negCtxt ∆) is the negation of the context ∆ and the operator .u. is a conjunction
up to subsumption, hence we avoid adding subsumed disjunctions, in particular, adding
duplicated disjunctions. Note that the premises of TTC U Sel are really a copy of the
premises of TTC U Plus. Consequently, TTC U Plus is applied at the first time when
the eventuality has been just selected, whereas TTC U Sel is applied after that, while it
is kept selected. When all formulae in the sequent are elementary we apply the following
rule:

TTC Next State : (next state ∆) ` F =⇒ ∆ ` F

This rule applies when all the formulae in ∆ are elementary, in such a way that Function
next state filters all formulae in ∆ starting by the ◦ operator, removing from them this
operator.

The soundness proof of each TTC rule is included in the file TTC Soundness.thy.
These proofs need prior definitions and lemmas. Some of them are presented below.
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The first example is Structure, which corresponds to Definition 2. The suffix defi-
nition states that the infinite sequence (suffix σ n) is σ without its first n states. Then
auxiliary lemmas like suffix0 and suffix add are automatically proved by Isabelle
using the suffix definition.

type_synonym Structure = "nat ⇒ string set"

definition suffix :: "Structure ⇒ nat ⇒ Structure"

where "suffix σ n = (λi.(σ (n+i)))"

lemma suffix0 [simp]: "suffix σ 0 = σ"
by (simp add: suffix_def)

lemma suffix_add [simp]: "suffix (suffix σ m) n = suffix σ (m+n)"

by (simp add: suffix_def add_ac)

Holds corresponds to Definition 3. In the case of the formalisation in Isabelle, we
chose j = 0, i.e., the state sj of the structure M is s0.

Models defines whether a structure is a model of a list of PLTL formulae.

primrec holds :: "Structure ⇒ PLTL_formula ⇒ bool" ("(_ |= _)"

[60 ,60] 59)

where

"σ |= F = False" |

"σ |= T = True" |

"σ |= V s = (s ∈ (σ 0))" |

"σ |= .¬ ϕ = (¬(σ |= ϕ))" |

"σ |= ϕ .∧ ψ = (σ |= ϕ ∧ σ |= ψ)" |

"σ |= ϕ .∨ ψ = (σ |= ϕ ∨ σ |= ψ)" |

"σ |= ϕ .−→ ψ = (σ |= ϕ −→ σ |= ψ)" |

"σ |= � ϕ = (∀i. suffix σ i |= ϕ)" |

"σ |= ◦ ϕ = (suffix σ 1 |= ϕ)" |

"σ |= ¨◦¨ ϕ = (suffix σ 1 |= ϕ)" |

"σ |= ϕ U ψ = (∃i. suffix σ i |= ψ ∧ (∀j<i. suffix σ j |= ϕ))" |

"σ |= ♦ ϕ = (∃i. suffix σ i |= ϕ)" |

"σ |= ϕ R ψ = (¬(∃i.(¬(suffix σ i |= ψ) ∧
(∀j<i. ¬(suffix σ j |= ϕ)))))" |

"σ |= ϕ ¨U¨ ψ = (∃i. suffix σ i |= ψ ∧ (∀j<i. suffix σ j |= ϕ))"

definition models :: "Structure ⇒ PLTL_formula list ⇒ bool"

("(_ ||= _)" [60 ,60] 59)

where "models σ Φ = (∀ϕ. (ϕ .∈ Φ−→σ |= ϕ))"

The definitions of Sat and UnSat, which correspond to Definition 4, are as follows.

definition sat :: "PLTL_formula list ⇒ bool"

where "sat ∆ = (∃σ. σ ||= ∆)"

definition unSat :: "PLTL_formula list ⇒ bool"

where "unSat ∆ = (¬(sat ∆))"

Finally we present an example of an auxiliary lemma that is used by the soundness
proofs. Isabelle automatically proves this lemma by induction.

lemma equiv_NNF [simp]:
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shows "(¬(σ |= ϕ)) = (σ |= ∼nnf ϕ)"
by (induct ϕ arbitrary: σ) auto

Once the necessary definitions and lemmas are established, the proof of soundness of
each inference rule can be made by refutation. Next we present the proofs of the rules
TTC Ctd1 and TTC U.

(* ******************* TTC_Ctd1 soundness ************** *)

lemma TTC_Ctd1_Sound:

assumes "ϕ .∈ ∆"

assumes "∼nnf ϕ .∈ ∆"

shows "unSat ∆"

proof (rule ccontr)

assume "¬(unSat ∆)"

hence "∃σ. σ ||= ∆ " by (simp add: models_def)

then have "∃ σ. σ |= ∼nnf ϕ ∧ σ |= ϕ" using models_def

by auto

then show "False" using equiv_NNF

qed

(* ******************* TTC_U soundness *************** *)

lemma TTC_U_Sound [simp]:

assumes "unSat(ψ • ∆)"

assumes "unSat(ϕ • (◦(ϕ U ψ)) • ∆)"

shows "unSat ((ϕ U ψ) # ∆)"

proof (rule ccontr)

assume "¬(unSat ((ϕ U ψ) # ∆))"

then obtain σ where "σ ||=((ϕ U ψ) # ∆)" using sat_def unSat_def

then obtain i:: nat where hyp:

"suffix σ i |= ψ ∧ (∀j<i. suffix σ j |= ϕ) ∧ σ ||= ∆"

using models_def by auto

then have "sat(ψ • ∆) ∨ sat(ϕ • (◦(ϕ U ψ)) • ∆)"

proof (cases)

assume "i = 0"

then show ?thesis by (auto simp add: models_def sat_def)

next

assume "¬(i = 0)"

then have "i > 0 ∧ σ |= ϕ ∧
suffix (suffix σ (i-1)) 1 |= ψ ∧
(∀j<i. suffix σ j |= ϕ) ∧
σ ||= ∆" using hyp by auto

then have "σ |= ϕ ∧ σ |= ◦(ϕ U ψ) ∧ σ ||= ∆" by auto

thus ?thesis by (auto simp add: models_def sat_def)

qed

with assms show False using sat_def unSat_def

qed



3. CERTIFIED MODEL CHECKING FOR PLTL

In Symbolic Model Checking, since the system to be tested is represented by a formula,
and nothing forces the user to give an specification with a unique model, the formula to
be handled is often satisfied by a collection of ‘logical’ models. For a simple example, in a
symbolic model checker such as NuSMV one can specify that the initial state satisfies the
property a and that we have a unique transition from any state that satisfies a to a state
that satisfies b. Then, the formula that represents this transition system is equivalent
to the temporal formula a ∧ �(a → ◦b). This formula has more than one model in
temporal logic. Indeed, if one asks a symbolic model checker whether the property ♦�b
is satisfied or not, it returns the counterexample 〈{a}, {b}〉ω; and for the question �♦a
the returned counterexample is {a}, 〈{b}〉ω. In other words, from the logical point of
view, symbolic model checking really decides whether a property (temporal formula) ϕ is
satisfied in all the models of the given specification (a set of premises) Φ, that is Φ |= ϕ.
Hence, the underlying metalogical concept is logical consequence that corresponds with
derivability (since PLTL is a complete logic). The crucial fact is that the allowed formulae
for specifying the transition system are a syntactical restriction of general temporal
formulae. In other words, model checking is a particular case of temporal deduction,
i.e. the deduction of a (general) temporal formula from a set of (non-general) temporal
formulae as premises.

When the specification of the transition system is very complex, the user may not
be sure if the specification is well written. Here it is important to have techniques that
not only provide a counterexample, but also a certificate that the transition system
meets the property. This is exactly what the Certified Model Checking (CMC) has been
introduced for. In this scenario a number of techniques have been previously proposed.
Some of the techniques that deal with finite-state systems can be found in [59, 74]. In
[59] an automata-theoretic approach to model checking is addressed. In [74] a deductive
proof system was introduced for verifying branching time properties expressed in the
mu-calculus. For infinite-state systems, Mebsout et al. [72] presented a new technique
for generating and verifying proof certificates for SMT-based model checkers, focusing
on proofs of invariant properties. The use of invariants has been exploited in [49, 58],
where the proof is generated from the inductive invariant obtained with the k-liveness
algorithm [23]. The resulting approach can be implemented as a model checker based on
the combination of k-liveness with an engine for invariant properties that is capable of
producing inductive invariants. A drawback of this approach is that, although it is very
competitive, the task of finding counterexamples and the task of generating proofs (in
this case via finding invariants) are very different, requiring for the latter the addition
of extra mechanisms to the own model checker.

The CMC (see Figure 3.1) differs from the traditional model checking in providing
a proof of the satisfiability of the given property, and not only a counterexample. Incor-
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System 
Specification

Property 
to verify

Counter-example Formal Proof

No Yes

CMC
Does the system 

satisfy the property?

Figure 3.1: General schema of CMC

porating the notation of [56] (and slightly modifying it) we represent the methodology
of the certified model checking as the following signature:

CMC :: S × ϕ −→ B × (Proof | Counter-example)

where, given a specification of a transition system, S, and a property, ϕ, a certified
model checking produces a Boolean result, B, indicating whether S satisfies ϕ, along
with

• a proof (or certification), in the positive case, or

• a counterexample, in the negative case.

However, we believe that to take the full advantage of CMC, and enabling its in-
dustrial application to real systems, we need to ensure that CMC meets the following
requirements.

(i) Proofs should be generated automatically.

(ii) An CMC needs to offer a CMC user sufficient information to understand the proof
without additional ‘costs’ related to specialist knowledge of the underlying proof
technique.

(iii) The presentation of the proof should enable the CMC users to easily navigate
through its trace. This becomes particularly important when the system is badly
defined – here the navigation through the trace can help to detect errors.

(iv) Finally, when developing a safety critical system following a safety process (e.g.
processes of standard ISO26262 [52], IEC61508 [51] or EN50128 [20]), it is manda-
tory to analyse how a bug in a tool (a model checker in our case) may affect
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Figure 3.2: General schema of the proposal

the safety of the developed system. Depending on the level of these effects, some
actions are required to increase our confidence in the model checker. One of the
mechanisms to increase the probability of finding a failure is to re-evaluate the
outputs of the CMC by an independent tool developed by an independent team.

The dual tableaux method introduced in Section 2.2 can be used to perform certified
model checking by taking advantage of the following benefits: the tableau is built on-
the-fly; due to the use of the contexts, the eventualities are satisfied as soon as possible.
In terms of the implementation, all branches are completely independent so they can
be parallelised without shared data. Regarding storage problems, we have a potential
memory improvement by only requiring to keep traces (of the branch that we deal at
the moment). Moreover, the use of sequent calculus provides a certificate in case the
tableaux close, completing the Certified Model Checking scenario.

We propose a particular CMC method of realising the CMC philosophy (see Figure
3.2) meeting the characteristics (i)-(iv) above while maintaining the common (for the
traditional Model Checker) functionality. On the one hand, our method is centered on
the context-based temporal one-pass tableaux technique (introduced in Section 2.2) to
perform traditional model checking optimised by a SAT solver. On the other hand, the
dual sequent calculus of the tableaux method is used to generate a certificate in the case
where the property is fulfilled.

The chapter is divided into the following sections:

• Section 3.1 describes everything related to performing model checking using the
tableaux method: first the use of the tableaux is explained (3.1.1). Afterwards,
the optimisation using SAT solvers is described (3.1.2). Finally, the algorithm
integrating these tools is shown (3.1.3).

• Section 3.2 shows different examples illustrating what was explained in Section 3.1.

• Section 3.3 describes the use of certifications. We present two types of proofs with
different degrees of granularity: the small-step proofs and the big-step ones (3.3.1).
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3.1 Model Checking

This section discusses how to carry out Model Checking (without taking into account
certificates) using the tableaux method explained in Section 2.2.

Our model checker receives as input a specification, S, of a transition system and a
property prop, both written in the PLTL language.

3.1.1 Model Checking using Context-Based Tableaux

Whereas prop is any PLTL formula, transition system specifications are restricted to a
sub-language.

The specification S consists of a set Init that is a non-temporal (or classical) formula
and a conjunction (set) TR of formulae of the form �ρ, where ρ is a boolean combination
of literals, and ◦` ,where ` is a literal. Invariant is a set of always-formulae. S =
Init ∧ TR ∧ Invariant specifies the transition systems such that:

• A state is initial if and only if it satisfies the formula Init .

• Any pair ‘(current state, next state)’ is in the transition relation if, and only if, it
satisfies TR.

• Invariant contains any other always formula that every state in the transition
system satisfies.

a b

Figure 3.3: Example of a transition system

Example 5. One possible representation of the transition system described in Figure 3.3
is the following one: Init = {a}, TR = {�(a → ◦b),�(b → ◦b)}, Invariant = {�(a →
¬b),�(b→ ¬a)}.

Then, given a specification S and a property prop, the model checker decides whether
any model of S satisfies prop, by deciding if S ∪{¬prop} is unsatisfiable or not. The
context-based tableau method is suitable for deciding the (un)satisfiability problem
S ∪{¬prop}, but to use it we need to transform the input into NNF. It explicitly tries to
generate a model of S ∪{¬prop}. The results in any particular tableau are interpreted
as follows:

• If a cycle is found in a tableau branch, this branch is open, and represents a
model that satisfies the set of formulae with which the tableau has been called.
Consequently, this is a counterexample proving that the system S does not satisfy
the property prop.

• If the tableau closes, i.e all its leaves are inconsistent sets, it means that the tableau
input is unsatisfiable, hence, all models of S satisfy the property prop.
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3.1.2 Optimization using a SAT Solver

A large proportion of the computational effort of the context-based tableaux is spent on
classical propositional reasoning. Since the specification, S, of the system is the most
determining factor, the use of the method is especially inefficient when the specified
system is large. However, S involves very simple temporal formulae: always-formulae
with arguments that are boolean combinations of literals and literals preceded by ‘next’.

Definition 13 (Quasi-propositional and permanent formulae). Any boolean combination
of literals and literals preceded by ‘next’ is a quasi-propositional formula. Formulae of
the form �ρ, where ρ is a quasi-propositional formula are said to be permanent formulae.

Definition 14 (Pre-next state). A node whose label is a set consisting only of quasi-
propositional formulae, next formulae, and permanent formulae is called a pre-next state.

Formulae in TR and most of the formulae in Invariant are permanent formulae.
Permanent formulae are of the form �ρ, and according to the tableau rules, ρ and �ρ are
maintained in all states. Therefore, renaming in ρ the formulae ◦` by fresh literals `′, we
make ρ purely propositional. Hence, for a more efficient implementation of the context-
based tableaux, we propose to add a SAT solver to carry out the quasi-propositional
reasoning in the tableau.

Initially, we take all permanent formulae, extracted from TR and Invariant and
construct the set P with them. We initialise the tableau with P , Init , the remaining
formulae of Invariant and the negated property. Next, we apply the tableau rules to the
temporal formulae that are neither permanent nor quasi-propositional. Subsequently, at
each node that is a pre-next state (according to Definition 14), the SAT solver is called.
The input of the SAT solver is the set of all quasi-propositional formulae together with
the permanent formulae duly transformed into propositional ones. To do so, the set P is
taken together with all formulae that appear new in the node and are permanent. Then,
their � operators are removed. In addition, each formula of the form ◦l are renamed
by l′. When the SAT solver receives this input, it returns propositional models (atoms
and atoms with prime apostrophe) defining all possible transitions to the next state
that do not contradict (yet) ¬prop. To get each of the next states, the next-state rule
is applied once the variables are renamed back from `′ to ◦`.

In summary, the tableau deals with the temporal reasoning of the initial set of
formulae. In contrast, the SAT solver deals with the quasi-propositional reasoning.

3.1.3 Algorithm

In this section the Algorithm Momo pltl is presented (Algorithm 5). This algorithm
is based on Algorithm 1. It includes the necessary adaptations for the optimizations
presented in Section 3.1.2.

The first two if-elseif cases of the Algorithms 5 are the same as Algorithm 1: if
∆ is not syntactically consistent the algorithm returns an empty model and false. If
there is an ancestor that contains all the formulae of the current node and all eventual-
ities in the path has been selected at least once, the algorithm returns a model and true.
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Algorithm 5: Momo PLTL

Input = ∆: set of formulae, selectedFormula: formula
Output = M : Model, b: boolean

1 if Incons(∆) then
2 M, b := ∅, false;
3 else if there exists ∆′, an ancestor of ∆, such that ∆ ⊆ ∆′ and all eventualities

in the branch has been already selected then
4 . where model is the model constructed from the branch where ∆′ and ∆ are.

5 M, b := model, true;

6 else if is pre-next state(∆) then
7 M, b := apply-SAT-Next-rule(∆,selectedFormula);
8 else
9 selectedFormula = select formula(∆);

10 if selectedFormula 6= F then
11 M, b := apply-β+-rule(∆,selectedFormula);
12 Let ψ be any temporal formula in ∆ that is neither permanent nor

quasi-propositional;
13 if α is applicable(ψ) then
14 M, b := apply-α-rule(ψ,∆,selectedFormula);

15 else // β is applicable(ψ)
16 M, b := apply-β-rule(ψ,∆,selectedFormula);

17 end

18 end

Algorithm 6: apply-SAT-Next-rule
Input = ∆: set of formulae, selectedFormula: formula
Output = M : Model, b: boolean

1 Let P be the set of permanent formulae in ∆;
2 α = PLTL2SAT(P ∪{quasi-propositional formulae in ∆});
3 is sat,B := Solver(α);
4 is closed := true;
5 while is sat and is closed do
6 ∆ = SAT2PLTL(∆,B);
7 ∆′ = P ∪ apply-Next-rule(∆ \ P);
8 model,is closed := Momo PLTL(∆′, selectedFormula);

9 if is closed then
10 α := α ∧ ¬B;
11 is sat,B := Solver(α);

12 end

13 end
14 if not is closed then
15 M, b := model, is closed;
16 else
17 M, b := ∅, false;
18 end
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In Momo pltl the functions apply-α-rule, apply-β-rule and apply-β+-rule are
the same as in Algorithm 3, 4, and 2. However, unlike Tableau (Algorithm 1), the
α and β rules apply only to temporal formulae that are neither permanent nor quasi-
propositional. These types of formulae are treated in pre-next states with the SAT solver
support.

The function apply-SAT-Next-rule (Algorithm 6) removes the � operator from the
permanent formulae in ∆ and transforms them into quasi-propositional formulae. A
boolean formula α is then constructed from these quasi-propositional formulae in ∆.
The function PLTL2SAT performs this task (line 2). Next, the solver is used to check
whether α is satisfiable or not. In the affirmative case, a propositional model B is
obtained (line 3), whose information is added to ∆ when back translation SAT2PLTL is
performed (line 6). The next-state rule (◦) is then applied to ∆ excluding its permanent
formulae (line 7). Consequently, a new state with label ∆′ is obtained where the previous
permanent formulae are included again.

The process goes on by a recursive call (line 8). As soon as is closed gets the value
false in this recursive call, the iteration stops and M is returned as a model of ∆.
Otherwise, the iteration stops when the query to the solver about α does not give new
propositional models. Note that, at each iteration step, we conjunctively add to α the
negation of the previous propositional model (line 10).

Example 6 illustrates the use of the SAT solver.

Example 6 (Use of the SAT solver). Suppose that Momo pltl receives as input the
specification of Example 5 plus the formula ♦(◦b ∧ �¬a). Then, the root node (n1)
contains Init = {a}, P , and ♦�(◦b ∧ ¬a), where P is the set of permanent formulae
Invariant∪TR. Therefore, P = {�(a→ ◦b),�(b→ ◦b),�(a→ ¬b),�(b→ ¬a)}.

The tableaux construction is shown in Figure 3.4. The (♦)+ rule is the first one
to be applied creating two nodes. The left one (n2), after the application of the (∧)-
rule, produces the node n3, which contains a new permanent formula �¬a and is a
pre-next state node. The algorithm executes apply-SAT-Next-rule and the function
PLTL2SAT transforms {a, P, ◦b,�¬a} into a propositional set, which is passed to the SAT
solver. Its answer is empty (unsatisfiable) and the branch closes. The right node (n4)
is created using the negated context. This node is directly a pre-next state and the
apply-SAT-Next-rule function is executed. This time the input of the SAT solver is
the translation of the set {P, a} to a propositional formula. The SAT solver returns the
model {a← T, b← F, b′ ← T}. The model information and its translation back provide
a new node (n5), whose label is {P, a,¬b, ◦b, ◦(¬aU(◦b ∧ �¬a)}. The tableau applies
the next-state rule and makes a recursive call to repeat the whole process. At a given
time, it reaches a new pre-next state node (n8) and apply-SAT-Next-rule is executed.
The SAT solver returns a model and the pre-next state node n9 is obtained. When the
next-state rule is applied to it, Momo pltl finds out a cycle and the process ends up with
an open branch.

The PLTL-structure provided by this open branch is {a}, 〈{b}〉w.
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P = {�(a→ ◦b),�(b→ ◦b),
�(a→ ¬b),�(b→ ¬a)}

n1 : P , a, ♦(◦b ∧ �¬a)

n2 : P , a, ◦b ∧ �¬a

n3 : P , a, ◦b,�¬a

a→ b′, b→ b′, a→ ¬b, b→ ¬a, a, b′,¬a

∅

n4 : P , a, ◦( ¬aU(◦b ∧ �¬a) )

a→ b′, b→ b′, a→ ¬b, b→ ¬a, a

a← T, b← F, b′ ← T

n5 : P , a,¬b, ◦b, ◦( ¬aU(◦b ∧ �¬a) )

n6 : P , b, ¬aU(◦b ∧ �¬a)

n7 : P , b, ◦b ∧ �¬a

n8 : P , b, ◦b,�¬a

a→ b′, b→ b′, a→ ¬b, b→ ¬a, b, b′,¬a

a← F, b← T, b′ ← T

n9 : P ,¬a, b, ◦b,�¬a

n10 : P , b,�¬a

P ,¬a, b,
◦((¬a ∧ (a ∨ ¬b))U(◦b ∧ �¬a))

(♦)+

(∧)

SAT

⊗

SAT

(◦)

(U+)

(∧)

SAT

(◦)

Figure 3.4: Example of SAT solver use.
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3.2 Running Examples

a b

C
S2

a b

d c
S1

Figure 3.5: Two transition Systems S1 and S2.

This section shows how the algorithm works by means of two examples of checking where
a transition system (that represents a directed graph) contains a cycle starting at some
particular vertex. For example, in Figure 3.5, the left graph S1 contains a cycle where
the node a is reachable from a, while the right one, S2, does not contain any cycle where
a is reachable.

In order to compare the representation of the systems and the use of the model
checker, we present the solution for both systems in NuSMV in parallel with our solution.
First, we introduce the codification of the two problem-instances in NuSMV. There exist
many ways of encoding directed graphs onto transition systems depending on the nature
of the problem to be solved [10]. However, all of them simulate the adjacency matrix for
a given graph. Essentially, states of the transition system are the vertices of the graph
and the transitions themselves are the edges of the graph.

The transition system with cycles

In the case of S1 the adjacency matrix is as follows.

