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Abstract. We present some recent advances in the productive and symbiotic interplay between

general potential theories (subharmonic functions associated to closed subsets F ⊂ J 2(X) of the

2-jets on X ⊂ Rn open) and subsolutions of degenerate elliptic and parabolic PDEs of the form

F (x, u,Du,D2u) = 0. We will implement the monotonicity-duality method begun by Harvey and

Lawson [9] (in the pure second order constant coefficient case) for proving comparison principles

for potential theories where F has sufficient monotonicity and fiberegularity (in variable coefficient

settings) and which carry over to all differential operators F which are compatible with F in a

precise sense for which the correspondence principle holds.

We will consider both elliptic and parabolic versions of the comparison principle in which

the effect of boundary data is seen on the entire boundary or merely on a proper subset of the

boundary.

Particular attention will be given to gradient dependent examples with the requisite sufficient

monotonicity of proper ellipticity and directionality in the gradient. Examples operators we will

discuss include the degenerate elliptic operators of optimal transport in which the target density

is strictly increasing in some directions as well as operators which are weakly parabolic in the

sense of Krylov. Further examples, modeled on hyperbolic polynomials in the sense of G̊arding

give a rich class of examples with directionality in the gradient. Moreover we present a model

example in which the comparison principle holds, but standard viscosity structural conditions fail

to hold.
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1. Introduction

In this work, we continue an investigation into the validity of the comparison principle

u 6 w on ∂Ω ⇒ u 6 w in Ω (1.1)

on bounded domains Ω in Euclidean spaces Rn. We will operate in the two seemingly distinct
frameworks of general second order nonlinear potential theories and of general second order fully
nonlinear PDEs, where the formulations of comparison (1.1) in the two frameworks will soon be
made precise. Comparison is of interest in both frameworks since, as is well known, it implies
uniqueness of solutions to the natural Dirichlet problem in both frameworks (in the presence of
some mild form of ellipticity). Moreover, comparison (1.1) together with suitable strict boundary
convexity (that ensures the existence of needed barriers) leads to existence of solutions to the
Dirichlet problem by Perron’s method.

In both frameworks we will also treat the following variant of the comparison principle

u 6 w on ∂−Ω ⇒ u 6 w in Ω, (1.2)

where ∂−Ω ( ∂Ω is a proper subset of the boundary. The version (1.1) “sees” the entire boundary
and will hold under weak ellipticity assumptions and hence we will refer to it as the elliptic version
of comparison. On the other hand, the version (1.2) which sees only a “reduced boundary” will be
refered to as the parabolic version of comparison since it holds (for example) under weak parabolicity
assumptions.

While both versions of comparison are seemingly different in the two frameworks, we will connect
the two frameworks for both versions by something called the correspondence principle which gives
precise conditions of compatibility for which comparison in the two frameworks is equivalent. This
is important for many reasons. A given second order potential theory on an open subset X ⊂ Rn
is determined by a constraint set F which is closed subset of J 2(X) (the space of 2-jets on X)
and which identifies a class of F-subharmonic functions on X, while a PDE on X is an equation
of the form F (x, J) = 0 determined by an operator F acting on (x, J) ∈ J 2(X). There may be
many differential operators F organized about F which are compatible with the constraint set in
the sense

F = {(x, J) ∈ J 2(X) : F (x, J) > 0} and F = {(x, J) ∈ J 2(X) : F (x, J) = 0}.
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Hence potential-theoretic comparison for F gives operator-theoretic comparison for every operator
F compatible with F . This is just one instance of the productive interplay between potential theory
and operator theory. See the survey paper [15] and the preface of the monograph [7] for a more
complete discussion of this interplay. We will have more to say on the origins and development
of this program below, after presenting the two formulations of comparison and the main results
obtained here, which will allow us to clearly underline what is new in this paper.

We now describe comparison in the first (potential theoretic) framework. Here one asks when
does comparison (1.1) hold on Ω for each pair u ∈ USC(Ω) and w ∈ LSC(Ω) which are respectively
F−subharmonic and F−superharmonic functions on Ω b X where

F ⊂ J 2(X) := X × J 2 = X × R× Rn × S(n), X ⊂ Rn open,

is a subequation (constraint set) on X in the space of 2-jets. The precise definitions of subequations
F and their associated subharmonics are given in Definitions 2.1 and 2.3, respectively. We note
here only that F is closed and satisfies certain natural (monotonicity and topological) axioms which
ensure that the potential theory determined by F (the associated Fsubharmonics) is meaningful
and rich where the subharmonics on Ω satisfy the differential inclusion

J2,+
x u ⊂ Fx := {J ∈ J 2 : (x, J) ∈ F}, ∀x ∈ Ω

in the viscosity sense where J2,+
x u is the set of upper test jets for u in x.

A general comparison principle is presented in Theorem 5.2 in this potential theoretic setting
and the proof makes use of the monotonicity-duality method that was initiated in the constant
coefficient pure second order case in Harvey-Lawson [9]. To use the method, we require three
additional assumptions. First, the constraint set F much be sufficiently monotone in the sense that
there exists a constant coefficient subequation M ( J 2 which is a monotonicity cone subequation
for F ; that is, in addition to being a subequation it is also a convex cone with vertex at the origin
such one has the monotonicity property

Fx +M⊂ F, ∀x ∈ X.

We also require that the constraint set F is fiberegular in the sense that the fiber map

Θ : X → K (J 2) defined by Θ(x) := Fx, x ∈ X (1.3)

is continuous with respect to the Euclidian metric on X and the Hausdorff metric on the closed
subsets K (J 2) of J 2. This notion was introduced in [5] in the variable coefficient pure second
order case and then was extended to the gradient-free case in [6]. Finally, for the elliptic version of
comparison (1.1) on Ω, we require that the monotonicity cone M admits a function ψ ∈ C2(Ω) ∩
USC(Ω) which is strictly M-subharmonic on Ω. For the the parabolic version of comparison (1.2)
on Ω, we also require that ψ blows up on the complement of the reduced boundary in the sense
that

ψ ≡ −∞ on ∂Ω \ ∂−Ω. (1.4)

The utility of the General Comparison Theorem 5.2 is greatly enhanced by exploiting by the
detailed study of monotonicity cone subequations in [7], which we briefly review. There is a three
parameter fundamental family of monotonicity cone subequations (see Definition 5.2 and Remark
5.9 of [7]) consisting of

M(γ,D, R) :=

{
(r, p, A) ∈ J 2 : r 6 −γ|p|, p ∈ D, A > |p|

R
I

}
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where
γ ∈ [0,+∞), R ∈ (0,+∞] and D ⊆ Rn is a directional cone,

in the sense of Definition 1.1 below. The family is fundamental in the sense that for any monotonicity
cone subequation, there exists an element M(γ,D, R) of the familly with M(γ,D, R) ⊂ M (see
Theorem 5.10 of [7]). Hence if F is an M-monotone subequation, then it is M(γ,D, R)-monotone
for some triple (γ,D, R). Moreover, from Theorem 6.3 of [7], given any elementM =M(γ,D, R) of
the fundamental family, one knows for which domains Ω b Rn there is a C2-strictM-subharmonic
and hence for which domains Ω one has the comparison principle (1.1) in any potential theory
determined by a fiberegular and M-monotone subequation F . This leads to the Fundamental
Family Comparison Theorem 5.3. There is a simple dichotomy. If R = +∞, then arbitrary
bounded domains Ω may be used, while in the case of R finite, any Ω which is contained in a
translate of the truncated cone DR := D ∩BR(0).

Next, we describe comparison in the second (operator theoretic) framework. Here one asks when
does comparison (1.1) hold on Ω for each pair u ∈ USC(Ω), w ∈ LSC(Ω) which are G-admissible
viscosity subsolutions, supersolutions in the sense of Definition 7.3 of a proper elliptic equation

F (J2u) := F (x, u(x), Du(x), D2u(x)) = 0, ∀x ∈ Ω, (1.5)

where F ∈ C(G) with either G = J 2(X) (the unconstrained case) or G ( J 2(X) is a subequation
(the constrained case). The proper ellipticity means the following monotonicity property: for each
x ∈ X and each (r, p, A) ∈ Gx one has

F (x, r, p, A) 6 F (x, r + s, p,A+ P ) ∀ s 6 0 in R and ∀P > 0 in S(n). (1.6)

Notice that one of the subequation axioms on G is the monotonicity property that for each x ∈ X
one has

Gx +M0 ⊂ Gx where M0 := {(r, p, A) : s 6 0 in R and ∀P > 0 in S(n)},
which is needed in (1.6). We will refer to (F,G) as a proper elliptic pair (see Definition 7.1).
Notice also that proper ellipticity is the familiar (opposing) monotonicity in solution variable r
and the Hessian variable A, which we do not necessarily assume globally on all of J 2(X) (but do
in the unconstrained case). In general, a given operator F must be retricted to a subequation in
order to have the minimal monotonicity needed (1.6). For example, the Monge-Ampère operator
F (x, r, p, A) := det(A) must be restricted to the constraint G := {(r, p, A) ∈ J 2 : A ∈ S(n) : A >
0} in order to be increasing in A. In this case, the G-admissible subsolutions are convex and one
uses only convex lower test functions in the definition of G-admissible subsolutions.

We will deduce a general operator theoretic comparison Theorem 8.1 from the potential theoretic
comparison Theorem 5.2 by way of the aforementioned Correspondence Principle of Theorem 7.4.
This correspondence consists of the two equivalences: for every u ∈ USC(X)

u is F-subharmonic on X ⇔ u is a G-admissible subsolution of F (J2u) = 0 on X

and
u is F-superharmonic on X ⇔ u is a G-admissible supersolution of F (J2u) = 0,

where (F,G) is a proper elliptic pair and F is the constraint set defined by the correspondence
relation

F = {(x, J) ∈ G : F (x, J) > 0}. (1.7)

The correspondence principle holds provided that F is itself a subequation and provided that one
has compatibility

intF = {(x, J) ∈ G : F (x, J) > 0},
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which for subequations F defined by (1.7) is equivalent to

∂F = {(x, J) ∈ G : F (x, J) = 0}.

Now, F is indeed a subequation by Theorem 7.8 if the following three hypotheses are satisfied:
(i) G is fiberegular in the sense (1.3) (with F replaced by G), (ii) (F,G) is M-monotone for some
monotonicity cone subequation and (iii) (F,G) satisfies the following regularity condition: for some
fixed J0 ∈ intM, given Ω b X and η > 0, there exists δ = δ(η,Ω) > 0 such that

F (y, J + ηJ0) > F (x, J) ∀J ∈ Gx, ∀x, y ∈ Ω with |x− y| < δ.

Not only is F a subequation (and hence the correspondence principle holds), F is also fiberegular
andM-monotone. Hence one will have both operator theoretic and potential theoretic comparison
in both versions (1.1) and (1.2) on any domain Ω which admits a C2 strictly M-subharmonic
function (which also satisfies (1.4) in the parabolic version).

Having described the main general comparison theorems in both frameworks, we now place them
in context to indicate what is new in the paper. In the important special case of constant coeffi-
cient subequations F ⊂ J 2 and constant coefficient operators F ∈ C(G) with constant coefficient
admissibility constraint G ⊆ J 2, the entire program (and much more) has been developed in the
research monograph [7]. In particular, it is there in Chapter 11 that the important bridge of the
Correspondence Principle was refined into its present form. In the current paper, variable coeffi-
cients require the fiberegularity conditions like (1.3) in order to overcome the essential difficulty that
the sup-convolutions used to approximate upper semicontinuous F-subharmonics with quasi-convex1

functions do not preserve the property of being F-subharmonic in the variable coefficient case. Here
fiberegularity ensures what we call the uniform translation property for subharmonics which roughly
states that (see Theorem 3.3): if u ∈ F(Ω), then there are small C2 strictly F-subharmonic per-
turbations of all small translates of u which belong to F(Ωδ), where Ωδ := {x ∈ Ω : d(x, ∂Ω) > δ}.

The formulation of the fiberegularity condition on F and the proof that it implies the uniform
translation property was done first in the variable coefficient pure second order case where

F ⊂ X × S(n) and F = F (x,A) ∈ C(G) with G ⊂ X × S(n)

in [5] and then extended to the variable coefficient gradient-free second order case where

F ⊂ X × R× S(n) and F = F (x, r,A) ∈ C(G) with G ⊂ X × R× S(n)

in [6]. However, in these papers, the term fiberegularity was not used. The term fiberegularity was
coined in the production of the survey paper [15]. The terminology of [5] and [6] borrowed much
from the fundamental paper of Krylov [19] on the general notion of ellipticity. More importantly, the
form of the correspondence principle in [5] and [6] was more rudimentary than the form described
above. The present paper adds additional results and refinements to the variable coefficient pure
second order and gradient-free situations of [5] and [6], which heavily benefit from the investigation
of the constant coefficient case in [7].

This brings us to the main issue of this paper, which is establishing comparison in both elliptic
and parabolic versions (1.1) and (1.2) for variable coefficient potential theories and PDEs with
directionality in the gradient variables.

1We have adopted the term quasi-convex which is consistent with the use of quasi-plurisubharmonic function in

several complex variables. Quasi-convex functions are often referred to as semiconvex functions, although this term

is a bit misleading. They are functions whose Hessian (in the viscosity sense) is locally bounded from below.
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Definition 1.1. A closed convex cone D ⊆ Rn (possibly all of Rn) with vertex at the origin and

intD 6= ∅ will be called a directional cone. We say that a subequation F ⊂ J 2(X) on an open

subset X satisfies the directionality condition (with respect to D) if

(D) (r, p, A) ∈ Fx and q ∈ D ⇒ (r, p+ q, A) ∈ Fx, ∀x ∈ X.

Notice that when D = Rn, the D-directionality just means that F is gradient-free. Hence we
will be particularly interested in situations where there is D-directionality of the subequation F
with a directional cone D ( Rn, in order to extend what is known from the gradient-free case in
[6]. Similarly, for a given proper elliptic pair (F,G) we will be particularly interested in situations
in which G satisfies (D) with D ( Rn and the natural property of directionality in the gradient
variables

F (x, r, p+ q, A) > F (x, r, p, A) for each (r, p, A) ∈ Gx, q ∈ D, x ∈ X.
Some interesting directional cones D ( Rn are given in Example 12.33 of [7] and we recall two

of them here:

D = {p = (p′, pn) : pn > 0} (a half-space); (1.8)

D = {p = (p1, . . . , pn) : pj > 0, j = 1, . . . , n} (the positive cone). (1.9)

We now describe two example applications of the general comparison theorems to interesting
fully nonlinear PDEs with directionality in the gradient from Section 8; an elliptic example and
a parabolic example. The elliptic example concerns equations that arise the theory of optimal
transport and is the following example.

Example 1.2 (Example 8.2 (Optimal transport)). The equation

g(Du) det(D2u) = f(x), x ∈ Ω b Rn (1.10)

describes the optimal transport plan from a source density f to a target density g. In Proposition

8.3 we will prove the elliptic version of comparison under the hypotheses that

f, g ∈ C(Ω) and are nonnegative (1.11)

and that g is D-directional with respect to some directional cone D ( Rn; that is,

g(p+ q) ≥ g(p), for each p, q ∈ D. (1.12)

We also require some measure of strict directionality in the sense that there exists q ∈ intD and a

modulus of continuity ω : (0,∞)→ (0,∞) (satisfying ω(0+) = 0) such that

g(p+ ηq) ≥ g(p) + ω(η), for each p, q ∈ D and each η > 0. (1.13)

The natural operator F associated to (1.10) is defined F (x, r, p, A) := g(p)det(A) − f(x) and is

proper elliptic when restricted to A > 0 in S(n). The compatible subequation F with fibers

Fx := {(r, p, A) ∈ J 2 : p ∈ D, A > 0 in S(n) > 0 and F (x, r, p, A) > 0}

is fiberegular and M-monotone for

M =M(D,P) := {(r, p, A) ∈ J 2 : p ∈ D and A > 0 in S(n)}.
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As shown in [7], these cones admit C2 strictly M subharmonics on all bounded domains so one

has potential theoretic comparison for F as well as operator theoretic comparison for G-admissible

subsolutions, supersolutions of (1.10) with G =M(D,P).

The parabolic example that we describe is a prototype of a fully nonlinear PDE which is weakly
parabolic in the sense of Krylov and also indicates the utility of half-space cones (in the gradient
variable) (1.8) in this parabolic context.

Example 1.3 (Example 8.4 (Krylov’s parabolic Monge-Ampère operator)). In [18], the following

nonlinear parabolic equation is considered

− ∂tudet(D2
xu) = f(x, t), (x, t) ∈ X := Ω× (0, T ) ⊂ Rn+1, (1.14)

where Ω b Rn is open and T > 0. The reduced boundary of the parabolic cylinder X is

∂−X := (Ω× {0}) ∪ (∂Ω× (0, T )) ,

which is the usual parabolic boundary of X. In Proposition 8.5, for arbitrary bounded parabolic

cylinders X and f ∈ C(X) nonnegative, we prove the parabolic version of comparison

u 6 v on ∂−X ⇒ u 6 v in X, (1.15)

for G-admissible subsolutions, supersolutions u, v of the equation (1.14), where the admissibility

constraint is the natural constant coefficient subequation with constant fibers

G :=M(Dn,Pn) := {(r, p, A) ∈ R× Rn+1 × S(n+ 1) : pn+1 6 0 and An > 0},

where An ∈ S(n) is the upper-left n×n submatrix of A. This is because the compatible subequation

F with fibers

F(x,t) := {(r, p, A) ∈M(Dn,Pn) : F ((x, t), r, p, A) := −pn+1det(A)− f(x, t) > 0}

is fiberegular andM(Dn,Pn)-monotone, where every parabolic cylinder X admits a strictly C2 and

M(Dn,Pn)-subharmonic function ψ which satisfies

ψ ≡ −∞ on ∂X \ ∂−X,

and hence the parabolic version of Theorem 8.1 applies.

Many additional examples of fully nonlinear operators with directionality in the gradient variables
can be constructed from Dirichlet-G̊arding polynomials on the vector space V = Rn, which are
homogeneous polynomials g of degree m are hyperbolic with respect to the direction q ∈ Rn in the
sense that the one-variable polynomial

t 7→ g(tq + p) has exaclty m real roots for each p ∈ Rn. (1.16)

See Definition 8.6 and the brief discussion which follows on concerning elements of G̊arding’s theory
of hyperbolic polynomials. The key point is that one represent the first order operator determined
by g as a generalized Monge-Ampère operator in the sense that

g(p) = λg1(p) · · ·λgm(p).

For k = 1, . . . ,m, the factor λgk(p) is the k-th G̊arding q-eigenvalue of g, which is just the negative
of the k-th root in (1.16) (reordered so that λg1(p) 6 λg2(p) · · · 6 λgm(p)). There is always a natural
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monotonicty cone Γ (the (closed) G̊arding cone) for a hyperbolic polynomial g, which in the case
V = Rn is a directional cone D.

