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Abstract. Variable annuities with Guaranteed Minimum Withdrawal Benefits (GMWB) en-

title the policy holder to periodic withdrawals together with a terminal payoff linked to the

performance of an equity fund. In this paper, we consider the valuation of a general class of

GMWB annuities, allowing for step-up, bonus and surrender features, taking also into account

mortality risk and death benefits. When dynamic withdrawals are allowed, the valuation of

GMWB annuities leads to a stochastic optimal control problem, which we address here by dy-

namic programming techniques. Adopting a Hull-White interest rate model, correlated with

the equity fund, we propose an efficient tree-based algorithm. We perform a thorough analysis

of the determinants of the market value of GMWB annuities and of the optimal withdrawal

strategies. In particular, we study the impact of a low/negative interest rate environment. Our

findings indicate that low/negative rates profoundly affect the optimal withdrawal behaviour

and, in combination with step-up and bonus features, increase significantly the fair values of

GMWB annuities, which can only be compensated by large management fees.

1. Introduction

Variable annuities are widespread financial products sold by insurance companies to retail

investors to complement their retirement plans. Along with the reimbursement of the nominal

amount, a variable annuity provides returns linked to the performance of an underlying market

index or fund. As the holder of a variable annuity is not directly exposed to the financial market

while still benefiting from favorable movements of the underlying, these products are among

the most popular types of annuities. According to the Secure Retirement Institute, variable

annuities accounted for 45% of the annuities sold in the US in 2020, corresponding to a total

market value of $98.8 billions.1

Variable annuities often carry additional guarantees, in the form of contractual riders that

provide additional benefits to the holder (see [BMM16, SL16] and [OP15, Section 7.10] for a

complete overview of the possible features of variable annuities). In this paper, we focus on

Guaranteed Minimum Withdrawal Benefit (GMWB) annuities. Typically, a GMWB annuity

requires an initial premium paid as a lump sum by the policy holder (PH hereafter), which

is then invested in an underlying equity index or fund. The annuity is characterized by two

accounts: the investment account that tracks the movements of the underlying fund (deducting a

management fee) and the benefit account, from which the PH is entitled to periodic withdrawals.
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Each withdrawal reduces the values of both accounts and is subject to a withdrawal penalty,

unless it is lower than a fixed guaranteed amount. At inception, the values of the two accounts

coincide with the initial premium paid by the PH, while at maturity (which usually ranges from

5 to 20 years) the PH receives the maximum of the residual values of the two accounts.

As far as the periodic withdrawals are concerned, one may consider static withdrawal strategies,

if the PH constantly withdraws the guaranteed amount, or dynamic withdrawal strategies, if the

PH optimally determines her withdrawals. The case of static withdrawals has been studied in the

seminal paper [MS06], also allowing for the possibility of surrender before maturity. In the case

of dynamic withdrawals, the valuation of a GMWB annuity leads to a stochastic optimal control

problem, as first considered in [CF08] and [DKZ08] in the context of impulse stochastic control

and singular stochastic control, respectively. These two pioneering works assume that the PH

makes continuous withdrawals from the benefit account, in order to make easier the solution of

the ensuing continuous-time stochastic optimal control problems. In this paper, in line with the

more recent literature, we shall assume more realistically that the PH can withdraw from the

benefit account only at predetermined dates. Due to the similarities with American options, four

kinds of methods are commonly used for the valuation of GMWB annuities: PDE approaches

(see, e.g., [BKR08, CVF08, DJR14, GIZ19]), Monte Carlo methods inspired by the seminal work

of [LS01] (see, e.g., [BMOP11, HT16]), lattice methods (see, e.g., [DYL15, Cos17, DXK19]) and

Fourier-based techniques (see, e.g., [AGWZ18, ISZ18]). Some of these approaches have been

recently combined in [GMZ19], where efficient hybrid numerical methods for the valuation of

GMWB annuities are proposed. We refer the reader to [SL16] for a comprehensive overview of

numerical methods for the pricing of variable annuities with guarantees.

The contribution of this paper is threefold. First, we study a general type of GMWB annuity,

including most of the features that are described in the literature. On top of standard features

(such as a payoff in the case of death of the PH and the possibility of surrendering the contract),

we consider additional features that have been jointly considered only in [CF08] within a purely

log-normal setting: a step-up feature and a bonus feature. The main consequence of these two

features is that they might increase the value of the benefit account over the life of the annuity.

Indeed, without step-up and bonus features, the benefit account is a non-increasing process,

thus simplifying the valuation problem. On the contrary, due to the step-up feature, the benefit

account is periodically matched to the investment account when the latter has a greater value,

while the bonus feature rewards the PH is she decides not to withdraw from the benefit account.

We show that the inclusion of step-up and bonus features modifies significantly the optimal

withdrawal decisions, especially in a market environment characterized by low interest rates. To

the best of our knowledge, this is the first work proposing a unified treatment of the different

features that can affect the value of GMWB annuities, while allowing for dynamic withdrawals.2

Second, in a stochastic interest rate setting and allowing for dynamic withdrawals, we propose

a general valuation algorithm for GMWB annuities, based on a dynamic programming approach.

Although our model involves two correlated risk factors, representing market and interest rate

risks, the algorithm exploits a dimensionality reduction and is entirely based on the interest rate

process. The algorithm is proved to be stable and reliable, achieves an accuracy comparable to

competing methods proposed in the recent literature and can be easily applied to richer models.

2We mention that general frameworks for variable annuities with guarantees have been proposed in [BKR08] and
[BMOP11]. However, the first work considers a very specific type of step-up feature, which is more restrictive than
ours, and presents valuation results only in a constant interest rate setting. On the other hand, [BMOP11] do not
allow for a bonus feature. Moreover, both in [BKR08] and in [BMOP11] the case of fully dynamic withdrawals is
only discussed as a theoretical possibility and is not investigated numerically.
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Finally, we perform a thorough numerical analysis of the determinants of the market value

of GMWB annuities and their optimal withdrawal strategies. In particular, we focus on the

impact of a low/negative interest rate environment (as of 12/31/2021), which has characterized

financial markets for several years in the recent past. We demonstrate that in this market

scenario GMWB annuities can be sold at par only at the expense of very large management

fees and withdrawal penalties, especially when additional features are included. Moreover, we

show that low/negative interest rates affect significantly the optimal withdrawal decisions, in

line with the results recently established in [BR22] for American equity options. The impact of

low/negative interest rates is particularly striking when compared to the current market scenario

(as of 12/30/2022), characterized by positive and increasing interest rates, as a consequence of

the recent changes in the monetary policy. In this second interest rate scenario, the valuation

and the optimal withdrawal strategies of GMWB annuities radically change and become in line

with previous findings reported in the literature. Therefore, for the first time in the literature,

our work sheds light on the consequences of low/negative rates on GMWB annuities.