TR1 = { �(a→ ((◦¬a ∧ ◦b ∧ ◦¬c ∧ ◦¬d) ∨ (◦¬a ∧ ◦¬b ∧ ◦¬c ∧ ◦d))),

�(b→ ((◦¬a ∧ ◦b ∧ ◦¬c ∧ ◦¬d) ∨ (◦¬a ∧ ◦¬b ∧ ◦¬c ∧ ◦d))),

�(c→ (◦a ∧ ◦¬b ∧ ◦¬c ∧ ◦¬d)),

�(d→ (◦¬a ∧ ◦¬b ∧ ◦c ∧ ◦¬d)) }

To make the transition system above more realistic (in terms of directed graphs
behavior), we add an Invariant formula that forces to stay on a single vertex each time:

�( ((a→ (¬b ∧ ¬c ∧ ¬d)) ∧ (b→ (¬a ∧ ¬c ∧ ¬d)) ∧ (c→ (¬a ∧ ¬b ∧ ¬d)) ∧ (d→ (¬a ∧ ¬b ∧ ¬c))) )

Finally, the initial vertex in our example is a. Hence, Init = {a}.
Figure 3.6 shows the module for S1 in NuSMV as well as the temporal formula that

states ‘Vertex a is unreachable in the future’. That formula is written at the end of
the module, in the part starting with the reserved word LTLSPEC. The corresponding
temporal formula in our syntax is

◦�¬a (3.1)
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The formulae Init, TR1, and Invariant are written in the NuSMV file under the INIT,
TRANS, and INVAR keywords respectively. The syntax of boolean connectives and
temporal operators in NuSMV is as follows.

• The propositional connectives are & for ∧, | for ∨, ! for ¬.

• The temporal operators are X for ◦, G for �, F for ♦, and U for U .

NuSMV system negates the LTLSPEC formula and tries to construct a model. It
successes and finds out a cycle in the graph. Namely, it returns the model of Figure 3.6,
which is the PLTL-structure 〈{a}, {d}, {c}〉w.

S1.smv

MODULE main

VAR

a:boolean; b:boolean; c:boolean; d:boolean;

INVAR

(a -> (!b & !c & !d)) & (b -> (!a & !c & !d)) &

(c -> (!a & !b & !d)) & (d -> (!a & !b & !c))

INIT

a = TRUE

TRANS

(a -> ((next(!a) & next(b) & next(!c) & next(!d)) |

(next(!a) & next(!b) & next(!c) & next(d))))

&

(b -> ((next(!a) & next(b) & next(!c) & next(!d)) |

(next(!a) & next(!b) & next(!c) & next(d))))

&

(c -> (next(a) & next(!b) & next(!c) & next(!d)))

&

(d -> (next(!a) & next(!b) & next(c) & next(!d)))

LTLSPEC X(G(!a))

-- specification X ( G !a) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-- Loop starts here

-> State: 1.1 <-

a = TRUE

b = FALSE

c = FALSE

d = FALSE

-> State: 1.2 <-

a = FALSE

d = TRUE

-> State: 1.3 <-

c = TRUE

d = FALSE

-> State: 1.4 <-

a = TRUE

c = FALSE

Figure 3.6: NuSMV encoding of S1 and the output provided by NuSMV
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P1, a,◦♦a

a← T, b← F, c← F, d← F,◦a← F,◦b← T,◦c← F,◦d← F

P1, a,¬b,¬c,¬d,◦¬a,◦b,◦¬c,◦¬d,◦♦a

P1,¬a, b,¬c,¬d, ♦a

P1,¬a, b,¬c,¬d, a P1,¬a, b,¬c,¬d,◦( (

σ1︷ ︸︸ ︷
a ∨ ¬b ∨ c ∨ d)Ua )

a← F, b← T, c← F, d← F,
◦a← F,◦b← T,◦c← F,◦d← F

P1,¬a, b,¬c,¬d,◦¬a,
◦b,◦¬c,◦¬d,◦( σ1Ua )

P1,¬a, b,¬c,¬d, σ1Ua

P1,¬a,
b,¬c,¬d, a

P1,¬a, b,¬c,¬d,
a ∨ ¬b ∨ c ∨ d︸ ︷︷ ︸

σ1

,◦( σ1Ua )

∅

a← F, b← T, c← F, d← F,
◦a← F,◦b← F,◦c← F,◦d← T

P1,¬a, b,¬c,¬d,◦¬a,◦¬b,◦¬c,◦d,◦( σ1Ua )

P1,¬a,¬b,¬c, d, σ1Ua

P1,¬a,¬b,¬c, d, a

P1,¬a,¬b,¬c, d, σ1,◦( (σ1 ∧ (

σ2︷ ︸︸ ︷
a ∨ b ∨ c ∨ ¬d))Ua )

a← F, b← F, c← F, d← T,
◦a← F,◦b← F,◦c← T,◦d← F

P1,¬a,¬b,¬c, d,◦¬a,
◦¬b,◦c,◦¬d,◦( (σ1 ∧ σ2)Ua )

P1,¬a,¬b, c,¬d, (σ1 ∧ σ2)Ua

P1,¬a,¬b, c,¬d, a P1,¬a,¬b, c,¬d, σ1 ∧ σ2,◦( (σ1 ∧ σ2 ∧ (

σ3︷ ︸︸ ︷
a ∨ b ∨ ¬c ∨ d))Ua )

a← F, b← F, c← T, d← F,◦a← T,◦b← F,◦c← F,◦d← F

P1,¬a,¬b, c,¬d,◦a,◦¬b,
◦¬c,◦¬d,◦( (σ1 ∧ σ2 ∧ σ3)Ua )

P1, a,¬b,¬c,¬d, (σ1 ∧ σ2 ∧ σ3)Ua

P1, a,¬b,¬c,¬d

a← T, b← F, c← F, d← F,◦a← F,◦b← T,◦c← F,◦d← F

P1, a,¬b,¬c,¬d,◦¬a,◦b,◦¬c,◦¬d

(...)

SAT

(◦)

(♦)+

⊗
SAT

(◦)

(U+)

⊗

SAT

⊗

(◦)

(U+)

⊗

SAT

(◦)

(U+)

⊗
SAT

(◦)

(U+)

SAT

Figure 3.7: Open Tableau for S1
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Figure 3.7 is the tableau constructed by our algorithm. Remember that the selected
eventualities are in gray boxes. The root node contains the set {a, ◦♦a}. The formula
◦♦a is the negation of formula (3.1). The root also contains the set of permanent
formulae P1 = Invariant∪ TR1. Since the root node is a pre-next state, the tableau
calls to the SAT solver, which receives as input a in conjunction with the translation of
P1 into this set of formulae.

PLTL2SAT(P1) = { a→ ((¬a′ ∧ b′ ∧ ¬c′ ∧ ¬d′) ∨ (¬a′ ∧ ¬b′ ∧ ¬c′ ∧ d))),

b→ ((¬a′ ∧ b′ ∧ ¬c′ ∧ ¬d′) ∨ (¬a′ ∧ ¬b′ ∧ ¬c′ ∧ d′))),
c→ (a′ ∧ ¬b′ ∧ ¬c′ ∧ ¬d′)),
d→ (¬a′ ∧ ¬b′ ∧ c′ ∧ ¬d′)),

a→ (¬b ∧ ¬c ∧ ¬d), b→ (¬a ∧ ¬c ∧ ¬d) ,

c→ (¬a ∧ ¬b ∧ ¬d), d→ (¬a ∧ ¬b ∧ ¬c) }

The algorithm stops when the first open branch (in Figure 3.7, the right most one) is
found. Then, it returns the same PLTL-structure as the one built by NuSMV.

The transition system without cycles

S2.smv

MODULE main

VAR

a:boolean; b:boolean; c:boolean;

INVAR

(a -> !b & !c) & (b -> !a & !c) & (c -> !a & !b)

INIT

a = TRUE

TRANS

((a -> (next(!a) & next(b) & next(!c)))

&

(b -> (next(!a) & next(b) & next(!c)))

&

(c -> ((next(a) & next(!b) & next(!c)) |

(next(!a) & next(b) & next(!c)))))

LTLSPEC X(G(!a))

-- specification X ( G !a) is true

Figure 3.8: NuSMV encoding of S2

The graph S2 of Figure 3.5 can be represented with Init = {a},

Invariant = �( (a→ (¬b ∧ ¬c)) ∧ (b→ (¬a ∧ ¬c)) ∧ (c→ (¬a ∧ ¬b)) )

TR2 = { �(a→ (◦¬a ∧ ◦b ∧ ◦¬c)),
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�(b→ (◦¬a ∧ ◦b ∧ ◦¬c)),
�(c→ ((◦a ∧ ◦¬b ∧ ◦¬c) ∨ (◦¬a ∧ ◦b ∧ ◦¬c))) }

So, the set of permanent formulae is TR2 ∪ Invariant. We denote it as P2. The transla-
tion of P2 into boolean formulae is performed by omitting the � operator and renaming
◦a, ◦b, and ◦c with a′, b′, and c′ respectively.

Figure 3.8 shows the module for S2 in NuSMV. When NuSMV system negates the
LTLSPEC formula ◦�¬a, it is not able to find a model and returns the following answer:
specification X(G!a) is true. Therefore, there is no way to reach vertex a once we
move to any other vertex.

P2, a,◦♦a

a← T, b← F, c← F, ◦a← F, ◦b← T, ◦c← F

P2, a,¬b,¬c, ◦¬a, ◦b, ◦¬c, ◦♦a

P2,¬a, b,¬c, ♦a

P2,¬a, b,¬c, a

P2,¬a, b,¬c,◦( (a ∨ ¬b ∨ c)Ua )

a← F, b← T, c← F, ◦a← F, ◦b← T, ◦c← F

P2,¬a, b,¬c, ◦¬a, ◦b, ◦¬c, ◦( (a ∨ ¬b ∨ c)Ua )

P2,¬a, b,¬c, (a ∨ ¬b ∨ c)Ua

P2,¬a, b,¬c, a

P2,¬a, b,¬c, (a ∨ ¬b ∨ c),◦( (a ∨ ¬b ∨ c)Ua )

∅

SAT

(◦)

(♦+)

⊗

SAT

(◦)

(U+)

⊗

SAT

⊗

Figure 3.9: Closed Tableau for S2

Figure 3.9 is the tableau constructed by our algorithm. The root node is the set of
permanent formulae P2 together with {a, ◦♦a}. All its branches are closed as expected.
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Hence, the constructed tableau proves the fact that ‘vertex a is unreachable in the
future’.

3.3 Generation of a Certification

The specialization of the tableaux method for model checking explained in Section 3.1
has the same functionalities as other model checkers (as seen in Section 3.2). If the
transition system satisfies the property, there is a confirmation of it (closed tableau).
On the other hand, if the system does not satisfy the property, there is a counterexample
(the model).

When the properties are not fulfilled, it is easy to navigate over the transition sys-
tem S to follow the counterexample and the errors may be detected. In contrast, in the
case where the property being checked is fulfilled, the user has only a confirmation. In
that case it is assumed that the implementation of the model checker has not failed and
that the representation of the transition system is correct but there is no evidence of
that. Example 7 illustrates an error in system modelling.

SCORRECT

a b

d c

SWRONG

a b

d c

Figure 3.10: Example of how the approach can help to detect errors.

Example 7. Figure 3.10 shows two transition systems. Let us suppose that we pretend
to represent system SCORRECT . Due to a specification error, we write SWRONG. That
is, we mistakenly specify that there is a transition ‘from c to b’ instead of the intended
one: ‘from c to d’. The resulting specification is:

Init = { a, ¬b, ¬c, ¬d }
TR = { �(a→ (◦¬a ∧ ◦b ∧ ◦¬c ∧ ◦¬d)),

�(b→ ((◦¬a ∧ ◦b ∧ ◦¬c ∧ ◦¬d) ∨ (◦¬a ∧ ◦¬b ∧ ◦c ∧ ◦¬d))),

�(c→ (◦¬a ∧ ◦b ∧ ◦¬c ∧ ◦¬d)),

�(d→ (◦a ∧ ◦¬b ∧ ◦¬c ∧ ◦¬d)) }
Note that SWRONG only consists of Init and TR. Now, suppose that we want to check if S
satisfies the PLTL formula ◦�¬a. Its negation in NNF is ◦♦a. Then, we call Momo pltl

with the following input - the label of the initial node - Init ∪ P ∪ {◦♦a}. Here P is
exactly the set TR. Thinking on the system SCORRECT , we expect to get a model like
〈{a}, {b}, {c}, {d}〉w or 〈{a}, {c}, {d}〉w as a counterexample, since they are models of
◦♦a in the correct system SCORRECT . However, SWRONG ∪{◦♦a} is unsatisfiable and
our model checker generates a closed tableau for it.
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Closed tables are refutation proofs that, in our setting, explain why a transition
system satisfies a particular property. However, the explanation provided by the proof
can be very difficult to follow. To solve this, we define a ‘big-step’ version of the closed
tableaux. This big-step version enables an easy follow-up of the run across the transitions
systems because it only shows the pre-next states and the next states in the branches.
Figure 3.11 depicts the big-step version of the closed tableau for SWRONG ∪{◦♦a}.

n1 : P , a,¬b,¬c,¬d, ◦♦a

a,¬b,¬c,¬d, ◦¬a, ◦b, ◦¬c, ◦¬d, ◦♦a

n2 : P ,¬a, b,¬c,¬d, ◦♦a

n3 : P ,¬a, b,¬c,¬d, a

n4 : P ,¬a, b,¬c,¬d, ◦((a ∨ ¬b ∨ c ∨ d)Ua)

¬a, b,¬c,¬d, ◦¬a, ◦b,
◦¬c, ◦¬d, ◦((a ∨ ¬b ∨ c ∨ d)Ua)

n5 : P ,¬a, b,¬c,¬d, (a ∨ ¬b ∨ c ∨ d)Ua

¬a, b,¬c,¬d, ◦¬a, ◦¬b, ◦c,
◦¬d, ◦((a ∨ ¬b ∨ c ∨ d)Ua)

n6 : P ,¬a,¬b, c,¬d, (a ∨ ¬b ∨ c ∨ d)Ua

n7 : P ,¬a,¬b, c,¬d, a

n8 : P ,¬a,¬b, c,¬d, a ∨ ¬b ∨ c ∨ d,
◦(((a ∨ ¬b ∨ c ∨ d) ∧ (a ∨ b ∨ ¬c ∨ d))Ua)

¬a,¬b, c,¬d, ◦¬a, ◦b, ◦¬c, ◦¬d,
◦(((a ∨ ¬b ∨ c ∨ d) ∧ (a ∨ b ∨ ¬c ∨ d))Ua)

n9 : P ,¬a, b,¬c,¬d,
((a ∨ ¬b ∨ c ∨ d) ∧ (a ∨ b ∨ ¬c ∨ d))Ua

SAT

(◦)

(♦+)

⊗

SAT

(◦)

(...)

⊗

(◦)

(U+)

⊗

SAT

(◦)

(...)

⊗

Figure 3.11: A big-step representation of the closed tableau for SWRONG ∪{◦♦a}.

The root of the tableau in Figure 3.11 contains the Init = {a, ¬b, ¬c, ¬d},
the negated property, ◦♦a, and P , which is exactly TR. The tableau evolves by the
application of rules until a pre-next state is reached. It is now, when the solver gives
us, one by one, the different models that satisfy the (translated) permanent and quasi-
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propositional formulae. Each model is transformed back into a PLTL formulae and the
next-state rule is applied. The tableau continues to work and if it closes, a different model
is supplied by the solver, when available. For example, for node n4 in the tableau, two
different propositional models are provided. First, the solver returns a model in which
only b′ (that is, ◦b) is true. It applies the next rule and all the subsequent branches
close. Returning to node n4, the solver finds a new propositional model where c′ (i.e.
◦c) is true. However, this model also produces a closed branch and no other model is
available. Therefore, the tableau is closed.

If users analyse the tableau in Figure 3.11, they can see the reason why the property
is not satisfied: the trace provided by nodes n1, n2, n6 and n9 describes the transitions
(omitting the negated literals) a → b → c → b. By comparing that trace with the
intended specification SCORRECT , the user will be able to find the error.

3.3.1 One Step and Big Step Proof in Isabelle

In case of closed tableaux, a certificate guaranteeing the unsatisfiability of the initial set
of formulae can be obtained. This can be done using the sequent calculus presented in
Section 2.2. Example 8 shows the Isabelle representation of the system SWRONG. Then
the negated property is written and using Isabelle the user can navigate through the
proof until the root derives F.

Example 8. The specification SWRONG on the Figure 3.10 is defined as the list TR =
[T1, T2, T3, T4] of PLTL formulae.

T1 = �( (V a) .−→ ( ◦(V b) .∧ ◦( .¬ (V a)) .∧ ◦( .¬ (V c)) .∧ ◦( .¬ (V d))) )

T2 = �( (V b) .−→ ( (◦(V b) .∧ ◦( .¬ (V a)) .∧ ◦( .¬ (V c)) .∧ ◦( .¬ (V d))) .∨
(◦(V c) .∧ ◦( .¬ (V a)) .∧ ◦( .¬ (V b)) .∧ ◦( .¬ (V d))) )

T3 = �( (V c) .−→ ( ◦(V b) .∧ ◦( .¬ (V a)) .∧ ◦( .¬ (V c)) .∧ ◦( .¬ (V d))) )

T4 = �( (V d) .−→ ( ◦(V a) .∧ ◦( .¬ (V b)) .∧ ◦( .¬ (V c)) .∧ ◦(¬ (V d))) )

along with Init = (V a) .∧ .¬ (V b) .∧ .¬ (V c) .∧ .¬ (V d).

We have implemented, with the help of the Eisbach tools [70], two prototypes of
automatic solvers: one big-step and one small-step.

These two solvers print into a text file the ‘apply’ instructions of the Isabelle proof,
at the same time that they prove the lemma runningExample bigStep proof. The proof
is given in Figure 3.12. It proves the property S @ [◦♦(V a)] ` F by a list of ‘apply’
instructions. S is the specification SWRONG, defined as the list of [T1, T2, T3, T4]

@ [Init]. The proof can be found in file ProofGeneration.thy in http://github.com/

alexlesaka/OnePassTableau and it is a big-step proof that enables the user to check
whether S satisfies the property ◦�¬a. That means, checking the unsatisfiability of
S ∪{◦♦a}, in fact checking the derivability of the sequent S, ◦♦a ` F.

The (proof) method one step solver systematically applies the TTC Calculus rules
until it obtains a set of non-proved subgoals with antecedents exclusively formed by
elementary formulae. Hence, the rule TTC Next State is applied to all subgoals, which
depict (as ‘Proof state’) all subgoals related to a possible next state of the system, that
is, after all possible transitions from the current state. For clarity, we fold the transition

http://github.com/alexlesaka/OnePassTableau
http://github.com/alexlesaka/OnePassTableau
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proofGeneration.thy

lemma runningExample_bigStep_proof: "S @ [()(<>(V "a"))] |- F"

1. apply (rule TTC_Interchange, simp add: S_def TR_def T1_def T2_def T3_def T4_def Init_def)

2. apply one_step_solver

3. apply (all <rule TTC_Next_State>; simp)

4. apply (fold T1_def T2_def T3_def T4_def)

5. apply (simp add: T1_def T2_def T3_def T4_def Init_def)

6. apply one_step_solver

7. apply (all <rule TTC_Next_State>; simp)

8. apply (fold T1_def T2_def T3_def T4_def)

9. apply (simp add: T1_def T2_def T3_def T4_def Init_def)

10. apply one_step_solver

11. apply (all <rule TTC_Next_State>; simp)

12. apply (simp add: T1_def T2_def T3_def T4_def Init_def)

13. apply one_step_solver

14. apply (all <rule TTC_Next_State>; simp)

15. apply (fold T1_def T2_def T3_def T4_def)

16. apply (simp add: T1_def T2_def T3_def T4_def Init_def)

17. apply one_step_solver

18. done

Figure 3.12: The big-step lemma proof.

relations to their names. Hence, after the ‘apply’ in line 3 (Figure 3.12), the user can
see that there is only one subgoal:

[♦(V a), T4, T2, T3, T1, .¬(V d), .¬(V c), .¬(V a), (V b), ] ` F

This means the only state that is reachable from the initial one is the state that satisfies b.
That corresponds to the node n2 in Figure 3.11. After the ‘apply’, line 7, there are
two subgoals that correspond, respectively, to the nodes n5 and n6 in Figure 3.11.
Thus, from the state, which satisfies exactly b, the system can reach either a state that
again satisfies b or a state satisfying exactly c. In both cases, the property to check is
(¬b ∨ a ∨ c ∨ d) U a. The goal corresponding to node n5 is proved, whereas the ‘apply’
in line 11, (Figure 3.12) generates the subgoal for node n6. This subgoal corresponds to
the transition from the state that satisfies b to the state that satisfies c. The property
to check at this state is (¬b ∨ a ∨ c ∨ d) U a. After the ‘apply’ in line 14, the subgoal
which corresponds to the node n9 in Figure 3.11 is reached; here the property to check
is ((¬b∨a∨c∨d)∧ (¬c∨a∨b∨d)) U a. The proof of this subgoal completes the proof of
the lemma, that has explored the two possible runs {a}, 〈{b}〉w and {a}, {b}, {c}, 〈{b}〉w,
where the property ◦♦a is not satisfied. This shows the inability of the transition system
to reach the state that satisfies d, which reveals an error in the specification that makes
unreachable the state that satisfies a.

The ‘apply(fold ...)’ instructions in Figure 3.12 are only to show, in subgoals, the
names (T1, T2, T3, and T4) instead of the corresponding PLTL formulae defining the
transitions, for brevity and clarity. After that, we must use ‘apply(simp add: ...)’ to
enable the application of the rules.

We have also implemented a method one step solver print which prints into a file
of text all applications of the TTC rules that are hidden in the big-step proof. In-
deed, it is a printing version of the method one step solver. Calling one step solver print,
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instead of one step solver, we can generate a small-step proof (see lemma runningExam-
ple smallStep proof) for the user wishing to check the Isabelle’s subgoals step by step.
This proof is the result of the substitution, in the big-step proof, of each of the five
occurrences of apply one step solver by the list of ‘apply’ instructions of TTC Calculus
rules. The method one step solver print prints such a list, in a text file, while it is solving
the goal.

Let us conclude by summing up the information contained in Figure 3.11. If one
follows the big-step tableau in the figure, you can see how from the state a,¬b,¬c,¬d
you go to the state ¬a, b,¬c,¬d. At that point there are two possible next states. In
the first case, the tableau closes. On the other hand, in the second one, it goes to the
state ¬a,¬b, c,¬d. At this point the new state is ¬a, b,¬c,¬d. Following the transition
system SCORRECT , the user finds inconsistencies in the modelling. In a large system it
is impossible to go through absolutely all the traces, but in case of doubts about specific
parts, a tableau helps to visualise them. The reason is that a tableau corresponds exactly
to the transitions of the model and this makes it easier to navigate through the traces.



4. BRANCHING TEMPORAL LOGICS: CTL AND ECTL

This chapter continues the development of context-based tableau methods for temporal
logics [41, 16, 3, 4] with the intention of solving both the satisfiability problem and
the model checking problem. With respect the latter problem, our aim is to extend
the CMC approach, which we introduced for PLTL, to be ‘generic’ for the whole vari-
ety of branching-time logics. As we have already explained, the crucial aspect of our
approach is based on the development of deductive techniques that apply the same
reasoning mechanism for both the tasks of generating counterexamples and providing
formal proofs.