In order to illustrate the construction above, in Example 8.7 we discuss the polynomial defined
for p = (p1, p2) ∈ R2 by

g(p1, p2) := p2
1 − p2

2 = λg1(p)λg2(p) = (p1 − |p2|)(p1 + |p2|),
which determines the pure first order fully nonlinear equation

u2
x − u2

y = 0, (x, y) ∈ R2. (1.17)

The associated directional cone is

Dg = Γ =
{
p ∈ R2 : λg1(p) := p1 − |p2| > 0}. (1.18)

In Proposition 8.8 we prove a parabolic version of comparison on rectangular domains Ω ⊂ R2

for G-admissible subsolutions, supersolutions of (1.17) with respect to the natural admissibility
constraint

G =Mg := R×Dg × S(2),

which is also the monotonicity cone subequation for comparison.
As a final example of a fully nonlinear operator with directionality in the gradient, we will discuss

the following interesting operator.

Example 1.4 (Example 8.9 Perturbed Monge-Ampère operators with directionality). On a bounded

domain Ω ⊂ Rn, consider the operator defined by

F (x, r, p, A) = F (x, p,A) := det
(
A+M(x, p)

)
− f(x), (x, r, p, A) ∈ Ω× J 2 (1.19)

with f ∈ UC(Ω; [0,+∞)) and with M ∈ UC(Ω× Rn;S(n)) of the form

M(x, p) := 〈b(x), p〉P (x)

with P ∈ UC(Ω;P) and b ∈ UC(Ω;Rn) such that

there exists a unit vector ν ∈ Rn such that 〈b(x), ν〉 > 0 for each x ∈ Ω.

Such operators with M = M(x) have been proposed by Krylov as interesting test cases for proba-

bilistic and analytic methods. Our interest in this example is two fold. On the one hand, we can

prove the elliptic version of comparison using our methods with a natural directional cone

D :=
⋂
x∈Ω

H+
b(x) where H+

b(x)
:=
{
q ∈ Rn : 〈b(x), q〉 > 0

}
.

See the discussion in Example 8.9. On the other hand, we show in Proposition 8.10 standard

viscosity structural conditions fail for F , and hence this example shows that our methods can

provide comparison in non standard cases with directionality in the gradient (as was already known

in the pure second order and gradient-free settings from [5] and [6]).

While our main focus here is on the (strict) directionality with respect to first order terms, we
stress that our theory allows us to treat operators that are parabolic in a broad sense. For instance,
pure linear second-order operators tr(BD2u) are classically considered to be parabolic provided
that B ≥ 0 and detB = 0. Hence, there is a natural nontrivial monotonicity cone associated to the
(restricted) subequation F = {A : tr(BA) ≥ 0} which is M = F . Therefore, any operator F that
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can be paired with a subequation with such monotonicity cone M can be regarded as parabolic,
and specific comparison principles on suitable restricted boundaries can be easily deduced.

Fundamental to the entire project we discuss here is the groundbreaking paper of Harvey and
Lawson [9] which examined the potential theoretic comparison as well as existence via Perron’s
method in the constant coefficient case pure second order case for potential theories

F ⊂ S(n).

No correspondence principle is found there, as the focus was on the potential theory side. This
is because in the geometric situations of interest to them, often there are no natural operators
associated to geometric potential theories of interest. It was in [9] that Krylov’s fundamental
insight to associate constraint sets which encode the natural notion of ellipticity for differential
operators takes shape and is encoded by them in the language of general (nonlinear) potential
theories. Moreover, in [9] the natural notion of duality (the Dirichlet dual) is formalized. It is
implicit in [19], but made explicit in [9] and used elegantly to clarify the notion of supersolutions
in constrained cases and as a crucial ingredient of their monotonicity-duality method for proving
comparison. This method is presented in Section 5, which for the first time incorporates the
parabolic version into the crucial Zero Maximum Principle (ZMP) in Theorem 5.1 (note that this
is new also for pure second order and gradient-free settings).

Two remarks on the crucial fiberegularity condition (the continuity of the fiber map Θ of (1.3))
are in order. First, the recent interesting work of Brustad [3] in the pure second order setting
(operators without first and zero-th order terms), introduces a regularity property for the fiber map
Θ which is weaker than the fiberegularity used here. A concise discussion this weaker condition is
given in the introduction of [3] which aims to incorporate the best features of fiberegulairty and
standard viscosity structual conditions in this case. Second, the recent important paper of Harvey
and Lawson [14], which studies the Dirichlet problem for inhomogeneous equations on manifolds X

F (J2u) = ψ(x), x ∈ X,

under the assumptions that (F,G) is an M-monotone compatible operator-subequation pair for
which the operator is tame. In the constant coefficient case on Rn this condition requires that for
every s, λ > 0 there exists c(s, λ) > 0 such that

F (J + (r, 0, P ))− F (J) > c(s, λ), ∀ J ∈ G and P > λI in S(n). (1.20)

This property, which not comparable to the fiberegularity of F := {J ∈ G : F (J) > 0}, plays the
same role as fiberegularity in this inhomogeneous setting.

We conclude this introduction with a brief description of the contents. Part 1 of the paper
(Sections 2 - 6) concerns the potential theoretic setting, including the elliptic and parabolic versions
of comparison by the monotonicity-duality method in the presence of fiberegularity. Section 6 also
gives some new characterizations of dual cone subharmonics that play a crucial role in comparison
by way of the (ZMP). Part 2 of the paper is Section 7 which builds the bridge between the potential
theoretic framework and the operator theoretic framework by way of the correspondence principle.
Part 3 of the paper treats comparison in the operator theoretic framework and is highlighted by
the examples mentioned above.

In addition there are three appendices. Appendix A contains many new auxilliary technical
results needed to complete the proof of of Theorem 7.11 which proves that given an M-monotone
pair (F,G) the natural constraint set F defined by the correspondence relation

F := {(x, J) ∈ G : F (x, J) > 0},
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is a fiberegularM-monotone subequation if G is fiberegular. This theorem plays an important role
in the general PDE comparison principle Theorem 8.1. Appendix B collects some known results
which are fundamental for the potential theoretic methods and is included for the convenience of
the reader. Appendix C recalls some elementary facts about the Hausdorff distance which are used
in the discussion of fiberegularity in Section 3.

2. Background notions from nonlinear potential theory

In this section, we give a brief review of some key notions and fundamental results in the theory
of F-subharmonic functions defined by a subequation constraint set F .

2.1. Subequation constraint sets and their subharmonics. Suppose that X is an open subset
of Rn with 2-jet space denoted by J 2(X) = X ×J 2 = X × (R×Rn × S(n)). A good definition of
a constraint set with a robust potential theory was given in [10] (also for manifolds).

Definition 2.1 (Subequations). A set F ⊂ J 2(X) is called a subequation (constraint set) if

(P) F satisfies the positivity condition (fiberwise); that is, for each x ∈ X

(r, p, A) ∈ Fx ⇒ (r, p, A+ P ) ∈ Fx, ∀P > 0 in S(n).

(T) F satisfies three conditions of topological stability2 :

F = intF ; (T1)

Fx = int (Fx), ∀x ∈ X; (T2)

(intF)x = int (Fx) , ∀x ∈ X. (T3)

(N) F satisfies the negativity condition (fiberwise); that is, for each x ∈ X

(r, p, A) ∈ Fx ⇒ (r + s, p,A) ∈ Fx, ∀ s 6 0 in R.

Notice that by property (T3) we can write without ambiguity intFx for the subset of J 2,
which can be calculated in two ways. The conditions (P), (T) and (N) have various (important)
implications for the potential theory determined by F . Some of these will be mentioned below
(see the brief discussion following Definition 2.3). In addition, the conditions (P) and (N) are
monotonicity properties; monotonicity plays a central and unifying role as will be discussed in
Subsection 2.3. The role of property (T) is clarified by the notion of duality; another fundamental
concept that will be discussed in Subsection 2.2. For now, notice that by property (T1), F is closed
in J 2(X) and each fiber Fx is closed in J 2 by (T2). In addition, the interesting case is when
each fiber Fx is not all of J 2, which we almost always assume. Also notice that in the constant
coefficient pure second order case where the (reduced) subequation 3 can be identified with a subset
F ⊂ S(n), property (N) is automatic and property (T) reduces to (T1) F = intF , which is implied
by (P) for F closed. Hence in this case, subequations F ⊂ S(n) are closed sets simply satisfying
(P). Additional considerations on property (T) will be discussed in Appendix A.

Next we recall the notion of F-subharmonicity for a given subequation F ⊂ J 2(X). There
are two different natural formulations for differing degrees of regularity. The first is the classical
formulation.

2Here and below intF denotes the interior of a subset F of a topological space.
3See Subsection 2.3 for a discussion on reduced subequations.
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Definition 2.2 (Classical or C2 subharmonics). A function u ∈ C2(X) is said to be F-subharmonic

on X if

J2
xu := (u(x), Du(x), D2u(x)) ∈ Fx, ∀x ∈ X (2.1)

with the accompanying notion of being strictly F-subharmonic if

J2
xu ∈ int(Fx) = (intF)x,∀x ∈ X. (2.2)

For merely upper semicontinuous functions u ∈ USC(X) with values in [−∞,+∞), one replaces
the 2-jet J2

xu with the set of C2 upper test jets

J2,+
x u := {J2

xϕ : ϕ is C2 near x, u 6 ϕ near x with equality at x}, (2.3)

thus arriving at the following viscosity formulation.

Definition 2.3 (Semicontinuous subharmonics). A function u ∈ USC(X) is said to be F-subharmonic

on X if

J2,+
x u ⊂ Fx, ∀x ∈ X. (2.4)

We denote by F(X) the set of all F-subharmonics on X.

We now recall some of the implications that properties (P), (T) and (N) have on an F-potential
theory. Property (P) ensures that Definition 2.3 is meaningful since for each u ∈ USC(X) and for
each x0 ∈ X one has property (P) for the upper test jets

(r, p, A) ∈ J2,+
x0

u ⇒ (r, p, A+ P ) ∈ J2,+
x0

u, for each P > 0 in S(n). (2.5)

Indeed, given an upper test jet J2
x0
ϕ = (r, p, A) with ϕ a C2 function near x0 and satisfying

u 6 ϕ near x0 with equality at x0 then, for each P > 0, the quadratic perturbation ϕ̃(·) :=
ϕ(·) + 1

2 〈P (· − x0), (· − x0)〉 determines an upper test jet J2
x0
ϕ̃ = (r, p, A + P ). Property (P) is

also crucial for C2-coherence, meaning classical F-subharmonics are F-subharmonics in the sense
(2.4), since for u which is C2 near x, one has

J2,+
x u = J2

xu+ ({0} × {0} × P) where P = {P ∈ S(n) : P > 0}.

Next note that property (T) insures the local existence of strict classical F-subharmonics at points
x ∈ X for which Fx is non-empty. One simply takes the quadratic polynomial whose 2-jet at
x is J ∈ int(Fx). Finally, property (N) eliminates obvious counterexamples to comparison. The
simplest counterexample is provided by the constraint set F ⊂ J 2(R) in dimension one associated
to the equation u′′ − u = 0, which is defined by F := {(r, p, A) ∈ R3 : A− r > 0}.

2.2. Duality and superharmonics. The next fundamental concept is duality, a notion first
introduced in the pure second order coefficient case in [9].

Definition 2.4 (Duality for constraint sets). For a given subequation F ⊂ J 2(X) the Dirichlet

dual of F is the set F̃ ⊂ J 2(X) given by 4

F̃ := (− intF)c = −(intF)c (relative to J 2(X)). (2.6)

4Here and below, c denotes the set theoretic complement of a subset.
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With the help of property (T), the dual can be calculated fiberwise

F̃x := (− intFx)c = −(intFx)c (relative to J 2), ∀x ∈ X. (2.7)

This is a true duality in the sense that one can show the following two facts:˜̃F = F and F is a subequation ⇒ F̃ is a subequation. (2.8)

Additional (and useful) properties of the dual can be found in Propositions 3.2 and 3.4 of [7]. These
properties include the behavior of the dual with respect to inclusions, intersections and fiberwise
sums:

F ⊂ G ⇒ G̃ ⊂ F̃ ; (2.9)

F̃ ∩ G = F̃ ∪ G̃; (2.10)

Fx + J ⊂ Fx ⇒ F̃x + J ⊂ F̃x for each x ∈ X and J = (r, p, A) ∈ J 2. (2.11)

This last formula, when combined with the monotonicity discussed below, will lead to the funda-
mental formula (2.19) for the monotonicity-duality method.

Another importance of duality is that it can be used to reformulate the notion of F-superharmonic
functions in terms of dual subharmonic functions. This will have important implications for the
correct definition of supersolutions to a degenerate elliptic PDE F (J2u) = 0 in the presence of
admissibility constraints. See Subsection 7.1 for this discussion.

The natural notion of w ∈ LSC(X) being F-superharmonic using lower test jets is

J2,−
x w ⊂ (int(Fx))

c
, ∀x ∈ X, (2.12)

which by duality and property (T) is equivalent to −w ∈ USC(X) satisfying

J2,+
x (−w) ⊂ F̃x, ∀x ∈ X. (2.13)

That is,

w is F-superharmonic ⇔ −w is F̃-subharmonic. (2.14)

2.3. Monotonicity. This fundamental notion appears in various guises. It is a useful and unifying
concept. One says that a subequation F is M-monotone for some subset M⊂ J 2(X) if

Fx +Mx ⊂ Fx for each x ∈ X. (2.15)

For simplicity, we will restrict attention to (constant coefficient) monotonicity cones; that is, mono-
tonicity sets M for F which have constant fibers which are closed cones with vertex at the origin.

First and foremost, the properties (P) and (N) are monotonicity properties. Property (P) for
subequations F corresponds to degenerate elliptic operators F and properties (P) and (N) together
correspond to proper elliptic operators. Note that (P) plus (N) can be expressed as the single
monotonicity property

Fx +M0 ⊂ Fx for each x ∈ X (2.16)

where

M0 := N × {0} × P ⊂ J 2 = R× Rn × S(n) (2.17)

with

N := {r ∈ R : r 6 0} and P := {P ∈ S(n) : P > 0}. (2.18)

HenceM0 will be referred to as the minimal monotonicity cone in J 2. However, it is important to
remember thatM0 ⊂ J 2 is not a subequation since it has empty interior so that property (T) fails.
A monotonicity cone which is also a subequation will be called a monotonicity cone subequation.
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Combined with duality and fiberegularity (defined in Section 3), one has a very general, flexible
and elegant geometrical approach to comparison when a subequation F admits a constant coefficient
monotonicity cone subequationM. We call this approach the monotonicity-duality method and
it will be discussed in Section 5. One key point in the method is the following monotonicity-duality
formula that combines monotonicity (2.15) and the duality formula on fiberwise sums (2.11):

Fx +M⊂ Fx ⇒ Fx + F̃x ⊂ M̃ for eaxh x ∈ X. (2.19)

It is interesting to note that if a subequation F has a constant coefficient monotonicity cone sube-

quation M then the fiberwise sum of F and its dual F̃ yields a constant coefficient subequation

M̃ which is also a cone (dual to the monotonicity cone for F and F̃). A detailed study of mono-
tonicity cone subequations can be found in Chapters 4 and 5 of [7], including the construction of a
fundamental family of monotonicity cones that is recalled below in (5.5)-(5.6).

Monotonicity is also used to formulate reductions when certain jet variables are “silent” in the
subequation constraint F . For example, one has

(pure second order) Fx +M(P) ⊂ Fx : M(P) := R× Rn × P
(gradient free) Fx +M(N ,P) ⊂ Fx : M(N ,P) := N × Rn × P

M(P) and M(N ,P) are fundamental constant coefficient (cone) subequations which can be iden-
tified with P ⊂ S(n) and Q := N ×P ⊂ R×S(n). One can identify F with subsets of the reduced
jet bundles X × S(n) and X × (R× S(n)), respectively, “forgetting about” the silent jet variables
(see Chapter 10 of [7]). For a more extensive review of the monotonicity, see subsection 2.2 of [15].

Three important “reduced” examples are worth drawing special attention to. They are all mono-
tonicity cone subequations and play a fundamental role in our method. We focus on characterizing
their subharmonics and their dual subharmonics.

Example 2.5 (The convexity subequation). The convexity subequation is F = X ×M(P) and

reduces to X × P which has constant coefficients (each fiber is P) and for u ∈ USC(X)

u is P-subharmonic ⇔ u is locally convex

(away from any connected components where u ≡ −∞).

The convexity subequation has a so-called canonical operator F ∈ C(S(n),R) defined by the

minimal eigenvalue F (A) := λmin(A), for which

P = {A ∈ S(n) : λmin(A) > 0}. (2.20)

The dual subequation F̃ has constant fibers given by

P̃ = {A ∈ S(n) : λmax(A) > 0} (2.21)

which is the subaffine subequation. The set P̃(X) of dual subharmonics agrees with SA(X) the set

of subaffine functions defined as those functions u ∈ USC(X) which satisfy the subaffine property

(comparison with affine functions): for every Ω b X one has

u 6 a on ∂Ω ⇒ u 6 a on Ω, for every a affine. (2.22)

The fact that P̃(X) = SA(X) is shown in [9]. The subaffine property for u is stronger than the

maximum principle for u since constants are affine functions. It has the advantage over the maxi-

mum principle of being a local condition on u. This leads to the comparison principle for all pure
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second order constant coefficient subequations [9] and extends to variable coefficient subequations

[5] using the notion of fiberegularity noted above.

Example 2.6 (The convexity-negativity subequation). The constant coefficient gradient-free sube-

quation F = X ×M(N ,P) reduces to X ×Q ⊂ X × (R× S(n)) whose (constant) fibers are

Q = N ×P = {(r,A) ∈ R× S(n) : r 6 0 and A > 0}. (2.23)

The (reduced) dual subequation has (constant) fibers

Q̃ = {(r,A) ∈ R× S(n) : r 6 0 or A ∈ P̃}. (2.24)

The set Q̃(X) of dual subharmonics agrees with SA+(X), the set of subaffine plus functions defined

as those functions u ∈ USC(X) which satisfy the subaffine plus property: for every Ω b X one has

u 6 a on ∂Ω ⇒ u 6 a on Ω, for every a affine with a|Ω > 0. (2.25)

from which the Zero Maximum Principle (ZMP) of Theorem 5.1 for Q̃ subharmonics follows imme-

diately. The fact that Q̃(X) = SA+(X) is shown in [7] together with the additional equivalence

SA+(X) := {u ∈ USC(X) : u+ := max{u, 0} ∈ SA(X) = P̃(X)}, (2.26)

This leads to the comparison principle by the monotonicity-duality method for all gradient free

subequations with constant coefficients in [7] and extends to variable coefficient gradient-free sube-

quations in [6], using the notion of fiberegularity.

The third example is many respects the focus of the present work, as it treats a sufficient
monotonicity in the gradient variables for the monotonicity-duality method when the gradient
variables are present. In this section, we will limit ourselves to characterizing the subharmonics,
which is interesting in its own right. The characterization of the dual subharmonics will be done in
section 6 in the general context of characterizing dual cone subharmonics.

Example 2.7 (The directionality subequation). Consider a directional cone D ⊂ Rn as defined

in Definition 1.1; that is, a closed convex cone with vertex at the origin and non empty interior

intD. The directionality subequation is the constant coefficient pure first order subequation F =

X ×M(D) = X × (R × D × S(n)) reduces to X × D ⊂ X × Rn whose (constant) fibers are the

directional cone D. The (reduced) dual subequation has (constant) fibers given by the Dirichlet

dual

D̃ := −(intD)◦ ⊂ Rn, (2.27)

which is also a directional cone. Two examplesof directional cones were recalled in (1.8) and (1.9).

