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A B S T R A C T   

Many features used in Structural Health Monitoring strategies are not just highly sensitive to failure mechanisms, but also depend on environmental or operational 
fluctuations. To prevent incorrect failure uncovering due to these dependencies, damage detection approaches can use robust and temperature-independent features. 
These indicators can be naturally insensitive to environmental dependencies or artificially made independent. This work explores both options. Cointegration theory 
is used to remove environmental dependencies from dynamic features to create highly sensitive parameters to detect failure mechanisms: the cointegration residuals. 
This paper applies the cointegration technique for damage detection of a concrete-masonry tower in Italy. Two regression models are implemented to capture 
temperature effects: Prophet and Long Short-Term Memory networks. Results demonstrate the advantages and limitations of this methodology for real applications. 
The authors suggest to combine the cointegration residuals with a secondary temperature-insensitive damage-sensitive set of features, the Cepstral Coefficients, to 
address the possibility of capturing undetected structural damage.   

1. Introduction 

Vibration-based Structural Health Monitoring (SHM) seeks to effi-
ciently identify damages and anomalies in a structure’s performance by 
analyzing its recorded vibrations. Such approaches search for any 
changes in the regular pattern of a structure’s behavior, assuming that 
any deviation from its current or future performance is due to variations 
in its material and/or geometric properties caused by damage (Farrar 
and Worden, 2012) that will hinder its current or future performance 
(Farrar and Worden, 2012). This alteration will be reflected in the 
structural behavior, but it can be clearly recognized through continuous 
monitoring the healthy state since this deviation exists only with respect 
to a reference condition. 

These strategies have been widely studied and innovated in the 
literature with regard to multiple focusing areas: optimizing sensor 
placement (Civera et al., 2021), utilizing modern sensor systems (Bar-
socchi et al., 2021), combining different monitoring approaches (Ier-
imonti et al., 2022). These innovations are critical in designing reliable 
and accurate damage detection strategies, especially for historical 
structures that have withstood the test of time (Pallarés et al., 2021). 
Due to the prevalence of masonry structures in Italy, numerous publi-
cations have focused on developing and applying identification 

techniques to this typology of structures, offering a unique set of 
vibration-based monitoring applications that address the different 
challenges and the dynamic characterizing behavior of masonry systems 
(Gentile and Saisi, 2007; Cabboi et al., 2017; Ubertini et al., 2017; Kita 
et al., 2019; Invernizzi et al., 2019; Tronci et al., 2020a). 

For the SHM research community, the investigation and search for 
features highly sensitive to damage has been a primary topic of interest 
and led to a rich literature production and to a broad experimentation of 
new damage indicators (Tronci et al., 2022; Li et al., 2023; Quqa et al., 
2021; Bernagozzi et al., 2021). However, SHM strategies based on the 
observation of damage sensitive features over time often assume that 
changes in a structure’s mechanical properties are solely caused by 
damage variations, which is not the case. Environmental and opera-
tional conditions inevitably affect structural behavior, as seen in several 
studies (Han et al., 2021). Intuitively, factors like temperature and hu-
midity fluctuation may change the material properties and the geometry 
characteristics of a structure. It is essential to keep in mind that the 
variation caused by environmental and operational changes could be, in 
some cases, comparable or more prominent than those due to damage, 
and consequently, they could hide damage occurrence and give false 
information about the structural health. 

Therefore, the environmental influence on the structure needs to be 
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taken into account when applying any vibration-based damage detec-
tion methodology. This necessity can be addressed at different levels and 
in multiple ways. The most popular approaches rely on models that learn 
the patterns in the structural behavior of structures associated with the 
environmental and operation conditions (García-Macías and Ubertini, 
2022; Silva et al., 2021; Ubertini et al., 2017; Cross et al., 2012) and 
eventually remove these dependencies from the desired choice of 
damage indicators creating a robust damage sensitive feature. An 
alternative option consists of looking for features that are naturally in-
dependent of those fluctuations and changes and tend to be sensitive 
mainly to damage. 

This work explores both possibilities. First, the cointegration tech-
nique is implemented to remove the environmental dependency from 
modal tracking quantities such as frequencies. Cointegration is a widely 
used tool in econometrics to eliminate trends from data. The theoretical 
background of the approach draws from several key texts from the 
econometrics literature (Johansen, 1995; Fuller, 2009; Cross et al., 
2011), which the reader may refer to for a more mathematically rigorous 
treatment of the material. The cointegration technique appears to be 
very useful in the data normalization phase of SHM, as it looks to remove 
the environmental and operational effects intertwined with longer time 
scales compared to the dynamics of the structure sensitive to damage. If 
two or more monitored variables from a monitored system are cointe-
grated, then it is possible to find some combination of them that will be 
stationary. Then, the stationary residual created from the cointegration 
procedure can be used as a damage sensitive feature (DSF) independent 
of the normal environmental and operational conditions. 

Cross et al. (2011) proved the effectiveness of linear cointegration in 
SHM and later proposed an alternative nonlinear cointegration that 
considers the nonlinearity of the relationshipbetween variables (Shi 
et al., 2016). Coletta et al. (2019) successfully applied the cointegration 
technique to remove environmental trends in the case of a historical 
masonry Sanctuary using nonlinear regression models like Support 
Vector Machine and Relevance Vector Machine. Recently, Turrisi et al. 
(2022) provided an application of the linear correlation applied on a 
complex structure of a singular nature, the steel roof of the G. Meazza 
stadium in Milan. 

This work considers two models designed to account for the sea-
sonality and time-dependency of environmental temperature condi-
tions, Prophet and Long Short-Term Memory (LSTM) regression model. 
The methodology is validated using the data collected on a reinforced 
concrete masonry Civic Tower in Italy. 

The results show the conditions in which cointegration successfully 
removes environmental dependencies from structural frequencies, 
enhancing their damage detection capability. The work also presents a 
real damage case scenario where cointegration fails to achieve the goal. 
To overcome the limitations of this technique, the study proposes an 
alternative damage sensitive feature option: Cepstral Coefficients (CCs). 
These parameters are adapted from Mel Frequency Cepstral Coefficients 
(MFCCs), which are well-known in the speech and speaker recognition 
research field. However, their modification and use as DSFs for damage 
detection in civil structures are relatively new (Tronci et al., 2022; Li 
et al., 2023; Balsamo et al., 2013, 2014). The CCs have several inter-
esting characteristics, and their extraction process, built on simple 
means of digital signal processing operations, differs significantly from 
the complex and sophisticated structural identification algorithms 
adopted to extract the modal parameters of structures. The results ob-
tained on the monitoring data of the Civic Tower of Rieti address the 
reliability of CCs as DSFs, focusing on their ability to distinguish be-
tween damage changes and environmental fluctuations. 

