
Novel generation schemes for stable soliton states
in optical microcavities

Francesco Rinaldo Talenti
Dipartimento di Ingegneria dell’Informazione,

Elettronica e Telecomunicazioni,
Sapienza University of Rome

Rome, Italy
francescorinaldo.talenti@uniroma1.it

Tobias Hansson
Department of Physics,
Chemistry and Biology,
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Abstract—The excitation of Kerr optical frequency combs
(OFC) is frequently non-deterministic and remains a cumber-
some problem in many practical situations. While standard
techniques to generate Kerr solitons in passive resonators employ
a continuous wave pump, recently pulsed pumping has also been
proposed. In this study we individuate and classify OFC states
in a phase space defined by an experimental set of coordinates
and triggered by a general super-Gaussian chirped driving field.
Our numerical analysis shows how the soliton drifts caused by
the phase modulation of the input field accelerate the dynamics
and convergence towards a stable soliton state.

Index Terms—optical frequency comb, solitons, nonlinear op-
tics

I. INTRODUCTION

Since the very first experimental demonstration of OFC
[1], researchers have investigated the rich nonlinear dynamics
of light-matter interaction in optical microcavities, mainly
focusing on the so-called primary combs and solitons states
[2]. The interest comes from the wide range of applications,
from metrology to optical communications. Soliton states are
triggered from the modulation instability of a locally flat
background due to the interplay of dispersion and optical
nonlinearities in a passive resonator. While typically schemes
for soliton state excitation are based on coupling a continuous
wave (CW) pump into a nonlinear cavity [3], pulsed pumping
have been recently proposed as capable of sustaining and
controlling the cavity soliton dynamics [4]–[7]. Solitons drifts
are determined by amplitude and phase modulation [8], with
interesting applications for controlling the OFC generation [9],
the OFC repetition rate [10] or for optical tweezing [11].
In this contribution we map the OFC generation states of
interest by sweeping a nonlinear cavity with a ramp of
detuning ∆(t) and considering a super-Gaussian chirped pump
with a quadratic phase. We map the dynamics by means of
the set of coordinates {C,∆(t), N}, where C is the chirp
parameter determining the extent of the quadratic phase, ∆
the laser-cavity detuning, and N is the number of intra-cavity
field peaks. By means of this analysis, we show how the
controllable drift dynamics help a fast convergence towards
soliton regimes, resulting in a robust stationary state with a
wide locking range.

II. OFC STATES MAPPING

A simple generalization of the Lugiato-Lefever equation for
pulsed pumping is given by [8]:
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E + S(τ), (1)

where E and S are the intra-cavity and driving field amplitude,
respectively, and ∆ the laser-cavity detuning. The two time
scale variables represent the slow (t) and fast (τ ) time vari-
ables, respectively. The first time scale describes how the mean
field amplitude evolves over successive round trips, while the
τ -dynamics describes the variation of the intra-cavity field
intensity over a single round trip. It has been recently shown
how a synchronous Gaussian pumping could sustain a sech-
like solution of the LLE model on the edge of a locally quasi-
flat intracavity background [7], while a complete description
for this dynamics can be provided by considering a driving
field modulation of both amplitude and phase [8]. Here we
consider a square super-Gaussian input field with a quadratic
phase ∝ τ2 tuned by a chirp parameter C:
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where S0 is the driving field amplitude, q the super-Gaussian
order and τg the variance of the respective Gaussian distribu-
tion (i.e. q = 1). In our previous work [9] we showed how
this special way of pumping completely controls the drifts and
the fast time attractors of the cavity soliton. Harnessing the
capability of controlling the nonlinear dynamics by just tuning
the chirp parameter C, we can accelerate the convergence
towards a stable stationary single soliton state. To show this,
we numerically map the phase space spanned by the set of
coordinates {C,∆(t), N}, where C and ∆ are defined in the
Eqs.(1,2), while N is the number of intra-cavity field peaks.
We perform a set of cavity sweeps for different values of C.
Referring to Fig.1, the phase space is reported on the top
panel. Each vertical line represents a cavity sweep performed
for different value of C. Depending on the values of C, we
can trigger multi- or single-soliton states, whose temporal



