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Abstract. Recognition of user interaction, in particular engagement
detection, became highly crucial for online working and learning environ-
ments, especially during the COVID-19 outbreak. Such recognition and
detection systems significantly improve the user experience and efficiency
by providing valuable feedback. In this paper, we propose a novel Engage-
ment Detection with Multi-Task Training (ED-MTT) system which min-
imizes mean squared error and triplet loss together to determine the
engagement level of students in an e-learning environment. The perfor-
mance of this system is evaluated and compared against the state-of-
the-art on a publicly available dataset as well as videos collected from
real-life scenarios. The results show that ED-MTT achieves 6% lower
MSE than the best state-of-the-art performance with highly acceptable
training time and lightweight feature extraction.

Keywords: Engagement detection · Activity recognition · E-learning ·
Triplet loss · Multi-task training

1 Introduction

During the COVID-19 outbreak, nearly all of the learning activities, as other
meeting activities, transferred to online environments [32]. Online learners par-
ticipate in various educational activities including reading, writing, watching
video tutorials, online exams, and online meetings. During the participation
in these educational activities, participants show various engagement levels, e.g.
boredom, confusion, and frustration [11]. To provide feedback to both instructors
and students, online educators need to detect their online learners’ engagement
status precisely and efficiently. For example, the teacher can adapt and make
lessons more interesting by increasing interaction, such as asking questions to
involve non-interacting students. Since, in e-learning environments, students are
not speaking most of the time, the engagement detection systems should extract
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valuable information from only visual input [29]. This makes the problem non-
trivial and subjective because annotators can perceive different engagement lev-
els from the same input video. The reliability of the dataset labels is a big concern
in this setting but often is ignored by the current methods [29,30,32]. Because of
this, deep learning models overfit to the uncertain samples and perform poorly
on validation and test sets.

In this paper, we propose a system called Engagement Detection with Multi-
Task Training (ED-MTT)1 to detect the engagement level of the participants
in an e-learning environment. The proposed system first extracts features with
OpenFace [2], then aggregates frames in a window for calculating feature statis-
tics as additional features. Finally, it uses Bidirectional Long Short-Term mem-
ory (Bi-LSTM) [13] unit for generating vector embeddings from input sequences.
In this system, we introduce a triplet loss as an auxiliary task and design the sys-
tem as a multi-task training framework by taking inspiration from [22], where
self-supervised contrastive learning of multi-view facial expressions was intro-
duced. The reason for the triplet loss usage is based on the ability to utilize
more elements for training via the combination of original samples. In this way,
it avoids overfitting and makes the feature representation more discriminative
[9]. To the best of our knowledge, this is a novel approach in the context of
engagement detection. The key novelty of this work is the multi-task training
framework using triplet loss together with Mean Squared Error (MSE). The
main advantages of this approach are as follows:

– Multi-task training with triplet and MSE losses introduces an additional reg-
ularization and reduces possibly over-fitting due to very small sample size.

– Using triplet loss mitigates the label reliability problem since it measures
relative similarity between samples.

– A system with lightweight feature extraction is efficient and highly suitable
for real-life applications.

Furthermore, we evaluate the performance of ED-MTT on a publicly avail-
able “Engagement in The Wild” dataset [7], which is comprised of separated
training and validation sets. In our experimental work, we first analyze the
importance of feature sets to select the best set of features for the resulting
trained ED-MTT system. Then, we compare the performance of ED-MTT with
9 different works [1,5,15,20,24,25,27,31,32] from the state-of-the-art which will
be reviewed in the next section. Our results show that ED-MTT outperforms
these state-of-the-art methods with at least 6% improvement on MSE.

The rest of this paper is organized as follows: Sect. 2 reviews the related
works in the literature. Section 3 explains the architectural design of ED-MTT.
Section 4 presents experimental results for the performance evaluation of ED-
MTT and comparison with the state-of-the-art methods. Section 5 conclude our
work and experimental results.