2. Cointegration strategy to derive temperature-independent 
damage sensitive features 

Cointegration is a powerful tool that can be used to remove trends in 
SHM data to identify a stationary feature related to the structure’s 

health. Starting from a set of nonstationary time series that represents 
the evolution of the dynamic response of the system over time (e.g., 
accelerations, frequencies, etc.), the cointegration aims to define a 
combination of them which is stationary. Then, the stationary residual 
can be used as a DSF independent of the normal environmental and 
operational conditions. 

To measure the extent of the nonstationarity of a time series, it is 
useful to introduce the so-called order of integration. A nonstationary 
time series z(t) is said to be integrated of order p, i.e., I(p) if its p-th 
difference is stationary. For example, the given time series z(t) I(1) must 
be differenced only once to obtain a stationary process, which will then 
be I(0). The cointegration technique can be easily implemented in 
damage detection approaches, and here it is considered in an outlier- 
based methodology consisting of four main steps. 

Step 1: Initially, the order of integration of the monitored damage 
sensitive features needs to be checked to establish if they are suitable 
to be normalized using the cointegration approach. The Augmented 
Dickey-Fuller (ADF) test is initially run on each variable. Each var-
iable should be integrated of the same order to be a candidate. The 
reader is referred to (Fuller, 2009) for a detailed treatment of the 
ADF test. 
Step 2: Once the suitable variables are identified, it is necessary to 
split the dataset into training and test sets. The regression model is 
then built using the training data. The training dataset should collect 
most of the possible fluctuations due to environmental variations to 
create a reliable and accurate regression model able to mimic the 
behavior of the structure during all the common operational 
conditions. 
Step 3: Considering the training data, the relationships between the 
variables matching the ADF requirements are investigated. The 
construction of the regression model depends on how the different 
variables are correlated, particularly if these relationships are linear 
or nonlinear. Depending on how they are correlated, it is possible to 
choose the most suitable regression model for the study case. One 
variable is selected as the regression target, and the others are used to 
fit the model. 

The model’s performance is tested on the training data, and the re-
sidual series obtained from the predicted and measured data is evaluated 
using the ADF test. The cointegrating relationship is successfully 
established, and the common trends are purged if the model residual 
series is integrated to a lower order than the original variables. There-
fore, the model residual series may be a potentially good temperature- 
independent indicator of damage-induced variations. 

Step 4: Once a suitable regression model has been found, new data 
from the monitored variables should be projected onto it. If the 
cointegrating vector was established on data from the normal con-
dition of the structure, the residual sequence would continue to be 
stationary all the time the structure operates in its normal state. 
When the monitor residuals deviate from the stationary known 
sequence, that change could be caused by the occurrence of struc-
tural damage. 

2.1. Regression models 

In this work, two different models are considered and tested as 
regression models to be used within the cointegration approach. In the 
past years different options have been considered to address linear and 
nonlinear types of correlations. Coletta et al. (2019) adopted the Support 
Vector Regression (SVR) and Relevance Vector Machine (RVM) algo-
rithms in order to address the nonlinear correlation that sometimes can 
affect the structural frequency dependency on temperature. The 
nonlinear dependency in this case is accounted for through the use of a 

E.M. Tronci et al.                                                                                                                                                                                                                               



Developments in the Built Environment 15 (2023) 100170

3

kernel. However, both these regression methods are not structured to be 
time-dependent and are not specifically designed to address seasonality 
or long and short-term dependencies. To account for these two aspects, 
in the present work two different models are considered for the 
regression models. First, a forecasting model known as Prophet is 
considered. Then, a specific type of Neural Network is picked to build 
the regression model used in the learning task of the presented meth-
odology, the Long Short-Term Memory networks. 

Prophet was developed by Facebook’s Data Science Team in 2017 
(Vishwas et al., 2020; Taylor and Letham, 2018). It uses a data-adaptive 
decomposable additive time series model (Harvey and Peters, 1990) 
with three main model components: trend, seasonality, and holidays. 
The model can be expressed as the combination of the following terms: 

y(t) = g(t) + s(t) + h(t) + εt (1)  

where g(t) is the trend function which models the long-term non-peri-
odic changes in the data, such as growth or decline; s(t) is the seasonality 
that represents periodic changes (weekly, monthly and yearly cycles); h 
(t) are the effects of the holiday which occur on potentially irregular 
schedules; and εt is an error term that is not accommodated by the model 
respectively. Prophet can model both linear and nonlinear trends, and 
can automatically detect changepoints where the trend changes. Using 
time as a regressor, Prophet is trying to fit several linear and nonlinear 
functions of time as components. Two trend models that cover Facebook 
applications are: a nonlinear saturating growth model and a piecewise 
linear model. Finally, Prophet can model both additive and multiplica-
tive seasonality, and can handle complex seasonality patterns with 
Fourier series. The model is fitted by minimizing a loss function that 
measures the difference between the observed data and the predicted 
values. The reader is referred to (Vishwas et al., 2020) for a more 
detailed treatment of the subject. 

Strategies based on the use of Neural Networks (NNs) have become 
extremely popular in the past years, particularly for time series 
modeling for SHM purposes (Li et al., 2023; Tronci et al., 2022; Giglioni 
et al., 2023; Pan et al., 2023; Eltouny and Liang, 2023). Within the 
family of NNs, Long Short-Term Memory is a type of Recurrent Neural 
Network that is designed to better handle long-term dependencies and 
memory-related problems. They were introduced by Hochreiter & 
Schmidhuber (Hochreiter and Schmidhuber, 1997), and were refined 
and popularized by many people in the research literature. The main 
idea behind LSTM is to control the flow of information through the 
network using a series of gates that selectively allow or prevent infor-
mation from passing through. This capability allows LSTM to be effec-
tive in modeling time series data, natural language processing, and other 
applications that require processing sequential data. 