We point out that more specific types of GMWB annuities have been already analyzed in a

stochastic interest rate setting, see [PLK12, DYL15, SL17, ISZ18, GMZ19, GMZ21, DDMR22].

In particular, from the modelling viewpoint, some of these works rely on a Hull-White model

correlated with the underlying fund, as considered in the present paper. However, apart from

studying less general types of annuities and proposing different valuation algorithms, all these

works (even the most recent contributions) do not analyse an interest rate setting that corre-

sponds to a low/negative rate environment, considering instead interest rates floating around

2-5%. As we document in the present paper, low/negative rates have a sizable impact on the

valuation of GMWB annuities, especially when one takes into account the mid to long maturities

of such contracts and possible additional features. From the viewpoint of insurance companies,

this raises issues on the possibility of selling GMWB annuities with acceptable management fees,

particularly when several features are included in the contract.

The paper is structured as follows. In Section 2, we describe a general GMWB annuity, we

present the stochastic model and frame the valuation problem into a dynamic programming one.

Section 3 describes the numerical algorithm to solve the valuation problem. Section 4 contains all

numerical results, the analysis of the determinants of the market value of GMWB annuities, the

sensitivity analysis and a description of optimal withdrawal strategies in two different interest

rate scenarios calibrated to market data. Section 5 concludes the paper, while the Appendix

contains some details on the discretization of the interest rate process and a technical proof.

2. General GMWB annuities and valuation framework

We first describe the structure and the features of a general GMWB annuity (Section 2.1).

The market model is then presented in Section 2.2, while in Section 2.3 the valuation of a general

GMWB annuity is framed as a dynamic programming problem.

2.1. The GMWB annuity. We consider a general type of GMWB annuity, taking into account

most of the features described in the survey [SL16]. The specification of a standard GMWB

annuity goes back to the works of [CF08, MS06] and has been more recently considered in

[DYL15, DXK19, GMZ19, GIZ19] among others.

When investing in a GMWB annuity at time t = 0, the PH pays an initial premium P to the

insurance company as a lump sum. This amount is then invested in a fund, typically selected

by the PH among a set of possible funds. Let (St)t≥0 be the strictly positive price process of

the chosen fund. We let T := {1, . . . , N} be a set of N periodic anniversary dates, with N = T
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corresponding to the maturity of the contract.3 Similarly as in [SL16], for each n = 1, . . . , N ,

we denote by n− (resp. n+) the time instant just before (resp. after) a withdrawal at date n.

Every GMWB annuity is characterized by two accounts: the investment (or primary) account,

whose value process is denoted by (At)t≥0, and the benefit (or secondary) account, whose value

process is denoted by (Bt)t≥0. The investment account evolves according to the return of the

underlying fund, with the deduction of a proportional fee α (management fee)4:

dAt =
At

St
dSt − αAtdt, A0 = P.

The benefit account remains constant between any two consecutive anniversary dates (i.e.,

Bn+ = B(n+1)− , for all n = 0, . . . , N − 1) and at t = 0 is set equal to the initial premium paid

by the PH, so that B0 = P . Withdraw/bonus/step-up events, which are assumed to take place

at anniversary dates only, modify the value of the benefit account as described below.

At each anniversary date n ∈ T (maturity T included), the PH can withdraw some funds

from the benefit account (withdrawal event). If the withdrawal does not exceed a predetermined

threshold G (called guaranteed minimum benefit and usually defined as G = P/N), no with-

drawal penalty applies. On the contrary, if the PH withdraws more than G, a (time-dependent)

penalty βn applies to the withdrawn amount in excess of G. Therefore, denoting by wn the

withdrawal decision of the PH at n, the net cashflow Xn(wn) received at n is given by

Xn(wn) :=

{
wn, if wn ≤ G,

wn − βn(wn −G), if wn > G,

for wn ∈ [0, Bn− ], since the withdrawal cannot exceed the residual value of the benefit account. If

the PH withdraws wn, the values of the investment and the benefit accounts decrease accordingly.

For the benefit account, it holds that

(1) Bn+ = Bn− − wn.

Since wn ∈ [0, Bn− ], the benefit account is always bounded from below by zero. On the contrary,

after possible bad performances of the underlying fund, it may happen that An− < wn ≤ Bn− .

In this case, a floor at zero is assumed for the investment account. Therefore, it holds that

(2) An+ = (An− − wn)
+.

In addition, we assume that at each anniversary date (before any other event takes place)

the PH can fully surrender the contract (surrender event) and receive the greater of the current

values of the two accounts (with a penalty if the benefit account has a greater value). If the

surrender decision takes place at date n, then the last cashflow received by the PH at n is

(3) XS
n := max

{
An− ;Bn− − βn(Bn− −G)+

}
.

We denote by τS the anniversary date at which the PH decides to surrender the contract.

If at an anniversary date n ∈ T the PH makes no withdrawals from the benefit account, a

bonus might be credited to it (bonus event). In this case, Bn+ = Bn− + b, where b ≥ 0 is a

deterministic quantity, usually specified as a percentage of the amount P .

Remark 2.1 (Withdrawal strategies). In the following, we will consider three benchmark with-

drawal strategies: a static withdrawal strategy (S scheme), where the PH withdraws always the

3For simplicity of presentation and without loss of generality, we assume yearly anniversary dates n = 1, . . . , N .
4Under some contract specifications, the management fee depends on the account value. For example, a fee can be
deducted only if the value of the investment account is below a certain threshold (see, e.g., [BZ19, BHM14, Del14]).
The possible extension of our valuation framework to state-dependent fees will be discussed below in Remark 3.1.
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guaranteed amount G at every anniversary date; a static withdrawal strategy with surrender

(S+S scheme), where at each anniversary date the possibility of surrendering the contract is

added to the static withdrawal scheme; a dynamic withdrawal strategy (D scheme), where at

each anniversary date the PH optimally determines her withdrawal and the surrender decision

by maximising expected future discounted payoffs. As pointed out in [SL16], for a GMWB

annuity the optimal dynamic withdrawal strategy does not necessarily coincide with the static

one, nor it is of “bang-bang” type (as it is the case for GLWB annuities, see [AF15, BMZ22]).