1 Code and pretrained model are available at https://github.com/CopurOnur/ED-
MTT.

https://github.com/CopurOnur/ED-MTT
https://github.com/CopurOnur/ED-MTT
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2 Related Works

One of the first attempts to investigate the relationships between facial features,
conversational cues, and emotional expressions with engagement detection is
presented by D’Mello et al. in [8]. The authors in [10,28] used the Facial Action
Coding System (FACS) which is a measure of discrete emotions with facial mus-
cle movements, and point out the relation between specific engagement labels and
facial actions. In Reference [28], Whitehill et al. showed that automated engage-
ment detectors perform with comparable accuracy to humans. In [3], Booth et
al. compared the performance of a Long-Short Term Memory (LSTM) based
method with SVM and KNN methods with non-verbal features. In [6], Dewan et
al. proposed a Local Directional Pattern (LDP) to extract person-independent
edge features which are fed to a Deep Belief Network. Huang et al. [14] pro-
posed a model, called Deep Engagement Recognition Network (DERN), which
combines temporal convolution, bidirectional LSTM, and an attention mecha-
nism to identify the degree of engagement based on the features captured by
OpenFace [2]. Moreover in [18], Liao et al. proposed Deep Facial Spatiotemporal
Network (DFSTN) which is developed based on extracting facial spatial features
and global attention for sequence modeling with LSTM. Finally, in [19,21,23],
authors used models which are based on Convolutional Neural Networks (CNN)
and Residual Networks (ResNet) [12]. All the works above considered the engage-
ment detection problem as a multi-class classification problem. In contrast, in
this paper, we follow a more recent line of research that considers engagement
detection as a regression problem, where MSE loss is used to measure a contin-
uous distance between predicted and ground truth engagement levels.

Yang et al. [31] also used MSE loss and developed a method that ensembles
four separate LSTMs using facial features extracted from four different sources.
In [20], Niu et al. combined the outputs of three Gated Recurrent Units (GRU)
based on a 117-dimensional feature vector composed of eye gaze action units
and head pose features. In [24], Thomas et al. used Temporal Convolutional
Network (TCN) on the same set of features as in [20]. In previous works [29,32],
the most common ways to overcome over-fitting is data augmentation and cross-
validation training. Some other works [1,27] consider imbalanced sampling [17]
and using weighted/ranked loss functions. Moreover, some works also consider
spatial dropout and batch normalization as a regularization technique [5,24]. All
the previous studies focus on small sample sizes and imbalanced labels but none
of them consider the reliability of the labels. On the other hand, in this paper,
ED-MTT aims to handle both overfitting and label reliability at the same time
via multi-task training with triplet loss.

3 Architectural Design for Engagement Detection
with Multi-Task Training

We now present our architectural design as well as the multi-tasking with the
combination of MSE and triplet loss for training, which are the main contri-
butions of this work. To this end, Fig. 1 displays the training architecture of
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Fig. 1. The training architecture for ED-MTT.

ED-MTT that consists of four main parts: Feature Extraction, Frame Aggrega-
tion, Sequence Modeling, and Multi-Tasking. The inputs of this architecture are
three batches of samples as Anchor, Positive and Negative. In each batch, each
sample is the sequence of images which is obtained by segmenting a video into m
frames each of size h×w×c, where h denotes the height in pixels, w denotes the
width in pixels and c denotes the number of color channels of each frame, where
RGB color space is used. During the training with this approach, each sample s
in the anchor batch is assumed to have a labeled engagement level Es between 0
and 1. For each s, Es is assigned into either low engagement or high engagement
classes. To this end, if Es < 0.5, s is assigned into the low engagement class;
otherwise, i.e. Es ≥ 0.5, s is assigned into the high engagement class. Then, for
each sample s in the anchor batch, the positive batch contains a random sample
from the same engagement class of s while the negative batch contains a random
sample from the opposite engagement class of s.

Furthermore, the outputs of the architecture in Fig. 1 are the MSE and Triplet
Loss which are combined to train the Bi-LSTM model. Note that during infer-
ence, the engagement level prediction is the output of the fully connected neural
network. While creating a multi-task learning problem through triplet loss, which
aims to prevent overfitting due to the very few samples available for engagement
detection during e-learning, we are able to perform regression for continuous
engagement levels using MSE. In the rest of this section, we explain each part
of the training architecture.