The performance of these two models in the creation of a robust and 
reliable regression model will be compared with SVR and RVM in terms 
of Root Mean Square Error (RMSE) and Relative Root Mean Square Error 
(RRMSE), and the best performative model will be later on used to 
implement a damage detection strategy. 

3. Cepstral Coefficients as natural damage sensitive features 

Mel-Frequency Cepstral Coefficients are features widely used in the 
field of speaker and speech recognition, and they differ from the other 
common DSFs, such as modal frequencies, as they allow for consider-
ation of the response property in both the frequency and time domain 
simultaneously. These MFCCs are defined as the inverse discrete cosine 
transform of the log-modified spectrum of the system response. 

The cepstrum was originally developed to filter the effects of echoes 
from time series, and it was first introduced by Bogert (1963) and his 
colleagues at Bell Laboratories in 1963. The discrete-time formulation of 
the cepstrum and its complex counterpart, the complex cepstrum, were 
later addressed by Oppenheim (Oppenheim et al., 2001). In 1980, Davis 
and Mermelstein (1980) proposed a compact version of the cepstrum 

that used the Mel-spectrum to obtain the cepstral representation of 
speech signals. The set of coefficients extracted from the sampled speech 
signal was called Mel-Frequency Cepstral Coefficients. 

These coefficients present explicit relations to poles and zeros of the 
system transfer function leading to the speculation that a strong rela-
tionship must exist between such coefficients and structural properties. 
These features require very low user expertise to be extracted and 
analyzed, making them particularly convenient for implementing 
automatic SHM procedures. 

The first application of these coefficients for civil engineering studies 
was given by Zhang et al. (2011), who used MFCCs to detect concrete 
delamination on a bridge deck by analyzing the MFCCs extracted from 
records of the impact sound produced by impacting the surface of the 
concrete slab with a steel bar. 

In this work, the Cepstral Coefficients are investigated. They are the 
results of the adaptation of MFCCs proposed by Balsamo et al., 2013, 
2014, implemented to make these features suitable for civil structures. 
These features are extracted directly from the time histories of the 
structural response and were successfully used in a statistical pattern 
recognition approach to infer damage occurrence. 

The Cepstral Coefficients can be extracted from a sampled signal or 
time history, x[n], performing a sequence of six steps involving simple 
signal processing tools which make the extraction process extremely 
easy, quick and, user-friendly (Fig. 1); the reader is referred to (Beigi, 
2011) and (Balsamo et al., 2014) for a detailed treatment of the subject. 

In the preliminary step, each time history is divided into a number of 
frames, Nframes, where each frame must be long enough to be considered 
stationary and consists of a certain number of samples (Nsamples). In order 
to reduce the riddle effects on the frame spectra due to the segmentation 
procedure, a non-rectangular window (usually Hamming window) is 
applied to each frame. 

Afterward, applying the Discrete Fourier Transform (DFT), the 
Power Spectrum (PS) is evaluated for each frame, obtaining, for each 
time history, Nframes PS segments. To emphasize the parts of the spec-
trum that are more likely to be expressing the structural behavior, a 
frequency warping procedure is performed. It allows the user to modify 
and scale the linear frequency scale to weigh more the area of the 
spectrum with the greatest energy content. The new modified frequency 
scale and the linear frequency scale are almost equivalent up to a cutoff 
frequency of fc, after which their relation becomes logarithmic. The user 
is in charge of defining the cutoff parameter, which can be set by 
observing the frequency content of the system. It should be chosen as the 
upper limit of the meaningful frequency range where most of the 
structural frequency contribution lies. Averaging the spectra of all the PS 
segments results in the generation of what will be referred to as an 
average spectrum (Fig. 2). The average spectrum highlights the frequency 
range within which the most significant frequency content is observable. 
The cutoff frequency is then chosen as the upper bound of that portion of 
the averaged spectrum. This new scale mimics the trend of the Mel-scale 
(Beigi, 2011), working on a frequency range compatible with structural 
problems, according to the following expression: 

f̃ = fclog2

(

1 +
f
fc

)

(2) 

The frequency warping step is performed by grouping together the 
power spectrum values into M frequency bands and weighting each 
group by a triangular weighting function (Fig. 2). According to the Fraile 

Fig. 1. Cepstral Coefficients s extraction process.  
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et al. criterion (Fraile et al., 2008), M can be set equal to 3ln(fs), where ln 
() represents the natural logarithm operation, while fs is the sampling 
frequency. This is a common relationship in the speaker recognition 
research field, and that can also be adopted for structural problems. The 
triangular filters are constructed such that their centers are equally 
spaced on the frequency scale (̃f) given in Eq. (2), with each filter being 
symmetric with respect to its center (Fig. 2). 

The power spectrum of each frame is weighted, multiplying it by the 
triangular filter corresponding to each mth frequency band (Fig. 2), with 
m = 1, 2, .., M. After that, each contribution coming from this multi-
plication is summed along the frequency range leading to the matrix 
Nframes vectors, for the single frame, of dimensions M × 1, which contains 
the warped power spectrum or modified spectrum. This is a synthetic 
representation of the frequency content of the system, where the mth 
element carries on the portion of the spectrum collected by the mth filter 
and tells how this element contributes to the overall frequency content. 

The Cepstral Coefficients extraction procedure is completed by 
applying a D-points Inverse Discrete Cosine Transform (IDCT) (Fig. 3a) 
to the logarithm of the modified spectra (Fig. 3a): 

c[d, k] =
∑M− 1

m=0
amln(H[m, k])cos

[
π(2d + 1)m

2M

]

for d

= 0,…,D − 1 and  for k = 1,…,Nframes (3)  

where am is equal to 1
M, for m = 0, and to 2

M otherwise. H[m] represents 
the mth point of the modified spectrum, where m = 0, …, M − 1 while c 
[d] is the dth Cepstral Coefficient, which could be collected in a coeffi-
cient vector for each kth frame c(k) ∈ RD×1. The number of CCs is chosen 
arbitrarily, but commonly is selected equal to the number of M fre-
quency bands already defined. 