This fact will be confirmed by our analysis of optimal withdrawal strategies in Section 4.4.

In this work, we also allow for the possibility of a step-up or ratchet feature (step-up event):

at each anniversary date, the benefit account value is matched to the investment account, if the

latter has a higher value. Depending on the specification of the contract, the step-up event can

take place either before or after the withdraw/bonus event (see [SL16, Section 4.1]):

(W-SU): withdraw/bonus first and then step-up. In this case, it holds that

Bn+ = max
{
(An− − wn)

+ ;Bn− + b1{wn=0} − wn

}
;

(SU-W): step-up first and then withdraw/bonus. In this case, it holds that

Bn+ = max {An− ;Bn−}+ b1{wn=0} − wn.

At maturity, after the last withdrawal wN , the PH receives the maximum between the residual

value of the benefit account (with penalty βN ) and the terminal value of the investment account,

i.e., max{AN+ , (1 − βN )BN+}. According to the scheme (W-SU), assuming that no bonus is

credited at maturity and considering the sum of the last withdrawal cashflow XN (wN ) and the

payoff at maturity, the cashflow at T = N can be represented as

max
wN∈[0,BN− ]

[
wN − βN (wN −G)+

+max
{
(AN− − wN )+; (1− βN )max

{
(AN− − wN )+;BN− − wN

}}]
.

According to the scheme (SU-W), we have instead that

max
wN∈[0,AN−∨BN− ]

[
wN − βN (wN −G)+

+max
{
(AN− − wN )+; (1− βN )

(
max{AN− ;BN−} − wN

)}]
.

Despite their different structure, it can be easily checked that the last two expressions generate

the same cashflow at date N , denoted by XN (w∗
N ) with some abuse of notation:

(4) XN (w∗
N ) = max

{
AN− ; (1− βN )BN− + βN min{G,BN−}

}
,

where w∗
N = min{BN− , G}, similarly to the case of a GMWB annuity with no step-up feature

(compare with [GMZ19, Section 2.5]). Observe that for n = N the surrender payoff (3) coincides

with the terminal payoff (4). Hence, no surrender decision is assumed to take place at maturity.

Remark 2.2 (Surrender and full withdrawal decisions). Under the scheme (SU-W), when the

step-up event takes place before the withdraw/bonus event, a full withdrawal corresponds to

surrendering the contract: indeed, if wn = max{An− , Bn−}, then both An+ and Bn+ become

equal to zero and no more cashflows can be generated by the contract. On the contrary, according

to the scheme (W-SU), a full withdrawal does not imply surrender: if An− > Bn− , a full

withdrawal would reduce the benefit account to zero but not the investment account. The

subsequent step-up event, though, would make the benefit account strictly positive again.
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Finally, we take into account mortality risk. Let τD ∈ (0,+∞) be the random residual lifetime

of the PH at inception of the contract. If the PH deceases between anniversary dates n− 1 and

n (i.e., if τD ∈ (n − 1, n], death event), a death benefit XD
n is credited to the heirs at date n.

We assume that no step-up/bonus events take place in the case of a death event. In line with

the final payoff after the last withdrawal when the PH outlives the annuity’s maturity, we set

(5) XD
n := max

{
An− ; (1− βn)Bn−

}
.

2.2. The stochastic model. We work on a filtered probability space (Ω,F ,F = (Ft)t≥0,Q),

supporting all processes and random variables introduced in the following and whereQ represents

a pricing measure. In the following, we denote by E[·] the expectation with respect to Q, using

for conditional expectations the notation Et[·] := E[·|Ft], for t ≥ 0. Let (WS
t )t≥0 and (W r

t )t≥0

be two Brownian motions with correlation ρ ∈ [−1, 1], representing respectively the sources of

market risk and interest rate risk.

We assume that the interest rate (rt)t≥0 is stochastic and has mean-reverting dynamics of the

Hull-White type. The market model is described by the following SDEs:

(6)
dSt = St(rt − q) dt+ St σS dWS

t ,

drt = (θ(t)− art) dt+ σr dW
r
t ,

with initial conditions S0 > 0 and r0 ∈ R and where q ∈ R is the dividend yield of the underlying

fund. The function θ : R+ → R corresponds to the time-varying long-run mean of r and is chosen

in such a way to match the yield curve observed at t = 0. This represents an important feature

for the calibration of the model. We denote by pM (0, T ) the market price at t = 0 of a zero

coupon bond with maturity T . If fM (0, T ) := −∂T log pM (0, T ) is the market instantaneous

forward rate for maturity T , it holds that (see [BM06, Section 3.3.1])

(7) θ(t) =
∂fM (0, t)

∂t
+ afM (0, t) +

σ2
r

2a
(1− e−2at).

We denote by (S0
t )t≥0 the money market account, given by S0

t = exp(−
∫ t
0 rsds), for all t ≥ 0,

which serves as the numéraire associated to the pricing measure Q. For all T ≥ t, letting p(t, T )

be the price at time t of a zero coupon bond with maturity T , it holds that

p(t, T ) = Et[S
0
t /S

0
T ] = A(t, T ) exp (−B(t, T )rt) ,

where B(t, T ) = (1− e−a(T−t))/a and

A(t, T ) =
pM (0, T )

pM (0, t)
exp

(
B(t, T )fM (0, t)− σ2

r

4a

(
1− e−2at

)
B(t, T )2

)
,

see [BM06, Section 3.3.2]. By construction, it holds that p(0, T ) = pM (0, T ) for all T ≥ 0.

The market model (6) is similar to the one adopted in [DYL15, GMZ19]. The adoption of a

constant diffusive volatility for (St)t≥0 is motivated by the fact that our main objective consists

in studying the impact of stochastic low/negative interest rates on general GMWB annuities.