We focus here on the two logics CTL and ECTL. The CTL (resp. ECTL) satisfiability
problem cannot be reduced to the CTL (resp. ECTL) model checking problem. Hence,
model checking algorithms for CTL (resp. ECTL) cannot be adapted to decide CTL
(resp. ECTL) satisfiability. However, any satisfiability decision procedure for any logic
(in particular for CTL and ECTL) can perform the model checking task. This is the
reason why the tableaux we are going to present in this chapter refer to the satisfiability
problem for CTL and ECTL. Their specialisation for the model checking case would be
similar to the one introduced for PLTL in Chapter 3.

A context-based tableau method for the branching-time logic ECTL# (which extends
CTL and ECTL) was developed in [16]. This logic allows to reason about fairness con-
straints that use the temporal operator ‘until’. These tableaux for ECTL# has rather
complex rules and they have a distinguished (and unavoidable) feature: the utilisation
of two types of contexts. The first type of context, called ‘outer’ (similar to PLTL), is a
collection of state formulae and the second, called ‘inner’ context, is a collection of path
formulae. The context-based tableaux for CTL and ECTL only need the ‘outer’ context
and, therefore, it seems reasonable to develop simpler specific methods for CTL and
ECTL instead of applying the general tableau method for ECTL#, which would be too
costly and ‘non-intuitive’. So, we introduce here new context-based tableau methods
for CTL and ECTL along with their dual sequent calculi. We prove soundness and com-
pleteness of the methods, and illustrate how they provide formal proofs and models. All
these bring us one step closer to formulating a ‘generic’ approach covering all CTL-type
branching-time logics.

This chapter starts with Section 4.1 showing an overview of CTL-type Branching-
time logics. In Section 4.2 those logics are restricted to CTL and ECTL. In Section 4.3
the new dual tableau and sequent method for CTL is presented. Finally, Section 4.4
extends the dual method to ECTL.
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4.1 Overview of CTL-type Branching-time Logics

The hierarchy of CTL-type family of Branching-time logics (BTL) is defined by releasing
restrictions on the concatenations of temporal operators and paths quantifiers which
define classes of admissible state formulae distinguished for these logics. As in CTL [25]
every temporal operator must be preceded by a path quantifier, this logic cannot express
fairness which requires at least the concatenation of � and ♦. These are tackled by
ECTL [34] which enables simple fairness constraints but not their Boolean combinations.
ECTL+ [35] further extends the expressiveness of ECTL allowing Boolean combinations
of temporal operators and ECTL fairness constraints (but not permitting their nesting).
The logic ECTL# [16] extends ECTL+ by allowing the combinations �(AUB) or AU�B,
referred to as modalities �U and U�. The logic CTL?, often considered as the full
branching-time logic overcomes all these restrictions on syntax allowing any arbitrary
combinations of temporal operators and path quantifiers.

As all logics we are interested in are subsumed by CTL?, for the sake of generality,
we first present the CTL? syntax (Definition 15) and then, by restricting it, derive the
syntax for each of ECTL#, ECTL+, ECTL and CTL.

Definition 15 (Syntax of CTL?). Given Prop is a fixed set of propositions, and p ∈ Prop,
we define sets of state (σ) and path (π) CTL? formulae over Prop as follows:

σ ::= T | p | ¬σ | σ1 ∧ σ2 | Eπ
πCTL? ::= σ | ¬π | π1 ∧ π2 | ◦π | π1Uπ2

Two observations are needed here. Definition 15 above introduces the minimal CTL?

grammar: we only use one path quantifier - E, and two temporal modalities - ◦ and U .
From this combination we can derive a richer syntax, which is often more appropriate to
use when we speak about the intuitive interpretation of formal specification of systems:
the other path quantifier - A and the remaining temporal operators (♦, � and R). In
particular, the ‘falsehood’ constant F ≡ ¬T and the classical disjunction operator is
defined as ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2). The ‘for all paths’ quantifier Aϕ ≡ ¬E¬ϕ and
the remaining temporal operators are defined as follows: ♦ϕ ≡ TUϕ, �ϕ ≡ ¬♦¬ϕ, and
ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2).

Second, observe that in Definition 15 for the set of path formulae, πCTL? , we de-
liberately used an index CTL? to indicate that this grammar introduces a set of path
formulae specifically for CTL?. At the same time we did not use any index for the set
of state formulae. This reflects the tradition in defining the grammar for BTL logics
in a way that the grammar for the path formulae determines relevant changes in the
grammar for the set of state formulae. For CTL?, ‘no restrictions’ on the construction
of path formulae determine ‘no restriction’ on the construction of the arguments of the
‘path’ quantifiers. For each of CTL? sublogics that we will define later, CTL and ECTL,
their specific restrictions on the construction of path formulae will determine relevant
classes of their state formulae (however, the grammar scheme to generate state formulae
remains as presented here for CTL? formulae).

For interpreting CTL? formulae, we invoke Kripke structures that are labelled di-
rected graphs corresponding to Emerson’s R-generable structures, i.e. the transition
relation R is suffix, fusion and limit closed [32].
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Definition 16 (Labelled Kripke Structure). A Kripke structure, K, is given by a qua-
druple (S,R, I, L) where S 6= ∅ is a set of states, R ⊆ S × S is a total binary relation,
called the transition relation, I is a finite non-empty set of initial states, and L : S →
2Prop is a labelling function.

A path x through a Kripke structureK is an infinite sequence of states si, si+1, si+2 . . .
(i ≥ 0) such that (sj , sj+1) ∈ R for any j ≥ i. Note that the totality of the transition
relation R causes the infinity of paths. It is possible that a path in a Kripke structure,
from some point onward, contains a repetitive sequence of states - a cycle. Later, in
Definition 21, we introduce the notion of a cyclic Kripke structure. A fullpath x through
a Kripke structure K is an infinite sequence of states s0, s1, s2 . . . , where s0 ∈ I. By
fullpaths(K) we denote the set of all fullpaths in K. Given a fullpath x ∈ fullpaths(K)
such that x = s0, s1 . . . , the state si (0 ≤ i) is denoted by x(i).

Given a path x = si, si+1, . . . and k ≥ 0, we denote by x<k a finite prefix of x of
length k and by x≥k we denote its infinite suffix starting at state si+k. Hence x<k =
si, si+1 . . . , si+k−1 and x≥k = si+k, si+k+1, . . . . Note that, x = x<k, x≥k. Note that,
x = x<k, x≥k (which means that this path x starts with prefix x<k to the k-th state
and then, from this k-th state, continues with the suffix x≥k). Given a Kripke structure
K = (S,R, I, L) and a state s ∈ S, let K′ = (S′, R, {s}, L) be a Kripke structure
obtained from K by restricting S to S′ such that S′ is the set of all states of S that are
R-reachable from s, we will denote K′ by K � s. Note that if I 6= {s} then K � s is a
proper substructure of K with the unique initial state S. Intuitively, K �s represents the
behaviour of a system from state s ‘forward’. The set I helps modelling systems whose
initial state is not definitely determined, for each s ∈ I, K � s represents the behaviour
of the system for the initial state s.

For a given x ∈ fullpaths(K) such that x = s0, s1 . . . , and given i ≥ 0, K �x(i) is the
Kripke structure that allows us to express path’s fusion closure: if y ∈ fullpaths(K �x(i))
then x≤i−1, y ∈ fullpaths(K). a prefix x≤i−1 of path x with any fullpath of K � x(i),
would result in a fullpath of K.

For the convenience of the subsequent presentation (as we will be presenting the
context-based tableaux and the dual sequent calculi for the sublogics of CTL?), in Defi-
nition 17 below we introduce the evaluation of CTL? state and path formulae constructed
with the extended grammar - with both classical F and ∨, with both path quantifiers,
and the full set of temporal operators - ◦, ♦, �, U and R. In our formulation of the CTL?

semantics below we will also label the conditions related to the evaluation of state CTL?

formulae by ‘s’ followed by the reference to the relevant constraint (for example, ‘(s¬)’
labels the condition evaluating a state formula ¬σ in some state). Similarly, we label
the conditions related to the evaluation of path CTL? formulae by ‘p’ followed by the
reference to the relevant constraint (for example, ‘(p∨)’ labels the condition evaluating
a path formula π1 ∨ π2 along some path). Recall that any CTL? state formula is also
a path formula and that any rule (pσ) applies when the path formula is really an state
formula.

Definition 17 (Models). Given the structure K = (S,R, I, L), the relation |=, which
evaluates path formulae in a given path x and state formulae at the state index i of the
given path x, is inductively defined as follows.
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(sT) K, x, i |= T

(sF) K, x, i 6|= F

(sprop) K, x, i |= p iff p ∈ L(x(i)).
(s¬) K, x, i |= ¬σ iff K, x, i |= σ does not hold.
(s∨) K, x, i |= σ1 ∨ σ2 iff K, x, i |= σ1 or K, x, i |= σ2.
(s∧) K, x, i |= σ1 ∧ σ2 iff K, x, i |= σ1 and K, x, i |= σ2.
(sE) K, x, i |= Eπ iff there exists y ∈ fullpaths(K �x(i))

such that K, y |= π.
(sA) K, x, i |= Aπ iff K, y |= π holds for all y ∈ fullpaths(K �x(i)).
(pσ) K, x |= σ iff K, x, 0 |= σ.
(p¬) K, x |= ¬π iff K, x |= π does not hold.
(p∨) K, x |= π1 ∨ π2 iff K, x |= π1 or K, x |= π2.
(p∧) K, x |= π1 ∧ π2 iff K, x |= π1 and K, x |= π2.
(p◦) K, x |= ◦π iff K, x≥1 |= π.
(p♦) K, x |= ♦π iff there exists j ≥ 0 such that K, x≥j |= π.
(pU ) K, x |= π1Uπ2 iff there exists k ≥ 0 such that K, x≥k |= π2 and

K, x≥j |= π1 for all 0 ≤ j < k.
(p�) K, x |= �π iff K, x≥j |= π holds for all j ≥ 0.
(pR) K, x |= π1Rπ2 iff either K, x≥k |= π2 holds for all k ≥ 0, or there

exists some k ≥ 0 such that K, x≥k |= π1 ∧ π2

and K, x≥j |= π2 for all 0 ≤ j ≤ k.

Given a Kripke structure K = (S,R, I, L). For a state formula ϕ, we say that K |= ϕ
(in words, K models ϕ ) if and only if K � s0 |= ϕ for all s0 ∈ I. For a set of state
formulae Σ, K |= Σ if and only if K |= ϕ holds for every ϕ ∈ Σ. Mod(ϕ) (resp. Mod(Σ))
denotes the set of all models of ϕ (resp. Σ).

To illustrate the semantics, we present the Example 9.

Example 9. We will consider the following CTL? formula

A♦(◦p ∧ E◦¬p) (4.1)

To show that this formula does not have a model, let us reason by contradiction assuming
that there exists a model, say K, for this formula. We will show that this assumption
leads us to a contradiction when trying to build such a model. To start with, we pick
a state s0 from the set of the initial states of K and assume that formula (4.1) is true
at K � s0. Note that fullpaths(K � s0) ⊆ fullpaths(K). This means that for any fullpath,
x ∈ fullpaths(K), K, x |= ♦(◦p ∧ E◦¬p). Now pick a path from fullpaths(K), say x1.
Among the states of x1, let x1(i) (i ≥ 0) be the first state satisfying the condition
K, x≥i1 |= ◦p ∧ E◦¬p. This state must exist following the CTL? semantics. Therefore,

both ◦p and E◦¬p are satisfied along x≥i1 . This means that p itself is satisfied at the

state x1(i+ 1), i.e. at the successor of x1(i) on the path x1. Since K, x≥i1 |= E◦¬p there
should be a path starting at state x1(i) such that ◦¬p is satisfied along this path. As ¬p
can not be satisfied at the state x1(i + 1) ∈ x≥i1 where p has been already satisfied, this

new path, call it x2, to satisfy ◦¬p should differ from x≥i1 . Now we invoke the fusion
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closure property which we have already discussed in this section (after the Def 16). Due
to the fusion closure property there is a fullpath in K with the prefix x<i1 and the suffix
x2, namely y1 = x<i1 , x2. Since in the given formula (4.1), ♦(◦p∧E◦¬p), is in the scope
of the A path quantifier, any fullpath, hence, also y1, must satisfy ♦(◦p∧E◦¬p). Hence,
we must have a state x2(j) such that j > i and K, y≥j1 |= ◦p ∧ E◦¬p. Considering this
state x2(j), we invoke the same reasoning as we applied to the state x1(i) evaluating
E(◦p ∧ E◦¬p) on the path x1. This leads us to the analogous conclusion, that there
must be another path x3 starting at x2(j) such that ◦¬p is true along it. Again, the
path y2 = x<i1 , x<j2 · x3 should satisfy the property E(◦p ∧ E◦¬p), hence we must have a

state x3(k) such that k > j and K, y≥k1 |= ◦p ∧ E◦¬p. Therefore (due to limit closure),

there exists y ∈ fullpaths(K) formed by the finite prefixes x<i1 , x<j2 , x<k3 . . . , such that
K, y 6|= ♦(◦p ∧ E◦¬p). So, our assumption on the satisfiability of (4.1) was wrong.

Note that limit closure of the underlying Kripke structures was important for the
above proof. Without the limit closure, for example, for so called bundled structures
[44], the situation would have been different as we would not be able to assemble this
new path y.

The following Definition 18 introduces notions of satisfiability, validity and equiva-
lence for CTL? formulae and generalises satisfiability and validity for the sets of CTL?

formulae. These are based on the concept of Mod introduced in Def 17.

Definition 18 ( CTL? Satisfiability, Validity and Logical Equivalence).

• A state formula ϕ is satisfiable (denoted Sat(ϕ)) whenever Mod(ϕ) 6= ∅, otherwise
ϕ is unsatisfiable (denoted UnSat(ϕ)).

• A state formula ϕ is valid whenever K |= ϕ for all K.

• A set of state formulae Σ is satisfiable (denoted Sat(Σ)) if Mod(Σ) 6= ∅. Otherwise
Σ is unsatisfiable (denoted UnSat(Σ)).

• A set of state formulae Σ is valid whenever K |= Σ for all K.

• State formulae ϕ and ϕ′ are logically equivalent if Mod(ϕ) = Mod(ϕ′) (denoted as
ϕ ≡ ϕ′).

For each of BTL logics - ECTL#, ECTL+, ECTL and CTL - which are sublogics of
CTL?, we define its syntax over a fixed set of propositions Prop, preserving the definition
of state formulae from CTL? (Def. 15) and formulating in Definition 19 specific for these
logics on the CTL? grammar that generate corresponding sets for path formulae. Note
that similarly to the CTL? grammar, we also utilise here the minimal set of operators,
for the sake of consistency of the presentation and its rigor.

Definition 19 (Path Formulae for ECTL#, ECTL+, ECTL and CTL). The classification
of the different branching-time logics according to their path formulae is shown in the
next table.
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Logic Inherited | Characteristic

πECTL# ::= πECTL+ | σ1U(σ2 ∧ (TUσ3)) |
¬(TU¬(TU(¬σ1 ∧ (TU¬σ2)))) |
σ1U¬(TU¬σ2) | ¬(TU¬(σ1Uσ2))

πECTL+ ::= πECTL | π1 ∧ π2

πECTL ::= πCTL | ¬(TU¬(TU¬σ)) | TU¬(TU¬σ)
πCTL ::= σ | ¬π | ◦σ | σ1Uσ2.

Our aim is to highlight different kinds of path formulae that are generated in each
sublogic of CTL? and those characteristic to it. For example, for ECTL, the charac-
teristic path formulae are those expressing linear-time fairness - ¬(TU¬(TU¬σ)) and
TU¬(TU¬σ). Now, if, similar to the case of CTL?, we extend this minimal grammar by
the derivable constraints, these fairness constraints are read as �♦σ and ♦�σ. The char-
acteristic path formulae for ECTL+ are π1 ∧ π2 - those that allow Boolean combination
of linear-time temporal operators and fairness constraints. Finally, the characteristic
path formulae for ECTL# are σ1U(σ2 ∧ ♦σ3),�(σ1 ∨ �σ2), σ1U(�σ2) and �(σ1Uσ2).

It is important to note that the nesting of ‘pure path formulae’, totally unrestricted
in CTL?, is restricted in its sublogics by relevant grammar cases for path formulae.
Below, for each of the logics CTL?, ECTL#, ECTL+, ECTL and CTL, we will provide
an example of a formula which is expressible in this logic but is not expressible in
its sublogic. The structures of these formulae reflect the characteristic path formulae
for the considered sublogic. Hence, we will refer to these formulae as characteristic
formulae for a dedicated logic under consideration. For example, an indicative CTL?

formula A♦(◦p ∧ E◦¬p) mentioned above (4.1) is not an ECTL# formula. Rewriting it
as A(TU(◦p∧ E◦¬p)) we can see that ◦p∧ E◦¬p, the right-hand side argument of the U
operator, does not meet the ECTL# criteria: it is neither a state formula of the form
σ1 ∧ ♦σ2 nor �σ. Recall that the validity of (4.1) is directly linked to the limit closure
property [32]. If we consider an ECTL# formula

A((pU�q) ∧ (sU�¬q)) (4.2)

we can see that this is not an ECTL+ formula because ECTL+ only allows Boolean
combinations of the fairness constraints. In this ECTL# formula, pU�q and sU�¬q, hence
their conjunction, are not admissible ECTL+ formulae. Further, an ECTL+ formula (4.3)
that does not belong to ECTL is

E(�♦q ∧ ♦�¬q) (4.3)

as �♦q ∧ ♦�¬q is not an admissible ECTL path formula.
Finally, the fairness constraint (4.4) which is expressible in ECTL cannot be con-

structed in CTL syntax as every temporal operator

E�♦q (4.4)

in a CTL formula must be preceded by a path quantifier. Obviously, writing, for example,
an E quantifier before the ♦q we obtain an admissible CTL structure E�E♦q. However,
comparing E�E♦q with E�♦q, we can see that the latter requires a model where there
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exists a path, along which �♦q is satisfied, while the former requires a model where
there exists a path where each state gives rise for a path along which ♦q is satisfied.

Note that it is important to distinguish the problem if a formula of a superlogic
belongs to a sublogic and the problem if a formula of a superlogic can be expressed in
a sublogic. For example, E(�♦q ∨ ♦�¬q), similarly to formula (4.3) does not belong to
ECTL but unlike (4.3), it is expressible in this logic, as
E(�♦q ∨ ♦�¬q) ≡ E�♦q ∨ E♦�¬q which is an ECTL formula if we define ∨ via ∧.

BTL Logic E�♦q E(�♦q ∧♦�¬q) A((pU�q)∨ (sU�¬r)) A♦(◦p ∧ E◦¬p) Dual
T & SC

B(U ,◦) ( CTL) X X X X This thesis
B(U ,◦,�♦) (ECTL) √

X X X This thesis
B+(U ,◦,�♦) (ECTL+)

√ √
X X

√

B+(U ,◦,U�) (ECTL#)
√ √ √

X
√

B?(U ,◦) (CTL?) √ √ √ √
X

Tab. 4.1: Classification of context-based tableaux systems for CTL-type logics and rele-
vant difficult cases of concatenations of temporal operators and path quantifiers.

In Table 4.1, following the notation initially proposed in [32] and further tuned in
[69], we represent BTL logics (listed in the first column) classified by their expressiveness
using ‘B’ for ‘Branching’, followed by the set of only allowed modalities as parameters;
B+ indicates admissible Boolean combinations of the modalities and B? reflects ‘no
restrictions’ in either concatenations of the modalities or Boolean combinations between
them. Columns 2-5 of Table 4.1 illustrate the indicative formulae for the logics under
considerations as follows:

• for ECTL, column 2: E�♦q, formula (4.4)

• for ECTL+, column 3: E(�♦q ∧ ♦�¬q), formula (4.3)

• for ECTL#, column 4: A((pU�q) ∧ (sU�¬q)), formula (4.2)

• for CTL?, column 5: A♦(◦p ∧ E◦¬p), formula (4.1)

Writing the ‘
√

’ in Table 4.1 against the listed logics we indicate if a logic meets
these grammar rules. For example, column 2 now illustrates which of the logics can
express the property E�♦q: while this property is not expressible in CTL, it becomes
expressible in ECTL and any of its extensions. In this respect, ECTL has those minimal
grammar requirements enabling to express the property, hence, we can treat E�♦q as
ECTL indicative formula.

The last column in this table reflects the development of the dual system of context-
based tableaux (T) and sequent calculus (SC) for CTL-type logics. The method has been
developed for ECTL# [16] where the motivation was to cope with more complex cases of
fairness. We note that this method developed for ECTL# is obviously applicable to all
weaker logics. However, it only tackles one weaker logic - ECTL+ - efficiently, introducing
unnecessary complications for other ECTL# sublogics. This is based upon the fact that
ECTL+ and ECTL# have similar cases of the Boolean combinations of eventualities in
the scope of A and E: disjunctions of the eventualities in the scope of the A quantifier
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and conjunctions of eventualities in the scope of the E quantifier, see [16] for details.
Thus, Table 4.1 also reflects syntactical cases of concatenations of temporal operators
and path quantifiers that are difficult for context-based tableaux.

To manage these cases, in addition to α- and β-rules, that are standard to the
tableaux, we adapted the β+-rules presented for PLTL (Figure 2.9) which use the context
to force the eventualities to be fulfilled as soon as possible. As ECTL# is more expressive
than ECTL+ in allowing new type of fairness constraints that use the U operator, the
relevant rules introduced in [16] cover all difficult concatenations of operators in ECTL+.
However, simply treating the case of context-based tableaux for the other two sublogics of
ECTL# –ECTL and CTL– as solved by the relevant development for a richer logic ECTL#,
would introduce extra unnecessary complexity in the construction of dual system of
relevant tableaux and sequent calculi. Hence, for both ECTL and CTL, simpler context-
based tableaux methods are required. We concentrate on bridging this gap in our
roadmap in supplying BTL logics by this technique, and develop the method for CTL
and ECTL.

4.2 CTL and ECTL Logics

Subsequently, we proceed by defining the CTL and ECTL semantic conditions in Defi-
nition 20. These are derived from the CTL? semantic evaluation rules given in Defini-
tion 17.

Definition 20 ( CTL and ECTL Semantics).

• The semantics for logic CTL is obtained from the CTL? semantics given in Defi-
nition 17 by preserving the evaluation conditions (sT ) - (sA) and (p◦) - (pR) and
setting π, π1 and π2 to be a state formula.

• The semantics for logic ECTL is obtained from the above CTL? semantics by delet-
ing the evaluation conditions (p∨) and (p∧) and also restricting π in the following
rules as follows:

– in the (p◦) rule π is a state formula,

– in the (p♦) rule π is a state formula or a formula �σ,

– in the (p�) rule π is a state formula or a formula ♦σ, and

– in the (pU ) and (pR) rules π1, π2 are state formulae.

For technical convenience, we will use the fact that cyclic Kripke structures have the
ability to characterise satisfiability in branching temporal logics.