Computing the coefficients of IDCT independently for each Cepstral 
Coefficient (Fig. 3a), it is possible to appreciate better how these co-
efficients modify the different frequency contributions of the new 
modified log spectrum. 

cIDCT [d] =
∑M− 1

m=0
amcos

[
π(2d + 1)m

2M

]

for d = 0,…,D − 1 (4) 

Cepstral Coefficients are always real and convey information about 
the physical aspects of the signal. When d = 0, the cosine term of the 
Discrete Cosine Transform (DCT) becomes 1 and, consequently, the first 
Cepstral Coefficient c0 is the average power of the signal. A negative 
coefficient relates to the local minimum of the cosine in the DCT noting 
that the higher frequency indices in the summation of the DCT are 
contributing more. On the other hand, a positive peak means that there 
must be more power in the lower frequency range. As the dimension d of 
CCs becomes larger, the number of alternating partitions in the 

Fig. 2. Frequency warping procedure for the ith frame.  

Fig. 3. Extraction of the Cepstral Coefficient vector: (a) Application of the first six coefficients of the IDCT to the Log-Warped spectrum; (b) Cepstral Coefficients 
vector for the ith frame. 
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frequency range increases. 
It is precisely this last characteristic that gives CCs the the potential 

to discriminate between the trends in data due to environmental and 
operational variation and the alterations caused by damage. The appli-
cation of the higher-order DCT coefficients allows for natural detrending 
of the coefficients, because the contributions from the frequency bands 
carrying the environmental information cancel out with each other in 
the summation. 

The IDCT can be thought of as a filtering process that removes high- 
frequency components from the signal, thereby smoothing it and 
reducing its complexity. This is because the DCT tends to concentrate 
signal energy in lower-frequency components, while high-frequency 
components are attenuated. By applying the the IDCT, high-frequency 
components are amplified and added back to the signal, effectively 
smoothing and filtering it. 

4. Description of the Civic Tower and its monitoring system 

The Civic Tower, erected in 1940 (Fig. 4a), is located in the civic 
center of Rieti. It is a part of the larger Town Hall of Rieti building, built 
in the XIII century. The Civic Tower is rigidly connected on the east and 
north sides to the Town Hall, with the connection obtained through the 
floor diaphragm continuity at the second, fourth, and fifth floors and 
through the shared internal load-bearing walls. The Tower has an 
approximately square plan of dimensions 14.00 m × 13.70 m and an 
overall height of 32 m. It consists of seven floors above ground, 
including the roof level, a level on the ground floor covered by a portico 
with vaulted ceilings, and a basement level. 

The porch located on the ground floor is made of blocks of solid 
travertine and concrete mortar within the blocks. The lofts at the un-
derground level consist of alternate layers of concrete tiles and slabs, 
while the ones at the upper levels consist of cement rafters and hollow 
block slabs. The external structure consists of masonry walls with 
coating blocks of travertine, which have a thickness comparable to that 
of the masonry section. The thickness decreases from 1.00 m (first floor) 
to 0.60 m (top floor). Inside, there is a reinforced concrete frame with 
four columns. The dimensions of the columns vary along with the height 
(1.00 m × 1.00 m on the first floor and 0.40 m × 0.40 m on the 
penultimate one), while the section of the beams is fixed at 0.50 m ×
0.50 m. 

In 2014, a non-conventional Tuned Mass Damper (TMD) system was 
installed on the Civic Tower to reduce its seismic vulnerability. The TMD 
system provides supplemental damping by inducing vibration energy 

transfer from the structural portion below the isolation system to the 
structural portion above the isolation system. 

A long-term monitoring system was installed on the Civic Tower to 
monitor its dynamic behavior and health condition during normal op-
erations. The data acquisition system is an HBM MCGPlus, with the 
control unit AB22A, linked to a PC running the acquisition software 
HBM Catman 5.0. 

The monitoring of the Civic Tower has been conducted in three 
separate phases where structural accelerations were measured in 5 min- 
long recordings with a sampling frequency of 100 Hz, using a sensor 
network that consists of piezoelectric model PCB 393A03 uni-axial ac-
celerometers (1 V/g sensitivity). The first phase consists of five daily 
monitoring campaigns carried on between July 2015 and January 2016, 
which is fundamental in defining a baseline sensor setup for all future 
campaigns. The reference sensor setup, which better catches the tower’s 
dynamic behavior, consists of six high-sensitivity piezoelectric uni-axial 
accelerometers: three accelerometers (Fig. 4c) placed on the floor sup-
porting the TMD system and the remaining three on the TMD mass. 

The second monitoring phase started on August 24th, 2016, right 
after the earthquake that struck the small town of Amatrice and the 
surrounding areas. At this time, the acquisition system was set alterna-
tively in continuous mode, 24 h a day, measuring 5 min long records. 
The program also had a standby trigger mechanism to detect any sudden 
accelerations. Finally, during the last phase from December 2017 until 
January 2019, the monitoring system collected eight ambient vibration 
recordings (5 min long) per day at four different times of the day: 7:00 a. 
m., 1:00 p.m., 7:00 p.m., and 1:00 a.m. In this work, the monitoring data 
from only the last phase will be used. More information on the structure, 
the experimental setup and the monitoring campaigns can be found in 
(Tronci et al., 2020a). 

The structure’s dynamic behavior is represented by its modal pa-
rameters: frequencies, damping ratios, and mode shapes. These features 
are extracted from the 5 min long AVTs data recorded during the 
monitoring campaigns using a semi-automated identification procedure 
based on Data-Driven Stochastic Subspace Identification (DD-SSI) 
technique developed by the authors (Tronci et al., 2020b). The reader is 
referred to (Tronci et al., 2020a) for a detailed description of the adopted 
framework and the parameters used in this case study. 

5. Cointegration residuals as damage sensitive features 

Fig. 5 shows the time histories of the identified natural frequencies 
obtained by applying the semi-automated DD-SSI output-only modal 

Fig. 4. View the Civic Tower: (a) the Town Hall complex, (b) the Civic Tower, (c) the sensor setup.  
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identification technique mentioned in the previous section. 
The time evolution of the modal frequencies during the third moni-

toring phase, from December 2017 to January 2019, is shown consid-
ering the four records collected per day. Five modes are successfully 
identified in most of the dataset: the first two translational modes, f1, and 
f2; the third and fourth coupled modes, f3 and f4; and finally, the fifth 
torsional mode, f5. Significant seasonal increases in the structural fre-
quencies from winter to summer are visible in Fig. 5; such increments 
are conceivably associated with changes in environmental conditions, 
with ambient temperature being the most prominent factor. It is noted 
that the increase of natural frequencies with temperature is caused by a 
stiffening effect associated with the closing of microcracks within mortar 
layers due to thermal expansion. Conversely, the reduction of fre-
quencies related to a lower temperature is caused by microcracks 
opening (Tronci et al., 2020a). 