For the same reason, we have adopted a Hull-White model for the interest rate, rather than

the Cox-Ingersoll-Ross (CIR) model. However, the dynamic programming approach described

in Section 2.3 and the valuation algorithm introduced in Section 3.1 can be easily generalized

to alternative and richer models (see Remark 2.6 and Section 3.2 below).

We assume that mortality risk is independent of market and interest risks, in line with most

of the works on GMWB valuation in the presence of stochastic mortality and interest rates

(see, e.g., [Cos17, DYL15, GIZ19, SL16, YD13] among others). Under this assumption, the only

quantities that are needed for the valuation of a GMWB annuity are the conditional survival



VALUATION OF GENERAL GMWB ANNUITIES IN A LOW INTEREST RATE ENVIRONMENT 7

probabilities πn := Qn−1(τ
D > n|τD > n− 1), corresponding to the probability of survival until

anniversary date n, conditionally on survival up to the previous anniversary date n− 1 and on

Fn−1, for n = 1, . . . , N − 1. For simplicity, we assume that survival probabilities are retrieved

from mortality tables using a cohort-based approach (see [Pit04]). We refer to Remark 2.6 and

Section 3.2 for a discussion of the extension of our framework to stochastic mortality models.

Remark 2.3 (On the independence on financial and mortality risks). As pointed out in [DKL+13],

the independence of financial and mortality risks under the risk-neutral measure Q does not au-

tomatically follow from their independence under the real-world measure P. However, for the

model considered in this section, if financial and mortality risks are assumed to be independent

under P, there always exists a risk-neutral measure Q that preserves independence. This follows

from the fact that for the market model (6) the minimal martingale measure5 Q̂ is characterized

by a Girsanov kernel (corresponding to the market price of risk) that is independent of mortality

risk, thereby preserving independence between financial and mortality risks under Q̂.

2.3. Valuation by dynamic programming. As mentioned in the introduction, we allow for

dynamic withdrawal strategies. In this case, the valuation of a GMWB annuity leads to a

stochastic optimal control problem along the anniversary dates T (we refer to [Ber05] for a

detailed account of discrete-time stochastic optimal control). We assume that the PH pursues

an optimal withdrawal strategy under Q. As pointed out in [BMZ22], this corresponds to the

worst-case scenario from the point of view of the insurer who has to set up a hedging portfolio.

The valuation of a GMWB amounts to solving the following stochastic control problem:

(8)

V0(A0, B0, r0) := sup
τS ,{wn}n∈T

E

[
N∧τS∑
n=1

(
1{τD∧τS>n}

Xn(wn)

S0
n

+1{τD>n,τS=n}
XS

n

S0
n

+ 1{n−1<τD≤n}
XD

n

S0
n

)]
,

where the supremum is taken over all stopping times τS with values in {1, . . . , N − 1} and over

all withdrawal strategies {wn}n∈T such that wn ∈ [0, Bn− ] for each n = 1, . . . , N , in the case

(W-SU) (or wn ∈ [0, An− ∨Bn− ] for each n ∈ T , in the case (SU-W)).

For each n = 0, 1, . . . , N , we denote by Vn(An− , Bn− , rn) the fair value of the GMWB annuity

as a function of the current values of the two accounts and of the interest rate, before any event

(withdrawal/surrender/bonus/step-up) takes place at date n and conditionally on {τD > n}.
As will be clarified below, the fair value of the GMWB annuity does not depend on the current

value of the underlying fund.

For the solution of problem (8), we adopt a backward induction approach. Starting at N = T ,

if the PH is still alive at the last anniversary date N (i.e., conditionally on the event {τD > N}),
then by (4) the value of the contract is given by

(9) VN (AN− , BN− , rN ) = max
{
AN− ; (1− βN )BN− + βN min{G,BN−}

}
.

The recursive relationship (Bellman equation) between the value functions at two generic

dates n and n− 1 depends on the specification of the contract. Indeed, as explained in Remark

2.2, under the scheme (SU-W) the surrender decision (corresponding to the choice of the optimal

stopping time τS) is embedded in the withdrawal decision. On the contrary, under the scheme

(W-SU), the surrender decision has to be considered separately from the withdrawal decision.

5In incomplete markets, the minimal martingale measure represents the most natural candidate for a risk-neutral
measure, see e.g. [FS10]. In the market model (6), the minimal martingale measure also coincides with the
Esscher martingale measure.
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Let us first consider the scheme (W-SU). In this case, exploiting the independence of τD with

respect to the interest rate and market risk factors, it holds that

(10)

Vn−1(A(n−1)− , B(n−1)− , rn−1) = max

{
XS

n−1; sup
wn−1∈[0,B(n−1)− ]

(
Xn−1(wn−1)

+πn En−1

[
e−

∫ n
n−1 rsds Vn(An− , Bn− , rn)

]
+ (1− πn)En−1

[
e−

∫ n
n−1 rsdsXD

n

])}
,

where, denoting by ∆t the time step between dates n− 1 and n,

An− = (A(n−1)− − wn−1)
+ exp

(∫ n

n−1
rsds−

(
q + α+

σ2
S

2

)
∆t+ σS

(
WS

n −WS
n−1

))
,(11)

Bn− = max
{
B(n−1)− + b1{wn−1=0} − wn−1; (A(n−1)− − wn−1)

+
}
.(12)

Equation (11) makes clear that in the valuation of the GMWB annuity, the current value of the

underlying fund is not relevant: only its return over the time period [n− 1, n] is relevant.

Considering instead the scheme (SU-W), we have that

(13)

Vn−1(A(n−1)− , B(n−1)− , rn−1) = sup
wn−1∈[0,A(n−1)−∨B(n−1)− ]

(
Xn−1(wn−1)

+ πn En−1

[
e−

∫ n
n−1 rsds Vn(An− , Bn− , rn)

]
+ (1− πn)En−1

[
e−

∫ n
n−1 rsdsXD

n

])
,

where An− evolves as in (11) and

(14) Bn− = max{A(n−1)− ;B(n−1)−}+ b1{wn−1=0} − wn−1.