Definition 21 (Cyclic Sequence, Path and Kripke Structure). Let K = (S,R, I, L) be
a given Kripke structure. Let z be a finite sequence of states z = s0, s1, . . . , sj in S such
that (sk, sk+1) ∈ R for every 0 ≤ k < j. Then

• z is a cyclic sequence if and only if there exists si, 0 ≤ i ≤ j such that (sj , si) ∈ R.
In this case, the subsequence si, . . . , sj of z is called a loop denoted as 〈si, . . . , sj〉ω.
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• If z is a cyclic sequence, then the path

s0, s1, . . . , si−1〈si, si+1, . . . , sj〉ω

is denoted by path(z) and is called cyclic.

A Kripke structure K is cyclic if every fullpath is a cyclic path over a cyclic sequence of
states.

The fact that branching-time satisfiability can be reduced to the interpretation over
cyclic models only, is derived from the existence of the finite model property [34], see
also [53]. In particular, for any CTL ( ECTL) formula ϕ, such that Mod(ϕ) 6= ∅, there
always exists a model K ∈ Mod(ϕ) such that K is cyclic. Therefore, when speaking
about the satisfiability in CTL (hence ECTL) we can consider cyclic Kripke structures.
Cyclic paths are also known as ultimately periodic paths.

In this section, we introduce the grammars for CTL and ECTL formulae in NNF.
From now on, we abbreviate by Q either of the path quantifiers A or E.

Definition 22 (Syntax of CTL and ECTL in NNF). Let Prop be a fixed set of propositions,
then the sets of CTL formulae and ECTL formulae in NNF over Prop are given by the
grammar (where the elements of Lit are called literals):

Lit := F | T | p | ¬p where p ∈ Prop
σCTL := Lit | σ1 ∧ σ2 | σ1 ∨ σ2 | Q◦σ | Q♦σ | Q(σ1Uσ2) | Q�σ | Q(σ1Rσ2)
σECTL := σCTL | Q�♦σ | Q♦�σ

The following result (e.g. [68]) can be easily established.

Proposition 3. For any CTL formula ϕ there exists a CTL formula, NNF(ϕ), which is
in NNF such that Mod(ϕ) = Mod(NNF(ϕ)). For any ECTL formula ϕ there exists an
ECTL formula, NNF(ϕ), which is in NNF such that Mod(ϕ) = Mod(NNF(ϕ)).

Proof. By structural induction on the formulae, using the following well-known equiva-
lences (e.g. [32]):
¬T ≡ F ¬A�ϕ ≡ E♦¬ϕ ¬A(ϕRψ) ≡ E(¬ϕU¬ψ)
¬F ≡ T ¬E�ϕ ≡ A♦¬ϕ ¬E(ϕRψ) ≡ A(¬ϕU¬ψ)
¬¬ϕ ≡ ϕ ¬A♦ϕ ≡ E�¬ϕ ¬A�♦σ ≡ E♦�¬σ
¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬E♦ϕ ≡ A�¬ϕ ¬E�♦σ ≡ A♦�¬σ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬A(ϕUψ) ≡ E(¬ϕR¬ψ) ¬A♦�σ ≡ E�♦¬σ
¬A◦ϕ ≡ E◦¬ϕ ¬E(ϕUψ) ≡ A(¬ϕR¬ψ) ¬E♦�σ ≡ A�♦¬σ
¬E◦ϕ ≡ A◦¬ϕ

Using the same notation introduced in Definition 8, we will write ∼ϕ instead of
NNF(¬ϕ). Also, for a finite set Φ = {ϕ1, . . . , ϕn}, we let ∼Φ = NNF(¬

∧n
i=1 ϕi). Note

that the sets of CTL and ECTL formulae in NNF are closed under the operation ∼.
For the formulation of our tableaux technique we will need a concept of a consistent

(inconsistent) set of formulae, which is introduced in the following definition.
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Definition 23 (Syntactically Consistent and Inconsistent Sets of Formulae). A set Σ
of state formulae of CTL and ECTL in NNF is (syntactically) inconsistent (denoted
Incons(Σ)) if and only if F ∈ Σ or {σ,∼σ} ⊆ Σ for some σ. Otherwise, Σ is said to be
consistent.

Next, we introduce a concept of a basic modality which reflects the restrictions on
forming the basic admissible combinations of temporal operators in the scope of a path
quantifier. We consider a basic modality of CTL or ECTL logic to be of the form QT,
where T is a temporal operator. The structure QT is generated by the grammar rules
for these logics in Def. 19. We can identify all basic modalities in a given formula ϕ by
finding its most embedded modality(es), say M1, then looking at the next basic modality
in which M1 is embedded, etc. For example, a basic modality for CTL is any admissible
combination of Q and a temporal operator, i.e. Q◦, Q♦, QU , Q�, and QR, while ECTL
basic modalities are those identified above for CTL and, additionally, the modalities that
appear due to new admissible combinations ♦� and �♦ in the scope of a path quantifier
–Q♦� and Q�♦. If we analyse a CTL formula E◦A◦p then the most embedded basic
modality, M1, would be A◦p, which is embedded as E◦M1. These are generalised in
Definition 24.

Definition 24 (ECTL and CTL Basic Modalities).

MCTL ::= c | Q◦M | Q♦M | Q(MUM) | Q�M | Q(MRM).
MECTL ::= MCTL | Q�♦M | Q♦�M.

where c stands for a purely classical formula (we can consider a purely classical formula
as a zero-degree basic modality) and M stands for any basic modality of CTL in the
definition of MCTL and of ECTL in the definition of MECTL.

In what follows, every CTL modality QU or Q♦ is called eventuality and (Q◦)i stands
for i consecutive occurrences of a basic modality Q◦.

CTL tableau rules are based on fixpoint characterisation of its basic modalities:
(in the equations below µ and ν stand for ‘minimal fixpoint’ and ‘maximal fixpoint’
operators, respectively)

E�ϕ = νρ(ϕ ∧ E◦ρ) E(ϕRψ) = νρ(ψ ∧ (ϕ ∨ E◦ρ))
A�ϕ = νρ(ϕ ∧ A◦ρ) A(ϕRψ) = νρ(ψ ∧ (ϕ ∨ A◦ρ))

E♦ϕ = µρ(ϕ ∨ E◦ρ) E(ϕUψ) = µρ(ψ ∨ (ϕ ∧ E◦ρ))
A♦ϕ = µρ(ϕ ∨ A◦ρ) A(ϕUψ) = µρ(ψ ∨ (ϕ ∧ A◦ρ))

(4.5)

This fixpoint characterisation of basic CTL and ECTL modalities as maximal or min-
imal fixpoints give rise to their analytical classification as α- or β-formulae which are
associated, in the tableau, with α- and β-rules: Q�, and QR as maximal fixpoints are
classified as α-formulae while Q♦ and QU as minimal fixpoints are β-formulae. This is
also reflected in the known equivalences:

E�ϕ = ϕ ∧ E◦E�ϕ E(ϕRψ) = ψ ∧ (ϕ ∨ E◦E(ϕRψ))
A�ϕ = ϕ ∧ A◦A�ϕ A(ϕRψ) = ψ ∧ (ϕ ∨ A◦A(ϕRψ))

E♦ϕ = ϕ ∨ E◦E♦ϕ E(ϕUψ) = ψ ∨ (ϕ ∧ E◦E(ϕUψ))
A♦ϕ = ϕ ∨ A◦A♦ϕ A(ϕUψ) = ψ ∨ (ϕ ∧ A◦A(ϕUψ))

(4.6)
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4.3 Dual Methods for CTL: Tableaux and Sequent Calculus

The tableau method determines whether a given set of CTL state formulae, Σ, is satisfi-
able or not. In addition, in the affirmative case a model (Kripke structure) of Σ can be
generated from the tableau, whereas in the negative case we can generate a proof in the
dual sequent calculus. In this section, we introduce the tableau method: we define the
set of tableau rules and a general view and intuitions on how tableaux are constructed.
In Section 4.3.1 we provide a precise algorithm for constructing tableaux in a system-
atic way. The soundness and completeness proofs are presented in Section 4.3.2. The
Sequent Calculus for CTL are explained in Section 4.3.3.

We precede the formal introduction of the technique by its informal overview. The
main concepts are informally introduced here and technically defined later in this section
or in Section 4.3.1. A tableau for a set of CTL formulae is a graph, namely an AND-OR-
Tree (for the account on AND-OR-Trees we refer an interested reader to [55]), where
nodes are labelled by sets of CTL formulae. The initial node (or root) of the tableau
is labelled by some given set of CTL formulae whose satisfiability we want to check.
Non-terminal nodes are further expanded by applications of the tableau rules to their
labelling sets. There are two kinds of terminal nodes. First, any node labelled by
an inconsistent set of formulae (see Definition 23) is terminal. The second type are
the so-called loop-nodes. Intuitively, we say that a branch (i.e. a path from the root
to some node n) has a loop when the label of n (or some superset of it) has already
appeared in this branch. In this case, n is called a loop-node. Loop-nodes are terminal
whenever some precise eventuality fulfilment conditions hold in the branch. Intuitively,
such conditions ensure that the (systematic) tableau for any satisfiable set of formulae
represents a model of this set.

For the node expansion, we have the following types of tableau rules: α- and β-rules,
the ‘next-state’ rule, which reflects a ‘jump’ from a ‘state’ to a ‘pre-state’, and, finally,
characteristic to our approach, β+-rules, where the use of the context (of an eventuality)
is essential. In our procedure, the application of β+-rules to eventualities is essential to
detect ‘bad’ loops. Only if β+-rules have already been applied to every eventuality in
the branch and there is no inconsistent node in this branch, then we can establish if all
the eventualities have been fulfilled. When this check for fulfilment of eventualities is
positive we have a ’good loop’ and this branch would be part of a model of the input
formula. Otherwise, when there is at least one unfulfilled eventuality, we choose one to
which a corresponding β+-rule has not been applied.

Next we proceed with formally defining the construction of the tableaux and intro-
ducing necessary concepts and tableau rules.

Definition 25 (Tableau, Consistent and Incons. Node, Closed and Open Branch). A
tableau for a set of CTL state formulae Σ is a labelled tree 〈T, τ,Σ〉, where T is a tree,
and τ is a mapping of the nodes of T to sets of state formulae, such that the following
two conditions hold:

• The root is labelled by the set Σ.

• For any other node m ∈ T , its label τ(m) is a set of state formulae obtained as
the result of the application of one of the rules in Figures 4.1, 4.2 and 4.3 to its
parent node n. When the applied rule is R, we term m an R-successor of n.
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A node n of a tree T is consistent if its label, τ(n), is a (syntactically) consistent set
of formulae (see Definition 23), else n is inconsistent. If a branch b of T , contains an
inconsistent node, then b is closed else b is open.

(∧)
Σ, σ1 ∧ σ2
Σ, σ1, σ2

(Q�)
Σ,Q�σ

Σ, σ,Q◦Q�σ

(∨)
Σ, σ1 ∨ σ2

Σ, σ1 | Σ, σ2
(QU)

Σ,Q(σ1Uσ2)

Σ, σ2 | Σ, σ1,Q◦Q(σ1Uσ2)

(QR)
Σ,Q(σ1Rσ2)

Σ, σ2, σ1 ∨ Q◦Q(σ1Rσ2)
(Q♦)

Σ,Q♦σ
Σ, σ | Σ,Q◦Q♦σ

Figure 4.1: α- and β-rules.

Figure 4.1 follows the standard for the tableaux classification of rules into α-rules
and β-rules - this is based on the analytic classification of CTL modalities and reflects
their interpretation as fixpoints (see equations 4.6) of the formula (in the node label)
that is ‘designated’ for the rule application. In the systematic tableau construction,
at each node, the designated formula is chosen following some strategy that we specify
later (in Section 4.3.1).

An α- or β-rule is applied to a node labelled by a set of formulae Σ, ϕ, where ϕ is a
designated formula that determines the rule (to be applied), and Σ is a possibly empty
set of formulae that accompany ϕ in the label of the node. Then, if ϕ is an α-formula -
∧, Q�, or QR - then a corresponding α-rule applies, while if ϕ is a β-formula - ∨, QU , or
Q♦- then a corresponding β-rule applies. These applications of α- and β-rules generate
the set of formulae in the conclusion of the rule as label(s) for the successor node(s):
one successor in case of an α-rule, or two successors in case of a β-rule. In β-rules we
use | to emphasize that successors are OR-siblings.

When a node n is labelled by an elementary set of formulae – i.e. a set which
is exclusively formed by literals and formulae of the form Q◦σ – then this structure is
analogous to a ‘state’ in the terminology of [83]; it enables us to construct the successors
of n corresponding to ‘pre-states’ [83].

Let Σ,A, E be an elementary set of formulae where

• Σ is a set of literals,

• A is a possibly empty set of A◦ formulae {A◦σ1, . . . ,A◦σ`}, and

• E is a non-empty set of E◦ formulae {E◦σ′1, . . . ,E◦σ′k}.

(◦E)
Σ,A, E

A↓, σ′1 & . . . & A↓, σ′k
(◦A)

Σ,A
A↓

where A↓ = {σ1, . . . , σ`}. Hence, A↓ is empty if and only if A is empty.

Figure 4.2: Next-state rules (‘&’ joins AND-successors in the conclusion of (◦E)).
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According to the next proposition we are guaranteed to reach such a tree structure,
where the last node of every branch, at this stage of the construction, is a state.

Proposition 4. Any set of CTL state formulae has a tableau T such that the last node
of every branch is labelled by an elementary set of state formulae.

Proof. Repeatedly apply to every expandable node any applicable α- or β-rule until all
expandable nodes are labelled by elementary sets of formulae. Then, the appropriate
next-state rule of Figure 4.2 must be applied to every expandable node depending on
the number of formulae starting by E◦ appearing at the node.

Proposition 4 enables the application of the so-called ‘next-state rules’ depicted in
Figure 4.2. Applying rule (◦E) we split the current branch at node n where the set

Σ,A◦σ1, . . . ,A◦σ`,E◦σ′1, . . . ,E◦σ′k (4.7)

is satisfied, 0 ≤ l and k ≥ 1, into k branches: the number of branches is equal to the
number of E◦ constraints, where the successors of n along these branches, say m1, . . . ,mk

are AND-successors of n. We label each AND-successor mj (1 ≤ j ≤ k) in the following
way. As any constraint A◦σi (1 ≤ i ≤ l) in the premise of the rule would propagate
σi to any successor node, then each of these successor nodes, mj should have the set
σ1, . . . , σl as part of its label. The next part of the label of mj is coming from the
corresponding E◦σ′s (1 ≤ s ≤ k) as this existential constraint only determines the label
for one of the AND-successors. Thus, each AND-successor mj of n has its label of the
form σ1, . . . , σl, σ

′
s. The rule (◦E) splits branches in a ‘conjunctive’ way, and we use the

symbol & to represent the generation of AND-successors of node n. Thus, the graphs
generated with the application of the ‘next-state’ rule (◦E) are indeed AND-OR trees.
When k = 0 in the elementary set of formulae that labels node n (4.7), the rule (◦A)
is applied. The application of both rules (◦E) and (◦A) represents a ‘jump’ to the next
state, hence the set of literals Σ in (4.7) disappears in every child produced by these
rules.

Next we extend our set of tableau rules with the new two rules named as β+-rules
(Figure 4.3). Note that the (Q♦)+ rule can be derived from the application of the
(QU)+ to the CTL formula TUσ. These rules, similarly to β-rules, also split a branch
into two branches. Moreover, whenever a β+-rule -(QU)+ or (Q♦)+- is applicable, so
is the respective β-rule -(QU) or (Q♦). Which rules, β-rules or β+-rules are applied
at each step of the tableau construction, does not affect the correctness. However, for
completeness, some strategy is required. It is easy to see that the extension with β+-rules
preserves the property given in Proposition 4.

(QU)+
Σ,Q(σ1Uσ2)

Σ, σ2 | Σ, σ1,Q◦Q((σ1∧ ∼Σ′)Uσ2)
(Q♦)+

Σ,Q♦σ
Σ, σ | Σ,Q◦Q((∼Σ′)Uσ)

where Σ′ = Σ \ {(A◦)iA�σ ∈ Σ | i ≥ 0}

Figure 4.3: β+-Rules

These β+-rules are the only rules in our system that make use of the context -their
application forces the eventualities to be satisfied as soon as possible (from the point
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of the tableau construction where an eventuality is selected to be expanded with a β+-
rule). The strategy of selecting eventualities is identical to the one used in PLTL. The
context is given by the possibly empty set Σ that accompanies the designated formula,
which in this case is an eventuality. Inside one of formulae of the right-hand child of each
β+-rule we add a conjunct ∼ Σ′ that is calculated by deleting some specific formulae
from Σ (the context). In particular, if Σ is empty, then so is Σ′ and the formula ∼Σ′ is
the constant F.

In what follows, any formula of the form Q((σ1∧ ∼ Σ′)Uσ2) (respectively, Q((∼
Σ′)Uσ)) is called the contextualised variant of Q(σ1Uσ2) (resp. Q♦σ) provided that
Q◦Q((σ1∧∼Σ′)Uσ2) (respectively, Q◦Q((∼Σ′)Uσ)) has been obtained by the applica-
tion of the corresponding β+-rule to a formula Q(σ1Uσ2) (resp. Q♦σ) with a context Σ.
Note that the contextualised variants will appear after one application of the rule (◦E)
or (◦A), which removes all Q◦ prefixes.

Recall that ∼Σ′ is the NNF of the negation of the conjunction of all formulae in Σ′

that are left from Σ after performing the set-theoretical difference constraint indicated
in the formulation of the rule. The idea now is that ∼Σ′ should also be satisfied until σ2

becomes satisfied. This prevents the repetition of the context while σ2 is ‘delayed’.
Note that Σ′ does not include the A� constraint (prefixed by any sequence of the A◦
constraints) because these formulae would be necessarily repeated along any branch -
indeed, if we use ∼Σ instead of ∼Σ′ we will generate a branch for each A� that will be
immediately closed.

Example 10. Consider Σ = {q,E◦¬p,A�a} to be the context of the formula A♦p.
Then, Σ′ = {q,E◦¬p} and ∼Σ′ is the formula ¬q∨A◦p. Consequently, the contextualised
variant A((¬q∨A◦p)Up) of A♦p, preceded by A◦, is introduced in the branch where A♦p
is delayed. This variant says that p should be fulfilled (in all branches) after the next
state, but while p is not fulfilled some formula in the context {q,E◦¬p,A�a} should be
‘violated’. Since A�a is a formula that cannot be violated in any branch (it is in the
initial node), then either ¬q or ∼E◦¬p (in NNF, A◦p) should be satisfied in all path
until p is satisfied. If the context of eventuality A♦p was empty or, for example, {A�a},
then the contextualised variant of A♦p would be A(FUp).

Next, we illustrate in Example 11 the application of the β+-rule (EU)+ to a node
labelled by {E(pUq),A(FR¬q)}. A tableau for {E(pUq),A(FR¬q)} is also exhibited in
[1, 47]. In Section 4.3.1 we will use this tableau as a running example, complete its
construction, and compare it with the tableau presented in [1, 47]. As we have done
in previous chapters, we highlight with the gray color the formula (or subformula) to
which the β+-rule is (or will be) applied.

E(pUq) ,A(FR¬q)

q,A(FR¬q) p,E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)
(EU)+

Figure 4.4: Application of rule (EU)+
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Example 11. In Figure 4.4, the context of the eventuality E(pUq) in the root is the
formula A(FR¬q). The rule (EU)+ splits the tableau into two branches. In the right-hand
successor the middle formula E◦E((p ∧ E(TUq))Uq) contains the contextualised variant
of the eventuality E(pUq) that is constructed by the conjunction of p and ∼A(FR¬q) =
E(TUq) as new left-hand component of the until formula. The effect is that along the
future states (from the next one), while q is not satisfied, not only p should be satisfied,
but also the negation of the current context (i.e. E(TUq)) should be satisfied.

4.3.1 Systematic Tableau Construction

In this section we define a recursive algorithm, Asys, that constructs a fully expanded
systematic tableau for a given set of formulae Σ. Intuitively, ‘fully expanded’ means
that we ‘complete’ the formation of the tableau in the sense that every expandable
node has been already expanded. In Chapter 5 we explain how the implementation of
this algorithm, with more parameters and results, returns a model when the resulting
tableau is open or, otherwise, a proof in the dual sequent calculus that corresponds with
the closed tableau. We first define all the main concepts involved in the algorithm.

A branch is a finite linear structure – formed by the successive nodes, from the root
to a leaf– inside the tree-shaped structure of the tableau. When the leaf of a branch has
occurred previously in the branch, it is called a loop-node, and the sequence of nodes
finitely represents an infinite loop branch. We will load the current branch by ‘stages’
instead of ‘node-by-node’ mode.

Definition 26 (Stage). Given a branch, b of a tableau T , a stage in b is every maximal
subsequence of successive nodes ni, ni+1, . . . , nj in b such that τ(nk) is not a (◦E)-child or
(◦A)-child of τ(nk−1), for all k such that i < k ≤ j. We denote by stages(b) the sequence
of all stages of b. The successor relation on stages(b) is induced by the successor relation
on b. The labelling function τ is extended to stages as the union of the original τ applied
to every node in a stage.

When the input is a satisfiable set of formulae, the systematic tableau aims to obtain
one loop-node since it represents a cycle in a cyclic Kripke structure that could be part
of a model of the input set of formulae.

Definition 27 (Loop-node). Let b = n0, n1, . . . , ni (where i > 0) be a tableau branch
and stages(b) = s0, s1, . . . , sm (where m > 0 and ni ∈ sm). Then, ni is a loop-node if
there exists some 0 ≤ j < m such that τ(ni) ⊆ τ(sj). We say that sj is the companion
stage of the node ni and sj , . . . , sm are the stages in the loop.

Example 12. To illustrate the notions of stage and loop-node, let us consider the tree
(tableau) in Figure 4.5, which contains our running example as a sub-tree. Note that
the application of rule (◦E), at step 2, generates two AND-successors (AND-edges are
denoted with a big circle). The left successor is our running example and will be fully
expanded later (Figure 4.7). The right-most branch is formed by five nodes. This branch
has three stages, the first one is formed by the first two nodes, hence its label is the union
of their labels, i.e. the set {A◦A(FR¬q),E◦E(pUq)∧E◦¬q,E◦E(pUq),E◦¬q}. The second
stage in that branch is labeled by {A(FR¬q),¬q,A◦A(FR¬q)}. The last node A(FR¬q)
is a loop-node because it is included in the second stage, which is its companion stage.
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A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q

A◦A(FR¬q),E◦E(pUq),E◦¬q

E(pUq),A(FR¬q) A(FR¬q),¬q

F ∨ A◦A(FR¬q),¬q

F,¬q A◦A(FR¬q),¬q

A(FR¬q)

(∧)

(◦E)

Closed Tableau (Figure 4.7) (AR)

(∨)

⊗ (◦A)

Figure 4.5: A closed tableau for {A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q}.

When a loop-node is found, the fulfilment of eventualities along the branch must be
ensured. When this fulfilment condition holds we say that the branch is eventuality-
covered. It is obvious that universal eventualities (AU or A♦) should be fulfilled in all
branches that go across the node where these eventualities appear, as reflected by rules
(◦Q). However, as a consequence of the distribution of existential formulae in different
branches performed by the rule (◦E), an existential eventuality (EU or E♦) should be
fulfilled only along the branch it belongs to after the (◦E) splitting, but not in the other
branches. Indeed, more than one existential eventuality could appear in the stages of a
tableau branch b, however not all of them should be fulfilled in b but, on the contrary,
some of them could be ‘delayed’ and then, by an application of rule (◦E), could be ‘sent’
to a different tableau branch.