The following characterization of M(D) subharmonics is new.
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Proposition 2.8 (Directionality subharmonics are increasing in polar directions). Suppose that

D ⊂ Rn is a directional cone with polar cone5

D◦ = {q ∈ Rn : q · p ≥ 0 ∀p ∈ D}. (2.28)

The set ofM(D)-subharmonics can be characterized as follows: u ∈ USC(X) isM(D)-subharmonic

on X if and only if

u(x)− u(x0) ≥ 0 for every x, x0 ∈ X such that [x0, x] ⊂ X, x− x0 ∈ D◦. (2.29)

Proof. Indeed, assume first that (2.29) holds. By Definition 2.3, we need to show that for each

x0 ∈ X and for each upper test jet (ϕ(x0), Dϕ(x0), D2ϕ(x0)) ∈ J2,+
x0

u we have Dϕ(x0) ∈ D, which

is equivalent to

〈Dϕ(x0), q〉 ≥ 0 ∀ q ∈ D◦, |q| = 1. (2.30)

For any unit vector q in D◦ to be used in (2.30), consider x = x0 + rq with r > 0. Since ϕ is an

upper test function for u in x0 we have u(x)−u(x0) ≤ ϕ(x)−ϕ(x0) for each r > 0 sufficiently small.

In addition, since x0 ∈ X with X open and D◦ is a cone, we have [x0, x] ⊂ X and x−x0 = rq ∈ D◦.
Therefore, by a Taylor expansion of ϕ and (2.29),

0 ≤ u(x)− u(x0) ≤ ϕ(x)− ϕ(x0) = r (〈Dϕ(x0), q〉+ o(1)) , r → 0+.

Dividing by r > 0 and taking the limit r → 0+ yields 〈Dϕ(x0), q〉 ≥ 0, which is the desired

inequality (2.30).

To show the other implication, we need some machinery from nonsmooth and convex analysis.

First, for an M(D)-subharmonic function u we consider the sequence of sup-convolutions uε (see

(4.4) below). We have that uε is 1
ε -quasi-convex and decreases pointwise to u as ε↘ 0. Moreover,

for any Ω ⊂⊂ X, since M(D) has constant coefficients, uε is M(D)-subharmonic on Ω for ε small

enough and, by Alexandroff’s theorem, uε is almost everywhere twice differentiable, so

Duε(x) ∈ D for a.e. x ∈ Ω.

Note that for any such point, Duε(x) represents the generalized subgradient ∂uε(x) (see for example

[4, Section 2]). In fact, for every x ∈ Ω, ∂uε(x) is given by the convex hull of limit points of

(converging) sequences Duε(xn), where xn → x (see [4, Theorem 2.5.1]). Since we can choose xn

such that Duε(xn) ∈ D and D is a closed convex cone, we get that ∂uε(x) ⊆ D for every x ∈ Ω,

and therefore 〈∂uε(x), q〉 is a subset of nonnegative reals for every q ∈ D◦ and x ∈ Ω. Finally, if

[x0, x] ⊂ Ω and x − x0 ∈ D◦, one applies Lebourg’s Mean Value Theorem [4, Theorem 2.3.7] to

obtain for some ξ ∈ (x0, x)

uε(x)− uε(x0) ∈ 〈∂uε(ξ), (x− x0)〉,

so that uε(x) ≥ uε(x0). Passing to the limit ε→ 0+ yields the defired conclusion (2.29). �

5We follow the convention of [7] in calling D◦ defined by (2.28) the polar cone determined by the set D. Some

call this set the dual cone and denote it by D∗ and then define the polar cone as −D∗. Our choice avoids confusion

with the (Dirichlet) dual cone (2.27).
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3. Fiberegularity

In this section we discuss a fundamental notion which is crucial in the passage from constant
coefficient subequations (and operators) to ones with variable coefficients. We begin with the
definition.

Definition 3.1. A subequation F ⊂ J 2(X) is fiberegular if the fiber map Θ of F is (Hausdorff)

continuous; that is, if the set-valued map

Θ : X → K (J 2) defined by Θ(x) := Fx, x ∈ X

is continuous when the closed subsets K (J 2) of J 2 are equipped with the Hausdorff metric

dH (Φ,Ψ) := max

{
sup
J∈Φ

inf
J′∈Ψ

|||J − J ′|||, sup
J′∈Ψ

inf
J∈Φ
|||J − J ′|||

}
where

|||J ||| = |||(r, p, A)||| := max

{
|r|, |p|, max

16k6n
|λk(A)|

}
is taken as the norm on J 2 where λ1(A) 6 · · ·λn(A) are the (ordered) eigenvalues of A ∈ S(n).

We will also make use of some standard facts concerning the Hausdorff distance in the proof of

Proposition 3.2 below; these facts will be recalled in Appendix C for the reader’s convenience.

This notion was first introduced in [5] in the special case F ⊂ X × S(n). We will also refer to
Θ as a continuous proper ellipitc map since it takes values in the closed (non-empty and proper)
subsets of J 2 satisfying properties (P) and (N).

Note that by the Heine–Cantor Theorem, fiberegularty is equivalent to the local uniform continu-
ity of the fiber map Θ. Moreover, if F isM-monotone for some (constant coefficient) monotonicity
cone subequation, fiberegularity has more useful equivalent formulations.

Proposition 3.2 (Fiberegularity of M-monotone subequations). Let F be an M-monotone sube-

quation on X with fiber map Θ : X → K (J 2). Then the following are equivalent:

(a) Θ is locally uniformly continuous, that is for each Ω b X and every η > 0 there exists

δ = δ(η,Ω) > 0 such that

x, y ∈ Ω, |x− y| < δ =⇒ dH (Θ(x),Θ(y)) < η;

(b) Θ is locally uniformly upper semicontinuous (in the sense of multivalued maps), that is for

each Ω b X and every η > 0 there exists δ = δ(η,Ω) > 0 such that

Θ(Bδ(x)) ⊂ Nη(Θ(x)) ∀x ∈ Ω,

where Nε(S) := {J ∈ J 2 : infJ′∈S |||J − J ′||| < ε} is the ε-enlargement of the set S;

(c) there exists J0 ∈ intM such that for each fixed Ω b X and η > 0 there exists δ = δ(η,Ω) > 0

such that

x, y ∈ Ω, |x− y| < δ =⇒ Θ(x) + ηJ0 ⊂ Θ(y). (3.1)

Moreover, the validity of this property for one fixed J0 ∈ intM implies the validity of the

property for each J0 ∈ intM.
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Formulation (c) is the most useful definition of fiberegularity forM-monotone subequations. In
the pure second order and gradient-free cases there is a “canonical” reduced jet J0 = I ∈ S(n) and
J0 = (−1, I) ∈ R× S(n), respectively.

Proof of Proposition 3.2. What follows is an adaptation of the proofs of [5, Propositions 4.2 and

4.4].

(a) implies (c) for every J0 ∈ intM. By definition (C.4) we have, for I,K ⊂ J 2,

dH (I,K) = max

{
sup
J∈I

inf
J′∈K

|||J − J ′|||, sup
J′∈K

inf
J∈I
|||J − J ′|||

}
. (3.2)

Fix now J0 ∈ intM and η > 0; if Θ is uniformly continuous on Ω, then, for η′ > 0 to be determined,

there exists δ = δ(η′,Ω) such that

x, y ∈ Ω, |x− y| < δ =⇒ inf
J′∈Θ(y)

|||J − J ′||| < η′ ∀J ∈ Θ(x).

Hence for x, y ∈ Ω with |x− y| < δ one has

∀J ∈ Θ(x) ∃J ′ ∈ Θ(y) such that K := J − J ′ satisfies |||K||| < η′;

that is

∀J ∈ Θ(x) : J = J ′ +K with J ′ ∈ Θ(y) and |||K||| < η′. (3.3)

We want to show that for each J ∈ Θ(x), one has

J + ηJ0 ∈ Θ(y). (3.4)

Using the decomposition (3.3),

J + ηJ0 = J ′ + (K + ηJ0) where J ′ ∈ Θ(y)

so that, by the M-monotonicity of Θ(y), one has (3.4) provided that

K + ηJ0 ∈M. (3.5)

Since J0 ∈ intM and M is a cone, there exists ρ = ρ(η, J0) > 0 such that Bρ(J0) ⊂M, where we

denoted by B the ball in J 2. Therefore (3.5) holds for η′ < ρ.

(c) for any fixed J0 ∈ intM implies (b). Fix η > 0 and choose any J0 ∈ intM; let δ = δ(η′,Ω, J0)

as in (c), with η′ < η/|||J0|||. For each x ∈ Ω and y ∈ Bδ(x) ⊂ Ω we have

Θ(y) + η′J0 ⊂ Θ(x),

hence

Θ(y) ⊂ Θ(x)− η′J0 ⊂ Nη(Θ(x)).

(b) implies (a) This is a standard proof which does not require any monotonicity assumption. For

η > 0 fixed, let δ = δ(η′,Ω) be as in (b), with η′ < η. For x, y ∈ Ω such that |x− y| < δ one has

Θ(x) ⊂ Nη′(Θ(y)) and Θ(y) ⊂ Nη′(Θ(x)), (3.6)
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hence, thanks to the first inclusion, for every J ∈ Θ(x) there exists J ′ ∈ Θ(y) such that J = J ′+K

for some K with |||K||| < η′. Therefore

inf
J′∈Θ(y)

|||J − J ′||| < η′ ∀J ∈ Θ(x), ∀y ∈ Bδ(x),

which yields

sup
J∈Θ(x)

inf
J′∈Θ(y)

|||J − J ′||| 6 η′ whenever |x− y| < δ.

By the second inclusion in (3.6), one also has

sup
J′∈Θ(y)

inf
J∈Θ(x)

|||J − J ′||| 6 η′ whenever |x− y| < δ,

and thus by (3.2)

dH (Θ(x),Θ(y)) 6 η′ < η. �

Fiberegularity is crucial since it implies the uniform translation property for subharmonics.
This property is the content of the following result, which roughly speaking states that: if u ∈ F(Ω),
then there are small C2 strictly F-subharmonic perturbations of all small translates of u which
belong to F(Ωδ), where Ωδ := {x ∈ Ω : d(x, ∂Ω) > δ}.

Theorem 3.3 (Uniform translation property for subharmonics). Suppose that a subequation F is

fiberegular and M-monotone on Ω b Rn for some monotonicity cone subequation M. Suppose that

M admits a strict approximator 6; that is, there exists ψ ∈ USC(Ω) ∩ C2(Ω) which is strictly M-

subharmonic on Ω. Given u ∈ F(Ω), for each θ > 0 there exist η = η(ψ, θ) > 0 and δ = δ(ψ, θ) > 0

such that

uy,θ = τyu+ θψ belongs to F(Ωδ), ∀ y ∈ Bδ(0), (3.7)

where τyu( · ) := u( · − y).

Proof. We are going to use the Definitional Comparison Lemma B.2 in order to adapt the method

used in the proofs of the pure second-order and the gradient-free counterparts of this uniform

translation property (see [5, Proposition 3.7(5)] and [6, Proposition 3.7(4)]).

Fix J0 ∈ intM and let δ = δ(η,Ω) be as in Proposition 3.2(c), with η > 0 to be determined.

Consider Ω′ b Ωδ and v ∈ C2(Ω′) ∩ USC(Ω′), strictly F̃-subharmonic on Ω′. In order to prove

the subharmonicity of uy;θ (defined as in (3.7)) via the definitional comparison (cf. Remark B.3),

it suffices to show that, for a suitable η,

∃x0 ∈ Ω′ : (uy;θ + v)(x0) > 0 =⇒ ∃ y0 ∈ ∂Ω′ : (uy;θ + v)(y0) > 0. (3.8)

Fix θ > 0 and for y ∈ Bδ consider the function

v̂y;θ := τ−yv + θτ−yψ,

defined on Ω′ + y, which satisfies

J2
x−y v̂y;θ = J2

xv + θJ2
xψ = J2

xv + ηJ0 + θ
(
J2
xψ −

η

θ
J0

)
∀x ∈ Ω′. (3.9)

6The term strict approximator for ψ refers to the fact that this function generates an approximation from above

of the M̃-subharmonic function which is identically zero. This is explained in the proof of Theorem 6.2 of [7].
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By Proposition 3.2(c),7

J2
xv + ηJ0 ∈ int F̃x−y ∀x ∈ Ω′,

therefore, by the M-monotonicity of F̃ , and using (3.9),

J2
x−y v̂y;θ ∈ int F̃x−y ∀x ∈ Ω′ (3.10)

provided that

J2
xψ −

η

θ
J0 ∈M ∀x ∈ Ω′. (3.11)

Since ψ is a strict approximator for M on Ω, we know that there exists ρ(x) > 0 such that

Bρ(x)(J
2
xψ) ⊂ M; also, since ψ ∈ C2(Ω), we know that ρ0 := infΩ ρ > 0. Therefore it suffices to

choose

η <
θρ0

|||J0|||
, (3.12)

in order for (3.11) to hold for any Ω′ b Ωδ. It is worth noting that the bound (3.12) is independent

of δ, which does depend on η, and hence an η satisfying (3.12) can be chosen.

We have proved that v̂y;θ ∈ C2(Ω′ − y) ∩ USC(Ω′ − y) is strictly F̃-subharmonic on Ω′ − y b
Ωδ − y ⊂ Ω for each y ∈ Bδ, and we know that u is F-subharmonic on Ωδ − y ⊂ Ω by hypothesis.

By our initial assumption, there exists x0 ∈ Ω′ such that

(u+ v̂y;θ)(x0 − y) = (τyu+ τy v̂y;θ)(x0) = (uy;θ + v)(x0) > 0;

hence by the definitional comparison applied to u and v̂y;θ on Ω′ − y, there exists ỹ0 = y0 − y ∈
∂(Ω′ − y) = ∂Ω′ − y such that

0 < (u+ v̂y;θ)(ỹ0) = (uy;θ + v)(y0),

thus proving implication (3.8). �

The uniform translation property of Theorem 3.3 will play a key role in the treatment of the
variable coefficient setting, where one does not have translation invariance. In particular, it will be
used to show that given a semicontinuous F-subharmonic function u there are quasi-convex ap-
proximations of u which remain F-subharmonic provided that F is fiberegular andM-monotone
(see Theorem 4.2).

Remark 3.4. Concerning the additional hypothesis that the monotonicity cone subequation M
admits a C2 strict subharmonic, we note that in the pure second order and gradient-free cases

(F ⊂ Ω × S(n) and F ⊂ Ω × (R × S(n)), one always has a quadratic strict approximator ψ.

Thus Theorem 3.3 holds for all continuous coefficient F which are minimally monotone (with

M = P ⊂ S(n) and M = Q = N × P ⊂ R × S(n) respectively). In the general M-monotone

and fiberegular case this additional hypothesis will be essential in the proof of the so-called Zero

Maximum Principle (ZMP) of Theorem 5.1 for the dual monotonicity cone M̃. The (ZMP) is

a key ingredient in the monotonicty-duality method for proving comparison, as wil be discussed

below in Section 5. Moreover, the (constant coefficient) monotonicity cone subequations which

7It is easy to see that in the proof of (a) =⇒ (c) one can choose J ′ ∈ int Θ(y). Then, if J ∈ int Θ(x), one uses

the elementary fact that intFx +M⊂ intFx.
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admit strict approxiamtors are well understood by the study made in [7] and will be recalled below

in Theorem 5.3 and the discussion which precedes the theorem.

Fiberegularity of an M-monotone subequation has two additional consequences which are of
use in treating existence by Perron’s method. While we will not pursue existence here, we record
the result for future use. A general property of uniformly continuous maps on some open subset
Ω with boundary ∂Ω is the possibility to extend them to the boundary. One can prove that the
M-monotonicity is preserved as well. Also, one can define in a natural way the dual fiber map of
Θ by

Θ̃(x) := Θ̃(x) ∀x ∈ X;

note that this is a pointwise (or fiberwise) definition, and that by a straightforward extension to
variable coefficient subequations of the elementary properties of the Dirichlet dual collected in [9,

Section 4], [10, Section 3] or [7, Proposition 3.2], it is clear that Θ̃ is stillM-monotone. Furthermore,
it is uniformly Hausdorff-continuous if Θ is.

The following proposition, which extends [6, Proposition 3.6], collects these two properties.

Proposition 3.5 (Extension and duality). Let Θ be a uniformly continuous M-monotone map on

Ω. Then

(a) Θ extends to a uniformly continuous M-monotone map on Ω;

(b) Θ̃ is uniformly continuous and M-monotone on Ω.

Proof. (a) We essentially reproduce the proof of [5, Proposition 3.5]. One extends Θ to x ∈ ∂Ω as

a limit

Θ(x) = lim
k→∞

Θ(xk) (3.13)

where {xk}k∈N ⊂ Ω is a sequence such that limk→∞ xk = x and the limit in (3.13) is to be

understood in the complete metric space (K(J 2), dH ). This limit exists since {xk} is Cauchy

sequence and hence so is {Θ(xk)} by the uniform continuity of Θ. Moreover, this limit is independent

of the choice of {xk}, and we have the extension of Θ to ∂Ω by performing this construction for each

x ∈ ∂Ω. The resulting extension is uniformly continuous and each Θ(x) is closed by construction.

It remains to show that the extension takes values in the set ofM-monotone sets. First of all, each

Θ(x) is non-empty because dH (Θ(x), ∅) = +∞ for all x ∈ Ω (by property Remark C.3) and hence

Θ(xk) 6→ ∅. As for the M-monotonicity of the limit set Θ(x), note that by (3.2) it is easy to show

that Θ(x) is the set of limits of all converging sequences {Jk} in J 2 such that Jk ∈ Θ(xk) for all k

(cf. [2, Exercise 7.3.4.1]), hence given J ∈ Θ(x) we have

J = lim
k→∞

Jk with Jk ∈ Θ(xk)

and thus for each Ĵ ∈M

J + Ĵ = lim
k→∞

(
Jk + Ĵ

)
with Jk + Ĵ ∈ Θ(xk)

by the M-monotonicity of each Θ(xk); hence J + Ĵ ∈ Θ(x) for each J ∈ Θ(x) and each Ĵ ∈ M.

Finally, to prove that Θ(x) is a proper subset of J 2, it suffices to invoke Lemma C.4; indeed,

arguing as above, this guarantees that Θ(xk) 6→ J 2.
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(b) We proceed as in the proof of [5, Proposition 3.5]. As we already noted, by the elementary

properties of the Dirichlet dual (namely [7, Proposition 3.2, properties (2) and (6)]), one knows

that Θ is M-monotone if and only if Θ̃ is (note that this is a fiberwise property); then we only

need to show that Θ̃ is uniformly continuous on Ω. Since Θ is uniformly continuous on Ω, by

Proposition 3.2(c), for η > 0, J0 ∈ intM, and a suitable δ = δ(η,Ω, J0) one has

Θ(x) + ηJ0 ⊂ Θ(y)

whenever x, y ∈ Ω are such that |x− y| < δ. Hence, by the above-mentioned elementary properties

of the Dirichlet dual, one obtains

Θ̃(y) ⊂ Θ̃(x)− ηJ0;

that is,

Θ̃(y) + ηJ0 ⊂ Θ̃(x),

thus proving the uniform continuity of Θ̃ by exploiting the equivalent formulation of Proposi-

tion 3.2(c) again. �

Remark 3.6. It is worth noting that this proof shows that the relation between η and δ is the

same for both Θ and Θ̃.