By inspecting formulas (10)–(13), we can see that the determination of the optimal withdrawal

(and surrender) strategy and, therefore, the valuation of our general GMWB annuity requires the

knowledge of the Fn−1-conditional joint distribution of the triplet (
∫ n
n−1 rsds, rn,W

S
n −WS

n−1),

for each n = 1, . . . , N . In our setup, this distribution admits an explicit description, given in

the following proposition (the proof is postponed to the Appendix).

Proposition 2.4. For every n = 1, . . . , N , it holds that

(15)

(∫ n

n−1
rsds, rn,W

S
n −WS

n−1

) ∣∣∣∣Fn−1 ∼ N (µn−1,Σ),

where

µn−1 :=

 µ1,n−1

µ2,n−1

0

 and Σ :=

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 ,

with

µ1,n−1 :=
1

a
(1− e−a∆t)

(
rn−1 − α(n− 1)

)
+ log

(
pM (0, n− 1)

pM (0, n)

)
+

1

2

(
V (n)− V (n− 1)

)
,

µ2,n−1 := rn−1e
−a∆t + α(n)− α(n− 1)e−a∆t,

α(n) := fM (0, n) +
σ2
r

2a2
(
1− e−an

)2
, V (n) :=

σ2
r

a2

(
n+

2

a
e−an − 1

2a
e−2an − 3

2a

)
σ11 := V (∆t), σ22 :=

σ2
r

2a

(
1− e−2a∆t

)
, σ33 := ∆t

σ12 :=
σ2
r

2a2
(
1− e−a∆t

)2
, σ13 :=

ρσr
a

(
∆t− 1− e−a∆t

a

)
, σ23 :=

ρσr
a

(
1− e−a∆t

)
.
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As a consequence, for every n = 1, . . . , N , it holds that

(16) WS
n −WS

n−1

∣∣∣∣Fn−1 ∨ σ

(∫ n

n−1
rsds, rn

)
∼ N (µ̃n−1, σ̃

2),

where

µ̃n−1 := Σ12Σ
−1
22

([ ∫ n
n−1 rsds

rn

]
−

[
µ1,n−1

µ2,n−1

])
and σ̃2 := Σ33 − Σ12Σ

−1
22 Σ21,

with

Σ22 :=

[
σ11 σ21
σ21 σ22

]
, Σ21 :=

[
σ13
σ23

]
, Σ12 :=

[
σ31 σ32

]
, Σ33 := σ33.

Remark 2.5. Observe that, as a consequence of Proposition 2.4, the only relevant information

when conditioning on the σ-algebra Fn−1 is represented by the current value rn−1 of the interest

rate. This fact will be exploited in the numerical algorithm developed in next section.

Remark 2.6. While the result of Proposition 2.4 is specific to the market model (6), the

dynamic programming equations (10) and (13) do not depend on the structure of the model. If

the model is extended by introducing additional stochastic factors (such as stochastic volatility

or stochastic mortality), then the value function will depend also on those factors, besides the

interest rate. In a stochastic mortality model, the conditional probabilities πn can be explicitly

computed if τD is modelled as a doubly stochastic random time with stochastic intensity, for

instance driven by an affine process (see [Bif05]). We refer to Section 3.2 below for a more

detailed discussion of possible extensions of the model.

3. The valuation algorithm

In this section, we describe the numerical algorithm to solve the stochastic control problem

(8) by means of the dynamic programming approach described in Section 2.3. For simplicity of

presentation, we consider the scheme (SU-W).6 The presence of two sources of risk might suggest

that a full discretization of the bivariate process (S, r) is needed, as considered in [BR22] and

[DDMR22] for the pricing of contingent claims under interest rate risk. However, as pointed out

in Section 2.3, the value function associated to problem (8) does not depend on the value of the

underlying fund. Moreover, besides the current values of the two accounts, the only relevant

information encoded in the filtration F is the current value of the interest rate (see Remark 2.5).

Therefore, similarly as in [Cha14], we can reduce the dimension of the problem and work with

a simple one-dimensional discretization for r, regardless of the presence of correlation between

interest rate and market risk. In Section 3.1 we present the algorithm for the model adopted in

Section 2.2, while in Section 3.2 we describe its application to possible extensions of the model.

3.1. Structure of the algorithm. Our valuation algorithm is structured as follows:

0. a) Perform a one-dimensional binomial discretization of the interest rate process r with

m uniform steps between each anniversary date (see Appendix A.1 for details).

b) Construct a two-dimensional grid for the possible values of the accounts A and B:

A := {a0, a1, . . . , anA} and B := {b0, b1, . . . , bnB},

where a0 = b0 = 0, ai − ai−1 = ∆A and bj − bj−1 = ∆B, for all i = 1, . . . , nA

and j = 1, . . . , nB, where nA and nB represent the number of points in the grid,

6We point out in Remark 3.1 which features of the algorithm have to be modified under scheme (W-SU).
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with ∆A being a multiple of ∆B. The upper bounds of the grid are given by

Ā := anA = nA∆A and B̄ := bnB = nB∆B.

1. At the last anniversary date N , initialize the value function by specifying VN (ai, bj , rN )

as in (9), for every (ai, bj) ∈ A× B. Note that, at maturity, the value function does not

depend on the value rN of the interest rate.

2. Proceeding backwards, for each n = N,N − 1, . . . , 2 and for every (ai, bj) ∈ A× B:
a) For each wn−1 ∈ {0,∆B, . . . , ai ∨ bj}, compute

(17)
Jn−1(wn−1, ai, bj) := πn E

[
e−

∫ n
n−1 rsds Vn(An− , Bn− , rn)

∣∣∣rn−1

]
+ (1− πn)E

[
e−

∫ n
n−1 rsdsXD

n

∣∣∣rn−1

]
,

where XD
n is given by (5) and An− and Bn− are respectively given by equations

(11) and (14), with A(n−1)− and B(n−1)− respectively replaced by ai and bj .

b) Determine the optimal withdrawal w∗
n−1 by solving

max
wn−1∈{0,∆B ,...,ai∨bj}

{
Xn−1(wn−1) + Jn−1(wn−1, ai, bj)

}
.

c) Set Vn−1(ai, bj , rn−1) := Xn−1(w
∗
n−1) + Jn−1(w

∗
n−1, ai, bj).