Example 13. For example, in Figure 4.5 after the splitting by (◦E) in two AND-
successors, the existential eventuality E(pUq) goes to the left subtree, hence it could
not be satisfied in the right subtree, where E◦¬q forces to satisfy ¬q.

Hence, the notion of eventuality coverage (in branches) differentiates existential even-
tualities from universal ones es explained above.

Definition 28 (Eventuality Fulfilment and Eventuality-covered Branch). Let b be a ta-
bleau branch such that stages(b) = s0, . . . , sn. An eventuality Q(σ1Uσ2) (resp. Q(♦σ))
is fulfilled in the branch b if and only if σ2 ∈ τ(sk) (resp. σ ∈ τ(sk)) for some 0 ≤ k ≤ n.
The branch b is eventuality-covered if and only if the following two conditions hold:

• Every eventuality AU or A♦ that occurs at some stage of b is fulfilled in b.

• For every eventuality ϕ = E(σ1Uσ2) (resp. ϕ = E♦σ) that occurs in some stage
of b either ϕ is fulfilled in b or E◦ϕ 6∈ sk for some 0 ≤ k ≤ n.

We only need to check the above two conditions for those eventualities that have not
been selected in the branch, because loops cannot contain an unfilled eventuality that
has been selected at some point.
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In the next example we have a branch with two existential eventualities.

Example 14. Consider a branch of five nodes labelled by the following sets:

1. ¬p,¬q, E♦p ,E♦q

2. ¬p,¬q,E◦ E((p ∨ q ∨ A�¬q)Up) ,E♦q

3. ¬p,¬q,E◦ E((p ∨ q ∨ A�¬q)Up) ,E◦E♦q

4. E((p ∨ q ∨ A�¬q)Up)

5. p

This branch would be generated by successively applying the rules (E♦)+ to the selected
eventuality E♦p in 1, (E♦) to eventuality E♦q in 2, (◦E) in 3, and (E♦)+ in 4, and
taking only one of the children at each step. This branch is eventuality covered, though
E♦q is not fulfilled in the branch. Indeed the application of the rule (◦E) at item 3
generates two AND-branches and the other branch starts with node E♦q.

Since (◦E)-children are AND-siblings, whenever one of them does not have a possible
model, the parent node is unsatisfiable. On the contrary, to ensure the satisfiability of
a node where (◦E) is applied it should have a collection of satisfiable branches that
includes all the (◦E)-successors of any node labelled by an elementary set of formulae.
These collections of branches are called bunches. Next, we define the notion of a bunch
and how bunches determine whether a tableau is open, closed and fully expanded.

Definition 29 (Bunch, Closed Bunch and Closed Tableau). A bunch H is a collection
of branches which is maximal with respect to (◦Q)-successors, i.e. every (◦A)-successor
and every (◦E)-successor of any node in H is also in H. A bunch H is closed if and
only if at least one of its branches is closed, otherwise it is open. A tableau is closed if,
and only if, all its bunches are closed.

Definition 30 (Fully Expanded Bunch and Tableau). A branch b is fully expanded if
and only if either b is closed (see Definition 25) or the last node in b is a loop-node and
b is eventuality-covered. A bunch is fully expanded if all its branches are fully expanded.
A tableau is fully expanded if all its bunches are fully expanded.

Example 15. The tableau in Figure 4.5 is closed in spite of the open sub-tableau at
the right (◦E)-successor of the second node. Any bunch in this tableau should include at
least one branch across the left node {E(pUq),A(FR¬q)} and at least one branch across
the right node {A(FR¬q),¬q}. Independently of the branch chosen in the right-hand tree
(the closed or the open one), any branch in the left-hand subtree is closed (the details of
the closed tableau for {E(pUq),A(FR¬q)} are given later). Therefore, any bunch in the
tableau of Figure 4.5 is closed.

Any open tableau has at least one open bunch, formed by one or more open branches.
Open branches are ended in a loop-node. Open bunches represent models, specifically
cyclic models as defined in Definition 21.
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A◦A(pR¬q),E◦¬p ∧ E◦¬q

A◦A(pR¬q),E◦¬p,E◦¬q

A(pR¬q),¬p

¬q, p ∨ A◦A(pR¬q),¬p

¬q, p,¬p ¬q,A◦A(pR¬q),¬p

A(pR¬q)

A(pR¬q),¬q

p ∨ A◦A(pR¬q),¬q

p,¬q

∅

A◦A(pR¬q),¬q

A(pR¬q)

(∧)

(◦E)

(AR)

(∨)

⊗ (◦A)

(AR)

(∨)

(◦A) (◦A)

Figure 4.6: An open tableau for {A◦A(pR¬q),E◦¬p ∧ E◦¬q}.

Example 16. In Figure 4.6 we depict an open tableau that is a slight modification of the
closed tableau in Example 12 (Figure 4.5). This tableau has three open branches. One
open branch is crossing the left-hand (◦E)-child of the second node. Two open branches
cross the right-hand child of that node. Hence, there are two possible open bunches,
depending on which of the latter two branches we choose.

Next, we introduce the recursive Algorithm 7, called Asys, that constructs a fully
expanded systematic tableau for any input Σ and returns a Boolean value saying if such
tableau is closed. The current branch of the tableau construction is passed through the
recursive calls. We can see the branches as lists of stages, which in turn are lists of
formulae. Hence, in the first call the branch that receives Asys as input is [[Σ]]. We
illustrate the steps of the algorithm with details of the construction of the tableaux in
Figures 4.5, 4.6 and 4.7.

Lines 1-6 gives the three non-recursive (or simple) cases of Asys. Lines 1-2 deal with
the case of the empty input which is trivially satisfiable. Note that by application of
the rule (◦A) when A is empty we could get this case. Indeed, this is a special case of
loop-node labelled by the empty set, whose companion is itself. In Figure 4.6 there is a
node {p,¬q} where (◦A) is applied and the loop on the empty set is produced. Lines 3-4
deal with the terminal nodes by inconsistency. For example, the four terminal nodes in
Figure 4.7 correspond to this case. Three of their labels contain q,¬q or F or both. The
fourth (right-most) terminal node contains the inconsistent set {E(TUq),A(FR¬q)}.

In line 5, Algorithm 7 detects a ‘good loop’. An example of this is the last node in
the right-most branch in Figure 4.5.

Otherwise, there is either a ‘bad loop’ (i.e. a loop in a non-eventuality-covered
branch) or not a loop, and the algorithm tries to apply (if possible) a β+ rule to some
selected eventuality. This is the goal of lines 7-9.

Line 7 stands for the first checked case whenever some tableau rule must be applied
to Σ. The rules α, β could really be applied in any order. However, next-state rules can
only be applied to elementary sets of formulae. For generating simplest contextualised
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Algorithm 7: Asys
Input = Σ: set of formulae, b: Branch.
Output = is closed: boolean, b′: Branch.

1 if Σ = ∅ then
2 is closed, b′ := false, b;
3 else if Incons(Σ) then
4 is closed, b′ := true, b;
5 else if Σ ⊆ τ(s) for some stage s in b & Ev Covered(b) then
6 is closed, b′ := false, b;
7 if β+ is applicable(Σ) then
8 select eventuality(Σ) ;
9 is closed, b′ := apply β+ rule(Σ, b);

10 else if α β is applicable(Σ) then
11 is closed, b′ := apply α β rule(Σ, b);
12 else // is elementary(Σ)
13 Let Σ = Φ,A◦(Ψ),E◦σ1, . . . ,E◦σk, Φ is a set of literals and k ≥ 0.
14 if k ≥ 1 then
15 Let Σi = Ψ, σi for all 1 ≤ i ≤ k;
16 n := k;

17 else
18 Σ1, n := Ψ, 1
19 end
20 i, is closed :=0, false ;
21 while is closed = false & i < n do
22 is closed, b′ := Asys(Σi, b+ [[Σi]]);
23 i := i+ 1 ;

24 end

25 end

variants, we just prioritised the application of the β+-rules. Note that at each stage at
most one eventuality can be selected, and at most one β+ rule is applied. More precisely,
the call select eventuality(Σ) selects an unfulfilled eventuality to force its fulfilment by
application of the corresponding β+-rule. Since β+-rules keep the contextualised variant
as selected, the predicate call β+ is applicable(Σ) gives true if and only if either there
is already a selected eventuality QU ∈ Σ or else, both of the following hold: there exists
a not selected Q◦QU ∈ Σ and there exists a (non-fulfilled) eventuality to be selected.
In the former case, select eventuality(Σ) keeps the selection. In the latter case, it does
perform a selection.

Example 17. For example, in Figure 4.7 the eventuality E(pUq) is selected in the root,
and its contextualised variant E((p ∧ E(TUq))Uq) is kept selected along the right-most
branch.

The application of an specific β or a β+ rule R, inside the calls of the proce-
dures apply β+ rule(Σ, b) or apply α β rule(Σ, b), produces two R-children, namely Σ1
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E(pUq) ,A(FR¬q)

q,A(FR¬q)

q,¬q,F ∨ A◦A(FR¬q) p,E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,¬q,F ∨ A◦A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,¬q,F

p,E◦ E((p ∧ E(TUq))Uq) ,¬q,A◦A(FR¬q)

E((p ∧ E(TUq))Uq) ,A(FR¬q)

q,A(FR¬q)

q,¬q,F ∨ A◦A(FR¬q)

p ∧ E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

(EU)+

(AR)

⊗ (AR)

(∨)

⊗

(◦E)

(EU)+

(AR)

⊗

(∧)

⊗

Figure 4.7: A closed tableau for {E(pUq),A(FR¬q)}

and Σ2, that are OR-siblings. Hence, in these cases, lines 9 and 11, first do the re-
cursive call is closed, b′ := Asys(Σ1, b1). Then, only if is closed is true, do the call
is closed, b′ := Asys(Σ2, b2). The above branches b1 and b2 stand for the adequate actu-
alisation according to Σ1 and Σ2. As an example, in Algorithm 8, we provide the details
for applying the rule (EU)+ to input Σ,E(σ1Uσ2). Note that branches are conveniently
updated in recursive calls. In fact, function update(b,Σ) adds to the last stage of b the
formulae in Σ that were not previously in that stage.

Algorithm 8: Apply (EU)+ to Φ = Σ,E(σ1Uσ2).

1 Σ := Φ \ {E(σ1Uσ2)};
2 is closed, b′ := Asys(Σ1, b1) where Σ1 = Σ∪{σ2} and b1 = update(b,Σ1);
3 if is closed = true then
4 is closed, b′ := Asys(Σ2, b2) where Σ2 = Σ∪{σ1,E((σ1∧ ∼Σ′)Uσ2)}
5 and b2 = update(b,Σ2);

6 end

Example 18. In the tableau of Figure 4.7, the first application of (EU)+ to the root
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node, calls Asys(Σ1, b) for Σ1 = {q,A(FR¬q)} which returns true in is closed after the
construction of the left-most sub-tree. Then, the call Asys(Σ2, b) where Σ2 contains the
contextualised variant, constructs the right sub-tree to return also true. Hence, the whole
tableau is closed. Note that, in Figure 4.7, there is a second call to apply (EU)+ that
works in a similar way. At this second application, the selected eventuality is E((p ∧
E(TUq))Uq). Its contextualised variant is E((p∧E(TUq)∧ F)Uq), which is kept selected.

For each rule that splits branches (i.e. β or β+) there is an application algorithm
similar to Algorithm 8. For the α-rules, that enlarge the branch with one node, a
recursive call to Asys on the only one child suffices.

In line 10, the algorithm checks and applies applicable α- or β-rules. When no α-
or β-rules are applicable, it means that Σ is an elementary set of formulae (line 12).
Therefore, in lines 13-23, the rule (◦E) or (◦A) is applied, by iterating recursive calls to
Asys(Σi, b+[[Σi]]) for each child labelled by Σi. Note that, each application of a tableau
rule (◦Q) produces a recursive call for a (◦Q)-child Σi, where the current branch b is
actualised to include a new stage containing just Σi (this is expressed in the algorithm by
b+ [[Σi]]). Let us also observe that (◦E)-children are AND-siblings, hence the iteration
on the (◦E)-children terminates as soon as one of them is closed. On the contrary, if
every (◦E)-child is open the tableau should have a collection of open branches including
all the (◦E)-successors of any node labelled by an elementary set of formulae, i.e. and
open bunch. Any open bunch of the systematic tableau, constructed by the algorithm
Asys introduced in this section, enables the construction of a model for the initial set of
formulae.

Example 19. For example, in Figure 4.5, if the left-most sub-tableau (i.e. the closed
tableau in the figure) is firstly constructed, then its right-hand child would not be con-
structed, since any bunch would be necessarily closed (see Example 12). In Example 16
we show an open tableau that contains two open bunches.

Example 20. The call Asys with input Σ = {E(pUq),A(FR¬q)} constructs the closed
tableau in Figure 4.7 as explained along this section. A tableau for the same input Σ
is also exhibited in [1, 47]. Note the direct correspondence between our context-based
tableau (Figure 4.7) and the one in [1, 47] – they have exactly the same nodes. The
right-most branch, in our case, closes by (syntactical) inconsistency, likewise all the
other branches. The difference is that, in this branch, the inconsistency comes from the
use of the context in the selected eventuality. The corresponding branch in the tableau
in [1, 47] is closed by the detection of a ‘bad loop’ using information loaded during the
construction of the previously constructed branches.

Let us recall that in [16] some (subsumption-like) simplification rules were introduced
to ensure the termination of the tableau method for the logic ECTL#. The method for
CTL (and also for ECTL) requires the following simplification rule:

(@QU) {Q((σ1 ∧ χ)Uσ2),Q(σ1Uσ2)} −→ {Q((σ1 ∧ χ)Uσ2)} (4.8)

By means of this rule, any contextualised variant of an eventuality ϕ subsumes the
original eventuality ϕ that could repeatedly appear otherwise. Our algorithm system-
atically performs these simplifications in nodes.
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To complete this section, we provide an example of systematic tableau construc-
tion involving a universal eventuality A♦ where bunches should cross along the two
applications of (◦E).

p,A�E◦¬p,A�E◦p, A♦¬p

p,A�E◦¬p,A�E◦p,¬p p,A�E◦¬p,A�E◦p,A◦ A(¬pU¬p)

p,E◦¬p,E◦p,A◦A�E◦¬p,A◦A�E◦p,A◦ A(¬pU¬p)

¬p,A�E◦¬p,A�E◦p, A(¬pU¬p)

¬p,A�E◦¬p,A�E◦p

¬p,A�E◦¬p,A�E◦p,A◦ A((¬p ∧ p)U¬p)

¬p,E◦¬p,E◦p,A◦A�E◦¬p,A◦A�E◦p,A◦ A((¬p ∧ p)U¬p)

¬p,A�E◦¬p,A�E◦p, A((¬p ∧ p)U¬p)

¬p,A�E◦¬p,A�E◦p

¬p,A�E◦¬p,A�E◦p, (¬p ∧ p),A◦ A((¬p ∧ p)U¬p)

¬p,A�E◦¬p,A�E◦p, p,A◦ A((¬p ∧ p)U¬p)

p,A�E◦¬p,A�E◦p, A((¬p ∧ p)U¬p)

p,A�E◦¬p,A�E◦p,¬p

p,A�E◦¬p,A�E◦p, (¬p ∧ p),A◦ A((¬p ∧ p)U¬p)

p,A�E◦¬p,A�E◦p,¬p,A◦ A((¬p ∧ p)U¬p)

p,A�E◦¬p,A�E◦p, A(¬pU¬p)

p,A�E◦¬pA�E◦p,¬p

p,A�E◦¬p,A�E◦p,¬p,A◦ A(¬pU¬p)

(A♦)+

⊗ (A�) + (A�)

(◦E)

(AU)+

(A�) + (A�)

(◦E)

(AU)+

(∧)

⊗

(AU)+

⊗

(∧)

⊗

(AU)+

⊗

⊗

Figure 4.8: A closed tableau for {p,A�E◦p,A�E◦¬p,A♦¬p}.

Example 21. Figure 4.8 presents a closed fully-expanded tableau for the unsatisfiable
set of formulae {p,A�E◦p,A�E◦¬p,A♦¬p}. The systematic construction starts by se-
lecting the unique eventuality and applying the rule (A♦)+. The successive contextualised
variants of this eventuality are kept selected and the rule (AU)+ is applied to them after
each application of the next-state rule (◦E). The rules (A�) and (∧) are applied to reach
the elementary sets where (◦E) is applied. For saving space, we sometimes represent two
applications of the rule (A�) in the same step.

It is worth noting that, in spite of the two open branches (see the two loops in Fig-
ure 4.8), every bunch in the figure is closed. Indeed, any bunch should contain branches
for crossing the four (◦E)-nodes (doubly underlined in Figure 4.8). It is easy to see
that any bunch contains at least one closed branch. The ‘bad loop detection approach’
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([1, 47]) would create a ‘bad loop’ branch similar to the largest branch of our tableau
in which ◦p is satisfied. For that, the information of the other branches (where p is
satisfied) should be used.

4.3.2 Soundness and Completeness

In this section, we prove that the presented tableau method for CTL is sound and
complete. We essentially adapt the soundness and completeness proofs developed in [16]
to CTL. In Section 4.4 we extend both results to ECTL.

To prove the soundness of the tableau method for CTL (Theorem 1), we show that
every tableau rule in Figures 4.1, 4.2 and 4.3 preserves satisfiability in the sense of the
next Lemma 1.

Lemma 1 (Soundness of the Tableau Rules for CTL). Consider all the rules in Figures
4.1, and 4.2 and 4.3.

1. For any α-rule of the form
Σ

Σ1
, we have Sat(Σ) if and only if Sat(Σ1).

2. For any β-rule and any β+-rule of the form
Σ

Σ1 | Σ2
, we have Sat(Σ) if and only

if Sat(Σ1) or Sat(Σ2).

3. If Σ is a consistent set of literals, then

(a) Sat(Σ∪{A◦σ1, . . . ,A◦σ`,E◦σ′1, . . . ,E◦σ′k}) if and only if
Sat({σ1, . . . , σ`, σ

′
i}) for all 1 ≤ i ≤ k.

(b) Sat(Σ∪{A◦σ1, . . . ,A◦σ`}) if and only if Sat({σ1, . . . , σ`}).

Proof. All these statements follow very easily from the ‘systematic’ application of the
semantic definitions of the temporal modalities, except the ‘if’ direction‘ for the β+-rules.
Next we prove the ‘if’ direction of the rules (QU)+ for Q = E and Q = A, because this
proof entails the proof for the rules (Q♦)+ as particular cases (using the abbreviation
♦σ = TUσ).

For the ‘if’ direction of the rule (EU)+, let K |= Σ,E(σ1Uσ2) and let x be the path
in K such that K, x |= Σ, σ1Uσ2. Then, let j be the least i ≥ 0 such that K, x, i |= σ2.
If j = 0, then K, x, 0 |= Σ, σ2. Otherwise, if j > 0 then K, x,m |= σ1, for all 0 ≤ m < j.
Consider k to be the greatest of those m such that K, x,m |= Σ. Hence, K, x, h |=∼Σ,
for all h such that k+ 1 ≤ h < j. In particular, by definition of Σ′ (obtained from Σ) it
is easy to see that K, x, h |= σ for every σ ∈ (Σ \Σ′). Therefore, K, x, h |=∼Σ′, for all h
such that k + 1 ≤ h < j. Consequently,

K, x, k |= Σ, σ1,E◦E((σ1∧ ∼Σ′)Uσ2).

For the ‘if’ direction of rule (AU)+, let us suppose that

UnSat(Σ∪{σ2}) and UnSat(Σ∪{σ1,A◦A((σ1∧ ∼Σ′)Uσ2)}).
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We will show that UnSat(Σ∪{A(σ1Uσ2)}). For that, let us consider any arbitrary K
such that K |= Σ to show that K 6|= A(σ1Uσ2). By the above unsatisfiability hypothesis,
if K |= Σ, then both K 6|= σ2 and K 6|= σ1 ∧ A◦A((σ1∧ ∼Σ′)Uσ2). Then, there are two
possible cases. First, if K |= ¬σ1 ∧ ¬σ2, then it is obvious that K 6|= A(σ1Uσ2). Second,
if K |= ¬σ2 ∧ ¬A◦A((σ1∧ ∼Σ′)Uσ2), then there exists x1 ∈ fullpaths(K) and i1 > 0 that
satisfy both K, x1, j |= ¬σ2 for all j such that 0 ≤ j ≤ i1, and K, x1, i1 |= ¬σ1∨Σ′. Since
all the formulae in Σ \ Σ′ are satisfied in all states along all paths, indeed K, x1, i1 |=
¬σ1 ∨ Σ. Therefore, if K, x1, i1 |= ¬σ1, then obviously K 6|= A(σ1Uσ2). Otherwise, if
K, x1, i1 |= Σ, applying the same reasoning for K �x1(i1) as we did above for K, we can
conclude that there should be a path x2 ∈ fullpaths(K � x1(i1)) and some i2 > 0 such
that either K �x1(i1), x2, j |= ¬σ2 for all j such that i1 ≤ j ≤ i2 and K �x1(i1), x2, i2 |=
¬σ1 ∨ Σ. Hence, if K � x1(i1), x2, i1 |= ¬σ1, then trivially K 6|= A(σ1Uσ2). Otherwise,
K �x1(i1), x2, i1 |= Σ. Hence, there are two possible scenarios: 1.) After a finite number
of iterations we get a path y = x<i11 , x<i22 , · · ·x<ikk · · · such that K, y, j |= ¬σ2 for all j
such that 0 ≤ j ≤ ik and K, y, ik |= ¬σ1. 2.) The infinite iteration of the second case
yields a path y = x<i11 , x<i22 , · · · , x<ikk , · · · (that exists by the limit closure property)
such that K, y, i |= ¬σ2 for all i ≥ 0. In both scenarios we have K 6|= A(σ1Uσ2) holds for
any arbitrary K that satisfies Σ. Thus, UnSat(Σ∪{A(σ1Uσ2)}).

According to Lemma 1 and the definition of the closed tableau, we prove the following
result.

Theorem 1 (Soundness of the Tableau Method for CTL). Given any set of state for-
mulae Σ, if there exists a closed tableau for Σ then UnSat(Σ).

Proof. In a closed tableau for Σ, at least one leaf in each bunch must have an inconsistent
set of formulae that labels it. Therefore, this set is unsatisfiable. Then, by (the converse
of) Lemma 1, the label of the root node, Σ, is unsatisfiable.

Next, we prove the refutational completeness of the tableau method for CTL (The-
orem 2). For that, we firstly define the notion of a saturated stage and prove some
auxiliary properties of the stages and bunches of the systematic tableau. These proper-
ties are necessary to prove that every open bunch in the systematic tableau represents
a model of the initial set of formulae Σ (Lemma 2).