4. Quasi-convex approximation and the Subharmonic Addition Theorem

In this section, we present a final ingredient for the duality-monotonicity method for potential
theoretic comparison; namely, the so-called Subharmonic Addition Theorem. Roughly, it states
that if one has a jet addition formula

Gx + Fx ⊂ Hx, ∀x ∈ X (4.1)

for subequations G,F and H in J 2(X), then one has a subharmonic addition relation

G(X) + F(X) ⊂ H(X) (4.2)

for the associated spaces of subharmonics. This implication will take on considerable importance
when combined with the fundamental monotonicity-duality formula of jet addition noted in (2.19)

Fx +Mx ⊂ Fx =⇒ Fx + F̃x ⊂ M̃x, for each x ∈ X. (4.3)

Many results about F-subharmonic functions u, including the implication (4.1) ⇒ (4.2), are
more easily proved if one assumes that u is also locally quasi-convex. Then, one can make use of
quasi-convex approximation by way of sup-convolutions to extend the result to semicontinuous u.
In general, when the subequations have variable coefficients, the quasi-convex approximation will
be C2-perturbation (with small norm) of the sup-convolution. The quasi-convex approximation
and subharmonic addition theorems in this section were essentially given in [21], and extend those
known for for fiberegular subequations independent of the gradient [5, 6].
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4.1. Quasi-convex approximations. We begin by recalling some basic notions.

Definition 4.1. A function u : C → R is λ-quasi-convex on a convex set C ⊂ Rn if there exists

λ ∈ R+ such that u + λ
2 | · |

2 is convex on C. A function u : X → R is locally quasi-convex on an

open set X ⊂ Rn if for every x ∈ X, u is λ-quasi-convex on some ball about x for some λ ∈ R+.

Such functions are twice differentiable for almost every8 x ∈ X by a very easy generalization
of Alexandroff’s theorem for convex functions (the addition of a smooth function has no effect on
differentiability). This is one of the many properties that quasi-convex functions inherit from convex
functions. See [20] for an extensive treatment of quasi-convex functions. Quasi-convex functions
are used to approximate u ∈ USC(X) (bounded from above) by way of the sup-convolution, which
for each ε > 0 is defined by

uε(x) := sup
y∈X

(
u(y)− 1

2ε
|y − x|2

)
, x ∈ X. (4.4)

One has that uε is 1
ε -quasi-convex and decreases pointwise to u as ε↘ 0.

Now, making use of the the uniform translation property of Theorem 3.3, we will prove the quasi-
convex approximation result which is needed for the proof of the Subharmonic Addition Theorem
in the case of fiberegular M-monotone subequations. This approximation result substitutes the
constant coefficient result of [9, Theorem 8.2].

Theorem 4.2 (Quasi-convex approximation). Suppose that a subequation F is fiberegular and M-

monotone on Ω b Rn for some monotonicity cone subequation M and suppose that M admits a

strict approximator ψ. Suppose that u ∈ F(Ω) is bounded, with |u| 6M on Ω. For every θ > 0, let

η, δ > 0 be as in (3.7). Then there exists ε∗ = ε∗(δ,M) > 0 such that

uεθ := uε + θψ ∈ F(Ωδ) ∀ ε ∈ (0, ε∗), (4.5)

where Ωδ := {x ∈ Ω : d(x, ∂Ω) > δ} and uε is the sup-convolution (4.4) of u.

Remark 4.3. The approximating function uεθ is quasi-convex, since it is the sum of a quasi-convex

term, namely uε, and a smooth term, namely θψ, with Hessian bounded from below.

Proof of Theorem 4.2. By the uniform translation property (Theorem 3.3), we know that

F :=
{
uz;θ : |z| < δ

}
⊂ F(Ωδ).

By the sliding property (see Proposition B.4(iv)) we also have

Fε :=
{
uz;θ − 1

2ε |z|
2 : |z| < δ

}
⊂ F(Ωδ),

and this family is locally bounded above. Therefore, by the families-locally-bounded-above property

of (see Proposition B.4(vii)), the upper semicontinuous envelope v∗ε of its upper envelope vε :=

supw∈Fε
w belongs to F(Ωδ). Now, a basic property of the sup-convolution is that it can also be

represented as (for example, see [9, Section 8]):

uε = sup
z∈Bδ

(
u(· − z)− 1

2ε
|z|2
)
, δ = 2

√
εM. (4.6)

8The relevant measure is Lebesgue measure on Rn.
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Hence, using the bound |u| 6M , by choosing

ε 6
δ2

4M
, (4.7)

one has

sup
w∈Gε

w = uε, Gε :=
{
u( · − z)− 1

2ε |z|
2 : |z| < δ

}
,

and thus u∗ε := (supw∈Gε w)∗ = uε since uε is upper semicontinuous. The desired conclusion now

follows by noting that v∗ε = u∗ε + θψ. �

4.2. Subharmonic addition for fiberegular M-monotone subequations. We will now make
use of the quasi-convex approximation result of Theorem 4.2 to prove subharmonic addition. Given
the local nature of the definition of subharmonicity, we are going to use the following local argument:
in order to prove that F(X) +G(X) ⊂ H(X) it suffices to prove that F(B) +G(B) ⊂ H(B) for one
small open ball B about each point of X. Therefore we will be in the situation where Ω = B ⊂ X
can be chosen in such a way that M indeed admits a strict approximator on Ω: for every x ∈ X,
it suffices to consider a quadratic strictM-subharmonic on Br(x), for some r > 0, (which we know
there exists thanks to the topological property (T)) and then set B = Br/2(x).

In order to better understand the role of the assumptions of fiberegularity andM-monotonicity
on the subequations, perhaps it is useful to review the argument in the constant coefficient case,
as given in [7, Theorem 7.1]. Suppose that u ∈ F(X) and v ∈ G(X) for a pair of subequations F
and G and suppose that there exists a third subequation H with F +G ⊆ H. As noted above, since
the definition of H-subharmonic is local, in order to show that u+ v ∈ H(X) it is enough to show
that u + v ∈ H(Ux) for some open neighborhood Ux of each x ∈ X. At this point, it is known [7,
Remark 2.13] that if one chooses the Ux’s to be small enough, then property (T) ensures the existence
of smooth (actually, quadratic) subharmonics ϕx ∈ F(Ux) and ψx ∈ G(Ux). This is useful in order
to apply another elementary property of the family of F-subharmonics (or G-subharmonics), namely
the maximum property [7, Proposition D.1(B)] (see also Proposition B.4(ii)). This property says
that: u, v ∈ F(X) ⇒ max{u, v} ∈ F(X). Applying the maximum property to the pairs (u, ϕx−m),
(v, ψx−m), for m ∈ N, where ϕx−m and ψx−m are subharmonic by the negativity property, one
obtains two approximating truncated sequences of subharmonics um ∈ F(Ux), vm ∈ G(Ux), which
are bounded on Ux and decrease to the limits u, v, respectively as m → ∞. The boundedness on
Ux allows one to apply [9, Theorem 8.2] in order to produce, via the sup-convolution, two sequences
of approximating quasi-convex subharmonics uεm, v

ε
m, which are decreasing with pointwise limits

um, vm, respectively. Finally, one can now apply the Subharmonic Addition Theorem for quasi-
convex functions [11, Theorem 5.1] and the decreasing sequence property [9, Section 4, property (5)]
(or [7, Proposition D.1(E)], or Proposition B.4(v)) in order to conclude the proof.

The only obstruction to generalizing this constant coefficient proof to the case of variable coeffi-
cients is the need for a variable coefficient version of the constant coefficient quasi-convex approxi-
mation result of [9, Theorem 8.2]. All of the other steps are known to be valid also in the variable
coefficient case: the local existence of smooth subharmonics easily follows (see [21, Remark 4.6] or
[20, Remark 2.1.6] ) from the triad of topological conditions (T) which one requires a subequation to
satisfy (cf. [10, Section 3]); the maximum property is straightforward and the decreasing sequence
property can be proven essentially as in [9], by using the Definitional Comparison Lemma B.2
(see Proposition B.4). Therefore if one uses Theorem 4.2 instead of [9, Theorem 8.2], one has all
the ingredients in order to carry out essentially the same proof.
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Actually, it is worth noting one final thing: the parameters θ, ε, δ in (4.5), which are to be sent
to 0, are linked in such a way that

a priori, and in general one may suppose so, δ ↘ 0 as θ ↘ 0 (cf. (3.12) and the def. of δ),

it is possible to let ε↘ 0 with θ, δ fixed (cf. (4.7)),

letting θ ↘ 0 would force ε↘ 0 as well (cf. the relationships recalled above).

This suggests that one should first let ε↘ 0 and then θ ↘ 0 (and thus δ ↘ 0). Also, we have no a
priori information on the sign of the perturbing strict approximator in (4.5), namely θψ; hence one
cannot use the decreasing sequence property in order to deal with the limit θ ↘ 0. Luckily enough,
again thanks to the Definitional Comparison Lemma, another elementary property can be easily
extended to variable coefficients, namely the uniform limits property [7, Section 4, property (5’)]
(see Proposition B.4(vi)); and the reader shall notice that, after computing the (decreasing) limit
of uεθ as ε↘ 0, one gets u+ θψ, which uniformly converges to u as θ ↘ 0.

The theorem that we are going to state has a gradient-free analogue [6, Theorem 5.2], which has
been proven by applying the same procedure, where [6, Lemma 5.6] substitutes the quasi-convex
approximation result [9, Theorem 8.2].

Theorem 4.4 (Subharmonic Addition for fiberegular M-monotone subequations). Let X ⊂ Rn

be open. Let M be a constant coefficient monotonicity cone subequation and let F ,G ⊂ J 2(X) be

fiberegular M-monotone subequations on X. For any subequation H ⊂ J 2(X),

Gx + Fx ⊂ Hx, ∀x ∈ X (Jet Addition)

implies

G(X) + F(X) ⊂ H(X). (Subharmonic Addition)

Proof. We have already outlined how a proof can be performed. For the sake of completeness, we

give a brief sketch. Without loss of generality, suppose that u ∈ F(X) and v ∈ G(X) are bounded;

indeed, if not, it suffices to proceed as follows:

• for each x ∈ X, consider some ball B := Bρ(x) and two quadratic subharmonics ϕ ∈ F(B) and

ψ ∈ G(B);

• for all m ∈ N, define um := max{u, ϕ−m} and vm := max{v, ψ −m};
• prove the theorem for um and vm;

• apply the decreasing sequence property as m→∞.

Without loss of generality, also suppose that the fiber maps

ΘF (x) := Fx and ΘG(x) := Gx

are in fact uniformly continuous on X; indeed, again, if not, by the local nature of the definition of

subharmonicity on X, it suffices to show that

F(Ω) + G(Ω) ⊆ H(Ω) ∀Ω b X.

Finally, as noted at the beginning of this subsection, after possibly choosing a smaller ball B,

property (T) assures that M admits a (quadratic) strict approximator on B, so that we may

assume without loss of generality that M admits a strict approximator ψ on X.
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Thanks to these reductions, we are in the situation where all the hypotheses of Theorems 3.3

and 4.2 hold. Therefore we know that there exist two nets of quasi-convex functions

uεθ ∈ F(Xδ), vεθ ∈ G(Xδ)

where the parameter δ is chosen as δ := min{δF , δG}, where δF and δG are those coming from

Theorem 3.3, associated to the subequations F and G, respectively. By the Subharmonic Addition

Theorem for quasi-convex functions [11, Theorem 5.1], one has

uεθ + vεθ ∈ H(Xδ).

Therefore, since we know that

uεθ + vεθ ↘ u+ v + 2θψ as ε↘ 0,

by letting ε↘ 0 the decreasing sequence property yields

u+ v + 2θψ ∈ H(Xδ).

Letting θ ↘ 0, by the uniform limit property and the fact that Xδ ↗ X as δ ↘ 0,

u+ v ∈ H(Xδ∗) for each δ∗ > 0 small.

This is equivalent to u+ v ∈ H(X), which is the desired conclusion. �

5. Potential theoretic comparison by the monotonicity-duality method

In this section, we present a flexible method for proving comparison (the comparison principle)
in a fiberegular M-monotone nonlinear potential theory. The method works with sufficient mono-
tonicity; that is, when the (constant coefficient) monotonicity cone subequationM admits a strict
approximator ψ on a given domain Ω b Rn, which we recall is a function ψ ∈ USC(Ω) ∩ C2(Ω)
that is strictlyM-subharmonic on Ω. Using monotonicity and duality, comparison is a consequence
of the following constant coefficient Zero Maximum Principle (ZMP). We give two versions. The
first is the “elliptic” version in Theorem 6.2 of [7] which uses a boundary condition on the entire
boundary. The second is a “parabolic” version which uses a boundary condition on a proper subset
of the boundary and generalizes Theorem 12.37 of [7].

Theorem 5.1 (ZMP for dual constant coefficient monotonicity cone subequations). Suppose that

M is a constant coefficient monotonicity cone subequation that admits a strict approximator on a

domain Ω b Rn. Then the zero maximum principle holds for M̃ on Ω; that is,

z 6 0 on ∂Ω =⇒ z 6 0 on Ω (ZMP)

for all z ∈ USC(Ω) ∩ M̃(Ω).

If, in addition, the strict approximator ψ satisfies

ψ ≡ −∞ on ∂Ω \ ∂−Ω (5.1)

for some ∂−Ω ⊂ ∂Ω, then the zero maximum principle holds in the following form:

z 6 0 on ∂−Ω =⇒ z 6 0 on Ω (ZMP–)

for all z ∈ USC(Ω) ∩ M̃(Ω).
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Proof. The first statement has been shown in [7, Theorem 6.2]. To get its version on the “reduced”

boundary ∂−Ω, one may argue as follows. Since intM has property (N) and since M is a cone,

one has

εψ −m is strictly M-subharmonic on Ω for each m > 0 and each ε > 0. (5.2)

Moreover, since ψ ∈ USC(Ω), there exists M such that ψ 6M on Ω and hence

εψ −m 6 0 on Ω for each m > 0 and each ε ∈
(
0, mM

)
. (5.3)

On the one hand, z 6 0 on ∂−Ω by hypothesis and hence, by (5.3), one has

z + εψ −m 6 0 on ∂−Ω for each m > 0 and each ε ∈
(
0, mM

)
.

On the other hand,

z + εψ −m 6 0 on ∂Ω \ ∂−Ω,

because ψ (∂Ω \ ∂−Ω) = {−∞}, and z is bounded from above on Ω.

Therefore z + εψ −m 6 0 on ∂Ω where z is M̃-subharmonic on Ω by hypothesis and εψ −m is

C2 and strictly M-subharmonic on Ω by (5.2). Hence

z + εψ −m 6 0 on Ω (5.4)

by the Definitional Comparison (Lemma B.2) with F = M̃ and F̃ =
˜̃M =M. Taking the limit in

(5.4) as m, ε↘ 0 gives z 6 0 on Ω. �

The following is a general result for fiberegular M-monotone nonlinear potential theories.

Theorem 5.2 (A General Comparison Theorem). Let Ω b Rn be a bounded domain. Suppose

that a subequation F ⊂ J 2(Ω) is fiberegular and M-monotone on Ω for some monotonicity cone

subequation M. If M admits a strict approximator on Ω, then comparison holds for F on Ω; that

is,

u 6 w on ∂Ω =⇒ u 6 w on Ω (CP)

for all u ∈ USC(Ω), F-subharmonic on Ω, and w ∈ LSC(Ω), F-superharmonic on Ω.

If, in addition, the strict approximator is −∞ on ∂Ω \ ∂−Ω, for some ∂−Ω ⊂ ∂Ω, then

u 6 w on ∂−Ω =⇒ u 6 w on Ω (CP–)

for all u ∈ USC(Ω), F-subharmonic on Ω, and w ∈ LSC(Ω), F-superharmonic on Ω.

Proof. As noted in (2.14), by duality, w is F-superharmonic on Ω if and only the function v := −w
is F̃-subharmonic in Ω. Hence the the comparison principle (CP) is equivalent to

u+ v 6 0 on ∂Ω =⇒ u+ v 6 0 on Ω (CP′)

for all u ∈ USC(Ω) ∩ F(Ω) and v ∈ USC(Ω) ∩ F̃(Ω). Obviously, (CP′) is equivalent to the zero

maximum principle (ZMP) for z := u+ v, sums of F and F̃-subharmonics.
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By elementary properties of the Dirichlet dual [10, 7, 21] one knows that monotonicity and

duality gives the jet addition formula

Fx + F̃x ⊂ M̃, ∀x ∈ Ω,

as noted in (2.19) and recalled in (4.3). Then the Subharmonic Addition Theorem 4.4 yields the

subharmoniic addition relation

F(Ω) + F̃(Ω) ⊂ M̃(Ω).

Therefore z ∈ M̃(Ω) and the desired conclusion follows from Theorem 5.1. The proof of (CP–) is

completely analogous. �

As discussed in the introduction, the utility of the General Comparison Theorem 5.2 is greatly
facilitated by the detailed study of monotonicity cone subequations in [7]. For the convenience of
the reader, we redroduce that discussion here. There is a three parameter fundamental family of
monotonicity cone subequations (see Definition 5.2 and Remark 5.9 of [7]) consisting of

M(γ,D, R) :=

{
(r, p, A) ∈ J 2 : r 6 −γ|p|, p ∈ D, A > |p|

R
I

}
(5.5)

where

γ ∈ [0,+∞), R ∈ (0,+∞] and D ⊆ Rn, (5.6)

where D is a directional cone; that is, a closed convex cone with vertex at the origin and non-empty
interior . The family is fundamental in the sense that for any monotonicity cone subequation, there
exists an elementM(γ,D, R) of the familly withM(γ,D, R) ⊂M (see Theorem 5.10 of [7]). Hence
if F is an M-monotone subequation, then it is M(γ,D, R)-monotone for some triple (γ,D, R).
Moreover, from Theorem 6.3 of [7], given any elementM =M(γ,D, R) of the fundamental family,
one knows for which domains Ω b Rn there is a C2-strict M-subharmonic and hence for which
domains Ω one has the (ZMP) for M̃-subharmonics according to Theorem 5.1. There is a simple
dichotomy. If R = +∞, then arbitrary bounded domains Ω may be used, while in the case of R
finite, any Ω which is contained in a translate of the truncated cone DR := D ∩BR(0).

As a corollary, one has Theorem 5.3 below, which is the generalization to fiberegular subequa-
tions of the Fundamental Family Comparison Theorem [7, Theorem 7.6]. The proof, which we
omit, essentially amounts to showing that any fundamental cone defined in [7, Section 5] (and re-
called in (5.5)-(5.6)) admits a strict approximator on suitable domains (as showed in [7, proof of
Theorem 6.3]), in order to apply Theorem 5.2.