3. The value of the GMWB annuity at t = 0 is given by

V0(A0, B0, r0) = π1 E
[
e−

∫ 1
0 rsds V1(A1− , B1− , r1)

]
+ (1− π1)E

[
e−

∫ 1
0 rsdsXD

1

]
,

with A0 = B0 = P .

A crucial step of the algorithm consists in the computation of the conditional expectations in

(17). This can be done efficiently by proceeding as follows. Consider a generic anniversary date

n − 1 and a value rn−1 of the binomial tree discretization of the process r. Observe first that

there are 2m paths along the binomial tree that link rn−1 to the m+ 1 compatible values of rn.

The risk-neutral probability of each path k starting from rn−1 at date n − 1 can be explicitly

computed and is denoted by qk,n−1, for k = 1, . . . , 2m. For each path k, we approximate the

discount factor exp(−
∫ n
n−1 rsds) by discretizing the integral as exp(− ∆t

m+1

∑m+1
j=1 rkn−1:j:n), where

(rkn−1:j:n)j=1,...,m+1 denotes the discretized values of r along the k-th path, starting from the given

value rn−1 at date n− 1. Applying iterated conditioning, we compute

E
[
e−

∫ n
n−1 rsds Vn(An− , Bn− , rn)

∣∣∣rn−1

]
= E

[
e−

∫ n
n−1 rsds E

[
Vn(An− , Bn− , rn)

∣∣∣∣ (∫ n

n−1
rsds, rn, rn−1

)] ∣∣∣∣∣rn−1

]

≈
2m∑
k=1

qk,n−1 exp

(
− ∆t

m+ 1

m+1∑
j=1

rkn−1:j:n

)
E

[
Vn(An− , Bn− , rkn)

∣∣∣∣∣
(

∆t

m+ 1

m+1∑
j=1

rkn−1:j:n, r
k
n, rn−1

)]
,

(18)

where An− is determined from A(n−1)− via the recursive relation (11), replacing the term∫ n
n−1 rsds by ∆t

m+1

∑m+1
j=1 rkn−1:j:n. Proceeding backwards, suppose that Vn(ah, bl, r

k
n) has been

already determined, for all (ah, bl) ∈ A × B and for all possible m + 1 values rkn that can be

reached from rn−1. Then, for each (ai, bj) ∈ A × B (representing the possible values of the

pair (A(n−1)− , B(n−1)−)) and for each wn−1 ∈ {0,∆B, . . . , ai −∆B}, the conditional expectation

appearing on the last line of (18) can be computed as follows, relying on Proposition 2.4:

E

[
Vn(An− , Bn− , rkn)

∣∣∣∣∣
(

∆t

m+ 1

m+1∑
j=1

rkn−1:j:n, r
k
n, rn−1

)]
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≈
nA∑
h=1

Vn(ah, Bn−, r
k
n)Q

(
ah −

∆A

2
≤ An− < ah +

∆A

2

∣∣∣∣∣
(

∆t

m+ 1

m+1∑
j=1

rkn−1:j:n, r
k
n, rn−1

))

≈
nA∑
h=1

Vn(ah, Bn−, r
k
n)
(
Φ
(
a+h,k,n(ai, wn−1)

)
− Φ

(
a−h,k,n(ai, wn−1)

))
,

(19)

with An− and Bn− respectively given by equations (11) and (14), with A(n−1)− and B(n−1)−

respectively replaced by ai and bj , and where Φ denotes the distribution function of a N (0, 1)

random variable and the quantities a±h (ai, wn−1) are defined as follows:

a±h,k,n(ai, wn−1) :=
1

σ̃ σS

(
log

(
ah ± ∆A

2

ai − wn−1

)
− ∆t

m+ 1

m+1∑
j=1

rkn−1:j:n +

(
q + α+

σ2
S

2

)
∆t

)
− µ̃n−1

σ̃
,

with µ̃n−1 and σ̃ as in Proposition 2.4. For wn−1 ∈ {ai, . . . , ai∨bj}, we simply set An− = 0. The

computation of the conditional expectation appearing in the second line of (17) is performed

analogously, relying on equation (5) which defines the death benefit.

Remark 3.1. (1) Under the alternative scheme (W-SU), the algorithm has to be modified only

in step 2. Indeed, in step 2.a the withdrawal wn−1 must belong to {0,∆B, . . . , bj} and Bn− is

determined by equation (12), with A(n−1)− and B(n−1)− respectively replaced by ai and bj . In

step 2.b, the optimal withdrawal w∗
n−1 is chosen in the set {0,∆B, . . . , bj}. Finally, step 2.c has

to be modified taking into account the possibility of surrender, by setting

Vn−1(ai, bj , rn−1) := max
{
XS

n−1;Xn−1(w
∗
n−1) + Jn−1(w

∗
n−1, ai, bj)

}
,

where XS
n−1 is given by (3), with A(n−1)− and B(n−1)− respectively replaced by ai and bj .

(2) In the absence of step-up/bonus features, step 2 of the algorithm is modified by restricting

wn−1 ∈ {0,∆B, . . . , bj} and using equations (1)-(2) for the evolution of the two accounts.

(3) Step 2.b of the algorithm can be easily modified in order to account for sub-optimal

withdrawal behaviors. This can be done by introducing suitable constraints in the maximization

problem or, as considered in [CVF08], by assuming that the amount withdrawn is equal to the

static withdrawal G unless the optimal withdrawal w∗
n−1 yields a sufficiently higher value. The

adoption of a sub-optimal withdrawal policy reduces the fair value of a GMWB annuity.

(4) Under some contract specifications, the management fee α depends on the current value

of the investment account. This possibility can be easily implemented in our algorithm, letting

α depend on A(n−1)− in equation (11), which is used in step 2.a of the algorithm.