and frequency dynamics are reported on the central and
bottom panels, respectively. For negative C, we generally
observe soliton drifts towards the outwards of the quasi-flat
super-Gaussian background. This dynamics converges towards
unstable sech-like solutions, since the generated solitons tend
to escape towards the borders of the plateau, where they
cannot be longer sustained by the super-Gaussian driving field.
Positive chirps, on the contrary, result in dynamical drifts of
the solitons towards the centre of the plateau, allowing a fast
convergence towards stable single soliton states.
In Fig.2 we report different regimes, typical of the LLE
dynamics, triggered by the ramp of detuning ∆(t) reported
on the bottom right panel. Initially, the quasi flat background
(FBK) is coupled into the cavity. Subsequently we observe
the emergence of the modulation instability (a) and chaotic
(b) regimes. These three dynamical stages are similar for any
C parameter, except for the fact that in the chaotic regime
negative chirps tend to push the intra-cavity spikes towards the
outwards of the super-Gaussian plateau, eventually resulting
in multi-solitons regimes (c); on the other hand, positive C
pushes the intra-cavity spikes towards the centre of the plateau,
eventually recovering a fast time symmetry (d). Moreover the
C magnitude determine the drift speed, and consequently we
can accelerate the convergence towards dynamical attractors
by setting higher C values. Each of these panels represents
a point in the phase space {C,∆, N}. The variable N does
not allow for a direct individuation of the single OFC states.
Nonetheless, the full chart map can be easily interpreted: in the
modulation instability regime, the number of spikes is pretty
high (N ∼ 20 ÷ 25) and stable. In the chaotic regime N is
even larger (N > 30) and very unstable, while for the soliton
regime N is low, stable and preserved for a wide range of ∆.
For all the simulations we consider normalized parameters
S0 = 2.3, q = 4, and τg = 40.

III. CONCLUSIONS

In conclusion, in this work we have presented a theoretical
description of different types of OFC states excitations, and
we described how a novel method of pumping might be
considered to control the dynamics of the comb formation.
The key control parameter is the chirp of the pump pulses,
which permits the triggering of different OFC states, and can
lead to the stability of the single soliton state regime.
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Fig. 1. On top we report the phase space spanned by the set of coordinates {C,∆, N}, where C is the chirp parameter, ∆ the detuning and N the number
of intra-cavity field peaks. By means of this representation we observe the emergence of solitons states from chaos. Negative chirps result in drifts of the
intra-cavity peaks towards the outwards of the super-Gaussian quasi-flat background, which 3-dimensional dynamics is reported in the central panel, for both
the temporal and frequency representation. For positive C, on the contrary, the drifts are towards the centre of the plateau, where we observe the coalesence
of a single intra-cavity peak (bottom panel of the figure). By properly tuning the ramp of detuning ∆(t) and the pump phase modulation C we can thus both
broaden the locking range and accelerate the convergence towards a stationary single soliton state. The insets (a-d) represent points on the phase space and
they are reported fully size, and with the same nomenclature, on Fig.2.
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Fig. 2. We report the 1-dimensional temporal and frequency representation of the intra-cavity field for different couples of coordinates {∆, C}. At the
beginning of the sweep a fraction of the pump is coupled into the passive resonator and the intra-cavity field shape reflects that of the super-Gaussian pump,
resulting in a quasi flat background (FBK). (a) and (b) panels referes to the modulation instability and chaotic regimes, respectively. The convergence towards
stationary states arising from chaos depends on the phase of the input field: for negative chirps we observe multi-solitons states (c), while for C > 0 single
soliton states (d). On the bottom right we report the ramp of detuning used for each cavity sweep. The slow time variable t is reported in units of the number
of round trips.