Definition 31 (αβ+-saturated Stage). We say that a stage s = ni, . . . , nj in the tableau
Asys for Σ is αβ+-saturated if and only if it satisfies the following conditions:

1. For all σ1 ∧ σ2 ∈ τ(s): {σ1, σ2} ⊆ τ(s).

2. For all Q�σ ∈ τ(s): {σ,Q◦Q�σ} ⊆ τ(s).

3. For all σ1 ∨ σ2 ∈ τ(s): σ1 ∈ τ(s) or σ2 ∈ τ(s).

4. For all Q(σ1Rσ2) ∈ τ(s) : {σ2, σ1 ∨ Q◦Q(σ1Rσ2)} ⊆ τ(s).

5. For all Q(σ1Uσ2) ∈ τ(s): σ2 ∈ τ(s) or {σ1,Q◦Q(σ1Uσ2)} ⊆ τ(s) or
{σ1,Q◦Q((σ1∧ ∼Σ′)Uσ2)} ⊆ τ(s), where
Σ′ = (τ(ni) \ {Q(σ1Uσ2)}) \ {(A◦)iA�ϕ | i ≥ 0 and (A◦)iA�ϕ ∈ τ(ni)}.
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6. For all Q(♦σ) ∈ τ(s) : σ ∈ τ(s) or {Q◦Q(♦σ)} ⊆ τ(s) or
{Q◦Q((∼Σ′)Uσ)} ⊆ τ(s), where
Σ′ = (τ(ni) \ {Q♦σ}) \ {(A◦)iA�ϕ | i ≥ 0 and (A◦)iA�ϕ ∈ τ(ni)}.

The construction of the systematic tableau applies exactly one β+-rule to exactly one
selected eventuality (if any) at the first node of the stage, and then applies exhaustively
all the applicable α- and β-rules to the formulae in the stage, until the branch closes, or
its leaf is labelled by an elementary set, or it contains a loop-node. Consequently, the
following result can be trivially proved by construction.

Proposition 5. Given any set of state formulae Σ, the systematic tableau Asys for Σ
is fully expanded.

Proof. It is trivial, by construction, that every stage in Asys is αβ+-saturated.

Next we prove a crucial property of the systematic tableau management of eventu-
alities by means of the selection policy.

Proposition 6. Let b be an open branch of the tableau Asys for Σ.

1. If a formula Q(σ1Uσ2) is selected at some stage si ∈ stages(b), then there exists
some stage sk ∈ stages(b) (for some k ≥ i) such that σ2 ∈ τ(sk) and σ1 ∈ τ(sj)
for all j ∈ {i, . . . , k − 1}.

2. If a formula Q(♦σ) is selected at some stage si ∈ stages(b), then there exists some
stage sk ∈ stages(b) (for some k ≥ i) such that σ ∈ τ(sk).

Proof. We will prove item 1. Item 2 is the particular case where σ1 = T and σ2 = σ. If
Q(σ1Uσ2) is the selected formula at stage si ∈ stages(b), by algorithm 7, the set labelling
the first node at each stage sj (j ≥ i) of b has the form

Σsj ,Q((σ1 ∧ (∼Σsi ∧ · · · ∧ ∼Σsj−1))Uσ2)

where each Σsj is the context of the selected formula containing the contextualised
variant of Q(σ1Uσ2) at the first node of each stage sj . Since no other β+-rule is applied
each Σsj is a subset of the finite set formed by all state formulae that are subformulae
of some formula in Σsi and their negations. Hence, there are a finite number of different
Σsj . Therefore, after finitely many applications of the β+-rule, Σsh = Σsj , for some
h >= i, for some j ∈ {i, . . . , h − 1}, and σ1 ∧ (∼ Σsi ∧ · · · ∧ ∼ Σsh−1

) ∈ τ(sh). In
particular, ∼ Σsh ∈ τ(sh), hence, Σsh must be inconsistent. Since b is open, this is a
contradiction. This means that, for some k ≥ i the application of the corresponding
β+-rule should force that σ2 ∈ τ(sk). In addition, by Proposition 5 and Definition 31(5),
σ1 ∈ τ(sj) for all j ∈ {i, . . . , k − 1}.

Lemma 2 (Model Existence). Let Σ be any set of formulae. For any fully expanded
bunch H of the tableau Asys for Σ, there exists a Kripke structure KH such that KH |= Σ.

Proof. Let H be any fully expanded bunch of the tableau Asys for Σ. We define KH =
(S,R,L) such that S =

⋃
b∈H stages(b) and for any s ∈ S: L(s) = {p | p ∈ τ(n) ∩

Prop for some node n ∈ s}. R is the relation induced in stages(b) for each b ∈ H. Any
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branch in b ∈ H is open, hence b ends in a loop-node. Moreover, every eventuality has
been selected in some stage of b. Therefore, there exists a (possibly empty) set Σ` such
that for some i ≥ 0: b = s0, s1, . . . , si−1, si, si+1, . . . , sj , n`, where each sh stands for a
stage and n` is a non-expandable loop-node labelled by Σ` whose companion node is the
first node at stage si. We are going to prove the following fact:

KH , sa, 0 |= σ for any a ∈ {0, . . . , j} and any formula σ in L(sa)

by structural induction on the formula σ.
The base of the induction, for σ = p ∈ Prop, follows by definition of KH .
The cases where σ has one of the forms σ1 ∧ σ2, Q�σ, σ1 ∨ σ2 and Q(σ1Rσ2) are

trivial by Definition 31 and the induction hypothesis. Hence, to complete the inductive
proof we will show that KH , sa, 0 |= Q(σ1Uσ2) for any Q(σ1Uσ2) ∈ L(sa).

The case for all Q♦σ ∈ L(sa) follows as a particular case by ♦σ ≡ TUσ. Consider
any Q(σ1Uσ2) ∈ L(sa). Since b is eventuality-covered and n` is a loop-node, Q(σ1Uσ2)
must be the selected eventuality at some node between the states sa and sj . Hence,
by Proposition 6 and the definition of KH , there should be a state sk ∈ S (for some
a ≤ k ≤ j) such that σ2 ∈ L(sk) and σ1 ∈ L(sz) for all z ∈ {a, . . . , k − 1}. Then,
by induction hypothesis, KH , sk, 0 |= σ2 and KH , sz, 0 |= σ1 for all z ∈ {a, . . . , k − 1}.
Therefore, KH , sa, 0 |= Q(σ1Uσ2).

To complete the proof, we show that the successor relation between states in KH is
well-defined. For that, consider any tableau node in any stage sa that is labelled by an
elementary set

{Σ,A◦σ1, . . . ,A◦σn,E◦σ′1, . . . ,E◦σ′k}
where Σ is a consistent set of literals, by rule (◦E), sa has (in KH) a successor state sia+1,
for each i ∈ {1, . . . , k}, such that L(sia+1) = {σ1, . . . , σn, σ

′
i}. We can assume (by the

above proved fact) that KH , sia+1, 0 |= {σ1, . . . , σn, σ
′
i} for all i ∈ {1, . . . , k}. Therefore,

we can infer that KH , sa, 0 |= {Σ,A◦σ1, . . . ,A◦σn,E◦σ′1, . . . ,E◦σ′k}.

Next, we prove the refutational completeness of the tableau method.

Theorem 2 (Refutational Completeness for CTL). For any set of state formulae Σ, if
UnSat(Σ) then there exists a closed tableau for Σ.

Proof. Suppose the contrary, i.e. there exists no closed tableau for Σ. Then the sys-
tematic tableau Asys for Σ is open. Hence, there is at least one fully expanded bunch
H in Asys. By Lemma 2, there exists a Kripke structure KH such that KH |= Σ.
Consequently, Sat(Σ).

Finally, we prove the completeness of our tableau method for CTL, and the first step
here is to show that the method terminates.

Theorem 3 (Termination of the Tableau Method for CTL). For any set of state for-
mulae Σ, the construction of the fully expanded tableau Asys for Σ terminates.

Proof. Tableau rules produce a finite branching, hence König’s Lemma, applies. There-
fore, it suffices to prove that every branch is finite. By Proposition 6, the application of a
β+-rule to a selected formula stops after a finite number of steps. Since the number of se-
lectable eventualities in any open branch is finite, any open branch is eventuality-covered
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after a finite number of eventuality selections. Recall that we assume the eventuality
selection strategy to be fair.

Theorem 4 (Completeness of the Tableau Method for CTL). For any set of state
formulae Σ, if Σ is satisfiable then there exists a (finite) open fully expanded tableau
for Σ.

Proof. By Theorems 1 and 3, and the fact that the fully expanded systematic tableau
Asys for Σ is finite and cannot be closed.

4.3.3 The Dual Sequent Calculus for CTL

(∧)
Σ, σ1, σ2 ` F

Σ, σ1 ∧ σ2 ` F
(∨)

Σ, σ1 ` F | Σ, σ2 ` F

Σ, σ1 ∨ σ2 ` F
(Ctd)

Σ, σ,∼σ ` F
(F)

Σ,F ` F

(QR)
Σ, σ2, σ1 ∨ Q◦Q(σ1Rσ2) ` F

Σ,Q(σ1Rσ2) ` F
(Q�)

Σ, σ,Q◦Q�σ ` F

Σ,Q�σ ` F

(QU)
Σ, σ2 ` F Σ, σ1,Q◦Q(σ1Uσ2) ` F

Σ, σ1Uσ2 ` F
(Q♦)

Σ, σ ` F Σ,Q◦Q♦σ ` F

Σ,Q♦σ ` F

(QU)+ Σ, σ2 ` F Σ, σ1,Q◦Q((σ1∧ ∼Σ′)Uσ2) ` F

Σ,Q(σ1Uσ2) ` F

(Q♦)+ Σ, σ ` F Σ,Q◦Q((∼Σ′)Uσ) ` F

Σ,Q♦σ ` F

(◦E)
Σ, σ ` F

Σ0,A◦Σ,E◦σ ` F
(◦A)

Σ ` F

Σ0,A◦Σ ` F

Figure 4.9: The Sequent Calculus for C`.
In (QU)+ and (Q♦)+, Σ′ = Σ \ {(A◦)iA�σ ∈ Σ | i ≥ 0}. In (◦E) and (◦A), Σ0 is a set
of literals.

In this section we introduce a sequent calculus for CTL, called C`, that is dual to the
tableau method presented in previous sections. Indeed, the sequent calculus, given in
Figure 4.9, is simply a reformulation of the tableau rules as a one-sided sequent calculus,
the right-hand side of every sequent is the constant F.

The calculus C` contains classical rules, such as (∧) and (∨) for Booleans, and (Ctd)
and (F) for contradictions. The last two rules correspond to the branch closing conditions
of the tableau method and they are premise-free, while all the other rules have at least
one premise. In the rules (QR), (Q�), (QU), (Q♦), (QU)+, and (Q♦)+, the symbol Q
again denotes either of the path quantifiers, E or A. Therefore, each of these rules stands
for a pair of analogous rules for each path quantifier, which correspond directly to the
tableaux rules of the same name.
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Note that the children of an elementary set with more than one formula starting by
E◦ are AND-siblings, so that in the calculus it is enough to refute one of this AND-
children. This corresponds to the tableau notion of a closed bunch (Definition 29).

Example 22. In Figure 4.10, we show the sequent proof that corresponds to the closed
tableau in Figure 4.7.

(Ctd)

q,¬q,F ∨ A◦A(FR¬q)) ` F

(AR)

q,A(FR¬q) ` F

(F)

p, ψ,¬q,F ` F

See Figure 4.11

p, ψ,¬q,A◦A(FR¬q) ` F

(∨)

p, ψ,¬q,F ∨ A◦A(FR¬q) ` F

(AR)

p,E◦E((p ∧ E(TUq))Uq)︸ ︷︷ ︸
ψ

,A(FR¬q) ` F

(EU)+

E(pUq),A(FR¬q) ` F

Figure 4.10: Sequent proof for {E(pUq),A(FR¬q)}.

(Ctd)

q,¬q,F ∨ A◦A(FR¬q) ` F

(AR)

q,A(FR¬q) ` F

(Ctd)

p,E(TUq), ψ,A(FR¬q) ` F

(∧)

p ∧ E(TUq), ψ,A(FR¬q) ` F

(EU+)

E((p ∧ E(TUq))Uq),A(FR¬q) ` F

(◦E)

p, ψ,¬q,A◦A(FR¬q) ` F

Figure 4.11: Sequent proof for {p, ψ,¬q,A◦A(FR¬q)} where ψ = E◦E((p ∧ E(TUq))Uq).

The soundness and completeness of C` easily follows from its duality with the tableau
method for CTL presented in the previous sections.

Theorem 5 (Soundness). For any set of CTL formulae Σ, if there exists a sequent proof
of Σ ` F, then UnSat(Σ).

Proof. By induction on the length of the sequent calculus proof, it suffices to prove that
every sequent rule is correct in the sense that if the set of formulae in the left-hand-side
of each premise is unsatisfiable then the set of formulae of the conclusion is unsatisfiable.
For the rules (Ctd) and (F) is trivial. For the rest of the sequent rules the proof is similar
to the proofs of the analogous tableaux rules in Lemma 1.

Theorem 6 (Completeness). For any set of CTL formulae Σ, if UnSat(Σ), then there
exists a sequent proof of Σ ` F.

Proof. If UnSat(Σ), then the tableau Asys for Σ is fully expanded and closed. Each leaf
of Asys corresponds to an axiom obtained by application of the sequent rule (Ctd) or
(F). A sequent proof of Σ ` F is obtained from axioms by an application of the sequent
rule corresponding to a tableau rule in the construction of Asys.
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4.4 Extending the Dual Method to ECTL

In this section we explain a (relatively easy) way to extend the CTL tableau method and
its dual sequent calculus to the more expressive logic ECTL. This is achieved by adding
the new tableau rules given in Figure 4.12 and their dual sequents rules in Figure 4.15.
These rules correspond to the following logical equivalences for the basic modalities that
extend CTL to ECTL:

E�♦σ ≡ E♦σ ∧ E◦E�♦σ E♦�σ ≡ E�σ ∨ (E♦σ ∧ E◦E♦�σ)
A�♦σ ≡ A♦σ ∧ A◦A�♦σ A♦�σ ≡ A�σ ∨ (A♦σ ∧ A◦A♦�σ)

(4.9)

(Q�♦)
Σ,Q�♦σ

Σ,Q♦σ,Q◦Q�♦σ (Q♦�)
Σ,Q♦�σ

Σ,Q�σ | Σ,Q♦σ,Q◦Q♦�σ

Figure 4.12: Additional tableau rules for ECTL

The rule (Q�♦) is added to the set of α-rules and the rule (Q♦�) is added to the set
of β-rules. There are no additional β+-rules. Indeed the eventualities Q♦σ introduced
by the rules in Figure 4.12 are CTL-modalities that are handled by the β+-rules of the
method for CTL.

We extend soundness and completeness results (for CTL) to ECTL. Firstly, we extend
Lemma 1 to the rules in Figure 4.12.

Lemma 3. For any ECTL set of state formulae Σ and any state formula σ:

1. Sat(Σ∪{Q�♦σ}) if and only if Sat(Σ∪{Q♦σ,Q◦Q�♦σ}).

2. Sat(Σ∪{Q♦�σ) if and only if Sat(Σ,Q�σ}) or Sat(Σ∪{Q♦σ,Q◦Q♦�σ}).

Proof. It follows by ‘systematic’ application of the semantic definitions of the modalities
Q�♦ and Q♦� given by the equivalences (4.9).

As a consequence of Lemma 3, the soundness Theorem 1 easily extends to ECTL.
For refutational completeness of ECTL, we firstly extend Definition 31 with the following
additional conditions for a stage to be αβ+-saturated:

Definition 32. We say that a stage s = ni, . . . , nj in the ECTL systematic tableau for
Σ is αβ+-saturated if and only if it satisfies the conditions in Definition 31 and the
following two additional conditions:

7. For all Q�♦σ ∈ τ(s): {Q♦σ,Q◦Q�♦σ} ⊆ τ(s).

8. For all Q♦�σ ∈ τ(s): {Q�σ} ⊆ τ(s) or {Q♦σ,Q◦Q♦�σ} ⊆ τ(s).

It is obvious that the conditions 7. and 8. are satisfied in any stage of the systematic
tableau by construction. Using these conditions, it is routine to prove thatKH , as defined
in Lemma 2, satisfies the fact that: KH , sa, 0 |= σ for any a ∈ {0, . . . , j} and any formula
of the form Q�♦σ,Q♦�σ that belongs to L(sa). Therefore, refutational completeness
(i.e. Theorem 2) extends to ECTL. Finally, for the termination result (see the proof in
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Theorem 3), it suffices to ensure that the rules in Figure 4.12 do not affect the behaviour
of the β+-rules on the selected eventualities in the sense that Proposition 6 is preserved.
Furthermore, although each application of a rule in Figure 4.12 introduces a new Q♦σ,
the simplification rule (@QU) (see (4.8) in Section 4.4) ensures that any occurrence of
an eventuality is subsumed by its contextualised variant. Therefore, Proposition 6 holds
and hence Theorem 3 extends to ECTL.

Next, we present an example of systematic tableau for an ECTL input where addi-
tional rules for ECTL are applied, along with CTL rules.

p,E�♦p,A♦�p

p,E�♦p,A�p

p, E♦p ,E◦E�♦p,A�p

p,E◦E�♦p,A�p

p,E◦E�♦p,A◦A�p

E�♦p,A�p

p,E◦ E(¬pUp) ,E◦E�♦p,A�p

p,E◦ E(¬pUp) ,E◦E�♦p,A◦A�p

p, E(¬pUp) ,A�p

p,A�p p, E◦E(¬pUp) ,A�p

p, E◦E(¬pUp) ,A◦A�p

E(¬pUp) ,A�p

p,E�♦p,A�p

p,E�♦p, A♦p ,A◦A♦�p

(A♦�)

(E�♦)

(E♦)+

(A�)

(◦E)

(A�)

(◦E)

(EU)+

(A�) (A�)

(◦E)

Figure 4.13: ECTL systematic tableau for {p,E�♦p,A♦�p}.

p

Figure 4.14: Graphic representation of the model for {p,E�♦p,A♦�p}.

Example 23. Figure 4.13 partially shows an open tableau with the application of two
of the rules added to extend CTL to ECTL. We just outline some branches to illustrate
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how the ECTL-rules (A♦�), and (E�♦) (in Figure 4.12) are applied. The tableau for
the right-most node, which is also open, is not depicted for space reasons. Note that
our algorithm constructs just the left-most branch to decide that the label of the root is
satisfiable returns a very simple model depicted in Figure 4.14, which is a cyclic Kripke
structure with the single fullpath {p}w.

The calculus C` is also extended by adding the sequent rules that are dual to the
tableau rules in Figure 4.12. These additional sequent rules are given in Figure 4.15 and
the duality of the extended tableau and sequent calculus for ECTL is trivial.

(Q�♦)
Σ,Q♦σ,Q◦Q�♦σ ` F

Σ,Q�♦σ ` F

(Q♦�)
Σ,Q�σ ` F Σ,Q♦σ,Q◦Q♦�σ ` F

Σ,Q♦�σ ` F

Figure 4.15: Additional sequent rules for ECTL.
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5. MomoCTL: IMPLEMENTATION AND EXPERIMENTATION

A useful comparison of five satisfiability procedure implementations for CTL can be found
in [48] (two of these procedures are tableau-based). The first method [12] is a two-pass
tableau which, in the first pass creates a cyclic graph. In this graph, a ‘bad loop’ is a loop
containing some eventuality that is not fulfilled along it. Therefore, in the second pass,
‘bad loops’ are pruned. The second method [1, 47] is a single-pass tableaux decision
procedure based on Schwendimann’s one-pass procedure for PLTL [79]. This tableau
method uses an additional mechanism for collecting information on the set of formulae
in the nodes and passing it to subsequent nodes along branches. The information on
previously generated nodes helps detecting ‘bad loops’ without constructing the whole
graph.

We have implemented a prototype called MomoCTL which, when it receives a set of
formulae Σ as input, decides whether Σ is satisfiable or unsatisfiable. MomoCTL also
returns a Kripke structure that certifies the satisfiability of Σ or a sequent calculus proof
that certifies that Σ can be refuted. Recall that this was our aim: a deductive technique
for branching-time logics with a reasoning mechanism capable of providing both formal
proofs and models. The set Σ could contains any set of CTL formulae in NNF, also a
representation of a transition system and a negated property. That is why we can also
consider MomoCTL as a Certified Model Checker.

For the implementation we have used Dafny. Dafny is a language and a tool capable
of implementation and verification. This makes Dafny an interesting option to bring
reliability to the implementation of the method.

After implementing the method, MomoCTL has been tested against the benchmarks
used in [48], available in http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/.
We also compare our results with the Gore’s CTL-prover presented in [1, 47], which we
call TreeTab. Finally, we note that, to the best of our knowledge, there has been no
explicit formulation of a tableau (one or two pass) method for ECTL.

The chapter consists of 3 sections: Section 5.1 introduces Dafny: the main ideas,
the IDE, and features. The complete algorithm is explained in detail in Section 5.2, as
well as its implementation using the Dafny language. Finally, Section 5.3 compares the
results obtained by MomoCTL and TreeTab when running the set of benchmarks.

5.1 Dafny Language

Dafny [60] is a program verifier that can be used to verify the functional correctness
of programs, enabling the user to create and verify both specifications and implemen-
tations. The Dafny specification language extends first-order logic with algebraic data
types, inductive predicates, generic types, abstracting and refining modules, assertions,
and many others built-in specification features that makes Dafny a good candidate for

http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/
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our work. In this section, we briefly introduce the main notions of Dafny that facilitate
the understanding of the implementation and experimentation explained in 5.2.2 and
5.3 respectively.

The basic unit of a Dafny program is the method. A method is a piece of executable
code with a head where multiple named parameters and multiple named results are
declared. Dafny has also built-in specification constructs for assertions, such as requires

for preconditions, ensures for postconditions, and assert for inline assertions. Using
requires and ensures we specify methods and lemmas. Assertions specify properties
that are satisfied at some point. Assertions are mainly used to provide hints to the
verifier. In other words, once the assertion is proved, it turns into a usable property for
completing the proof. Indeed, “assert ϕ” tells Dafny to check that ϕ holds and to use
the condition ϕ (as a lemma) to prove the properties beyond this point.

Dafny distinguishes between ghost entities and executable entities. Ghost entities
are used only during verification; the compiler omits them from the executable code.
The lemma declarations are like methods, but no code is generated for them, i.e. a lemma
is equivalent to a ghost method. The body of a lemma is its proof. For lemma proofs,
Dafny provides a special notation that is easy to read and understand: calculations that
were presented by [64]. A calculation in Dafny is a statement that proves a property.
This notation was extracted from the calculational method introduced by [9], whereby
a theorem is established by a chain of formulae, each transformed in some way into the
next. The relationship between successive formulae (for example, equality, implication,
double implication, etc.) is indicated, or it can be omitted if it is the default relationship
(equality). In addition, the hints (usually asserts or lemma calls) that justify a step can
also be indicated (in curly brackets after the relationship). Calculations are written
inside the environment calc{ }.