Figure 1 provides an illustration of step 2 of the algorithm, displaying a portion of the binomial

discretization of r from date n−2 to n+1. Nodes at anniversary dates are equipped with the grid

A×B, represented in the figure by matrices. The m−1 intermediate nodes between consecutive

anniversary dates contain only the discretized value of r. Let us focus on the backward induction

from n to n− 1. Proceeding backwards, Vn(An− , Bn− , rn) is already known, for all nodes of rn
(in Figure 1, this corresponds to knowing all matrices associated to date n). We need to fill

the matrix associated to a certain value rn−1 at date n− 1. Consider for instance the blue cell

(corresponding to a specific pair (ai, bj) ∈ A × B, in this case (2∆A, 4∆B)). When considering

the step-up feature, it is practical to set Ā = B̄ and nA = nB, so that ∆A = ∆B. In the blue

cell, the step-up feature does not take place, since 4∆B ≥ 2∆A. The PH can make five different

withdrawals wn−1: 0, ∆B, 2∆B, 3∆B or 4∆B.
7 For each possible withdrawal, we compute the

7For illustration, in the case of the light green cell in Figure 1, the step-up feature increases B(n−1)− = ∆B to
A(n−1)− = 5∆A, generating six possible withdrawals wn−1 ∈ {0,∆B , 2∆B , 3∆B , 4∆B , 5∆B}.
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quantity in (17). For illustration, wn−1 = 2∆B is considered in the figure. In this case, we have

that Bn− = B(n−1)− − wn−1 = 2∆B. We then consider the matrices associated to the values of

rn at date n. These m+ 1 matrices (3, in the case of Figure 1) are linked to the matrix at date

n−1 under consideration through 2m paths (4, in the case of Figure 1). Using (18), we compute

the discounted expectation of Vn(An− , Bn− , rn) as the weighted average of 2m terms. While the

row to consider is determined by Bn− = 2∆, we average out the columns (corresponding to the

possible values of An−), using conditional probabilities computed by relying on Proposition 2.4.

In Figure 1, the conditional probabilities of the discretized values of An− are represented as light

blue histograms within each matrix. An analogous computation is performed for the conditional

expectation on the second line of (17), thus completing step 2.a of the algorithm. This procedure

is repeated for all possible withdrawals wn−1 ∈ {0,∆B, 2∆B, 3∆B, 4∆B}, in order to determine

the optimal withdrawal w∗
n−1, as for step 2.b. Finally, the value Vn−1(ai, bj , rn−1) associated to

the blue cell is determined as in step 2.c. After having filled the matrices associated to all values

rn−1 at date n− 1, one proceeds backwards at n− 2.

B!"#"

A!"#"

𝑟$"#

𝑤!"#∗ 𝐵!"

𝐴!"#" = 2Δ𝐴

𝐵!"#" = 4Δ𝐵

𝐴!"#" = 5Δ𝐴

𝐵!"#" = Δ𝐵

𝑤!"#∗

Δ𝐵

0

𝐵!"

3Δ𝐵

4Δ𝐵

B%"

A%"

𝑟!"# +2∆&

B%"

A%"

𝑟!"#

B%"

A%"

𝑟!"# −2∆&

𝑟#$% + ∆&

𝑟#$% − ∆&

2Δ𝐵

5Δ𝐵

2Δ𝐵

1Δ𝐵

0

3Δ𝐵

4Δ𝐵

5Δ𝐵

𝑛 − 1

𝑛

𝑛 + 1

𝑛 − 2

Δ𝐵

0

2Δ𝐵

3Δ𝐵

4Δ𝐵

4Δ𝐵

2Δ𝐵

1Δ𝐵

0

3Δ𝐵

Figure 1. Graphical illustration of the backward induction in the valuation algorithm.

3.2. Extensions of the model. In this subsection, we discuss the applicability of the valuation

algorithm introduced in Section 3.1 to possible extensions of the model. As can be deduced from

the above discussion, the algorithm relies on the following three properties:

(i) the interest rate process admits a binomial discretization;
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(ii) for each n = 1, . . . , N , the distribution of the fund return Sn/Sn−1 conditionally on Fn−1

only depends on rn−1;

(iii) for each n = 1, . . . , N , the distribution of the fund return Sn/Sn−1 conditionally on

(
∫ n
n−1 rsds, rn, rn−1), or conditionally on the interest rate path (rt; t ∈ [n− 1, n]), can be

efficiently computed.

As shown in Section 3.1, these three properties are clearly satisfied by the model of Section 2.2.

More generally, property (i) holds for a wide class of Markovian diffusion models for the interest

rate. Property (ii) is always satisfied if the interest rate is a Markov process and there is no

serial dependence in the fund returns (under the risk-neutral probability). Finally, property (iii)

depends on the specific model under consideration.

Jump-diffusion dynamics. The generalization of the model (6) to jump-diffusion dynamics with

Lévy-type jumps in the returns does not impact on properties (i)-(ii). Concerning property (iii),

we recall that a pure jump Lévy process is necessarily independent from any Brownian motion

defined on the same filtered probability space. Therefore, the conditional expectation in (18)

can be computed by first integrating with respect to the jump density8 and then making use of

Proposition 2.4, thus retaining analytical tractability.

Stochastic volatility. As pointed out in Remark 2.6, the introduction of stochastic volatility in

the fund returns introduces an additional stochastic factor (here denoted by v), which has to be

treated together with the interest rate. In this case, property (i) corresponds to a binomial dis-

cretization of the two-dimensional process (r, v), while property (ii) requires that the distribution

of Sn/Sn−1 conditionally on Fn−1 only depends on (rn−1, vn−1). In this form, property (i) holds

for a sufficiently large class of Markovian diffusion models for (r, v), while property (ii) is almost

always satisfied. Property (iii) would require that the distribution of Sn/Sn−1 conditionally on

the path ((rt, vt); t ∈ [n − 1, n]) can be efficiently computed. To this effect, the “decoupling

method” of [KNC17] and [Kir23, Lemma 1] can be helpful. Finally, the algorithm requires the

transition probabilities of (r, v), which can be determined for some diffusion processes.

Stochastic mortality. As in the case of stochastic volatility, the extension of the model to stochas-

tic mortality introduces an additional stochastic factor. However, unlike in the case of stochastic

volatility, stochastic mortality does not enter directly into the dynamics of the fund returns,

thereby simplifying the analysis. The analysis becomes further simplified by the assumption of

independence between financial and mortality risks (see Remark 2.3), with no major change to

the algorithm described in Section 3.1.