Theorem 5.3 (The Fundamental Family Comparison Theorem). Let F ⊂ J 2(Ω) be a fiberegular

M-monotone subequation on a bounded domain Ω b Rn, for some constant coefficient monotonicity

cone subequation M⊂ J 2. Suppose that

(i) either M ⊃ M(γ,D, R), for some γ,R ∈ (0,+∞) and some directional cone D, and Ω is

contained in a translate of the truncated cone DR := D ∩BR(0)9

(ii) or M⊃M(γ,D,P) (that is, M⊃M(γ,D, R) with R = +∞).

Then the comparison principle (CP) holds on Ω.

9That is, there exists y ∈ Rn such that Ω− y ⊂ DR.



28 MARCO CIRANT, KEVIN R. PAYNE, AND DAVIDE F. REDAELLI

6. Characterizations of dual cone subharmonics

In this section, we will present characterizations of the subharmonics M̃(X) determined by the
dual of a monotonicity cone subequationM. Before presenting the characterizations, a few remarks
are in order.

First, interest in such characterizations comes from the fact that the space of dual subharmonics

M̃(X) on an open subset X ⊂ Rn associated to a constant coefficient monotonicity cone subequa-
tionM⊂ J 2 plays a key role in the monotonicity-duality method for proving comparison through
the subharmonic addition theorem

F(X) + F̃(X) ⊂ M̃(X) (6.1)

if F (and hence F̃) is a fiberegularM-monotone subequation. This reduces comparison on a domain

Ω b X to the zero maximum principle (ZMP) for M̃-subharmonics, which is in turn implied by the

existence of a strict approximator ψ ∈ C2(Ω) ∩ C(Ω) (a strict M̃-subharmonic on Ω). Moroever,

by (6.1), M̃(X) contains the differences of all F-subharmonics and F-superharmonics and M has
constant coefficients, even if F does not.

Second, since

M1 ⊂M2 ⇒ M̃2 ⊂ M̃1, (6.2)

if one enlarges the monotonicity cone M, the chances of finding a strict approximator improve,
while the space M(X) reduces, yielding a weaker (ZMP). This “monotonicity” in the family of
monotonicity cones (6.2) will be used in the characterizations we present.

Third, since

M =M1 ∩M2 ⇒ M̃ = M̃1 ∪ M̃2, (6.3)

and since the fundamental family M(γ,D, R) is constructed from the intersection of eight ele-
mentary cones (see Definition 5.2 and Remark 5.9 of [7]), one can use this fact in the proof of
characterizations for cones in the fundamental family.

For a given monotonicity cone subequation M̃ ⊂ J 2 and an open set X ⊂ Rn, we will seek
characterizations of

M̃(X) = {u ∈ USC(X) : u is M-subharmonic on X} (6.4)

as well as

M̃(Ω) = {u ∈ USC(Ω) : u is M-subharmonic on Ω}, Ω b X (6.5)

in terms of sub-A functions in the sense of the following definition.

Definition 6.1. Given X ⊂ Rn and a collection of functions A =
⊔

ΩbX A(Ω) where ∅ 6= A(Ω) ⊂
LSC(Ω) for each Ω, a function u ∈ USC(X) is said to be sub-A on X if u satisfies the following

comparison principle: for each Ω b X

u 6 a on ∂Ω ⇒ u 6 a on Ω, for each a ∈ A(Ω). (6.6)

In this case we will write u ∈ SA(X). With Ω b X fixed, we will also denote by

SA(Ω) = {u ∈ USC(Ω) : (6.6) holds for each a ∈ A(Ω)}. (6.7)

With respect to these definitions we will address two problems.
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Problem 1. Given a monotonicity cone subequation M ⊂ J 2 and given an open set X ⊂ Rn,

determine a collection of functions A =
⊔

ΩbX A(Ω) on X such that

M̃(X) + SA(X) (6.8)

where SA(X) is defined as in the first part of Definition 6.1.

Problem 2. Given a monotonicity cone subequation M ⊂ J 2 and given an open set Ω b Rn,

determine a class of functions A(Ω) on Ω such that

M̃(Ω) = SA(Ω) (6.9)

where SA(Ω) is defined as in the second part of Definition 6.1.

Before presenting some motivating examples and the general results, a few remarks are in order.

Remark 6.2. A solution to Problem 1 will automatically solve Problem 2 for each Ω b X. We will

see that a key role is played by domains Ω such that

there exists a C2-strictly M-subharmonic function on Ω. (6.10)

The property (6.10) holds for arbitrary Ω for many subequation cones M, but not all. Moreover,

as noted at the beginning of the section, we are interested in the validity of the (ZMP) for M on

Ω, so Problem 2 is interesting in its own right.

Remark 6.3. In both versions, there is an obvious “monotonicity property”

A1(Ω) ⊂ A2(Ω) ⇒ SA2(Ω) ⊂ SA1(Ω), (6.11)

since increasing the test functions a makes the sub-property (6.6) more restrictive. Hence the

inclusion

M̃(Ω) ⊂ SA(Ω) (6.12)

is made easier for “smaller” classes A, while enlarging A will sharpen (6.12) and help in the reverse

inclusion

M̃(Ω) ⊃ SA(Ω) (6.13)

We now begin to discuss some motivating examples. As noted in Examples 2.5 and 2.6, a char-
acterization of the form (6.8) of Problem 1 is already known for two of the elementary monotonicity
cone subequations in the fundamental family, which we recall in the following two examples.

Example 6.4 (Subaffine functions). If M = M(P) := R × Rn × P is the convexity (cone) sube-

quation, then the dual cone is

M̃ = {(r, p, A) ∈ J 2 : A ∈ P̃} = {(r, p, A) ∈ J 2 : λn(A) > 0}

and M̃(X) = SA(X) where A = {A(Ω)}ΩbX with

A(Ω) = Aff(Ω) := {a|Ω : a affine on Rn}, Ω b X. (6.14)
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SA(X) with A defined by (6.14) is the space of subaffine functions. This example appears in

connection with every pure second order subequation F and every pure second order (degenerate)

elliptic operator F .

Example 6.5 (Subaffine-plus functions). If M = M(N ,P) := N × Rn × P is the convexity-

negativity (cone) subequation, then the dual cone is

M̃ = {(r, p, A) ∈ J 2 : r ∈ N or A ∈ P̃} = {(r, p, A) ∈ J 2 : r 6 0 or λn(A) > 0}

and M̃(X) = SA(X) where A = {A(Ω)}ΩbX with

A(Ω) = Aff+(Ω) := {a ∈ Aff(Ω) : a > 0}, Ω b X. (6.15)

SA(X) with A defined by (6.15) is the space of subaffine-plus functions. This example appears in

connection with every gradient-free subequation F and every gradient-free proper elliptic operator

F .

The next example of an elementary monotonicity cone subequation in the fundamental family is,
by iteslf, not particularly interesting. However, we record it anyway to make another point about
intersections.

Example 6.6 (Sub-plus functions). The negativity (cone) subequation M =M(N ) := N × Rn ×
S(n) is self-dual; that is, M̃ =M(N ), and M̃(X) = SA(X) where A = {A(Ω)}ΩbX with

A(Ω) = Plus(Ω) := {a|Ω : a quadratic, a|Ω > 0}, Ω b X. (6.16)

SA(X) with A defined by (6.16) is the space of sub-plus functions.

Remark 6.7 (On intersections). In Example 6.5, the monotonicity coneM(N ,P) =M(P)∩M(N )

and the dual of M(N ,P) is the union of the dual cones of M(P) and M(N ) in accordance with

(6.3). Moreover, considering the three examples taken together, if we denote by

M1 =M(P), M2 =M(N ), M =M1 ∩M2,

and

A1 = Aff(X), A2 = Plus(X)

in addition to (6.3) we also have

M̃(X) = SA(X) with A(Ω) = A1(Ω) ∩ A2(Ω), Ω b X. (6.17)

This consideration leads us to ask: under what conditions is it true that

˜M1 ∩M2(Ω) = S(A1 ∩ A2)(Ω)? (6.18)

We will give general characterization results which also give sufficient conditions under which
(6.18) holds. We begin with a lemma on the “reverse inclusion” of (6.13) which exploits part (b)
of the Definitional Comparison Lemma B.2.
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Lemma 6.8. Suppose that M ⊂ J 2 is a monotonicity cone subequation. Then its dual subhar-

monics satisfy

SA(X) ⊂ M̃(X) (6.19)

where A = {A(Ω)}ΩbX with

A(Ω) := {a|Ω : a is quadratic and −a is M-subharmonic in Ω}. (6.20)

Moreover, for any pair of monotonicity come subequationsM1 andM2 and with A1 and A2 defined

as in (6.20), one has the intersection property

S(A1 ∩ A2)(X) ⊂ ˜M1 ∩M2(X) (6.21)

Proof. For the claim (6.19), we assume that u ∈ SA(X) and we show that u ∈ M̃(X) by using part

(b) of the Definitional Comparison Lemma with v = −a quadratic. It is enough to show that for

every x0 ∈ X, there exist arbitrary small balls Bρ(x0) b X such that

u− a 6 0 on ∂Bρ(x0) =⇒ u− a 6 0 on Bρ(x0), (6.22)

for each quadratic a such that −a is strictly M-subharmonic on Bρ(x0). But we have (6.22) on

every ball for all quadratic a such that −a is merelyM-subharmonic on Bρ(x0) (by the hypothesis

that u ∈ SA(X) with A defined by (6.20).

For the intersection property (6.21), for each Ω b X, consider

A(Ω) := {a|Ω : a is quadratic and −a is M1 ∩M2-subharmonic in Ω} = A1(Ω) ∩ A2(Ω),

where the last equality is merely the observation that for quadratic (C2) functions a,

−a ∈ (M1 ∩M2)(Ω) ⇔ J2
x(−a) ∈M1 ∩M2, ∀x ∈ Ω,

which is equivalent to J2
x(−a) ∈ Mk for each x ∈ Ω for k = 1, 2. By the first part, we conclude

that S(A1 ∩ A2)(X) = SA(X) ⊂ ˜M1 ∩M2(X). �

Notice that Lemma 6.8 implies that for each Ω b X one has also the reverse inclusions

SA(Ω) ⊂ M̃(Ω) and S(A1 ∩ A2)(Ω) ⊂ ˜M1 ∩M2(Ω) (6.23)

Next we give a lemma on the “forward inclusion” (6.12) and the forward inclusion in the inter-
section property (6.18) on Ω b X which satisfy property (6.10).

Lemma 6.9. Suppose that Ω admits a C2 strict M-subharmonic for some monotonicity cone

subequation M⊂ J 2. Then the following hold.

(a) M̃(Ω) ⊂ SA(Ω) for any class A(Ω) such that −A(Ω) ⊂M(Ω); that is, if

A(Ω) ⊂ −M(Ω) = {w ∈ LSC(Ω) : −w is M-subharmonic on Ω}. (6.24)

(b) In particular, with A as defined in (6.20); that is, with

A(Ω) := {a|Ω : a is quadratic and −a is M-subharmonic in Ω}, (6.25)
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one has the forward inclusion M̃(Ω) ⊂ SA(Ω). Moreover, for any pair M1 and M2 and

with A1 and A2 defined as in (6.25) one has

˜M1 ∩M2(Ω) ⊂ S(A1 ∩ A2)(Ω), (6.26)

provided that Ω admits a C2 strict (M1 ∩M2)-subharmonic.

Proof. For the proof of part (a), given u ∈ M̃(Ω) the sub-A property (6.6) is equivalent to the

(ZMP) for all differences z := u− a with a ∈ A(Ω); that is,

u− a 6 0 on ∂Ω ⇒ u− a 6 0 on Ω, for each a ∈ A(Ω). (6.27)

SinceM admits a C2 strictM-subharmonic, the (ZMP) holds for each z ∈ M̃(Ω). Hence it suffices

to have the subharmonic difference formula

M̃(Ω)−A(Ω) ⊂ M̃(Ω), (6.28)

but this holds under the assumption −A(Ω) ⊂ M(Ω). Indeed, for any monotonicity cone sube-

quation M ⊂ J 2, one has M +M ⊂ M and hence by duality one has the jet addition formula

M̃+M⊂ M̃. Hence by the Subharmonic Addition Theorem 4.4 for every open set X one has

M̃(X) +M(X) ⊂ M̃(X). (6.29)

The first claim in part (b) is immediate from part (a) as the choice of A in (6.25) is one allowed

by (6.24). Finally, assuming that Ω admits a C2 strict (M1 ∩M2)-subharmonic, by part (a) one

has

˜M1 ∩M2(Ω) ⊂ SA(Ω),

for any A(Ω) such that

A(Ω) ⊂ −(M1 ∩M2)(Ω) = {w ∈ LSC(Ω) : −w is (M1 ∩M2)-subharmonic on Ω},

and in particular for

A(Ω) := {a|Ω : a is quadratic and −a is (M1 ∩M2)-subharmonic in Ω}.

�

Putting together Lemma 6.8 and Lemma 6.9, we have the following general result, whose proof
is immediate.

Theorem 6.10 (Characterizing dual cone subharmonics). Suppose that M⊂ J 2 is a monotoncity

cone subequation. Then the following hold.

(a) If Ω b X admits a C2 strict M-subharmonic, then M̃(Ω) = SA(Ω) where

A(Ω) := {a|Ω : a is quadratic and −a is M-subharmonic in Ω}. (6.30)

Moreover if Ω also admits a C2 strict (M1 ∩M2)-subharmonic, one has

˜M1 ∩M2(Ω) = S(A1 ∩ A2)(Ω), (6.31)

for pairs M1,M2 and A1,A2 as defined in (6.30).
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(b) Consequently, if each Ω b X admits a C2 strict M-subharmonic, then

M̃(X) = SA(X)

for A = {A(Ω)}ΩbX with A(Ω) as in (6.30). Moreover, if each Ω b X admits a C2 strict

(M1 ∩M2)-subharmonic, one has

˜M1 ∩M2(X) = S(A1 ∩ A2)(X), (6.32)

for pairs M1,M2 and A1,A2 as defined in (6.30).

Before proceeding to examine additional examples, including a discussion of characterizing the

M̃-subahrmonics forM =M(γ,D, R) in the fundamental family, we record the following observa-
tion.

Remark 6.11. In Theorem 6.10, provided that M admits a C2 strict M-subharmonic, we have

characterizations M̃(Ω) = SA(Ω) with A(Ω) some class of quadratic functions easily determined

by M; those quadratics a such that −a is M-subharmonic. However, it is not said that the

characterization is optimal since it is possible that

SA1(Ω) = SA2(Ω) even with A1(Ω) ( A2(Ω). (6.33)

For example, by applying Theorem 6.10 to Example 6.4 with M = M(P) the theorem gives

A2(Ω) as those quadratics a such that −a is M(P)-subharmonic; that is a a concave quadratic.

On the other hand, we know that the characterization holds for A1(Ω) chosen as affine functions.

Obviously affine quadratics are also concave and are the “minimal” concave quadratics. In this

pure second order case, one has the deep study of Harvey-Lawson [13] involving edge functions.

Such improvements in the general case would be interesting.

We now complete the discussion by presenting the characterizations of M̃-subharmonics for all
monotonicity cone subequations M that belong to the fundamental family of cones introduced in
[7]. The family was recalled and briefly discussed beginning with the definition in (5.5)-(5.6):

M =M(γ,D, R) :=

{
(r, p, A) ∈ J 2 : r 6 −γ|p|, p ∈ D, A > |p|

R
I

}
, (6.34)

where with γ ∈ [0,+∞), D ⊂ Rn a directional cone (a closed convex cone with vertex at the origin
and non-empty interior), and R ∈ (0,+∞].

We recall that in the limiting case R = +∞ we interpret the last inequality in (6.34) as

A >
|p|
R
I ⇔ A > 0 in S(n) ⇔ A ∈ P.

We recall also that the family is fundamental in the sense that for each monotonicity cone subequa-
tionM⊂ J 2, there exists a member of the fundamental familyM(γ,D, R) such thatM(γ,D, R) ⊂
M and hence by duality for each Ω b X

M̃(Ω) ⊂ M̃(γ,D, R)(Ω).

Hence the characterizations of all M̃(γ,D, R)(Ω) will say something about the general case of

M̃(Ω).
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The fundamental family M̃(γ,D, R) is generated by five elementary cones by taking double and
triple intersections of the five generators, which are:

M(P) := R× Rn × P = {(r, p, A) ∈ J 2 : A > 0}; (6.35)

M(N ) := N × Rn × S(n) = {(r, p, A) ∈ J 2 : r 6 0}; (6.36)

M(D) := R×D × S(n) = {(r, p, A) ∈ J 2 : p ∈ D}, D ( Rn; (6.37)

M(γ) := {(r, p, A) ∈ J 2 : r 6 −γ|p|}, γ ∈ (0,+∞), (6.38)

M(R) :=

{
(r, p, A) ∈ J 2 : A >

|p|
R
I

}
, R ∈ (0,+∞). (6.39)

Examples 6.4 and 6.6 characterizeM(X) for the generators in (6.35) and (6.36) respectively, where
we note that for these two cones, for each Ω b Rn there are C2-strict M-subharmonics. By

exploiting Theorem 6.10 (including the intersection properties), it suffices to characterize M̃(Ω)
for M for the remaining generating comes (6.37) - (6.39) and to check when there are C2-strict
M-subharmonics for these generators and all of the intersections of the generators.

The following corollary addresses the remaining generators.

Corollary 6.12. Let X ⊂ Rn be open.

(a) For any directional cone D ( Rn, the monotonicity coneM(D) defined in (6.37) has as dual

cone M̃(D) = {(r, p, A) ∈ J 2 : p ∈ D̃ = −(intD)c)} and one has M̃(D)(X) = SAD(X)

where AD = {AD(Ω)}ΩbX with

AD(Ω) = {a|Ω : a quadratic, Da ∈ −D on Ω} , Ω b X. (6.40)

(b) For any γ ∈ (0,+∞), the monotonicity cone M(γ) defined in (6.38) has as dual cone

M̃(γ) = {(r, p, A) ∈ J 2 : r 6 γ|p|} and one has M̃(γ)(X) = SAγ(X) where Aγ =

{Aγ(Ω)}ΩbX with

Aγ(Ω) = {a|Ω : a quadratic, a > γ|Da| on Ω} , Ω b X. (6.41)

(c) For any R ∈ (0,+∞), the monotonicity cone M(R) defined in (6.39) has as dual cone

M̃(R) =
{

(r, p, A) ∈ J 2 : A+ |p|
R I ∈ P̃

}
and for any Ω contained in a ball of radius R

one has M̃(R)(Ω) = SAR(Ω) where

AR(Ω) :=

{
a|Ω : a quadratic, D2a 6 −|Da|

R
I on Ω

}
. (6.42)

Proof. As shown in Chapter 6 of [7], one can find quadratic functions ψ which are strictly M-

subharmonic on all Ω b Rn for the cones M(D) and M(γ) and on all Ω contained in a ball of

radius R for the cone M(R). Moreover, it is also shown that the (ZMP) fails for M̃(R)-harmonics

on balls of radius R′ > R. Using Theorem 6.10, it suffices only to check that for each Ω b X one

has

−AD(Ω) ⊂M(D)(Ω), −Aγ(Ω) ⊂M(γ)(Ω) and −AR(Ω) ⊂M(R)(Ω),

which are easily verified. �
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Remark 6.13. As noted in (6.33) of Remark 6.11, it is not said that the classes of functions

AD(Ω),Aγ(Ω) and AR(Ω) are the minimal classes for which the characterizations of Corollary 6.12

hold. For example, for each R ∈ (0,+∞), one can replace AR(Ω) with

AR,min(Ω) :=

{
a|Ω : a quadratic, D2a = −

maxΩ |Da|
R

I on Ω

}
. (6.43)

Clearly AR,min(Ω) ( AR(Ω) and the quadratics in AR,min(Ω) are “minimal” in the sense that

they are the most “concave” quadratics in AR(Ω). Also notice that taking the limit R → +∞ of

AR,min(Ω) yields the affine functions used to characterize the dual subharmonics for the limiting

cone M(P) of Example 6.4.