3.1 Feature Extraction

In order to narrow down the feature space by extracting the important features
from the sequence of video frames, we first determine the features that are related
to the engagement level of a subject. Accordingly, as done in [14,20,24,29,31],
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we consider 29 features which are related to eye gaze, head pose, head rotation,
and facial action units. We extract these features with OpenFace which provides
many different facial features [2] and can be described as

Ys
m×n = OpenFace(Xs

mhwc), (1)

where Xs
mhwc is the tensor of frame sequences at sample s, and Ys

m×n is the
matrix of sequence of features at sample s, where the (i, j)-th element of Ys

m×n

the feature i for frame j.
In the result of feature extraction, the eye gaze-related features are, gaze 0 x,

gaze 0 y, gaze 0 z which are eye gaze direction vectors in world coordinates for
the left eye and gaze 1 x, gaze 1 y, gaze 1 z for the right eye in the image.
The head pose-related features are pose Tx, pose Ty, pose Tz representing the
location of the head with respect to the camera in millimeters (positive Z is away
from the camera). pose Rx, pose Ry, pose Rz indicates the rotation of the head
in radians around x, y, z axes. This can be seen as pitch (Rx), yaw (Ry), and
roll (Rz). The rotation is in world coordinates with the camera being the origin.
Finally, the following 17 facial action unit intensities varying in the range 0−5
are used: AU01 r, AU02 r, AU04 r, AU05 r, AU06 r, AU07 r, AU09 r, AU10 r,
AU12 r, AU14 r, AU15 r, AU17 r, AU20 r, AU23 r, AU25 r, AU26 r, AU45 r.

3.2 Feature Aggregation over Time Windows

We now explain the aggregation of feature statistics over time windows with
multiple video frames. In this way, the number of features (which was equal to n
at the end of the Feature Extraction phase) is increased to b in order to provide
more information to the Sequence Model.

Let the operation of the “Feature Aggregation over Time Windows” be shown
as

Zs
a×b = Aggregate(Ys

m×n), (2)

where Zs
a×b is the matrix of the b feature statistics for a aggregated frames. Let

z be the number of frames in each time window that are considered for feature
aggregation, where m = a × z. Then, in each of a windows, we compute the
mean, variance, standard deviation, minimum, and maximum of each feature
over the consecutive z frames resulting in b feature statistics, where b = 5 × n.

3.3 Sequence Modeling Combined with Multi-Tasking

Multi-task learning aims to learn multiple different tasks simultaneously while
maximizing performance on one or all of the tasks [4]. The suggested architecture
contains two tasks: The first task is predicting the multi-level engagement label
by optimizing the MSE loss between actual and predicted labels. The second
task is learning hidden vector embeddings by optimizing the triplet loss.

As shown in Fig. 1, during sequence modeling, we use three parallel (siamese)
Bi-LSTM models with weight sharing to compute the hidden vectors for Triplet
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Loss and for MSE loss as cascaded to the Fully Connected Neural Network.
However, note that training is performed for only one Bi-LSTM model since the
Bi-LSTM models in Fig. 1 are used with weight sharing for triplet loss. We call
the Bi-LSTM model for the aggregated feature matrix Zs

a×b as

T s
v = Bi-LSTM(Zs

a×b), (3)

where T s
v is the hidden vector, which is the hidden state of the last layer of

Bi-LSTM model. Thus, the length of this vector, denoted by v, is equal to twice
the number of hidden units of the last layer of the Bi-LSTM.

Triplet loss is a loss function where a baseline (anchor) sample is compared
with a positive and negative sample. The distance between the anchor and the
positive sample is minimized and the distance between the anchor and the neg-
ative is maximized. We use the triplet loss function which is presented in [26]
and defined as

�(Anchor,Positive,Negative) = L = {l1, . . . ls . . . , lS}�,

ls = max{d(Anchors,Positives) − d(Anchors,Negatives) + margin, 0}, (4)

where S is the number of samples in a batch, d is the euclidean distance, and
margin is a non-negative margin representing the minimum difference between
the positive and negative distances that are required for the loss to be 0. More-
over, Anchors, Positives and Negatives denote the Anchor, Positive and Negative
batches for sample s, respectively.