Dafny also provides built-in immutable types, such as set, multiset, map, and seq

– which respectively denote the finite collections types of sets, multisets, maps, and
sequences – that are very useful in specification. These built-in types are equipped with
the usual operations, including set comprehension expressions:

set x1 : T1,x2 : T2, . . .,xi : Ti | P(x1,x2, . . .,xi) • E(x1 ,x2 , . . .,xi)

for defining the set of all values given by the expression E(x1,x2,. . .,xi) for all tuples
(x1,x2,. . .,xi) such that P(x1,x2,. . .,xi).1

Dafny also offers user-defined specification constructs (which are ghost), such as
function and predicate that can be defined using well-founded inductive definitions, built-
in immutable types, polymorphic algebraic datatypes, inductive predicates, co\-inductive
predicates, etc.

The Dafny specification constructor inductive predicate (resp. co-inductive predicate)
was introduced by [62] and allows for the definition of a predicate as an extreme solution:
a least fixpoint (resp. a greatest fixpoint) of a set of recursive rules.

For defining variables in methods, functions and proofs, Dafny includes a let-such-
that statement: var x : | P that looks like a variable declaration but it includes a boolean
expression P after the so-called Hilbert epsilon operator or choose operator : | . A state-
ment var x : | P can be read as assigning to x any value that satisfies P. The verifier must

1 For easy reading, in the Dafny code snippets, we show the usual mathematical symbols, instead of
real Dafny notation. For example, we show • for :: (such that), ∧ for &&, ∀ for forall, etc.
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be able to prove that a value satisfying condition P exists, but not to construct it. Then,
for verification purposes, the variable x will stand for any value that fulfils P. Conse-
quently, these let-such-that statements are not directly compilable into executable code.
A discussion of the implementation problems of this operator in the Dafny language
is given in [61] and [63] provides an example of a non-compilable function for which a
compilable version is constructed.

The Dafny integrated development environment (IDE) is an extension of Microsoft
Visual Studio (VS). From Dafny version 2.1.1 it is included in Visual Code Environment.
The IDE is designed to reduce the effort required by the user to make use of the system.
The IDE runs the program verifier in the background and provides design time feedback.
Assertions are sent to the SMT solver Z3 [30] (a fully automatic theorem prover) to check
its satisfiability, which will be reported to the Dafny user. Assertion violations in lemma
proofs are reported, as well as verification errors, along with different information such
as locations (of the properties) related to the error. The interested reader is referred
to [65] for more information on the various ways in which the Dafny IDE helps to build
both lemma proofs and verified software.

Like in other proof assistants (e.g. Isabelle and Coq) and verifiers (e.g. Why3 and
KeY), Dafny allows proofs to be written in different styles and with different levels of
description. Therefore, making proofs readable and easy to check by humans is part of
the Dafny user’s job.

Dafny is able to export executable files (.exe), libraries (.dll) and .Net source code
(.cs) once the automatic verification has succeeded and all lemma have been proved.
Also, from Dafny 3.0, users can export JavaScript, Java and C++ code. Precisely, as
it is detailed in Section 5.2.3, we export Java code from the implementation of our
prototype MomoCTL.

5.2 Implementation of MomoCTL

This section presents the implementation of MomoCTL. In Section 5.2.1 we explain
the details of the complete algorithm. Section 5.2.2 presents the general structure of
the Dafny code. Finally, Section 5.2.3 discusses the created console application and its
integration with Dafny.

5.2.1 Algorithm

First we extend the algorithm Asys (see Algorithm 7) to E (see Algorithm 9), so that
depending on the value of is closed, E is able to return either a proof or a model, but
not both.

We can easily construct a model from an open tableau. Models are represented as
trees. Each branch of the tree corresponds to a branch of the open tableau, which ends
with a leaf pointing to some ancestor in the branch. Each non-leaf node in a branch of
the tree is the set of atoms appearing in one of the stages of the corresponding branch
in the tableau. Example 24 displays the model returned by E when executed over a set
of formulae.
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Algorithm 9: E
Input = Σ: set of formulae, b: Branch, P: Proof, M: Model.
Output = is closed: boolean, b′: Branch, P’: Proof, M’: Model.

1 if Σ = ∅ then
2 is closed, b′ := false, b;
3 M ′ := EmptyLeaf Model;

4 else if (F) applies to Σ then
5 is closed, b′ := true, b;
6 P ′ := ProofLeaf((F),Σ);

7 else if (Ctd) applies to Σ then
8 is closed, b′ := true, b;
9 P ′ := ProofLeaf((Ctd),Σ);

10 else if Σ ⊆ τ(s) for some stage s in b & Ev Covered(b) then
11 is closed, b′ := false, b;
12 M ′ := ModelLeaf(s, b);

13 else if β+ is applicable(Σ) then
14 select eventuality(Σ) ;
15 is closed, b′, P ′,M ′ := apply β+ rule(Σ, b, P,M);

16 else if α β is applicable(Σ) then
17 is closed, b′, P ′,M ′ := apply α β rule(Σ, b, P,M);
18 else // is elementary(Σ)
19 Let Σ = Φ,A◦(Ψ),E◦σ1, . . . ,E◦σk where k ≥ 0;
20 if k ≥ 1 then
21 Let Σi = Ψ, σi for all 1 ≤ i ≤ k ;
22 n := k;

23 else
24 Σ1, n := Ψ, 1
25 end
26 i, is closed :=0, false ;
27 ListModels := EmptyList ;
28 while is closed = false & i < n do
29 i := i+ 1 ;
30 is closed, b′, Pi,Mi := E(Σi, b+ [[Σi]], P,M);
31 if is closed = false then add(Mi, ListModels);

32 end
33 if is closed then
34 if k = 0 then P ′ := ProofNode((◦A),Σ, [Pi]) ;
35 else P ′ := ProofNode((◦E),Σ, [Pi]) ;

36 else
37 M ′ := ModelNode(Atoms(Σ), ListModels)
38 end

39 end

The representation of a proof is also a tree whose nodes are steps of the proof. Thus,
each leaf contains the inconsistent sequent and name of the premise-free rule (Ctd) or
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(F) that applies to it. Non-leaf nodes contain the sequent Σ and the name of the rule
(R) that applies to prove that Σ ` F. Its children contain the proofs of the subgoals
that result from applying (R) to Σ ` F.

In the initial call to algorithm E , the proof and the model are both empty, there-
fore to decide the satisfiability of a set Σ and generate a proof or model, we call
E(Σ, [[Σ]], EmptyProof,EmptyModel). Note also that the branch contains just one
stage that consists of Σ.

Lines 1-12 are the non-recursive cases. In line 3, the algorithm returns a model
of the empty set of formulae, which is a linear model that consists of an empty state
(every atom is false in it) that is infinitely repeated. In lines 6 and 9, it returns just one
sequent which is a proof by one of the premise-free rules (F) and (Ctd), respectively. In
line 10, the algorithm detects that Σ gets an eventuality-covered loop at the stage s in
the current branch b. Therefore, the algorithm creates a branch of the potential model
with the atoms that are loaded (as formulae) at each stage of b from s to the current
node. This branch terminates by a leaf which is just a pointer to stage s.

Recursive constructions of proofs and models, are performed in lines 15, 17 and 26-36
of Algorithm 9. The calls to apply β+ rule and apply α β rule apply the corresponding
rule to a designated formula in the node label, and recursively call E with the children
produced by the applied rule. For example, see Algorithm 10, to apply the β+-rule
(EU)+ to Φ = Σ,E(σ1Uσ2). The procedure E is called on parameters Σ1 = Σ∪{σ2},
the extended branch b1, with the proof P , and the model M . Both P and M where
the parameters of the call apply β+ rule(Σ, b, P,M) (in line 15). If this recursive call
returns in is closed the value true, E is called with Σ2 = Σ∪{σ1,E((σ1∧ ∼ Σ′)Uσ2)}
and the value of this call is assigned to is closed.

Algorithm 10: Apply (EU)+ to Φ = Σ,E(σ1Uσ2) that returns a proof, when
it exists.

1 Σ := Φ \ {E(σ1Uσ2)};
2 is closed, b′, P1,M

′ := E(Σ1, b1, P,M) where
3 Σ1 = Σ∪{σ2} and b1 = update(b,Σ1);
4 if is closed then
5 is closed, b′, P2,M

′ = E(Σ2, b2, P,M) where
6 Σ2 = Σ∪{σ1,E((σ1∧ ∼Σ′)Uσ2)} and
7 b2 = update(b,Σ2);
8 if is closed then
9 P ′ := ProofNode((EU)+,Σ, [P1, P2]);

10 end

11 end

The recursive calls for Σ1 and Σ2 also construct either a proof or a model depending
on the value of is closed. When both calls report that is closed is true, then P1 contains
a proof for the sequent Σ1 and P2 contains a proof for the sequent Σ2, then Algorithm
10 (line 9) returns in P ′ a proof for Σ whose last step is the application of the rule (EU)+

to the sequents proved by P1 and P2. Consequently, when at least one of the two calls
(for Σ1 and Σ2) reports that the tableau is not closed, the tableau for Σ is open and
Algorithm 10 returns the model M ′.
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The application of α, β and β+ rules does not construct models, they only load
atoms in stages that will be collected and structured according to the application of the
next-state rules when a cycle is detected. In lines 26-36 of Algorithm 9, one next-state
rule is applied to an elementary set Σ with a number k ≥ 0 of formulae E◦σi. If k = 0
then n := 1 and, depending on the value of is closed for the only recursive call, the
algorithm constructs a proof for Σ from the returned proof P1 of Σ1 whose last step
is the application of the rule (◦A). Otherwise, if k > 0, then n := k and there is a
recursive call for each AND-child of Σ, namely Σ1, . . . ,Σn. If some of these calls for Σi

returns in is closed the value true, then it also returns in Pi a proof for Σi. Therefore
it constructs in P ′ a proof for Σ that applies the rule (◦A). Otherwise, it collects a
list a models M1, . . . ,Mn, one for each of the n ≥ 1 calls with respective parameters
Σ1, . . . ,Σn. Note that each call returns that is closed is false. Then, this list of n ≥ 1
models is used to compose a model of Σ whose root contains the atoms of Σ and this
root has n children M1, . . . ,Mn. Recall that the leaves of our models are either empty
leaves (line 3) or pointers to some previous stage in the branch (line 12).

Example 24. For the following set of formulae Σ:

{ A�(a→ ¬(b ∨ c)), A�(b→ ¬(a ∨ c)), A�(c→ ¬(b ∨ a)),
E♦A�a, E♦A�b, E♦A�c }

our prototype returns the following Kripke structure as a model of Σ that certifies its
satisfiability.

State 0: {}

Subtree 1 of State 0

---State 1: {c} --> cycle to State 1

Subtree 2 of State 0

---State 1: {b} --> cycle to State 1

Subtree 3 of State 0

---State 1: {a} --> cycle to State 1

Figure 5.1 shows a graphical representation of this model.

c ba

Figure 5.1: Graphic representation of the Kripke structure returned by the prototype.

Algorithm 9 is the basis of our implementation, however, we have implemented some
improvements mainly aimed at the efficiency and the usability in CMC. The formulae of
the form A�ϕ, that we call global invariants, are the most common in a model checking
problem. In model checking, the formula that characterises a computation tree of a
transition system is a (usually large) conjunction (collection) of global invariants. To
provide shorter, clearer and readable proofs in CMC applications, we take advantage of
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the fact that, for each invariant A�σ, either this formula itself or A◦A�σ are in the node
of the tableau, and both formulae are at every stage. Hence, proofs are easier to follow if
we discharge all global invariants (and all (A◦ϕ) where ϕ is a global invariant). Indeed,
the user could consult the transition system specification to follow the reasoning, though
we specify in the proof when a rule is applied to an invariant formula (see sequent 2 in
Example 25). Moreover, we do not load global invariants along the stages of the current
branch.

Example 25. Consider the set of formulae Σ = {p,A�(p→ A◦p),E♦¬p}. In the model
checking framework the first formula could be seen as the initial state condition, the
second formula as the model specification, and the third as the negation of the property
A�p, which the user is asking to check. Our prototype on this input Σ returns the
expected result – that Σ is unsatisfiable (therefore, the property A�p holds in any model
of {p,A�(p→ A◦p)}) and also gives the following ’detailed’ proof as certificate:

0.E♦¬p, p. apply (E♦+)
-1.¬p, p. by (Ctd)

-2.E◦(E(¬pU¬p)), p. apply (A�) to Inv: A�(¬p ∨ A◦p)
--3.¬p ∨ A◦p,E◦(E(¬pU¬p)), p. apply (∨)
---4.E◦(E(¬pU¬p)),¬p, p. by (Ctd)
---5.E◦(E(¬pU¬p)),A◦p, p. apply (◦E)
----6.E(¬pU¬p), p. apply (EU+)
-----7.¬p, p. by (Ctd)
-----8.E◦(E(¬pU¬p)),¬p, p. by (Ctd)

It is worth to note that sequent 2 is derived by the application of (E♦+) to sequent
0. In 0, the context of E♦¬p is just {p}. This context cannot be repeated from the
next-state onwards until the eventuality would be fulfilled. Therefore, the contextualised
variant E(¬pU¬p) (of E♦¬p) should be fulfilled from the next-state on.

Our prototype provides proofs with two grades of granularity: small-step proofs and
big-step proofs. A small-step proof includes all rule applications (as the proof in Example
25). A big-step proof includes only the sequents before the application of a next-step
rule, i.e. the elementary sets that have been refuted. In particular, the big-step version
for Example 25 consists of just one elementary sequent:

---5. E◦(E(¬pU¬p)),A◦p, p.
Big-step proofs are useful when proofs are very long and especially in CMC, when the
user wants just to see the evolution of the system that leads to contradiction. In the
previous example, the unique sequent informs that the system evolves to satisfy p,A◦p
while it should satisfy E◦E(¬pU¬p) (to satisfy the initial eventuality E♦¬p), and that
this leads to contradiction. Next, we show the big-step version of a larger proof.

Example 26. The following set of formulae is obtained by substituting in Example 24
the formula E♦A�a by A�E♦A�a, which makes it unsatisfiable

{ A�(a→ ¬(b ∨ c)), A�(b→ ¬(a ∨ c)), A�(c→ ¬(b ∨ a)),
A�E♦A�a, E♦A�b, E♦A�c }

The small-step proof provided by our prototype has about 350 sequents, however the
big-step proof contains the following five sequents:
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--76.E◦E(FUA�b),E◦(E♦A�a),A◦A�c,¬b,¬a, c
---145.E◦E((A�E♦¬b)UA�c),E◦E♦A�a,A◦A�b,¬c,¬a, b
--240.E◦E((A�E♦¬b)UA�c)),E◦E♦A�b,E◦E♦A�a,¬c,¬b,¬a
----278.E◦E((a ∨ b)UA�a),A◦A�c,¬b,¬a, c
-----345.E◦E(FUA�c),E◦E♦A�a,A◦A�E♦¬b,¬c,¬b,¬a

Since all sequents of a big-step proof are elementary sets of formulae, to which the
appropriated next-state rule is applied, we do not report that implicit information. In the
proof above, (◦E) is applied to the indicated five sequents because all these sequents have
one or more E◦ formulae. The two first lines (steps 76 and 145) show that constructing
a path to fulfill A�b, while A�c is satisfied, is not possible. The last three lines (steps
240, 278 and 345) show that constructing a path to fulfill A�c is also impossible, because
once A�c is fulfilled, A�a cannot be fulfilled.

We have implemented the sets of formulae by ordered sequences of formulae. For that
we have defined an ad-hoc ordering on formulae (in NNF) to quickly detect a selected
eventuality and to check if a sequence is elementary by just looking at the first element.
In addition, we exploit the ordering to detect more quickly that a sequence is not a sub-
sequence of another sequence, hence branches also keep ordered sequences of stages, in
particular to detect cycles. We have also implemented some rules of subsumption (such
as φ subsumes φ∨ψ) in sequences and in the construction of the contextualised variants
of eventualities –the latter is very important for the feasibility of our method. Of course,
we have implemented the subsumption-like simplification rule (4.8) (See Section 4.3.1)
by which any contextualised variant subsumes the original eventuality.

Our systematic tableau construction produces many repetitions of subtrees. We
prevent to repeat the refutation (closed tableau) of any sequent that is a child of an
elementary sequent. When one of them is refuted, it is loaded in a set called APA (‘As
Proved Above’). In the output proofs, we use the word APA to indicate that a sequent
has been previously refuted. Moreover, we consider as refuted any sequent that is a
superset of another already refuted. In other words, if a sequent Σ ∈ APA and Σ ⊆ Σ′,
then the sequent Σ′ is immediately classify as refuted. Since loading all refuted sequents
is really costly, we choose some sequents as candidates to be loaded in APA. This choice
clearly determines the efficiency of the prototype. In the current prototype, we only add
to APA the sequents produced after the application of the next-state rule.

In order to also keep data on the nodes whose tableaux have already been categorized
as open, we employ a set called SAT. Dually to APA, if a set of formulae Σ ∈ SAT and
Σ′ ⊆ Σ, then Σ′ is immediately classified as open. Additionally, we know that the model
created for Σ is likewise a model for Σ′. The candidates that occur after the next-state
rule is applied are also those that are stored in SAT. Further experimentation is needed
to evaluate and compare the performance of the implementation with different selection
criteria of the candidates for the APA and for SAT.

As we have mentioned above, most of the code (written in Java) is automatically
generated from the language Dafny. Though Dafny is a program verifier, we note that
our implementation is only partially verified, i.e. only some crucial properties have
been verified by the time of writing this thesis. For example, the ordering in formulae
has been proved to be total. The methods that exploit this ordering to perform more
efficient operations in sequences (e,g, insertion, deletion) have been proved to preserve
the order. Other methods that decide properties of sequences more efficiently thanks to



5. MomoCTL: Implementation and Experimentation 92

the order (e.g. elementarity check) have also been proved correct. The verification of
the functional correctness of our prototype remains as an encouraging and challenging
future work.

5.2.2 General Structure of Dafny Code

The Dafny implementation is structured in the following modules: Parsing CTL to NNF

Sequents, Auxiliaries Tableau, Tableau, Print Models, Print Proofs and Tableau sat unsat

Each module corresponds to one .dfy file.
Module Parsing_CTL_to_NNF_Sequents contains data definitions, method, functions and

lemmas to represent, manage and parse formulae in NNF. The following Dafny code
represents the datatype NNF_Formula:

datatype NNF_Formula = F

| T

| V(prop : string)
| NegV(prop : string)
| EX(f : NNF_Formula)
| AX(f : NNF_Formula)
| EG(f : NNF_Formula)
| AG(f : NNF_Formula)
| ER(f1 : NNF_Formula ,f2 : NNF_Formula)
| AR(f1 : NNF_Formula ,f2 : NNF_Formula)
| EF(f : NNF_Formula)
| AF(f : NNF_Formula)
| EU(f1 : NNF_Formula ,f2 : NNF_Formula)
| AU(f1 : NNF_Formula ,f2 : NNF_Formula)
| EUsel(f1 : NNF_Formula ,f2 : NNF_Formula)
| AUsel(f1 : NNF_Formula ,f2 : NNF_Formula)
| Or(f1 : NNF_Formula ,f2 : NNF_Formula)
| And(f1 : NNF_Formula ,f2 : NNF_Formula)

In the implementation we have defined the constants T and F, the constructor V for
a variable, NegV for the negation of a variable, E and A for exists and forall respectively,
X for next, G for always, U for until, F for eventually and R for release. EUsel and AUsel

have been used to represent the selected EU and AU respectively.
Module Auxiliaries_Tableau is created to represent in Dafny all the structures and

functions that help to carry out the tableau and sequents. It defines for instance what
a branch, a model and a proof are.

type Branch = seq <seq <NNF_Formula >>

datatype Model = EmptyM

| LeafM(i : int)
| NodeM(At : seq <NNF_Formula >,Seq : seq <Model >)

datatype Proof = EmptyP

| LeafP(string ,seq <NNF_Formula >)

| NodeP(string ,Seq : seq <NNF_Formula >,seq <Proof >)
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It includes also methods, for example, to check contradictions in a sequence of for-
mulae, to check whether a sequence of formulae is subset of another one and to add a a
set of formulae to a context:

predicate method is_Ctd(Sigma : seq <NNF_Formula >)

method is_subset(Sigma1 : seq <NNF_Formula >,
Sigma2 : seq <NNF_Formula >)

returns (subset : bool)

method addContextWithSubsumption(

previous : set <set <NNF_Formula >>,
current : set <NNF_Formula >)

returns (newC : set <set <NNF_Formula >>)
requires current 6= {} ∧ ∀ S • S in previous =⇒ S 6= {}

ensures ∀ S • S in newC =⇒ S 6= {}

Note that there are requires and ensures in addContextWithSubsumption. Dafny checks
that addContextWithSubsumption can only be used if current is not an empty set and if all
sets of formulae of previous are not empty sets. Once the requires is fulfilled, it can be
ensured that all sets of the resulting context (newC) are not empty.

Modules Print_Models and Print_Proofs contain auxiliary methods to treat and print
models and proofs in order to be readable for users. These are some examples:

predicate method is_subModel(M1 : Model ,M2 : Model)

method printModel(M : Model)

method printBranch(B : Branch)

method printSequent(Sigma : seq <NNF_Formula >)

Module Tableau contains method is_refutable?, which is the most important of the
whole system. The method requires an ordered sequences (Sigma and Inv) and a non-
empty ordered branch (B). It ensures that the resulting branch (B’) is ordered. Details
of the method are shown in Section 5.2.1.

method is_refutable? (

Sigma : seq <NNF_Formula >, // current sequent to be refuted

B : Branch , // current branch

M : Model , // current model

n : nat , //CALL DEPTH

proof : Proof , // current proof

APA : set <seq <NNF_Formula >>,

//As Proved Above (set of elementary sequents)

Inv : seq <NNF_Formula >,
// Input formulae of the form AG(_)

SAT : set <(seq <NNF_Formula >,Model)>

// Sequents already proved satisfiable.

)
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returns (b : bool , //T, if Sigma has been refuted , otherwise F

B’ : Branch , //new branch to be explored

M’ : Model , //new model

comp : int ,
// companion node (≥0) of the last node in the

// current branch , -1 if there is not cycle

proof ’ : Proof ,
APA ’ : set <seq <NNF_Formula >>,

SAT ’ : set <(seq <NNF_Formula >,Model)>

)

requires is_ordered(Sigma) ∧ is_ordered(Inv)

requires B 6= []

requires ∀ k • 0 ≤ k < |B| =⇒ is_ordered(B[k])

ensures ∀ k • 0 ≤ k < |B’| =⇒ is_ordered(B’[k])

Finally we created an adaption of Tableau in order not to generate neither proof nor
models and to only have a SAT/UNSAT answer. This module is Tableau_Sat_Unsat. The
main method is is_unsat?.

method is_unsat? (

Sigma : seq <NNF_Formula >, // current sequent to be refuted

B : Branch , // current branch

APA : set <seq <NNF_Formula >>,

//As Proved Above (set of elementary sequents)

Inv : seq <NNF_Formula >, // Input formulae of the form AG(_)

n : nat , //CALL DEPTH

SAT : set <(seq <NNF_Formula >,nat)>

)

returns (b : bool , //T, if Sigma has been refuted , otherwise F

B’ : Branch , //new branch to be explored

comp : int
// companion node (≥0) of the last node in the

// current branch , -1 if there is not cycle

APA ’ : set <seq <NNF_Formula >>,

SAT ’ : set <(seq <NNF_Formula >,nat)>

)

requires is_ordered(Sigma) ∧ is_ordered(Inv)

requires B 6= []

requires ∀ k • 0 ≤ k < |B| =⇒ is_ordered(B[k])

ensures ∀ k • 0 ≤ k < |B’| =⇒ is_ordered(B’[k])

The is_unsat? method is used when running the benchmarks presented in Section 5.3.