Following the steps presented in the methodology section, the order 
of integration of the frequency trends was investigated to ensure that 
cointegration could be adopted in this case. The ADF test established 
that all the frequencies were nonstationary. Furthermore, after applying 
the difference operator only once, the same test determined their 

stationarity to a 95% confidence level. Consequently, it is reasonable to 
expect an integration order equal to 1 for all the five frequencies 
inspected. 

Subsequently, the portion of data used to carry on the training is 
identified. This case study shows how the structural modes present a 
higher seasonal fluctuation between the beginning of April 2018 and 
mid-July 2018. Therefore, to build a robust regression model able to 
catch the behavior of the tower under environmental changes properly, 
1000 observations have been picked for training the model between 
April 20th, 2018, and July 18th, 2018. 

Once the training set has been chosen, it is necessary to explore how 
the different variables are correlated, particularly if these relationships 
are linear or nonlinear. This can be achieved by adopting various mea-
sures of correlation. In this work, different correlation coefficients are 
considered (Fig. 6): the Pearson correlation coefficient CP is a measure of 
the strength of a linear association between two variables; the Spear-
man’s correlation coefficient, CS assesses monotonic relationships 
(whether linear or not); the distance correlation, CD, is a measure of 
association strength between both linear and nonlinear random vari-
ables; the maximal correlation, CMC, that does not require assumptions 

Fig. 5. The five structural modes identified in the third monitoring phase for the Civic Tower of Rieti.  

Fig. 6. Matrix of the correlation coefficients for the five structural frequencies.  
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on the data distribution and can detect nonlinear correlations, and it is 
very efficient and robust to noise; the maximal information coefficient, 
CMIC, is a measure of the strength of the linear or nonlinear association 
between two variables. 

For the Civic Tower of Rieti, a linear relationship between the vari-
ables emerges consistently by looking at the correlation coefficients for 
all the frequencies except for the second structural mode, which presents 
a low correlation independently from the linear or nonlinear nature of 
the other modes. Consequently, only the first, third, fourth, and fifth 
structural modes are considered when building the regression model. 

For the sake of brevity, the results reported in this work correspond 
to the regression on the fifth frequency, f5, which is selected as the target 
mode, while the remaining three frequencies are used to fit the model. 
The regression model is built using a network consisting of four layers: a 
sequence input layer, an LSTM layer, a fully connected layer, and a 
regression output layer. The size of the sequence input layer corresponds 
to the number of features of the input data used in the regression, which 
is three in this study case. The LSTM layer has three hidden units, fol-
lowed by a fully connected layer equal to the number of responses or 
target features, one, in this case. The training is carried on for 100 
epochs with mini-batches of size 32 using the Adam optimizer, with a 
learning rate of 0.01. 

In the case of Prophet, four main parameters could be tuned. The 
changepoint prior scale which controls how flexible the trend is and how 
much it can change at the changepoints (the points in a time series 
where there is a change in the statistical properties of the data, such as 
the mean, variance, or trend). A higher value allows more changepoints 
and a more flexible trend. The second parameter is the seasonality prior 
scale which controls the strength of the seasonality model. A higher 
value allows the model to fit larger seasonal fluctuations; a lower value 
dampens the seasonality. It is also possible to set the holidays prior scale 
that controls the strength of the holiday components model. A higher 
value allows the model to fit larger holiday effects; a lower value 
dampens them. Finally, it is possible to set the seasonality mode, which 
determines whether the seasonality components are modeled additively 
or multiplicatively to the trend. 

For the study case application presented in this work, cross- 
validation for the different training set options was considered varying 
the two main parameters of interest: the scale on the changepoint and 
the scale on the seasonality. They were considered to vary in the 
following ranges [0.001, 0.01, 0.1, 0.5] and [0.01, 0.1, 1.0, 10.0], 
respectively. The scale on holiday is ignored, and the seasonality mode is 
kept additive, given that the observed seasonality trends were mainly 
linear from previous studies conducted by the authors (Tronci et al., 
2020a). The results from the cross-validation indicated the 

independence of the results from these parameters, showing the default 
flexibility of the model to maximize the learning of dependencies from 
the training dataset. Therefore, no particular parameter was specialized, 
and the default settings were considered. 

An initial sensitivity investigation focused on the influence of the 
time window and number of data points used to train the algorithms. 
Four different time windows were considered, starting at four different 
phases of the year: the first (T1) started on January 12th, 2018, the 
second (T2) on April 1st, 2018, the third (T3) on May 1st, 2018, and the 
last one (T4) on July 18th, 2018. Given these options, five sets of cases 
were considered, with the number of observations for training equal to 
300, 500, 700, 900, and 1100, respectively. Fig. 7 shows the results in 
terms of Relative Root Mean Squared Error for the training and testing 
datasets for all learning options. 

The first evident result is the overall performance of the two models. 
While LSTM exhibits consistent and stable behavior between the 
training and testing datasets, leading to comparable low percentages of 
errors (between 0.8% and 1.3%), Prophet exhibits less robust behavior, 
with highly performative results for the training set (error stays below 
0.65%) but substantially worse results for the testing set (error reaches 
up to 9%). This suggests an overfitting tendency of the Prophet model, 
independent of the time window or number of observations used. No 
time window or number of observations led to substantially higher 
performance. The results presented in the following sections relate to the 
1000 observations selected for training the model between the begin-
ning of April 2018 and July 2018. 

It is necessary to project new data onto the regression model and 
keep tracking the residuals over time to see if there is any deviation from 
the stationarity established in the training dataset. Introducing a control 
chart with an upper and lower threshold to bind the limits that identify 
the monitored system’s normal condition can easily help spot any 
consistent deviation or anomaly. In this case, the upper and lower limits 
are considered as ± a certain number p of standard deviation σ with 
respect to the mean value of the residuals in the training dataset. The 
number p needs to be chosen so that almost all the residual values will 
fall between the control limits when the system is healthy. Here, the 
upper and lower limits are given for three values of p (p = 1, p = 2 and p 
= 3). 