In addition to the triplet loss, we also minimize the MSE loss which measures
the error for the engagement regression. To this end, we cascade the Bi-LSTM
model to the Fully Connected Neural Network whose output is the engagement
level. Recall that the engagement regression is the main task during the real-
time application. Accordingly, during training, the minimization of MSE can be
considered as the main task while the minimization of Triplet loss is the auxiliary
task.

4 Experimental Results

4.1 Dataset

For the performance evaluation of the proposed technique, we use both train-
ing and validation datasets published at “Emotion Recognition in the Wild”
(EmotiW 2020) challenge [7] where the engagement regression is a sub-task.
The dataset is comprised of 78 subjects (25 females and 53 males) whose ages
range from 19 to 27. Each subject is recorded while watching an approximately
5 min long stimulus video of a Korean Language lecture. This procedure results
in a collection of 195 videos, where the environment varies over videos and the
subjects are not disturbed during recording. The engagement level of each video
recording is labeled by a team of five between 0 and 3 resulting in the distribution
shown in Fig. 2.
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Fig. 2. He distribution of the engagement classes for each of the training and validation
sets. In this figure, we see that the dataset is highly imbalanced, in particular there is
a lack of low level engagement class samples.

4.2 Experimental Setup and Hyperparameter Settings

We implemented ED-MTT by using PyTorch on Python 3.7.12. The experiments
are executed on the Google Colab platform where the operating system is Linux-
5.4.144, and the GPU device is Tesla P100-PCIE-16 GB. The model is trained
via the adam optimizer [16] for 500 epochs with 5 × 10−5 initial learning rate
and batch size of 16.

Furthermore, during our experiments, we first fixed the number of aggregated
frames a = 100. At the input of Bi-LSTM, we used a batch normalization with
an imbalanced sampler from the “imbalanced-learn” library of Python [17]. Then
in order to determine the architectural hyperparameters of the sequential model,
we performed a random search for the number of Bi-LSTM layers, the size of
the hidden state as well as the number of neurons at each of two fully connected
neural network layers. The random search sets are as follows: {1, 2, 3} for the
number of Bi-LSTM layers, {128, 256, 512, 1024} for the size of hidden state of
each Bi-LSTM layer2, {256, 128, 64} for the first layer of the fully connected
neural network, and {32, 16, 8} for the second layer of fully connected neural
network. At the end of this search, the resulting architecture is comprised of 2
Bi-LSTM layers each of whose hidden state size is 1024, and two sequential fully
connected layers with 64 and 32 neurons respectively.

4.3 Performance Evaluation

We now evaluate the performance of ED-MTT for engagement detection on
a publicly available “Engagement in The Wild” dataset. During performance
evaluation, we first aim to select the subset of facial and head position features
with respect to their effects on the performance of our system. To this end,
Table 1 displays the performance of the model under different combinations of
feature sets, where the combinations are selected empirically to achieve high
2 Note that the size of the hidden state is constant across all Bi-LSTM layers.
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Table 1. Performance of the model under different combinations of feature sets

Eye Gaze Head Pose Head Rotation Action Units MSE

✓ ✗ ✗ ✗ 0.08347

✗ ✓ ✗ ✗ 0.07784

✗ ✗ ✓ ✗ 0.05723

✗ ✗ ✗ ✓ 0.05044

✗ ✗ ✓ ✓ 0.06578

✗ ✓ ✓ ✗ 0.07238

✓ ✗ ✓ ✗ 0.06915

✓ ✓ ✗ ✗ 0.06036

✓ ✓ ✓ ✗ 0.06973

✓ ✗ ✓ ✓ 0.05681

✓ ✓ ✗ ✓ 0.04271

✓ ✓ ✓ ✓ 0.05431

performance. Recall that the number of features in each feature set is as follows:
6 features in Eye Gaze, 3 features in Head Pose, 3 features in Head Rotation,
and 17 features in Action Units. According to our observations on the results
presented in this table, we may draw the following conclusions:

– The best performance is achieved by using all features except Head Rotation
features. Accordingly, in the rest of our results, we use the combination of
Eye Gaze, Head Pose, and Action Unit features.

– The most effective individual feature set is Action Units.
– The MSE loss significantly decreases for the majority of the cases when Action
Unit features are included in the selected features.