The remaining twelve (distinct) cones M(γ,D, R)) in the fundamental family are formed by
taking double and triple intersections of the five generators (6.35)-(6.39). Seven of the intersections

M(N ,P),M(N ,D),M(D,P),M(γ,P),M(γ,D),M(γ,P),M(N ,D,P) and M(γ,D,P)

do not use (6.39) M(R) (with R finite) admit quadratic strictly M-subharmonics all every Ω b X
and hence the intersection property (6.32) gives characterizations of the form M̃(X) = SA(X)
with A the corresponding intersections. Example 6.5 concerns M(N ,P) and another example of
this type is worth recording, while the others are left to the reader.

Example 6.14 (Subaffine-plus functions with directionality). The fundamental product mono-

tonicity cone M =M(N ,D,P) =M(N ) ∩M(D) ∩M(P) = N ×D×P, with directionality cone

D ( Rn has dual cone M̃ = N ×D̃×P̃ and satisfies M̃(X) = SA(X) where A = {A(Ω)}ΩbX with

A(Ω) = Aff+
D(Ω) :=

{
a|Ω : a affine, a|Ω > 0 and Da ∈ − intD on Ω

}
. (6.44)

We will call SA+
D(X) the space of subaffine-plus functions with directionality D, or more simply

D-subaffine-plus functions.

Finally, as shown in Chapter 6 of [7], the remaining five cones

M(N , R),M(γ,R),M(D, R),M(N ,D, R) and M(γ,D, R) (6.45)

which use (6.39)M(R) (with R finite), admit quadratic strictlyM-subharmonics on every domain
Ω b Rn such that

Ω is contained in a ball of radius R

in the first two cases of (6.45) and on every domain Ω b Rn such that

Ω is contained in a translate of the truncated cone DR := D ∩BR(0)

in the last three cases of (6.45) with a directional cone D ( Rn.

7. Admissibility constraints and the Correspondence Principle

In this section, we will discuss how the potential theoretic comparison principles in nonlinear
potential theory (using monotonicity, duality and fiberegularity) developed in the previous sections
can be transported to many fully nonlinear second order PDEs. The equations we treat will
be defined by a variable coefficient operator F ∈ C(G) with domain G ⊂ J 2(X) which may
or may not be all of J 2(X). Moreover, we will treat operators F with dependence on all jet
variables J = (r, p, A) ∈ J 2 with sufficient monotonicity with respect to some constant coefficient
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monotonicity cone subequationM. Hence, the operators will be proper elliptic with an additional
monotonicity in the gradient variables, a concept that we will call directionality. It is gradient
dependence with directionality that distinguishes the present work with respect to the pure second
order and gradient free situations treated in [5] and [6] respectively.

7.1. Viscosity solutions of PDEs with admissibility constraints. We begin by recalling the
class of operators with the necessary monotonicity required for the comparison principle. When
there is gradient dependence, the additional monotonicity of directionality will also be required (see
Definition 7.5).

Definition 7.1 (Proper elliptic operators). An operator F ∈ C(G) where either

G = J 2(X) (unconstrained case)

or

G ( J 2(X) is a subequation constraint set (constrained case).

is said to be proper elliptic if for each x ∈ X and each (r, p, A) ∈ Gx one has

F (x, r, p, A) 6 F (x, r + s, p,A+ P ) ∀ s 6 0 in R and ∀P > 0 in S(n). (7.1)

The pair (F,G) will be called a proper elliptic 10 (operator-subequation) pair.

The minimal monotonicity (7.1) of the operator F parallels the minimal monotonicity properties
(P) and (N) for subequations F . It is needed for coherence and eliminates obvious counterexam-
ples for comparison. This is explained for subequations after Definition 2.3. A given operator F
must often be restricted to a suitable background constraint domain G ⊂ J 2(X) in order to have
this minimal monotonicity (the constrained case). The historical example clarifying the need for
imposing a constraint is the Monge-Ampère operator

F (D2u) = det(D2u), (7.2)

where one restricts the operator’s domain to be the convexity subequation G = P := {A ∈ S(n) :
A > 0}.

Remark 7.2. The scope of the constrained case is perhaps best illustrated by the more general

G̊arding-Dirichlet operators as discussed in Section 11.6 of [7], of which the Monge-Ampère equation

(7.2) represents the fundamental case. This class of operators are constructed in terms of hyperbolic

polynomials in the sense G̊arding (see Definition 8.6). The unconstrained case, in which F is proper

elliptic on all of J 2(X) is the case usually treated in the literature and is perhaps best illustrated

by the so-called canonical operators associated to subequations with sufficient monotonicity, as

discussed in Section 11.4 of [7].

We now recall the precise notion of subsolutions, supersolutions and solutions of a PDE

F (J2u) = 0 on X ⊂ Rn. (7.3)

The notions again make use of upper/lower test jets which we recall are defined by

J2,+
x u := {J2

xϕ : ϕ is C2 near x, u 6 ϕ near x with equality at x}, (7.4)

10Such operators are often refered to as proper operators (starting from [8]). We prefer to maintain the term

“elliptic” to emphasize the importance of the degenerate ellipticity (P-monotonicity in A) in the theory.
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and

J2,−
x u := {J2

xϕ : ϕ is C2 near x, u > ϕ near x with equality at x}, (7.5)

Definition 7.3 (Admissible viscosity solutions). Given F ∈ C(G) with either G = J 2(X) or

G ( J 2(X) a subequation on an open subset X ⊂ Rn:

(a) a function u ∈ USC(X) is said to be a (G-admissible) viscosity subsolution of F (J2u) = 0

on X if for every x ∈ X one has

J ∈ J2,+
x u ⇒ J ∈ Gx and F (x, J) > 0; (7.6)

(b) a function u ∈ LSC(Ω) is said to be a (G-admissible) viscosity supersolution of F (J2u) = 0

on X if for every x ∈ X one has

J ∈ J2,−
x u ⇒ either [ J ∈ Gx and F (x, J) 6 0 ] or J 6∈ Gx. (7.7)

A function u ∈ C(X) is an (G-admissible viscosity) solution of F (J2u) = 0 on X if both (a) and

(b) hold.

In the unconstrained case where G = J 2(X), the definitions are standard. In the constrained
case where G ( J 2(X), the definitions give a systematic way of doing of what is sometimes done
in an ad-hoc way (see [16] for operators of Monge-Ampère type and [22] for prescribed curvature
equations.) Note that (7.6) says that the subsolution u is also G-subharmonic and that (7.7) is
equivalent to saying that F (x, J) 6 0 for the lower test jets which lie in the constraint Gx.

If G is fiberwise constant, that is,

Gx = E ∀x ∈ X,

for some E ⊂ R× Rn × S(n), then G-admissible viscosity sub/supersolutions will be for simplicity
referred as E-admissible viscosity sub/supersolutions.

7.2. The Correspondence Principle. A crucial point in a nonlinear potential theoretic approach
to study fully nonlinear PDEs is to establish the Correspondence Principle between a given
proper elliptic operator-subequation pair (F,G) and a given subequation F . This correspondence
consists of the two equivalences: for every u ∈ USC(X)

u is F-subharmonic on X ⇔ u is a subsolution of F (J2u) = 0 on X (7.8)

and

u is F-superharmonic on X on X ⇔ u is a supersolution of F (J2u) = 0, (7.9)

where the subsolutions/supersolutions are in the G-admissible viscosity sense of Defintion 7.3. By
the definitions, the equivalence (7.8) is the same as the following equivalence: for each x ∈ X one
has

J2,+
x u ⊂ Fx ⇐⇒ both J2,+

x u ⊂ Gx and F (x, J) > 0 for each J ∈ J2,+
x u. (7.10)

This holds if and only if one has the correspondence relation

F = {(x, J) ∈ G : F (x, J) > 0}. (7.11)

In addition, the equivalence (7.9) is the same as the following equivalence: for each x ∈ X one has

J2,+
x (−u) ⊂ F̃x ⇐⇒ J 6∈ Gx or [J ∈ Gx and F (x, J) 6 0], ∀ J ∈ J2,−

x u. (7.12)
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Using duality (2.7) and J2,+
x (−u) = −J2,−

x u one can see that that the equivalence (7.12) holds if
and only if one has compatibility

intF = {(x, J) ∈ G : F (x, J) > 0}, (7.13)

which for subequations F defined by (7.11) is equivalent to

∂F = {(x, J) ∈ G : F (x, J) = 0}. (7.14)

These considerations can be summarized in the following result.

Theorem 7.4 (Correspondence Principle). Suppose that F ∈ C(G) is proper elliptic and F , defined

by the correspondence relation (7.11), is a subequation. If compatibility (7.13) is satisfied, then the

correspondence principle (7.8) and (7.9) holds. In particular, u ∈ C(X) is a G-admissible viscosity

solution of F (J2u) = 0 in X if and only if u is F-harmonic in X.

It remains to determine structural conditions on a given proper elliptic operator F ∈ C(G) for
which the hypotheses of the Correspondence Principle hold. There are the two requirements. First,
one needs that the constraint set F defined by the correspondence relation (7.11) is, in fact, a
subequation. The fiberwise monotoncity properties (P) and (N) for F follow easily from the M0-
monotonicity of the proper elliptic pair (F,G). More delicate is the topological property (T) and
this will require additional monotonicity and regularity assumptions on the pair (F,G). Also, in
order to discuss the equation F (J2u) = 0 on X the following non-empty condition on the zero locus
of F is needed

Γ(x) :=
{
J ∈ Gx : F (x, J) = 0

}
6= ∅ for each x ∈ X. (7.15)

This assumption also insures that Fx 6= ∅ for each x ∈ X. Second, one needs the compatibility
(7.13) (or equivalently (7.14) if F is a subequation). This condition is usually easy to check in
practice, where some strict monotonicity of F near the zero locus of F suffices.

We now address the question of sufficient conditions for having the first requirement of the Corre-
spondence Principle for a given proper elliptic operator F ∈ C(G); that is, under what (additional)
conditions on the pair (F,G) will the constraint set F defined by the correspondence relation (7.11)
be a subequation? We will, in fact, do more. We will find conditions for which the constraint set F
is a fiberegular M-monotone subequation for some monotonicty cone subequation M of the pair
(F,G). This will make the Correspondence Principle useful for proving comparison. To that end,
we must impose the appropriate (additional) monotonicity on the operator-subequation pair (F,G).

Definition 7.5 (M-monotone operators). Let M ⊂ J 2 be a (constant coefficient) monotonicty

cone subequation and let G ⊂ J 2(X) be either G = J 2(X) or G ( J 2(X) an M-monotone

subequation. An operator F ∈ C(G) is said to be M-monotone if

F (x, J + J ′) > F (x, J) ∀x ∈ X, J ∈ Gx, J ′ ∈M. (7.16)

The pair (F,G) will be called an M-monotone (operator-subequation) pair.

Notice that all M-monotone operators are proper elliptic since any subequation cone M ⊂ J 2

cone contains the minimal monotonicity coneM0 = N×{0}×P; therefore, (7.16) implies (7.1). Also
note that in the gradient free case, any proper elliptic operator isM-monotone for the monotonicity
subequation cone M := N × Rn × P. This is the case treated in [6].

Given an M-monotone operator F ∈ C(G), the fiber map Θ of the constraint set F defined by
the compatibility relation (7.11) will be M-monotone in the following sense.
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Definition 7.6 (M-monotone maps). Given a monotonicity cone subequation M ⊂ J 2, a map

Θ : X → K (J 2) (taking values in the closed subsets of J 2) will be called an M-monotone map if

Θ(x) +M⊂ Θ(x), ∀x ∈ X. (7.17)

Indeed, Θ(x) := {J ∈ Gx : F (x, J) > 0} is closed by the continuity of F and (7.17) follows easily
from (7.16) and the M-monotoncity of G.

Remark 7.7. Notice that if F is an M-monotone subequation on X, then the fiber map defined

Θ(x) := Fx for each x ∈ X will be an M-monotone map in the sense of Definition 7.6. However,

this definition does not assume that Θ is the fiber map of an M-monotone subequation. Sufficient

conditions which ensure that it is will be given in Theorem 7.11 below.

Now, under a mild regularity condition on anM-monotone operator F ∈ C(G) (with G fibereg-
ular in the constrained case), the fiber map of the constraint set F defined by the compatibility
relation (7.11) will be continuous.

Theorem 7.8 (Continuous M-monotone maps). Let F ∈ C(G) be an M-monotone operator with

either G = J 2(X) or G ( J 2(X) a fiberegular (M-monotone) subequation. Assume that the pair

(F,G) satisfies the following regularity condition: for some fixed J0 ∈ intM, given Ω b X and

η > 0, there exists δ = δ(η,Ω) > 0 such that

F (y, J + ηJ0) > F (x, J) ∀J ∈ Gx, ∀x, y ∈ Ω with |x− y| < δ. (7.18)

Then the M-monotone map Θ: X → K (J 2) defined by

Θ(x) :=
{
J ∈ Gx : F (x, J) > 0

}
(7.19)

is continuous.

Proof. We will show that Θ is locally uniformly continuous. Since Θ is M-monotone, by Proposi-

tion 3.2 with fixed J0 ∈ intM, it suffices to show that for every choice of Ω b X and η > 0 there

exists δΘ = δΘ(η,Ω) > 0 such that for each x, y ∈ Ω

|x− y| < δΘ =⇒ Θ(x) + ηJ0 ⊂ Θ(y). (7.20)

In the constrained case, where G ( J 2 is a fiberegular M-monotone subequation, we have the

validity of (7.20) with the fiber map Φ of G in place of Θ for some δΦ = δΦ(η,Ω). It suffices to

choose δΘ = min{δΦ, δ}. Indeed, for each pair x, y ∈ Ω with |x−y| < δΘ, pick an arbitrary J ∈ Θ(x)

so that J ∈ Φ(x) and F (x, J) > 0, which by the continuity of Φ and the regularity property (7.18)

yields

J + ηJ0 ∈ Φ(y) and F (y, J + ηJ0) > F (x, J) > 0, (7.21)

which yields the inclusion in (7.20).

In the unconstrained case, where G = J 2(X), the constant fiber map Φ ≡ J 2 is trivially

continuous ((7.20) for Φ holds for every δΦ > 0) and hence it suffices to choose δΘ = δ and use the

regularity condition (7.18). �
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Remark 7.9. In Theorem 7.8, the structural condition (7.18) on F is merely sufficient to ensure

that an M-monotone map Θ given by (7.19) is continuous. The (locally uniform) continuity of Θ

is equivalent to the statement that: for any fixed J0 ∈ intM, given Ω b X, and η > 0, there exists

δ = δ(η,Ω) > 0 such that ∀x, y ∈ Ω with |x− y| < δ one has

F (x, J) > 0 and J ∈ Gx =⇒ F (y, J + ηJ0) > 0. (7.22)

This condition is weaker, in general, than the structural condition (7.18) and hence useful to keep

in mind for specific applications (see, for example, the proof of [6, Theorem 5.11] in a pure second

order example). On the other hand, the structural condition (7.18) can be more easily compared

to other structural conditions on F present in the literature.

Remark 7.10. Notice that Theorem 7.8 is really a result about continuous M-monotone maps.

In particular, we are not making use of the topological property (T) of G. In fact, one could

state a version of the theorem where Φ is merely a continuous M-monotone map such that the

F ∈ C(Φ(X)) is M-monotone in the sense that

F (x, J + J ′) > F (x, J) ∀x ∈ X, J ∈ Φ(x), J ′ ∈M. (7.23)

The conclusion is that Θ : X → K (X) defined by

Θ(x) := {J ∈ Φ(x) : F (x, J) > 0}

is continuous. An approach of focusing merely on a background fiber map Φ (and not a background

subequation G) was followed in the pure second order and gradient free cases in [5] and [6].

Finally, making use of property (T) for a background subequation G and natural non-degeneracy
conditions, we have the following result.

Theorem 7.11 (FiberegularM-monotone subequations fromM-monotone operators). Let (F,G)

be an M-monotone pair with G fiberegular and F which satisfies the regularity condition (7.18).

Then the constraint set F defined by the correspondence relation (7.11); that is,

F := {(x, J) ∈ G : F (x, J) > 0}, (7.24)

is a fiberegular M-monotone subequation. Moreover, the fibers of F are non-empty if one assumes

the non-empty condition (7.15). Each fiber Fx in not all of J 2 in the constrained case and also in

the unconstrained case if one assumes{
J ∈ J 2 : F (x, J) < 0

}
6= ∅ for each x ∈ X. (7.25)

Proof. As already noted, F defined by (7.24) will satisfy properties (P) and (N) with fiber map

Θ(x) := Fx = {J ∈ Gx : F (x, J) > 0}, ∀x ∈ X (7.26)

which is M-monotone and continuous (by Theorem 7.8). Hence it only remains to show that F
satisfies property (T), which we recall is the triad

F = intF ; (T1)
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Fx = int (Fx), ∀x ∈ X; (T2)

(intF)x = int (Fx) , ∀x ∈ X. (T3)

The fiberwise property (T2), one can apply Proposition 4.7 of [7] which says that (T2) holds provided

that the fibers Fx are closed and M-monotone. This leaves properties (T1) and (T3). It is not

hard to see that if F is closed, then properties (T2) plus (T3) imply (T1) (see Proposition A.2).

Hence for a M-monotone pair (F,G), the constraint set F defined by (7.24) will be a subequation

if F is closed and satisfies (T3). Moreover, since the inclusion (intF)x ⊂ int (Fx) is automatic for

each x ∈ X, (T3) reduces to the reverse inclusion, which holds provided that F is M-monotone

and fiberegular in the sense of Defintion 3.1. This fact is proved in Proposition A.5. Finally,

by Theorem 7.8, F will be fiberegular if G is fiberegular provided that F satisfies the regularity

condition (7.18). �

8. Comparison principles for proper elliptic PDEs with directionality

In this section, we present comparison principles for M-monotone operators by potential the-
oretic methods which combine monotonicity, duality and fiberegularity. A general comparison
principle will be presented which gives sufficient structural conditions on the operator F which
ensure that F satisfies the correspondence principle (Theorem 7.4) with respect to some subequa-
tion constraint set F . The comparison principle for the operator F will follow from the general
comparison principle (Theorem 5.2) satisfied by the subequation F . Representative examples will
be given for the constrained case in Examples 8.2, 8.4 and 8.7. As discussed in the introduc-
tion, we are primarily interested in examples will have gradient dependence in order to distinguish
them from known examples the the pure second order and gradient-free cases that one finds in
[5] and [6], respectively. The needed monotonicity in the gradient variables is called directionality,
which together with proper ellipticity is incorporated into the notion of M-monotonicity for some
monotonicity cone such as M(γ,D, R) where D ( Rn is a directional cone.