5.2.3 Console Application and Use of the Prototype

Dafny does not include the ability to read files among its functionalities. This makes
it impossible for us to use Dafny directly to read the sets of input formulae. To avoid
this, we use the functionality that Dafny has to generate code automatically [60]. We
generate Java code of all the modules presented in Section 5.2.2. The general overview
of the whole application is shown in Figure 5.2.
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Figure 5.2: General overview of momo console Application

After generating the code from Dafny, we create a Java class (not verified and apart
from the generated code) that is able to read files and parse formulae. The sole purpose
of this module is to provide users with the ability to read external files. The most
important method of the module takes as input a file, reads the file line by line, creates
NNF_Formulae by parsing them, and returns the obtained set of formulae.

All types of variables except FileInputStream, BufferedReader, and String comes from
the code exported from Dafny. The method used to parse a line also comes from there.
The code of this method is showed below (avoiding error control):

// Create an empty set of formulae

dafny.DafnySequence <? extends NNF__Formula > fseq =

dafny.DafnySequence.<NNF__Formula >

empty(NNF__Formula._typeDescriptor ());

// Open the file

FileInputStream fstream =

new FileInputStream(file.getAbsolutePath ());

BufferedReader br =

new BufferedReader(new InputStreamReader(fstream ));

//Read File Line By Line

String line;

while ((line = br.readLine ()) != null) {

// Create empty "string"

dafny.DafnySequence <? extends Character > dafseq =

dafny.DafnySequence

.<Character >empty(dafny.TypeDescriptor.CHAR);

// Assign value of line

dafseq = dafny.DafnySequence.asString(line);

// Parse string and obtain a NNF_Formula

NNF__Formula f = Parsing__CTL__to__NNF__Sequents_Compile

.__default.parseNNF(dafseq );

// Insert the formula into the sequence of formulae ,

//and "save" it assigning it

fseq = Parsing__CTL__to__NNF__Sequents_Compile.__default

.insert__in__place(f, fseq);

}

//Close the input stream
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fstream.close ();

// Return set of formulae

return fseq;

As additional functionality, the application gives the user the option of passing a
file or a directory (of files) as a parameter. In the case of passing a file, the method
is_refutable? is executed and returns to the user a model in the case of SAT (coun-
terexample for the CMC) or a proof in the case of UNSAT (proof of the property being
checked). On the other hand, in the case of passing a folder, the application browses
through the folder and file by file executes the method is_unsat?. This method only
returns SAT/UNSAT as a response, without proofs or models.

Finally, the application also offers the user the option to export a table of results
in csv format and to obtain a big-step or small-step proof. The Dafny files as well
as the executable Java file momo_console.jar can be obtained from https://github.com/

alexlesaka/MomoCTL.

5.3 Experimental Results

In order to assess the feasibility of our context-based tableau, we have tested the proto-
type MomoCTL on the collection of benchmarks, namely GBext, borrowed from http:

//users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/ that was created for the com-
parison of various CTL-provers made in [48]. In this section we report on our perfor-
mance results and compare them with the other one-pass tableau for CTL ([1]) that is
called TreeTab in [48]. It is worth noting that our current Java code have been auto-
matically generated from Dafny, therefore it is not an optimised Java code. GBext is
very well elaborated and gives a comprehensive, fair, and objective collection of CTL
theorem-proving problems. We expect that an in-depth analysis of our results will al-
low us to identify what type of heuristics, strategies, etc. are convenient to improve
MomoCTL.

In GBext there are three logically equivalent versions of each formula, which indicates
that in [48], the comparison performed takes into account the syntactic form of the
input. As expected, when translated to our input format –a set of formulae in NNF–
the three versions give similar performance result. Therefore, we really use one version
of each benchmark in GBext and this reduced set is called GB. We have automatically
translated each unique formula in each file in GB to a file with the logically equivalent set
of formulae in NNF. The obtained collection of benchmarks is denoted as MB. Both GB
and MB collections are divided into different classes of benchmarks, some of which are
further divided into subclasses for satisfiable and unsatisfiable instances or for different
types of formula patterns. MB and MomoCTL are available at https://github.com/

alexlesaka/MomoCTL. The executable (.JAR) runs full MomoCTL when it is called with a
single file .ctl (hence, it returns certificates). However, when that .JAR runs over a folder
of benchmarks files, it runs the version of MomoCTL that returns just SAT/UNSAT
values.

Both TreeTab and MomoCTL have been applied, respectively, to GB and MB. To
made a fair comparison, we have run a version of MomoCTL that does not return cer-
tificates. We know that the delay between this simplified version and full MomoCTL is

https://github.com/alexlesaka/MomoCTL
https://github.com/alexlesaka/MomoCTL
http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/
http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/
https://github.com/alexlesaka/MomoCTL
https://github.com/alexlesaka/MomoCTL
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about 2%. These experiments were performed with an Intel Xeon Dual core 2.60GHz
CPU with 64 GB RAM computer. As the authors of [48] did, we imposed a stack limit
of 512MB and a 1000 seconds time limitation for each problem instance.

In the rest of this section, we compare MomoCTL and TreeTab performance results
on the most significant classes and subclasses of MB and GB, which are: Alternat-
ing Bit Protocol (abp), Business Processes (busproc), Exponential Formulae (exp sat
and exp unsat), Montali’s Formulae (montali sat and montali usat), Pattern AE, and
Reskill.

abp

busproc

exp_sat

exp_unsat

montali_sat1

montali_sat2

montali_sat3

montali_sat4

montali_sat5

montali_unsat1

montali_unsat2

montali_unsat3

montali_unsat4

montali_unsat5

pattern_ae

reskill

0,00% 25,00% 50,00% 75,00%

MomoCTL SUCCESS RATE TreeTab SUCCESS RATE

Figure 5.3: Percentage of solved instances (by class) within time limit

In Figure 5.3, we show the percentage of files in each class that are solved within the
time limit, i.e those that return a value –satisfiable or unsatisfiable– and do not produce
timeout or some error –e.g lack of memory. We use gray color for TreeTab and black
color for MomoCTL. Instances are ordered by the increasing complexity. As we will
detail bellow, for MomoCTL it takes longer than for TreeTab to solve smaller instances,
but the former solves (in 1000 s.) greater instances –in classes abp, exp sat, exp unsat,
montali sat– that TreeTab cannot solve (in 1000 s.). TreeTab solves more instances than
MomoCTL in busproc and montali unsat1. Next, for each class, we compare the running
times of both CTL-provers and analyse possible causes of big differences. In the plots,
the abscissa is the number of different variable symbols in the input and the ordinate
is the running time in milliseconds. The plots are given using a logarithmic scale (the
same scale used in [48]).

1. Alternating Bit Protocol (abp). This class has three instances that encode
whether three different properties are valid for a protocol specification (see [48]). All
instances are unsatisfiable and the problem is quite difficult for CTL-provers based
on tableaux. Tableaux methods necessarily should produce a huge number of closed
branches. In the simplest problem (abp5), each branch contains four eventualities and a
releases-formula that cannot be fulfilled in any order, therefore 120 combinations should
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be tested. The other two instances (abp8 and abp9) add to abp5 one extra eventuality
with the releases-formula included in it, which increases the combinations up to 720. As
shown in Figure 5.4, only the simplest instance (abp5) is solved by TreeTab in 0.081 s.
while MomoCTL is able to solve the three instances in 0.249 s., 11.952 s., and 13.370 s.
respectively.
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Figure 5.4: abp and busproc formulae

2. Business Processes (busproc). This class arises from a synthesis problem ([8]).
All the instances have a huge amount of different models that exponentially increases
with the input size. For tableau methods, to find just one model it suffices to decide
the satisfiability. Consequently, (as showed in [48]) tableau methods perform better
than other approaches for satisfiable inputs. However, CTL models of busproc problems
are non-linear Kripke-structures. Figure 5.4 compares TreeTab and MomoCTL. TreeTab
solves the three first instances –busproc1 in 0.139 s., busproc2 in 0.762 ms. and busproc3
in 34.991 s. MomoCTL only solves busproc1 and busproc2 in 6,226 s. and 326,316 s.
respectively. In the case of busproc1, (the full version) returns a model of depth five with
four branches. For this construction, MomoCTL collected about 400 refuted sequents,
hence in the tableau there are many closed branches that are constructed before the
first model is found.

Analysing these refuted sequents (for busproc1 and other benchmarks with many
models), we saw that most of them are attempts to fulfill an eventuality at some state
where it can not be fulfilled, although there are many possibilities to explore to get to
decide it. We conclude that MomoCTL strategy of forcing eventualities to be satisfied “as
soon as possible” does not work very well with satisfiable problems with a big amount
of models. Indeed, contexts could produce a big explosion of tableau OR-branches when
the selected eventuality is delayed to the next step. We think that MomoCTL should
be equipped with some heuristics for eventuality selection. The class busproc is a useful
collection of problems for our further work.

3. Exponential Formulae. Both satisfiable and unsatisfiable exponential formulae
have a similar difficulty for TreeTab and MomoCTL. The subclass of satisfiable instances
has models with exponentially larger paths. The tableau for unsatisfiable instances
builds an exponentially increasing number of non-repeated tableau branches that are
closed.
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Figure 5.5: Exponential satisfiable and unsatisfiable formulae

In Figure 5.5 we can see that MomoCTL has an exponential growth of the running
time from small instances in both subclasses, while TreeTab does not. Nevertheless
TreeTab runs out of memory from size 12, whereas MomoCTL is able to solve the instance
of size 13 inside the time limit. Allowing more time, MomoCTL solves the unsatisfiable
instance of size 14 in 1,551 s. This is thanks to the strategy of not repeating refutations
that have been made previously. To solve the satisfiable instance of size 14, MomoCTL
needs 6,000 s. because the model of this formula is extraordinarily large. Therefore,
MomoCTL solves more difficult instances as the time increases. This is one of the main
features of our prototype which makes it different from the TreeTab.

4. Montali’s Formulae. These formulae are CTL-reformulations of LTL-specifications
of business processes ([73]) that has been used for comparing LTL-provers ([43]). Mon-
tali’s formulae are parameterised by n and m.

ϕi1 = A♦pi ϕim = A♦(pi ∧ A◦ϕim−1) ϕn = ∧n−1
i=0 A�(¬pi ∨ A◦A♦pi+1)

Satisfiable instances are of the form ϕ0
m ∧ ϕn, whereas unsatisfiable instances have the

form ϕ0
m ∧ ϕn ∧ ¬ϕnm.
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Figure 5.6: Montali’s satisfiable and unsatisfiable formulae with depth 3

Figure 5.6 shows the results for satisfiable and unsatisfiable subclasses where m = 3
and n is in the abscissa. For m = 1, 2, 4, 5 the plots are very similar. In the case of
satisfiable formulae, MomoCTL finds a model in the first (leftmost) branch when doing
the depth-first search.
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Regarding unsatisfiable formulae, MomoCTL is able to respond more (until size 33)
but it requires more time than TreeTab, which runs out of memory at size 23. Note the
similarity of the plots for montali unsat and exponential formulae. As we mentioned
above, MomoCTL can solve larger and larger instances as time increases. The main
reason is that the systematic forcing of eventualities takes more advantage as the number
of eventualities grows – they produce always-formulae that reduce the search space.

5. Pattern AE and Reskill. In [48], the authors introduce these two classes and
show that methods based on BDDs and resolution perform badly on inputs containing
many conflicting E� temporal formulae (in the case of pattern ae) and when there are
many potential resolution-steps in a satisfiable formula (in the case of reskill). The class
pattern ae contains formulae of the form

(
n∧
i=0

A�E�pi) ∨ (
n∧
i=0

A�E�¬pi).

while the class reskill contains these kinds of formulae

¬p ∧ ( ¬p ∨ ( p ∧ A�(

n−1∧
i=0

A♦qi ) ∧
n−1∧
i=0

A�( ¬qi ∨
n−1∨

j=0,j 6=i
E◦qj ) ∧

n−1∧
i=0

A�( ¬qi ∨
n−1∨

j=0,j 6=i
¬qj) ) )
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Figure 5.7: Pattern AE and Reskill formulae

The instances of both classes are satisfiable. Figure 5.7 shows that both –TreeTab
and MomoCTL– run very fast on the two classes of formulae. In pattern ae, MomoCTL is
faster than TreeTab in small instances until n = 25. MomoCTL performs with a moderate
increase of time, while TreeTab is more constant with some insignificant increase or
decrease of the number of steps. The model returned by MomoCTL to pattern ae of size
n is:

State 0: {p0,. . .,pn−1} --> cycle to State 0

Both MomoCTL and TreeTab perform extremely fast on the class reskill because they
are able to find the simplest model, which is returned by MomoCTL as follows:
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State 0: {}

---State 1:{} --> cycle to State 1

Finally, we again remark that MomoCTL does not run out of memory on any bench-
mark. Indeed, with unlimited execution time, MomoCTL solves some benchmarks, on
which TreeTab runs out of memory. We believe that these errors of TreeTab are due to
the fact that the branches it produces are too large. We know that the way how we use
contexts to handle eventualities prevents the generation of such extra large branches.
However, the price we pay to avoid large branches is that we have to analyse many more
of them. This makes MomoCTL run slower than TreeTab for some not very complex
problems. We are convinced that a more intelligent eventuality selection procedure, in
addition to different heuristic strategies could solve this problem and improve notably
MomoCTL’s performance.



6. CONCLUSIONS AND FUTURE LINES

This chapter presents the central results and main contributions of the thesis, a list of
our publications and relevant research activities related to the dissertation, as well as
proposals for future lines of research. The chapter consists of three sections: Section 6.1
summarises the main contributions. Section 6.2 presents the publications and activities
done during the developed of the thesis. Section 6.3 outlines possible lines of future
research.

6.1 Results and Contributions

The aim of this thesis was to contribute new ideas in the field of certifying the answers
provided by automated reasoners when they work with temporal logics. Specifically, we
wanted to certify these two issues: why a temporal formula is satisfiable or unsatisfiable,
and why a transition system satisfies a temporal property or not.

We began by adapting the dual system of tableaux and sequents for PLTL first
described in [40, 41]. This adaptation consisted of improving the system by using the
negation normal form of the formulae and assigning some of the work to be done to a
SAT solver. From there, we have applied the method (the aforementioned adaptation)
to the certification of the model-checking problem for PLTL. Our method is capable
of producing automatically formal proofs, which can be independently verified by a
separate tool. We have implemented the sequent calculus in the interactive theorem
prover, Isabelle, which makes it easy for users to review, explain, and navigate through
such formal proofs. As an extra benefit we have an efficient method to certify PLTL
(un)satisfiability. This is happening because the fact that the PLTL-satisfiability problem
can be reduced to the PLTL-model-checking problem.

Secondly, we have dealt with the branching logics CTL and ECTL. For these log-
ics, we have introduced new dual context-based methods of tableaux and sequents to
certify the satisfiability problem, and proved the correction (soundness, completeness
and termination) of the proposed methods. Not only that, but we have created a pro-
totype called MomoCTL, which applies to CTL. To implement it, we have used the
Dafny language, which has allowed us to specify and develop the algorithm, generat-
ing the code automatically (available in https://github.com/alexlesaka/MomoCTL). The
tool can be also used to certify CTL-model checking because this problem reduces to the
CTL-satisfiability problem. We have obtained good results when the prototype has been
run on a set of well-known benchmarks and has been compared with the Gore’s tool.

On the other hand, we would like to emphasise that during the development of the
thesis we asked ourselves the classic question. “who verifies the verifier?”, due to the
possibility of errors in our methods and algorithms. We have analysed the use of Isabelle

https://github.com/alexlesaka/MomoCTL
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and Dafny to address this question. When we implemented the PLTL sequent calculus
in Isabelle we also proved the soundness of the calculus. Our experience in doing so has
been very rewarding. Although the completeness of the method remains to be proven,
the verification of partial correctness increases the level of confidence in our calculus.
Dafny has been used to implement MomoCTL. We have found that Dafny incorporates
most of the good features of modern programming and specification languages. Dafny
allows correctness proofs to be written as part of the program text. These proofs explain
the reasons why programs are correct. While the ingredients of the proofs are provided
by the user, the steps of the proofs themselves are performed automatically by the
verifier. Using Dafny has been very beneficial in building a reliable tool.

To sum up, we have contributed new methods to address the problems of satisfiability
and model checking for a variety of temporal logics. They are able to provide, with the
same mechanism, the two types of certificates: models and proofs. We believe that
automated certification in temporal logic can benefit from the methods presented in
this dissertation.

6.2 Related Publications, Presentations and Research Activity

This section lists journal publications, contributions to conferences and workshops and
research visits that have been made during the development of the thesis.

Journal Publications

• Verified Model Checking for Conjunctive Positive Logic
A. Abuin, U. Diaz de Cerio, M. Hermo, P. Lucio
SN Computer Science 2 (5), 1-24
DOI: https://doi.org/10.1007/s42979-020-00417-3
Published: 19 June 2021

• Optimization Techniques and Formal Verification for the Software
Design of Boolean Algebra Based Safety-Critical Systems
J. Perez, J.L. Flores, C. Blum, J. Cerquides, A. Abuin
IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 620-630
DOI: https://doi.org/10.1109/TII.2021.3074394
Published: January 2022

• Tableaux and Sequent Calculi for CTL and ECTL: Satisfiability Test
with Certifying Proofs and Models
A. Abuin, A. Bolotov, M. Hermo, P. Lucio
Journal of Logical and Algebraic Methods in Programming, vol. 130, 100828
DOI: https://doi.org/10.1016/j.jlamp.2022.100828
Published: January 2023

Conference Proceedings

• Context-based Model Checking using SMT-solvers (Work in Progress)
A. Abuin, U. Diaz de Cerio, M. Hermo, P. Lucio
Proceedings XVIII Jornadas sobre Programación y Lenguajes (PROLE 2018)
http://hdl.handle.net/11705/PROLE/2018/019

https://doi.org/10.1007/s42979-020-00417-3
https://doi.org/10.1109/TII.2021.3074394
https://doi.org/10.1016/j.jlamp.2022.100828
http://hdl.handle.net/11705/PROLE/2018/019
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• Towards certified model checking for PLTL using one-pass tableaux
A. Abuin, A. Bolotov, U. Diaz de Cerio, M. Hermo, P. Lucio
Proceedings 26th International Symposium on Temporal Representation and
Reasoning (TIME 2019)
DOI: https://doi.org/10.4230/LIPIcs.TIME.2019.12

• One-pass Context-based Tableaux Systems for CTL and ECTL
A. Abuin, A. Bolotov, M. Hermo, P. Lucio
Proceedings 27th International Symposium on Temporal Representation and
Reasoning (TIME 2020)
DOI: https://doi.org/10.4230/LIPIcs.TIME.2020.14

Workshop Proceedings

• Using Contexts in Tableaux for PLTL: An illustrative Example
A. Abuin, A. Bolotov, U. Diaz de Cerio, M. Hermo, P. Lucio
Automatic Reasoning Workshop 2019 (ARW 2019)
University of Middlesex - London (UK), 2nd-3rd September 2019
https://arw.csc.liv.ac.uk/2019.html

• Complementing Tableaux-based Satisfiability Algorithm for CTL
by Certifying Sequent Proofs and Models (regular talk)
A. Bolotov, A. Abuin, P. Lucio, M. Hermo
XII Workshop Program Semantics, Specification and Verification: Theory
and Applications (PSSV-2021)
Innopolis (Russia) - online, 4th-5th November 2021
https://persons.iis.nsk.su/en/pssv21

Research Visit

• Research Area:
Certified Model Checking for PLTL based on Tableau and Sequents
method
Research Visitor: Alex Abuin
Supervisor: Alexander Bolotov
Software Systems Engineering Research Group
School of Computer Science and Electronics, University of Westminster.
London, United Kingdom, from 28 February 2019 to 15 June 2019

• Research Area:
Application of Model Checking in Safety Critical Systems
Research Visitor: Alex Abuin
Supervisor: Franco Raimondi
Computer Science Department
School Science & Technology, University of Middlesex.
London, United Kingdom, from 28 February 2019 to 15 June 2019

https://doi.org/10.4230/LIPIcs.TIME.2019.12
https://doi.org/10.4230/LIPIcs.TIME.2020.14
https://arw.csc.liv.ac.uk/2019.html
https://persons.iis.nsk.su/en/pssv21
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6.3 Future Work

Many ideas have emerged during the development of this thesis. In this section, we
outline several promising lines of future work.

• An integrated algorithm for PLTL. Tableaux development and proof genera-
tion have each been studied separately in the case of PLTL. It is straightforward
to design an algorithm for PLTL that integrates the generation of both models and
formal proofs after the work done for CTL.

• Implementation and automated correctness proof of the algorithm for
PLTL. Dafny has shown to be very helpful for implementing the CTL algorithm,
as well as for enabling its verification. Similar to how it was done for CTL, an
integrated algorithm for PLTL can be implemented in Dafny. As a result, in
addition to generate code automatically, we could verify some properties of the
algorithm, such as its correctness.

• Comparison with other (Certified) Model Checking for PLTL. This thesis
proposes utilising a SAT solver to optimise the tableau and sequent system for
CMC in PLTL. Partial prototypes and proofs have been developed, as well as
illustrative examples to explain this optimisation. To measure the advantages of
our proposal, a comparison with other model checkers for PLTL would be necessary.

• Use of a SAT solver in branching logics. Since most of the formulae used
in CMC are very simple temporal formulae (especially those describing transition
systems), we have proposed (for PLTL) to delegate the analysis of these formulae
to a SAT solver. Clearly, incorporating the use of the SAT solver, as has been
done for PLTL, would significantly improve MomoCTL. In fact, we can do the
same in other more expressive branching logics.

• MomoCTL in industrial use cases The examples with which we have illustrated
the main ideas and concepts of this thesis have been created ad hoc. For in-
stance, the satisfiable or unsatisfiable sets of formulae, the examples representing
transition systems and properties, etc. Although the collection of benchmarks we
have used to test MomoCTL contains more real-world examples, we would still like
to evaluate MomoCTL in a fully industrial environment. The use of MomoCTL
implementation in real use cases could give evidence of its actual potential value.

• The dual method as a verification tool for safety-critical systems. Safety-
critical systems are subject to very strict development and regulations. Therefore,
each of the tools and techniques used in this scenario must be accompanied by evi-
dence of their correct functioning. We believe that the dual context-based tableaux
and sequent calculi method is suitable for safety-critical systems: if a tableau re-
ceives as input a given set of formulae and returns a proof guaranteeing that the
input is unsatisfiable, an independent tool like Isabelle could easily corroborate the
same result. On the other hand, the Dafny tool, which has been used to implement
MomoCTL, allows us to verify the crucial properties that MomoCTL must fulfill,
such as termination, soundness, etc. This gives confidence when using MomoCTL.
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In addition, we would like to explore how to extend the dual method to address
problems that are defined in terms of uncontrolled external variables and evolve
over time. The realizability and synthesis of PLTL specifications are two issues in
this area.
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