Figs. 8 and 9 show the results obtained using the Prophet and LSTM 
network to build the regression models for f5. In Figs. 8 and 9, the first 
plot shows the identified frequency compared with the predicted one. In 
contrast, the second plot displays the model residuals with a constructed 
control chart that consists of the mean value of the residuals computed 
on the training dataset, the moving average of the residuals on a window 
of 30 points, and the lower and upper control limits for different 

Fig. 7. Relative root mean squared error for LSTM and Prophet considering different time windows and number of data points.  
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confidence levels. 
The ADF test performed on the residuals of the training dataset 

confirms the residuals’ stationary and that the model residual series is 
integrated to a lower order than the original variables. Therefore, the 
cointegrating relationship is established successfully with common 
trends removed, making the model residual series a potentially good 
indicator of damage-induced variations. 

Figs. 8 and 9 highlight the effectiveness of the regression model in 
removing environmental trends from the structural frequencies. In the 
case of the regression obtained using LSTM, a regular stationary trend 
can be observed in the residuals, with just a few points exceeding the 

upper and lower thresholds, which can be classified as false positive 
scenarios. The consistent stationarity of the residuals indicates an un-
damaged, healthy structural condition. Similar behavior is also exhibi-
ted by the residuals obtained using the Prophet model. However, 
towards the end of the monitoring period, the model’s predictions 
diverge from the observations of the fifth mode. It is possible to observe 
that the frequencies converge to slightly lower values compared to those 
seen in the previous winter, diverging from the learned and observed 
annual trend on which the model was trained. The less satisfactory 
performance of the Prophet model in the final stages of the time history 
is caused by the lack of information in the training dataset. In this case, 

Fig. 8. LSTM model of f5 using the collected data for f1, f3 and f4.  

Fig. 9. Prophet model of f5 using the collected data for f1, f3 and f4.  
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the observations available for the model to learn are insufficient to 
capture the yearly linear trend caused by temperature properly. There-
fore, the model is unable to catch the overall increase in the mean 
temperature over the year. The model would perform better with a 
longer training dataset covering approximately an entire year. This will 
be an investigation for future analysis when analyzing the observations 
beyond 2019. 

Table 1 highlights the accuracy of the different regression models for 
the training and testing dataset. The results demonstrate the overall high 
performance of all the models creating a robust regression model for the 
fifth frequency as a function of the remaining ones. The testing results 
are all sufficiently consistent except for the outcomes provided by the 
Prophet algorithm. In this case, the RRMSE is distinctly higher with 
respect to SVR, RVM, and LSTM, and this is caused by the inability of the 
model to capture the final decreasing trend of the frequency in the 
winter time. SVM, RVM, and LSTM present a substantially more robust 
outcome. The LSTM model offers the possibility of having a long and 
short-term dependency that accounts for daily and seasonal fluctuations 
more structurally with respect to SVR and RVM that instead present no 
time-dependence memory. 

The Civic Tower showed variations in its dynamic behavior, with 
significant reductions in its frequency values before and after the seismic 
events that happened in 2016 in the central region of Italy. On August 
24th, 2016, the earthquake in Accumoli led to variations of the fre-
quency average values before and after the shock ranging between 1% 
and 3% for the five structural frequencies. The reader is referred to 
(Tronci et al., 2020a) for more details on the behavior of the Civic Tower 
during the seismic events of 2016. A damage scenario has been simu-
lated to test the robustness of the regression model within the cointe-
gration technique to correctly spot anomalies in the system behavior. 
This is achieved by mimicking the reduction in the structural fre-
quencies of the tower observed when a significant earthquake hit the 
structure in 2016. The anomalous condition (damage) is simulated by 
introducing a relative frequency change, Δf, in the five interested 
structural modes equal to the variations observed in correspondence of 
the earthquake that occurred in Italy’s central regions on August 24th, 
2016. The percentage variations correspond to 1.31%, 2.87%, 2.39%, 
1.41%, and 1.95%, respectively for the five modes (Tronci et al., 2020a). 
The shift has been applied to the trend of the real frequencies starting 
from observation 1818 (October 17th, 2018) until the end of the dataset. 

It can be noticed in Fig. 10 how the residual values, after the intro-
duction of damage, deviate from the mean value, exceeding the 
threshold of σ error bars and 2σ error bars, with several points set below 
the threshold corresponding to 3σ error bars. Thus, the deviation from 
the regular behavior is permanent as opposed to the false positive cases, 
where the residuals converge back to the average values after briefly 
exceeding the more restrictive threshold. In this numerically damaged 
case, the cointegration achieves optimal performance in the removal of 
the temperature dependency for the fifth structural frequency, letting 
the damage occurrence easy to observe in the residuals. 

An additional application of the cointegration strategy for damage 
detection is also considered using the real frequency series derived from 
the monitoring data collected on the tower that presents the true dam-
age data. However, in order to maintain the damage occurrence towards 
the end of the monitoring period, the time axis of the data is inverted. In 

the real study case, the frequency variation due to damage is consistent 
in magnitude among all the frequencies, and there is no pronounced 
damage in any of the tracked modes. Given the persistent presence of 
damage in all the cointegrated variables, the variation due to damage is 
also captured by the regressor model, and the residuals consequently 
remove it, as can be observed in Fig. 11. The residuals, even if showing a 
pronounced divergence from the mean value, stay within the control 
limit thresholds associated with 3σ error bars. In this real study case, the 
cointegration technique shows its limitation in the creation of robust 
damage sensitive features. 

6. Cepstral Coefficients as alternative damage sensitive features 

Coefficients have been extracted from the monitoring data recorded 
during three years. Before applying the extraction procedure discussed 
in Section 3, the number of triangular filters must be selected with the 
value for the cutoff frequency. The number of filters can be set according 
to the Fraile et al. criterion (Fraile et al., 2008); since the sampling 
frequency adopted to simulate the system response is equal to 100 Hz, M 
is set to 13. According to the observed frequency content of the tower, 
the cutoff frequency is set to 10 Hz. Consequently, the number of 
selected coefficients is chosen equal to the number of frequency bands. 