Throughout the section M will be a constant coefficient monotonicity cone subequation and X
an open subset of Rn.

8.1. A general comparison principle for PDEs with sufficient monotonicity. We begin
with the general result.

Theorem 8.1 (Comparison principle for M-monotone PDEs). Let F ∈ C(G) be an operator with

domain either G = J 2(X) or G ( J 2(X) a fiberegular M-monotone subequation. Suppose that F

satisfies the following structural conditions

(i) F is M-monotone

F (x, J + J ′) > F (x, J) ∀x ∈ X, J ∈ Gx, J ′ ∈M; (8.1)

(ii) F satisfies the regularity property (7.18): for some fixed J0 ∈ intM, for every Ω b X and

for every η > 0, there exists δ = δ(η,Ω) > 0 such that

F (y, J + ηJ0) > F (x, J) ∀J ∈ Gx, ∀x, y ∈ Ω with |x− y| < δ; (8.2)
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(iii) F satisfies the non-empty condition (7.15):

Γ(x) :=
{
J ∈ Gx : F (x, J) = 0

}
6= ∅ for each x ∈ X. (8.3)

(iv) F is compatible with the subequation F := {(x, J) ∈ G : F (x, J) > 0}; that is,

intF = {(x, J) ∈ G : F (x, J) > 0}, (8.4)

or, equivalently ∂F = {(x, J) ∈ G : F (x, J) = 0}.

Then, for every bounded domain Ω b X for which M admits ψ ∈ C2(Ω)∩USC(Ω) which is strictly

subharmonic on Ω, the comparison principle for the equation F (J2u) = 0 holds on Ω; that is,

u 6 v on ∂Ω =⇒ u 6 v in Ω. (8.5)

if u ∈ USC(Ω) is a G-admissible viscosity subsolution of F (J2u) = 0 in Ω and v ∈ LSC(Ω) is a

G-admissible viscosity supersolution of F (J2u) = 0 in Ω.

If, in addition, ψ satisfies

ψ ≡ −∞ on ∂Ω \ ∂−Ω

for some ∂−Ω ⊂ ∂Ω, then

u 6 v on ∂−Ω =⇒ u 6 v in Ω (8.6)

if u ∈ USC(Ω) is a G-admissible viscosity subsolution of F (J2u) = 0 in Ω and v ∈ LSC(Ω) is a

G-admissible viscosity supersolution of F (J2u) = 0 in Ω.

Proof. Since (F,G) is anM-monotone operator-subequation pair by hypothesis (with G fiberegular

in the constrained case), the regularity condition (8.2) ensures that the constraint set defined by

F := {(x, J) ∈ G : F (x, J) > 0} is a fiberegular M-monotone subequation by applying Theorem

7.11. F has non empty fibers by (8.3). In particular, (F,G) is a proper elliptic (M0-monotone)

pair with F a subequation. The compatibility condition (8.4) then ensures that the correspon-

dence principle of Theorem 7.4 holds. Hence, the comparison principle (8.5) for G-admissible

sub/supersolutions of the equation F (J2u) = 0 is equivalent to the comparison principle for F-

sub/superharmonics. The existence of the strict approximator ψ for M on Ω then implies the

needed potential theoretic comparison principle by Theorem 5.2, which completes the proof in both

cases. �

8.2. Examples for both the elliptic and parabolic versions. We now give two illustrative
examples for which the general comparison principle stated in Theorem 8.1 applies. One example
for each of the two versions of the theorem. These will be all constrained cases. We will in particular
focus our attention on equations of the form

g(Du)F (x,Du,D2u) = f(x),

which arise in many areas of mathematical analysis (as we will see below), and are currently the
object of intense research activity, see for example [1, 17] and the references therein.

Our first representative example will be treated using the first part (the elliptic version) of
Theorem 8.1 which “sees” the entire boundary.
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Example 8.2 (Optimal transport). The equation

g(Du) det(D2u) = f(x) (8.7)

arises in the theory of optimal transport, and describes the optimal transport plan from a source

density f to a target density g. Here, we assume that f, g ∈ C(Ω) are nonnegative, and we require

that g satisfies a (strict) directionality property with respect to some directional cone D ⊂ Rn (a

closed convex cone with vertex at the origin and non-empty interior). More precisely, we assume

that

g(p+ q) ≥ g(p), for each p, q ∈ D (8.8)

and that there exists q ∈ intD and a modulus of continuity ω : (0,∞) → (0,∞) (satisfying

ω(0+) = 0) such that

g(p+ ηq) ≥ g(p) + ω(η), for each p, q ∈ D and each η > 0. (8.9)

In other words, g needs to be increasing on D in the directions of D and strictly increasing in some

direction q ∈ intD ⊂ Rn. Notice also that (8.9) implies that g 6≡ 0 since g(q) > g(0) + ω(1) > 0.

Then, setting M(D,P) = R×D × P, we have the following comparison principle.

Proposition 8.3. Let f, g ∈ C(Ω) be nonnegative, and assume that g satisifes (8.8)-(8.9). Then,

the comparison principle holds for for M(D,P)-admissible sub/supersolutions of the equation (8.7)

on any bounded domain Ω.

Proof. It suffices to show that the first part of Theorem 8.1 (the elliptic version) can be applied to

F (x, r, p, A) := g(p) det(A)− f(x) on G := Ω×M(D,P).

Assumptions (i), (iii) and (iv) on F are straightforward to check, which leaves the continuity

property (ii). Pick J0 = (0, q, I). Then, for every η > 0 and J = (r, p, A) ∈M(D,P),

F (y, J + ηJ0) = F (y, r, p+ ηq,A+ ηI) = g(p+ ηq) det(A+ ηI)− f(y)

≥ [g(p) + ω(η)][det(A) + ηn]− f(y) ≥ F (x, J) + f(x)− f(y) + ω(η)ηn.

Notice that f(x)− f(y) + ω(η)ηn ≥ 0 provided that |x− y| ≤ δ = δ(η) and hence (ii) holds.

Finally, in order to apply the first part of Theorem 8.1, it remains to show that each Ω b X

admits a strictly M(D,P)-subharmonic function, where intM(D,P) = R × intD × intP. The

function ψ(x) := 〈q, x〉+ α|x|2 satisfies

Dψ(x) = q + 2αx ∈ intD

provided that α = α(Ω) > 0 is small enough and D2ψ(x) = 2αI ∈ intP for all α > 0. �

Note that, in view of Examples 2.5 and 2.7, u is a M(D,P)-admissible subsolution of (8.7) if

and only if it is a subsolution of the PDE in the standard viscosity sense, it is convex on Ω, and it

is nondecreasing in the D◦-directions; that is,

u(x) ≥ u(x0) for every x, x0 ∈ Ω such that [x0, x] ⊂ Ω, x− x0 ∈ D◦.
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Our next representative example will be treated using the second part (the parabolic version) of
Theorem 8.1 which “sees” only a reduced (parabolic) boundary.

Example 8.4 (Krylov’s parabolic Monge-Ampère operator). In [18], the following nonlinear par-

abolic equation is considered

− ∂tudet(D2
xu) = f(x, t), (x, t) ∈ Ω× (0, T ) ⊂ Rn+1. (8.10)

This equation is important in the study of deformation of surfaces by Gauss–Kronecker curvature

and in Aleksandrov–Bakel’man-type maximum principles for (linear) parabolic equations. We have

in this case a comparison principle with respect to the usual parabolic boundary of Ω, for convex

functions that are monotone nonincreasing in the t-direction.

In preparation for the result, we introduce some notation as well as the relevant monotonicity

cone subequation. As above, (x, t) ∈ Rn+1 = Rn × R will be used as global coordinates on the

domain. We will also denote by p = (p′, pn+1) ∈ Rn×R in the first order part of the jet space. For

matrices A ∈ S(n+ 1), An ∈ S(n) will denote the upper left n× n submatrix of A.

The relevant constant coefficient monotonicity cone subequation on Rn+1 is

M(Dn,Pn) := {(r, p, A) ∈ R× Rn+1 × S(n+ 1) : pn+1 ≤ 0 and An ≥ 0}; (8.11)

that is, the (n + 1)-th entry of p is nonpositive and the n × n upper-left submatrix An of A is

nonnegative. Notice thatM(Dn,Pn) is clearly a convex cone with vertex at the origin and nonempty

interior, which ensures the topological property (T1). Negativity (N) is trivial as M(Dn,Pn) is

independent of r ∈ R and positivity (P) also holds. Hence M(Dn,Pn) is a (constant coefficient)

monotoncity cone subequation.

Proposition 8.5. Let f ∈ C(Ω × [0, T ]) be nonnegative with Ω b Rn a bounded domain. Then,

the parabolic comparison principle holds

u 6 v on
(
Ω× {0}

)
∪ (∂Ω× (0, T )) =⇒ u 6 v in Ω× (0, T ).

for M(Dn,Pn)-admissible sub/supersolutions u, v of (8.10).

Proof. As in the previous example, the idea is to apply Theorem 8.1. This time we will make use

of the parabolic version applied to

F ((x, t), r, p, A) := −pn+1 det(An)− f(x, t) on G := (Ω× (0, T ))×M(Dn,Pn).

The assumptions (i), (ii), (iii), and (iv) are checked in the same fashion as done in the previous

example.

Denoting by X = Ω × (0, T ), it remains to show that there exists ψ ∈ C2(X) ∩ USC(X) which

is strictly M(Dn,Pn)-subharmonic on X and satisfies

ψ ≡ −∞ on ∂X \ ∂−X :=
(
Ω× {0}

)
∪ (∂Ω× (0, T ))

The function

ψ(x, t) := |x|2 − 1

T − t
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is strictly M(Dn,Pn)-subharmonic, and ψ(x, t)→ −∞ as t→ T− (that is, ψ ≡ −∞ on Ω× {T}),
so we deduce the comparison principle in the form (CP–). �

In view of Examples 2.5 and 2.7, u is a M(Dn,PN )-admissible subsolution of (8.7) if and only

if it is a subsolution of the equation in the standard viscosity sense, it is convex in the x variable,

and it is nondecreasing in the {pn+1 ≤ 0}◦-directions, which means that it is nonincreasing in the

t variable.

Clearly, more general PDEs of the form

(−∂tu)F (x, t, u,Dxu,D
2
xu) = f(x, t),

could be addressed in a similar way (under suitable monotonicity assumptions), as well as “stan-

dard” parabolic equations ∂tu = F (x, t, u,Dxu,D
2
xu).

8.3. Equations modelled on hyperbolic polynomials. Next we present perhaps the simplest
meaningful example of a G̊arding-Dirichlet operator, which are defined via hyperbolic polynomials
in the sense of G̊arding, as mentioned in Remark 7.2. We begin with the definition.

Definition 8.6. A homogeneous polynomial g of degree m on a finite dimensional real vector space

V is called hyperbolic with respect to a direction a ∈ V if g(a) > 0 and if the one-variable polynomial

t 7→ g(ta+ x) has exactly m real roots for each x ∈ V .

There are many examples of nonlinear PDEs that involve hyperbolic polynomials. The most
basic example is the Monge-Ampère operator where g(A) = detA for A ∈ S(n) which is hyperbolic
in the direction of the identity matrix I. A systematic study of the relationship between the G̊arding
theory of hyperbolic polynomials and pure second-order equations has been carried out in [12] (see
also [7]). See also Section 11.6 of [7].

In the following example, we observe that the theory of hyperbolic polynomials is flexible enough
to cover equations on the whole 2-jet space, providing a natural notion of monotonicity. As before,
we focus our attention on the gradient dependence.

Example 8.7. On a bounded domain Ω ⊂ R2, we consider the equation

u2
x − u2

y = 0, (8.12)

which builds upon perhaps the simplest hyperbolic polynomial g(p1, p2) = p2
1 − p2

2. Since g is

hyperbolic in the direction e = (1, 0) ∈ R2, a general construction of G̊arding yields a monotonicity

cone for the operator F (x, r, p, A) = g(p). In this example, the negatives of the two real roots

t 7→ g(t(1, 0) + p) can be ordered

λg1(p) := p1 − |p2| 6 p1 + |p2| := λg2(p)

and are called the G̊arding e-eigenvalues of g. Since g(e) = 1 (which can always be arranged by

normalization since g(e) > 0) one has

g(p) = λg1(p)λg2(p),
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so that the first order differential operator defined by the degree two polynomial g (which is e-

hyperbolic) is the product of two G̊arding e-eigenvalues of g. G̊arding’s theory also says that the

closed G̊arding cone

Γ := {p ∈ R2 : λg1(p) := p1 − |p2| > 0}

must be convex and is characterized by the fact that its interior is the connected component of

{g 6= 0} which contains e (both facts are clearly true here). Finally, since the closed convex cone

with vertex at the origin Γ ⊂ Rn has nonempty interior,

Mg := R×
{
p ∈ R2 : λg1(p) := p1 − |p2| > 0} × S(2),

is a constant coefficient pure first order monotonicity cone subequation on R2. Moreover it is easy to

check that F isM-monotone on F := R2×M. Finally, F is compatible with F by [12, Proposition

2.6] (which one can also check directly).

It is then rather easy to produce strict Mg-subharmonics, and therefore to apply Theorem 8.1

to deduce a comparison result. We shall further specialize our setting to Ω = (a, b)× (c, d), where

comparison on a reduced boundary is possible. To this end, take

ψ(x, y) =
1

a− x
,

which goes to −∞ as x→ a+, and satisfies

λg1(Dψ(x, y)) = ψx(x, y)− |ψy(x, y)| = 1

(a− x)2
> 0 on Ω.

Therefore, we have the following statement.

Proposition 8.8. Let Ω = (a, b)× (c, d). Then the comparison principle holds for Mg-admissible

sub/supersolutions u, v of (8.12), that is,

u 6 v on ∂Ω \ {x = a} =⇒ u 6 v in Ω.

As in the previous examples, comparison principles for u2
x − u2

y = f(x, y) could be deduced

similarly. It is worth noting that equations of this form arise in the theory of zero-sum differential

games. Though by no means general, we believe that this example well illustrates how the theory

of hyperbolic polynomials and nonlinear potential theories may interact through a general notion of

monotonicity to yield comparison principles for a large class of nonlinear PDEs. To further empha-

size the flexibility of G̊arding theory, we notice that one can easily deduce results for inhomogeneous

operators with a product structure such as F (x, r, p, A) := g1(r)g2(p)g3(A)−f(x), where f ≥ 0 and

g1, g2, g3 are hyperbolic polinomials on R,Rn,S(n) respectively. Indeed, each gi furnishes its own

G̊arding cone Γi, and it is easy to check the monotonicity of F with respect toM := Γ1×Γ2×Γ3.

8.4. Examples of equations where standard structural conditions fail. As a final consider-
ation, we will present a class of proper elliptic operators with directionality for which our Theorem
8.1 applies to give the comparison principle, but for which the standard viscosity structural con-
dition [8, condition (3.14)] on the operators fails to hold in general (see Proposition 8.10 below).
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Simpler examples of variable coefficient pure second order operators have been discussed in [5,
Remark 5.10].

The aforementioned condition (rewritten for F (x, r, p, A) which is increasing in A, according to
our convention) is

F (x, r, α(x− y), A)− F (y, r, α(x− y), B) 6 ω(α|x− y|2 + |x− y|), (8.13)

for some modulus of continuity ω, whenever A,B ∈ S(n) satisfy

− 3α

(
I 0
0 I

)
6

(
A 0
0 −B

)
6 3α

(
I −I
−I I

)
. (8.14)

Example 8.9 (Perturbed Monge-Ampère operators with directionality). On a bounded domain

Ω ⊂ Rn, consider the operator defined by

F (x, r, p, A) = F (x, p,A) := det
(
A+M(x, p)

)
− f(x), (x, r, p, A) ∈ Ω× J 2

with f ∈ UC(Ω; [0,+∞)) and with M ∈ UC(Ω× Rn;S(n)) of the form

M(x, p) := 〈b(x), p〉P (x) (8.15)

with P ∈ UC(Ω;P) and b ∈ UC(Ω;Rn) such that

there exists a unit vector ν ∈ Rn such that 〈b(x), ν〉 > 0 for each x ∈ Ω. (8.16)

Notice that the required uniform continuity for f and M holds if they are continuous on an open

set X for which Ω b X.

One associates to F the candidate subequation with fibers

Fx :=
{
J = (r, p, A) ∈ J 2 : A+M(x, p) ∈ P, F (x, J) > 0,

}
, x ∈ Ω.

which are clearly (R × {0} × P)-monotone and hence one has properties (N) and (P) for F . In

order to conclude that F is indeed a subequation, by Theorem A.7, it suffices to show that F is

fiberegular and M-monotone for some (constant coefficient) monotonicity cone subequation. To

construct M define the half-spaces

H+
b(x)

:=
{
q ∈ Rn : 〈b(x), q〉 > 0

}
,

and define the cone

D :=
⋂
x∈Ω

H+
b(x) 6= ∅.

This D is a directional cone for F . Indeed M(·, p + q) > M(·, p) for all q ∈ D. Hence F is

M(D,P)-monotone.

Finally, F is fiberegular, since it satisfies the third equivalent condition of Proposition 3.2. In

fact, for any fixed J0 = (r0, p0, A0) ∈ intM(D,P) and any fixed η > 0 small,

F (y, J + ηJ0)− F (x, J) = det
(
A+ ηA0 +M(y, p+ ηp0)

)
− det

(
A+M(y, p)

)
+ det

(
A+M(y, p)

)
− det

(
A+M(x, p)

)
+ f(x)− f(y)

is nonnegative if |x− y| < δ, with δ = δ(η) > 0 sufficiently small, and thus Fx + ηJ0 ⊂ Fy.
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The comparison principle for F-admissible sub/supersolutions of the equation F = 0 then follows

from Theorem 8.1 since every bounded domain Ω admits a quadratic stricltyM(D,P)-subharmonic

function ψ (as recalled in the proof of Proposition 8.3) and F satisfies the required conditions of

the theorem (which we leave to the reader).

We now arrive to the main point of this subsection. While the comparison principle holds for the
equation F = 0 of Example 8.9, if admissible “perturbation coefficients” b(x) and P (x) are chosen
suitably, the standard viscosity condition (8.13) fails to hold. For simplicity we give an example in
dimension two, but generalizations are clearly possible.

Proposition 8.10. For some x0 ∈ Ω b R2, suppose that the perturbation coefficients b ∈ UC(Ω;R2)

and P ∈ UC(Ω;P) satisfy:

b has an isolated zero of order β ∈ (0, 3) at x0; (8.17)

∀x ∈ Ω, P (x) :=

(
h(x) 0

0 0

)
with h(x) :=

6g2(x)

|〈b(x), x0 − x 〉|+ g2(x)
, (8.18)

where g ∈ UC(Ω) is nonnegative and satisfies

g has an isolated zero of order γ ∈
(
β+1

2 , 2
)

at x0. (8.19)

Then the condition (8.13) fails to hold.