Furthermore, in Fig. 3, we present the comparison of ED-MTT against
the state-of-the-art engagement regression methods that are evaluated on the
Engagement in The Wild dataset. In this figure, the MSE scores of the state
of the art methods are taken from their original papers. The results show that
ED-MTT achieves the best performance with 0.0427 MSE loss on the validation
set. Although the performances of all methods are highly competitive with each
other, the ED-MTT improved the best performance (Chang et al. [5]) in the
literature by 6%. In addition, the training time of ED-MTT is around 38 min for
149 samples for 500 epochs.

Figure 4 displays the box plot of the predicted engagement levels on the
validation sets which are classified with respect to the ground truth engagement
labels in the dataset. In this figure, from median and percentiles of predicted
engagement levels, one may see that the continuous predictions of ED-MTT
distinctly reflects the four level of engagement classes in the ground truth labels.
Moreover, ED-MTT can easily distinguish between classes 0, 0.33, and 0.66 while
the difference between 0.66 and 1.0 is more subtle.
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Fig. 3. The performance comparison of ED-MTT against the state-of-the-art methods,
where the MSE scores are presented as in the original papers. Wang et al. [27] score:
0.0717, Huynh et al. [25] score: 0.0572, Yang et al. [31] score: 0.0717, Niu et al. [20]
score: 0.0569, Thomas et al. [24] score: 0.0655, Abedi et al. [1] score: 0.0671, Kamath
et al. [15] score: 0.0598, Zhu et al. [32] score: 0.0517, Chang et al. [5] score: 0.0453,
ED-MTT score: 0.0427

Fig. 4. The figure presents (top) the box plot of predicted engagement levels for each
class in the ground truth engagement levels and (bottom) sample images from [7]
correspond to outliers in the box plot, respectively.

4.4 Qualitative Results

Finally, ED-MTT is also tested on a preliminary real-life engagement detection
tasks for which the prediction results are presented in Fig. 5. These results show
that the proposed model, ED-MTT, trained on Engagement in The Wild dataset
is able to provide highly successful predictions in real-life use-cases, which are
totally different than the cases in the training set. According to our observations
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Fig. 5. Sample images with the following predicted engagement levels by ED-MTT:
0.35 (top left), 0.53 (top middle), 0.86 (top right), 0.47 (bottom left), 0.61 (bottom
middle), and 0.82 (bottom right).

on the prediction results for a total (approximately) 12 min long videos including
8 people, the model can successfully distinguish different levels of engagement
(very low, low, high, and very high engagement levels). However, the predicted
engagement levels lie between 0.2 and 0.92, which forces to determine smaller
quantization intervals to classify engagement levels in real-life use-cases.

5 Conclusion

Online working and learning environments are currently more essential in our
lives, especially after the COVID-19 era. In order to improve the user experience
and efficiency, advanced tools, such as recognition of user interaction, became
highly crucial in these digital environments. For e-learning, one of the most
important tools might be the engagement detection system since it provides
valuable feedback to the instructors and/or students.

In this paper, we developed a novel engagement detection system called “ED-
MTT” based on multi-task training with triplet and MSE losses. For engage-
ment regression task, ED-MTT uses the combination of Eye Gaze, Head Pose,
and Action Units feature sets and is trained to minimize MSE and triplet loss
together. This training approach is able to improve the regression performance
due to the following reasons; 1) multi-task training with two losses introduces
an additional regularization and reduces over-fitting due to very small sample
size, 2) triplet loss measures relative similarity between samples to mitigate the
label reliability problem. 3) minimization of MSE ensures that the main loss
considered for the regression problem is minimized alongside the triplet loss.

The performance of ED-MTT is evaluated and compared against the perfor-
mances of the state-of-the-art methods on the publicly available Engagement in
The Wild dataset which is comprised of separated training and validation sets.
Our results showed that the novel ED-MTT method achieves 6% lower MSE than
the lowest MSE achieved by the state-of-the-art while the training of ED-MTT
takes around 38 min for 149 samples for 500 epochs. We tested the performance
of ED-MTT for real-life use cases with 8 different participants, and the prediction
results for majority of these cases were shown to be highly successful.
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