Fig. 12 shows the frequency warping strategy implemented for the 
Civic Tower of Rieti. The power spectrum for the monitored structure is 
shown in the top plot, and it is possible to observe the five peaks cor-
responding to the main structural modes. The centroid of the triangular 
filters represented in the subplot below is also reported to overlap with 
the spectrum. The Figure highlights how the 4th, 5th, 6th, and 7th filters 
are the ones capturing and representing the majority of the energy 
content of the spectrum. The effect of the temperature and the long-term 
environmental component will reflect in these contributions over the 
monitoring period. This dependency is filtered out by applying the in-
verse discrete cosine transform in the case of the higher-order 
coefficients. 

Fig. 13 shows the average time series of two coefficients extracted 
from channel 2. The coefficient c3 presents a main drop right after the 
earthquake series of shocks on January 18th, 2017. The epicenter of the 
seismic events was in Capitignano, which is 38.5 Km far from Rieti. 
Additionally, the third coefficient exhibits a seasonal trend that matches 
the temperature fluctuation observed in the frequencies. On the other 
hand, the eleventh coefficient c11, is consistently more stationary, 
revealing an important reduction after the earthquake occurred on 
August 24th, 2016, and a smaller jump in correspondence to the one that 
took place on January 18th, 2017. Unlike the third coefficient, c11, does 
not exhibit any seasonal changes remaining substantially stationary. 

Fig. 14 shows the coefficient c11 included in a control chart similar 
to the one defined for the cointegration residuals. It is evident how the 
coefficient values stay stationary and confined within the control chart 
limit except for only one data point exceeding the 3σ error bars. Then, in 
correspondence with two of the three main seismic events that happened 
in the central area of Italy in 2016, the coefficients substantially deviate 
from the mean value associated with the undamaged condition. 

7. Conclusion 

The current study shows the accuracy of a damage detection 
approach in a real monitoring application by utilizing damage-sensitive 
features independent of long-term environmental trends. This work 
shows and compares the adoption of the cointegration residuals and the 
Cepstral Coefficients as damage sensitive features. The objective is to 
unfold the limitations that can arise in using temperature-independent 
residuals in real study cases and propose the Cepstral Coefficients as 
an alternative indicator to be used in addition and combination with the 
cointegration residuals. 

In particular, the study examines the temperature and damage 
sensitivity of these two sets of features in a damage detection monitoring 

Table 1 
Root mean squared error and relative root mean squared error for different 
regression models for the training and testing dataset.  

Model Training Testing 

RMSE RRMSE RMSE RRMSE 

Support Vector Regression 0.036 0.66% 0.037 0.70% 
Relevance Vector Machine 0.038 0.70% 0.040 0.75% 
Prophet 0.033 0.60% 0.049 0.92% 
Long Short-Term Memory 0.039 0.71% 0.040 0.74%  
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application on a historical reinforced-concrete masonry tower in Italy. 
Two regression models, the Long Short-Term Memory Neural Network 
and the Prophet model, are used to implement the cointegration strategy 
using the first five structural modes of the tower. Both models show 
robust regression performance regardless of the training data size and 
time-window period and are able to remove the temperature nonsta-
tionary dependence of the frequencies from the temperature. However, 
the LSTM model outperforms the Prophet model in predicting structural 
frequency with unseen temperature trends. Finally, the LSTM model is 
applied to the monitoring data of the Civic Tower of Rieti and generates 
stationary residuals independent of temperature fluctuations. 

The investigation on the temperature dependency of Cepstral Co-
efficients shows that the higher-order coefficients tend to be indepen-
dent of long-term temperature dependencies because of their extraction 
process. The discrete cosine transform acts as a filter on the spectral bins 
of the system, removing the long-term fluctuations due to temperature. 

The study tested the damage detection approach by introducing 
artificial damage to a reinforced-concrete masonry tower. The cointe-
gration method effectively detected the damage, with residual values 
diverging from regular mean values and exceeding set thresholds for 
healthy system representation. However, when considering the experi-
mental frequency quantities collected during real damage conditions, 

Fig. 10. LSTM model of f5 using the collected data for f1, f3 and f4 with simulated damage.  

Fig. 11. LSTM model of f5 using the collected data for f1, f3 and f4 with real damage.  
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Fig. 12. Average spectrum (a) and triangular filters for the first sensor (b).  

Fig. 13. Cepstral Coefficients c3 and c11 time series for channel 2.  

Fig. 14. Control chart for Cepstral Coefficient c11.  
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the strategy failed to detect damage. This highlights limitations in using 
cointegration residuals for monitoring when damage emerges uniformly 
in all frequency components. In addition, higher-order Cepstral Co-
efficients were found to be highly sensitive features for damage detec-
tion without needing to remove temperature dependency first. 

The results obtained from using Cepstral Coefficients in detecting 
damage in a real study case, particularly in the presence of a seismic 
event, are promising. Combining these features with cointegration re-
siduals could enhance the reliability and effectiveness of damage 
detection strategies for civil structures. Cepstral Coefficients provide a 
complementary and naturally insensitive feature set to the temperature- 
dependent cointegration residuals. The proposed combination of these 
two sets of features could offer a more comprehensive and robust 
approach to detecting structural damage, particularly in scenarios 
where environmental factors or operational conditions may impact the 
reliability of individual features. 
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Use of mel-frequency cepstral coefficients for automatic pathology detection on 
sustained vowel phonations: mathematical and statistical justification. In: Proc. 4th 
International Symposium on Image/video Communications over Fixed and Mobile 
Networks. Bilbao, Brazil.  

Fuller, W., 2009. Introduction to Statistical Time Series. John Wiley & Sons. 
García-Macías, E., Ubertini, F., 2022. Least Angle Regression for early-stage 

identification of earthquake-induced damage in a monumental masonry palace: 
palazzo dei Consoli. Eng. Struct. 259, 114119. 

Gentile, C., Saisi, A., 2007. Ambient vibration testing of historic masonry towers for 
structural identification and damage assessment. Construct. Build. Mater. 21, 
1311–1321. 

Giglioni, V., Venanzi, I., Ubertini, F., 2023. Application of unsupervised learning for post- 
earthquake assessment of the Z24 benchmark bridge. Procedia Struct. Integr. 44, 
1948–1955. 

Han, Q., Ma, Q., Xu, J., Liu, M., 2021. Structural health monitoring research under 
varying temperature condition: a review. J. Civ. Struct. Health Monitor. 11, 
149–173. 