Before giving the proof, we should note that the function h in (8.18) is not actually defined in
x = x0, but since g2 has an isolated zero of order 2γ > β+1 > 1, h extends continuously by defining
h(x0) = 0.

Proof. The idea is to exploit the order of the isolated zeros of b and g in x0 to take a suitable

sequence {yn} ⊂ Ω converging to x0, along which one can find sequences of matrices {An} and

{Bn} satisfying (8.14) which contradict the validity of the inequality(8.13).

Consider any sequence {yn}n∈N ⊂ Ω such that yn → x0 with b(yn) 6= 0 ∈ R2 (b has an isolated

zero in x0) and such that

〈b(yn), x0 − yn〉 > 0 ∀n ∈ N.

Such a choice is possible thanks to condition (8.16). The desired matrices are defined by

2An = Bn :=

(
0 0

0 g(yn)−1

)
, n ∈ N.

Each pair An, Bn satisfies (8.14) with α = αn := (3g(yn))−1, as one easily verifies.

By contradiction, assume that (8.13) holds. Along the sequence (yn, An, Bn) one would have, as

yn → x0,

F (yn, αn(x0 − yn), An)− F (x0, αn(x0 − yn), Bn) 6 ω

(
|yn − x0|2

3g(yn)
+ |yn − x0|

)
−→ 0,
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but

F (yn, αn(x0 − yn), An)− F (x0, αn(x0 − yn), Bn)

=

∣∣∣∣∣ 1
3g(yn)−1〈b(yn), x0 − yn〉h(yn) 0

0 1
2g(yn)−1

∣∣∣∣∣− f(yn)−

∣∣∣∣∣ 0 0

0 g(yn)−1

∣∣∣∣∣+ f(x0)

=
〈b(yn), x0 − yn〉

〈b(yn), x0 − yn〉+ g(yn)2
+ o(1) −→ 1,

thus leading to a contradiction. �

Appendix A. Monotonicity, fiberegularity and topological stability

Given a fiberegular subequation F ⊂ J 2(X) = X × J 2 on an open set X in Rn which is M-
monotone for some constant coefficient monotonicity cone subequationM, one knows that the fiber
map

Θ: (X, | · |)→ (K (J 2), dH ) defined by Θ(x) := Fx, x ∈ X
is continuous (taking values in the closed subsets K (J 2)) and M-monotone in the sense that

Θ(x) +M⊂ Θ(x), ∀x ∈ X. (A.1)

We address here the converse; that is, given a continuous M-monotone map

Θ: (X, | · |)→ (K (J 2), dH ), (A.2)

is it true that

F ⊂ J 2(X) with Fx := Θ(x) for all x ∈ X =⇒ F is a subequation? (A.3)

The question is important in light of the Correspondence Principle of Theorem 7.4; that is, given
a proper elliptic pair (F,G) one wants to know whether F having fibers

Fx = {J ∈ Gx ⊂ J 2 : F (x, J) > 0}

implies that F is a subequation (and hence a well developed potential theory).
If Θ is a continuous M-monotone map, then by definition the fibers of Fx := Θ(x) are closed

and one has M-monotonicity

Fx +M⊂ Fx, ∀x ∈ X,
which implies properties (P) and (N) since M0 := N × {0} × P ⊂ M. This leaves the topological
property (T), which we recall is the triad

F = intF ; (T1)

Fx = int (Fx), ∀x ∈ X; (T2)

(intF)x = int (Fx) , ∀x ∈ X. (T3)

In the case of constant coefficient subequations, the triad reduces to (T1); that is, to F being a
regular closed set, and it is known [9, 7] that such condition is equivalent to the reflexivity of the
Dirichlet dual

F̃ := (− intF)c.

This is essentially a consequence of the fact that, for any open set O, the set S = O is regular
closed.
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When F has variable coefficients, as noted in [10], the two conditions (T2)-(T3) involving the
fibers are useful in order to be allowed to compute the dual fiberwise; that is, in order to have the
following equality:

F̃ =
⊔
x∈X

(− intFx)c :=
⋃
x∈X
{x} × (− intFx)c.

Therefore it is easy to see that the full topological condition (T) (that is, conditions (T1)-(T3)
together) yields the reflexivity of Dirichlet duals of variable coefficient subequations as well.

Some facts concerning the topological conditions are in order.

Proposition A.1. Let F ⊂ X × J 2; then (T3) holds if and only if

intF =
⊔
x∈X

intFx. (T3′)

Proof. Equality(T3′) straightforwardly implies condition (T3). For the converse implication, one

first notes that the inclusion

(intF)x ⊂ int(Fx), (A.4)

always holds, so that

(intF)x = int(Fx) ⇐⇒ (intF)x ⊃ int(Fx); (A.5)

furthermore, since

{x} × (intF)x = intF ∩ ({x} × Fx) =

int
⊔
y∈X
Fy

 ∩ ({x} × Fx),
we have that

(intF)x ⊃ intFx ⇐⇒ int

⊔
y∈X
Fy

 ⊃ {x} × int(Fx). (A.6)

Hence, combining (A.5) and (A.6) yields

(intF)x = int(Fx) ⇐⇒ int

⊔
y∈X
Fy

 ⊃ {x} × int(Fx). (A.7)

By (A.7), one has the inclusion ⊃ in (T3′), while the opposite one is trivial by (A.4). �

Proposition A.2. Let F ⊂ X × J 2 be closed. Then

(T2) and (T3) =⇒ (T1).

Proof. On always has the inclusion intF ⊂ F . On the other hand, assuming (T2) and (T3),

F =
⊔
x∈X
Fx =

⊔
x∈X

int(Fx) ⊂
⊔
x∈X

int(Fx) = intF ,

where we also used Proposition A.1 for the last equality. �
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This shows that an equivalent formulation of property (T) would be to ask that F is closed and
that (T2) and (T3) hold.

As for (T2) and (T3), it is easy to see that, in general, closed M0-monotone subsets of X ×J 2

do not satisfy it. However, if one has more monotonicity, then that could be enough in order to
guarantee

Fx = int(Fx) ∀x ∈ X. (T2)

For instance, the following holds.

Proposition A.3. Suppose that F ⊂ X × J 2 has closed fibers and suppose that there exists a

subset M⊂ X × J 2 where M satisfies property (T2) and

F +M = F .

Then F satisfies property (T2).

Proof. One has

Fx = Fx +Mx = Fx + int(Mx) ⊂ Fx + int(Mx) ⊂ int(Fx +Mx) = int(Fx) ⊂ Fx,

hence all the inclusions (and in particular the last one) are in fact equalities. �

Remark A.4. A situation in which the hypotheses of Proposition A.3 are satisfied is that of F
being M-monotone for some regular closed subset M ⊂ J 2 such that 0 ∈ M. For example, this

holds if F is M monotone for a constant coefficient monotonicity cone subequation.

Condition (T3) requires a little more attention because it is the only one that relates the interior
with respect to X × J 2 and the interior with respect to J 2. To stress this fact, let us write(

intX×J 2 F
)
x

= intJ 2 Fx. (T3)

This condition seems to be related to some sort of continuity of the fiber Fx with respect to the
point x. Here we prove that if F ⊂ J 2(X) has fibers determined by a continuous M-monotone
map Θ, then F satisfies (T3).

Proposition A.5. Suppose that F ⊂ J 2(X) has fibers Fx := Θ(x) where the fiber map Θ: (X, | ·
|)→ (K (J 2), dH ) is continuous andM-monotone for some constant coefficient monotonicity cone

subequation M. Then F satifies the topological property (T3).

Proof. By (A.7), it suffices to prove that

{x} × int Θ(x) ⊂ int
⊔
y∈X

Θ(y) ∀x ∈ X. (A.8)

Fix x ∈ X and Jx ∈ int Θ(x) and let ρ > 0 such that B2ρ(Jx) ⊂ Θ(x), where B denotes the ball in

J 2 with respect to the norm ||| · |||. Let J ′x ∈ Bρ(Jx), so that

J ′x − ρJ0 ⊂ B2ρ(Jx) ⊂ Θ(x),

for some J0 ∈ intM fixed. By Proposition 3.2(c), there exists δ > 0 such that

J ′x = (J ′x − ρJ0) + ρJ0 ∈ Θ(y) ∀y ∈ Bδ(x).
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This proves that

Bδ(x)× {J ′x} ⊂
⊔

|y−x|<δ

Θ(y) ∀J ′x ∈ Bρ(Jx),

hence

Bδ(x)× Bρ(Jx) ⊂
⊔

|y−x|<δ

Θ(y).

It follows that

(x, Jx) ∈ Bδ(x)× Bρ(Jx) ⊂ int
⊔

|y−x|<δ

Θ(y),

and since Jx ∈ int Θ(x) is arbitrary, this proves that

{x} × int Θ(x) ⊂ int
⊔

|y−x|<δ

Θ(y) ⊂ int
⊔
y∈X

Θ(y),

and thus, since x ∈ X is arbitrary, (A.8) follows, as desired. �

Finally, the continuity of Θ also implies that F is closed.

Proposition A.6. Suppose that there exists Θ as above (not necessarily M-monotone). Then F
is closed (in X × J 2).

Proof. Let (x, J) ∈ F . Then x ∈ X and there exist sequences xk → x and Jk → J such that

Jk ∈ Θ(xk) for all k ∈ N. Since by continuity Θ(x) = limxk→x Θ(x), where the limit is computed

with respect to the Hausdorff distance dH , it is known (cf. [2, Exercise 7.4.3.1]) that

Θ(x) = {J ′ ∈ J 2 : ∃{J ′k}k∈N such that J ′k ∈ Θ(xk) ∀k ∈ N and J ′k → J ′}.

Hence J ∈ Θ(x), yielding (x, J) ∈ F . �

We now can affirm that the answer to the question (A.3) is yes.

Theorem A.7. Let Θ be a continuous and M-monotone map on X, for some constant coefficient

monotonicity cone subequation M; define

F :=
⊔
x∈X

Θ(x).

Then F is an M-monotone subequation on X.

Proof. By definition, F is M-monotone; that is, F +M ⊂ F . Also, F has nontrivial, and closed,

fibers. Therefore the proof now amounts to showing that F satisfies the triad of topological prop-

erties. By Proposition A.3 and Remark A.4, F satisfies (T2), by Proposition A.5, F satisfies

(T3); this means that F satisfies (T2) and (T3). By Proposition A.6, F is closed, and thus, by

Proposition A.2, F satisfies(T1) as well. �
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Appendix B. Some basic tools in nonlinear potential theory

In this appendix, we collect some foundational results which lie at the heart of our methods and
which form, along with the Almost Everywhere Theorem [11, Theorem 4.1], the “basic tool kit of
viscosity solution techniques” in [7]: the Bad Test Jet Lemma B.1 and the Definitional Comparison
Lemma B.2. Let us highlight that these two tools will be here stated in a variable coefficient setting,
while in [7] they are proved for constant coefficient subequations. The proofs of these results in
the variable coefficient setting will be given in [20], which involve some “bland adjustments”of
the constant coefficient proofs of [15]. In particular, they not not require fiberegularity. We will
also recall some elementary properties of the set F(X), of all F-subharmonics on X known from
[9], whose proofs are somewhat reformulated in [20] making more explicit use of the definitional
comparison of Lemma B.2.

We begin with the first tool which is very useful when one seeks to check the validity of sub-
harmonicity at a point by a contradiction argument. More precisely, if u fails to be subharmonic
at a given point, then one must have the existence of a bad test jet at that point, as stated in
the following lemma. This criterion is essentially the contrapositive of the definition of viscosity
subsolution, when one takes strict upper contact quadratic functions as upper test functions (see
[7, Lemma 2.8 and Lemma C.1]).

Lemma B.1 (Bad Test Jet Lemma). Given u ∈ USC(X), x ∈ X and Fx 6= ∅, suppose u is not

F-subharmonic at x. Then there exists ε > 0 and a 2-jet J /∈ Fx such that the (unique) quadratic

function ϕJ with J2
xϕJ = J is an upper test function for u at x in the following ε-strict sense:

u(y)− ϕJ(y) 6 −ε|y − x|2 ∀y near x (with equality at x). (B.1)

The second tool is a comparison principle whose validity characterizes the F-subharmonic func-
tions for a given subequation F . It states that comparison holds if the function z in (ZMP) is the

sum of a F-subharmonic and a C2-smooth and strictly F̃-subharmonic. It is called definitional
comparison because it relies only upon the “good” definitions the theory gives for F-subharmonics
and for subequations F (which include the negativity condition (N) that is important in the proof).
It was stated and proven in a context of constant coefficient subequations in [7, Lemma 3.14].

Lemma B.2 (Definitional Comparison). Let F be a subequation and u ∈ USC(X).

(a) If u is F-subharmonic on X, then the following form of the comparison principle holds for

each bounded domain Ω b X:
u+ v 6 0 on ∂Ω =⇒ u+ v 6 0 on Ω

if v ∈ USC(Ω) ∩ C2(Ω) is strictly F̃-subharmonic on X.

(B.2)

With w := −v one has the equivalent statement
u 6 w on ∂Ω =⇒ u 6 w on Ω

if w ∈ LSC(Ω) ∩ C2(Ω) with J2
xw 6∈ F for each x ∈ Ω.

(B.3)

(That is, for w which are regular and strictly F-superharmonic in X.)
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(b) Conversely, suppose that for each x0 ∈ X there there exist arbitrarily small balls B about

x0 where the form of comparison of part (a) holds with Ω = B. Then u is F-subharmonic

on X. Moreover, it is enough to consider quadratic v or w.

Remark B.3 (Applying the definitional comparison). Sometimes it is useful to prove the contra-

positive of the form of comparison in part (a) of Lemma B.2 in order to conclude subharmonicity.

That is to say, in order to show by (b) that u is subharmonic on X one proves that, for each x ∈ X
there is a neighborhood Ω b X of x where

(u+ v)(x0) > 0 for some x0 ∈ Ω =⇒ (u+ v)(y0) > 0 for some y0 ∈ ∂Ω (B.4)

for every v ∈ USC(Ω)∩C2(Ω) which is strictly F̃-subharmonic on Ω. Conversely, one can also infer

that the implication (B.4) holds whenever one knows that u is subharmonic on X. In situations

where we are interested in proving the subharmonicity of a function which is somehow related to

a given subharmonic, this helps to close the circle (for example, see the proofs of Theorem 3.3 or

Proposition B.4).

The last tool is a collection of elementary properties shared by functions in F(X), the set of
F-subharmonics on X. They are to be found in [9, Section 4] for pure second-order subequations, in
[10, Theorem 2.6] for subequations on Riemannian manifolds, in [7, Proposition D.1] for constant-
coefficient subequations. By invoking the Definitional Comparison Lemma B.2 one can perform
most of the proofs along the lines of those of Harvey–Lawson [9]. This is done in [20]. More
precisely, one uses the definitional comparison in order to make up for the lack, for arbitrary
subequations, of a result like [9, Lemma 4.6].

Proposition B.4 (Elementary properties of F(X)). Let X ⊂ Rn be open. For any subequation F
on X, the following hold:

(i: local property) u ∈ USC(X) locally F-subharmonic ⇐⇒ u ∈ F(X);

(ii: maximum property) u, v ∈ F(X) =⇒ max{u, v} ∈ F(X);

(iii: coherence property) if u ∈ USC(X) is twice differentiable at x0 ∈ X, then

u F-subharmonic at x0 ⇐⇒ J 2
x0
u ∈ Fx0

;

(iv: sliding property) u ∈ F(X) =⇒ u−m ∈ F(X) for any m > 0;

(v: decreasing sequence property) {uk}k∈N ⊂ F(X) decreasing =⇒ limk→∞ uk ∈ F(X);

(vi: uniform limits property) {uk}k∈N ⊂ F(X), uk → u locally uniformly =⇒ u ∈ F(X);

(vii: families-locally-bounded-above property) if F ⊂ F(X) is a family of functions which are

locally uniformly bounded above, then the upper semicontinuous envelope u∗ of the Perron function

u( · ) := supw∈F w( · ) belongs to F(X).2

Furthermore, if F has constant coefficients, the following also holds:

(viii: translation property) u ∈ F(X) ⇐⇒ uy := u(· − y) ∈ F(X + y), for any y ∈ Rn.

2Recall that the upper semicontinuous envelope of a function g is defined as the function

g∗(x) := lim
r↘0

sup
y∈Br(x)

g(y).
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Appendix C. Some facts about the Hausdorff distance

We briefly recall a few facts about the Hausdorff distance which we have used in the discussion
of fiberegularity in Subsection 3. The reader can consult [2] for further information.

Definition C.1. Let (M,d) be a metric space.

(i) Given ∅ 6= A,B ⊂M , one defines the excess of A over B by

exB(A) := sup
A

dist( · , B) = sup
a∈A

inf
b∈B

d(a, b) ∈ [0,+∞]; (C.1)

in addition, one defines

ex∅(A) := +∞, exA(∅) := 0 for each nonempty A ⊂M, (C.2)

and

ex∅(∅) := 0. (C.3)

(ii) The Hausdorff distance on the power set P(M) is the map dH : P(M)2 → [0,+∞] defined

by

dH (A,B) := max
{

exB(A), exA(B)
}
. (C.4)

Remark C.2. It is easy to see that dH (A,A) = 0 for any ∅ 6= A ⊂ M , and that the quotient

P(M)/dH , determined by the relation A ∼ B if and only if dH (A,B) = 0, is naturally identified

with the space K(M) of all closed subsets of M . Furthermore, one can prove (K(M), dH ) is a metric

space, and it is complete (or compact) if M is.

Remark C.3. We will make use of the following straightforward properties of the Hausdorff dis-

tance: for A $ B,

dH (A,B) = +∞

whenever

either A = ∅ or A bounded and B is unbounded.

In addition, if we consider (M,d) = (J 2, ||| · |||), we know that the Hausdorff distance is infinite
in another case as well.

Lemma C.4. One has

dH (E ,J 2) = +∞ ∀E M-monotone.

Proof. It suffices to show that Ec contains balls of arbitrarily large radius, so that no finite enlarge-

ment of E can exhaust J 2. Note that by the definition of the Dirichlet dual,

Ec = − int Ẽ ,

It is immediate to see that the upper semicontinuous envelope operator ∗ : g 7→ g∗ is the identity on the set of all

upper semicontinuous functions. Also, we called Perron function the upper envelope of the family F , since F is a

family of subharmonics.
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therefore Ec contains an open ball about some element of −Ẽ ; without loss of generality, we may

suppose that this is (0, 0, 0), since translations by a fixed jet preserve proper ellipticity and direc-

tionality. Now, one knows that

Ẽ +M⊂ Ẽ

and since (0, 0, 0) ∈ Ẽ we have

M⊂ Ẽ ,

yielding

− intM⊂ Ec.

At this point, it suffices to show that intM contains balls of arbitrarily large radius. To see this,

fix J0 ∈ intM and without loss of generality suppose that B1(J0) ⊂ M;11 note that one has

tJ0 ∈ intM for any t > 0 and

Bt(tJ0) ⊂ intM ∀t > 0. �
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