Harvey, A., Peters, S., 1990. Estimation procedures for structural time series models. 
J. Forecast. 9, 89–108. 

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9, 
1735–1780. 

Ierimonti, L., Cavalagli, N., Venanzi, I., García-Macías, E., Ubertini, F., 2022. A Bayesian- 
based inspection-monitoring data fusion approach for historical buildings and its 
post-earthquake application to a monumental masonry palace. Bull. Earthq. Eng. 
1–34. 

Invernizzi, S., Lacidogna, G., Lozano-Ramírez, N., Carpinteri, A., 2019. Structural 
Monitoring and Assessment of an Ancient Masonry Tower, vol. 210. Engineering 
Fracture Mechanics, pp. 429–443. 

Johansen, S., 1995. Likelihood-based Inference in Cointegrated Vector Autoregressive 
Models. OUP Oxford. 

Kita, A., Cavalagli, N., Ubertini, F., 2019. Temperature effects on static and dynamic 
behavior of Consoli Palace in Gubbio, Italy. Mech. Syst. Signal Process. 120, 
180–202. 

Li, L., Morgantini, M., Betti, R., 2023. Structural damage assessment through a new 
generalized autoencoder with features in the quefrency domain. Mech. Syst. Signal 
Process. 184, 109713. 

Oppenheim, A., Buck, J., Schafer, R., 2001. Discrete-time Signal Processing, vol. 2. 
Prentice Hall, Upper Saddle River, NJ.  

Pallarés, F., Betti, M., Bartoli, G., Pallarés, L., 2021. Structural health monitoring (SHM) 
and Nondestructive testing (NDT) of slender masonry structures: a practical review. 
Construct. Build. Mater. 297, 123768. 

Pan, Q., Bao, Y., Li, H., 2023. Transfer learning-based data anomaly detection for 
structural health monitoring. Struct. Health Monit., 14759217221142174 

Quqa, S., Landi, L., Diotallevi, P., 2021. Automatic identification of dense damage- 
sensitive features in civil infrastructure using sparse sensor networks. Autom. 
ConStruct. 128, 103740. 

Shi, H., Worden, K., Cross, E., 2016. A nonlinear cointegration approach with 
applications to structural health monitoring. J. Phys. Conf. 744, 012025. 

Silva, M., Santos, A., Santos, R., Figueiredo, E., Costa, J., 2021. Damage-sensitive feature 
extraction with stacked autoencoders for unsupervised damage detection. Struct. 
Control Health Monit. 28, e2714. 

Taylor, S., Letham, B., 2018. Forecasting at scale. Am. Statistician 72, 37–45. 
Tronci, E., De Angelis, M., Betti, R., Altomare, V., 2020a. Vibration-based structural 

health monitoring of a RC-masonry tower equipped with non-conventional TMD. 
Eng. Struct. 224, 111212. 

Tronci, E., De Angelis, M., Betti, R., Altomare, V., 2020b. Semi-automated operational 
modal analysis methodology to optimize modal parameter estimation. J. Optim. 
Theor. Appl. 187, 842–854. 

Tronci, E., Beigi, H., Feng, M., Betti, R., 2022. A transfer learning SHM strategy for 
bridges enriched by the use of speaker recognition x-vectors. J. Civ. Struct. Health 
Monitor. 1–14. 

Turrisi, S., Cigada, A., Zappa, E., 2022. A cointegration-based approach for automatic 
anomalies detection in large-scale structures. Mech. Syst. Signal Process. 166, 
108483. 

Ubertini, F., Comanducci, G., Cavalagli, N., Pisello, A., Materazzi, A., Cotana, F., 2017. 
Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, 
Italy, and their removal for structural performance assessment. Mech. Syst. Signal 
Process. 82, 307–322. 

Vishwas, B., Patel, A., Vishwas, B., Patel, A., 2020. Prophet. Hands-On Time Series 
Analysis with Python: from Basics to Bleeding Edge Techniques, pp. 375–394. 

Zhang, G., Harichandran, R., Ramuhalli, P., 2011. Application of noise cancelling and 
damage detection algorithms in NDE of concrete bridge decks using impact signals. 
J. Nondestr. Eval. 30, 259–272. 

E.M. Tronci et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S2666-1659(23)00052-2/sref1
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref1
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref1
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref1
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref2
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref2
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref3
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref3
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref3
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref4
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref5
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref5
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref5
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref6
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref6
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref6
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref7
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref7
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref7
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref8
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref8
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref8
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref9
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref9
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref9
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref10
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref10
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref10
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref11
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref11
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref11
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref12
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref12
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref12
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref14
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref14
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref14
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref15
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref15
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref16
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref16
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref16
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref16
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref16
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref17
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref18
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref18
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref18
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref19
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref19
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref19
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref20
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref20
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref20
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref21
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref21
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref21
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref22
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref22
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref23
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref23
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref24
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref24
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref24
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref24
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref25
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref25
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref25
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref26
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref26
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref27
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref27
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref27
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref28
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref28
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref28
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref29
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref29
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref30
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref30
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref30
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref31
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref31
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref32
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref32
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref32
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref33
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref33
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref34
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref34
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref34
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref35
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref36
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref36
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref36
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref37
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref37
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref37
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref38
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref38
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref38
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref39
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref39
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref39
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref40
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref40
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref40
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref40
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref41
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref41
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref42
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref42
http://refhub.elsevier.com/S2666-1659(23)00052-2/sref42

	Damage detection in a RC-masonry tower equipped with a non-conventional TMD using temperature-independent damage sensitive  ...
	1 Introduction
	2 Cointegration strategy to derive temperature-independent damage sensitive features
	2.1 Regression models

	3 Cepstral Coefficients as natural damage sensitive features
	4 Description of the Civic Tower and its monitoring system
	5 Cointegration residuals as damage sensitive features
	6 Cepstral Coefficients as alternative damage sensitive features
	7 Conclusion
	Declaration of competing interest
	Data availability
	References