Remark 3.2 (On the discretization of r). We point out that, at the expense of a greater

computational effort, one may avoid the binomial discretization of the process r in step 1 of the

algorithm. Indeed, if the possible values of r are quantized into a grid I and, at each date n, the

value function is approximated by interpolating its values at the points of the grid A×B×I, then
the conditional expectation in (17) can be computed by three-dimensional numerical integration

over the conditional density of (
∫ n
n−1 rsds, rn,W

S
n −WS

n−1), which is given in Proposition 2.4. We

have chosen to work with a binomial discretization in order to make our algorithm potentially

applicable to other Markovian dynamics for the interest rate process, for which an explicit

description of the joint conditional density might not be possible. We illustrate this point below

8The jump density is explicitly known for several Lévy processes, including compound Poisson processes with a
known density for the jump sizes. For other Lévy processes, the density can be retrieved by Fourier inversion
from the characteristic function, which is known in closed form for all Lévy processes (see, e.g., [CT04]).
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in the case of the CIR interest rate model. As shown in the next section, our algorithm yields

accurate results even with a very parsimonious binomial discretization of the process r.

Remark 3.3 (The CIR interest rate model). The market model (6) can be modified by consid-

ering a CIR process for the interest rate (see, e.g., [BM06, Section 3.2.3]):

drt = (θ − art)dt+ σr
√
rt dW

r
t , r0 > 0.

The process r remains strictly positive if the Feller condition θ ≥ σ2
r/2 holds. For ρ ̸= 0 an

explicit description of the joint distribution (16) is not available. Nevertheless, our algorithm

remains applicable. Indeed, by relying on [Kir23, Lemma 1], the fund return Sn/Sn−1 can be

decomposed into two terms: a first term that is measurable with respect to (rt; t ∈ [n − 1, n])

and a Gaussian term that is independent of (rt; t ∈ [n− 1, n]). By conditioning with respect to

(rt; t ∈ [n− 1, n]), one can then compute the conditional expectation (18) by following the same

procedure of Section 3.1, leading to an explicit formula of the form (19). The probabilities qk,n−1

can be computed in closed form as shown in [NR90, Section 1.4]. We remark that this technique

is applicable to any diffusion interest rate model with a strictly positive volatility function.

4. Numerical Results

In this section, we present and discuss our numerical results. First, in order to assess the

reliability of the valuation algorithm, we compare it to some previous results available in the

literature (Section 4.1). In Section 4.2, we calibrate our model to two different market scenarios

and determine fair fees, highlighting the impact of low/negative interest rates. We proceed by

studying the determinants of the value of GMWB annuities (Section 4.3). Finally, in Section

4.4, we describe the optimal withdrawal strategies in the two interest rate scenarios considered.

The results reported in this section have been obtained using Matlab R2021a, on a quad-

core Intel i7 CPU at 1.80 GHz with 16 GB of physical memory. The computational time of

the algorithm described in Section 3 depends on the withdrawal scheme, on the maturity of

the contract, on the presence of the step-up feature and on the choice of the discretization

parameters m, nA, nB. We report here the computational times for the benchmark choice of

these parameters, for maturity T = 10. If the annuity involves no step-up, we set nA = 30,

nB = 10, m = 2 and the algorithm takes 2.5 minutes for the S withdrawal scheme (6 minutes

for the D scheme). If the step-up feature is included, we set nA = 30, nB = 30, m = 2 and the

algorithm takes 18 minutes for the S withdrawal scheme (85 minutes for the D scheme).

4.1. Algorithm validation. To validate our valuation algorithm, we first compute the fair

value of a GMWB annuity without step-up and bonus features considering the S and D with-

drawal schemes (see Remark 2.1). In the absence of step-up and bonus features, GMWB annu-

ities have been recently analyzed in [GMZ19], which is adopted here as validation benchmark for

our algorithm under the S and D schemes. Afterwards, we compare the values under the S and

S+S schemes obtained through our algorithm to the ones obtained through the Least Square

Method (LSM, henceforth) of [LS01].

Remark 4.1 (On the LSM for variable annuities pricing). The LSM is a widespread method for

solving optimal stopping problems and, hence, it is also applicable to the pricing of several types

of variable annuities. The LSM turns out to be especially useful and efficient when dealing with

high-dimensional models, provided that the PH has a limited set of possible actions. The latter

property holds whenever the optimal withdrawal strategy is of bang-bang type, namely when

the set of withdrawal strategies can be reduced to zero withdrawal, a withdrawal equal to G, or a

full surrender of the contract (see Remark 2.1). This is typically the case of GLWB annuities, for
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which the LSM has been successfully applied in [HK16] and [WZ22] (see [BMZ22] for a proof of

the bang-bang property in GLWB annuities). When, on the contrary, the model is analytically

tractable but the optimal withdrawal strategy cannot be reduced to a limited set of actions (as

is the case of GMWB annuities, as pointed out by [LS15] and as we document in Section 4.4),

a lattice-based method as considered in the present work offers greater transparency and allows

for an efficient sensitivity analysis.

Starting from the S scheme, we choose the same parameters reported in [GMZ19, Table 3]

and aim at replicating the numerical results reported in their Table 4.9 Since the fair fees vary

slightly according to the four different valuation methods proposed by [GMZ19], we consider the

average (ᾱ) of the four fair fees, their minimum (αmin) and their maximum (αmax). We test our

algorithm by checking whether, for these values of fees, the GMWB annuity is priced at par.

As an additional check, we compute 95% confidence intervals for the fair values of the GMWB

annuity with static withdrawals and fee ᾱ by means of Monte Carlo simulations. Table 1 reports

the numerical results of this first test, showing that our algorithm always delivers a fair value

close to P = 100, with an accuracy comparable to the different methods used in [GMZ19].

We then test our algorithm under the D scheme, replicating the numerical results shown in

[GMZ19, Table 11], considering fees determined analogously to above. In this case, due to the

optimization involved, no standard Monte Carlo benchmark is available. Table 2 displays the

results of this test, confirming the reliability of our algorithm.

T ᾱ fair price MC fair price αmin fair price αmax fair price
5 1.915% 100.22 99.68 ± 0.51 1.908% 100.49 1.918% 100.11
10 0.795% 100.34 100.54 ± 0.79 0.793% 100.40 0.798% 100.25
20 0.248% 100.35 99.82 ± 0.87 0.247% 100.38 0.263% 99.85

Table 1. Numerical results for the first validation test: static withdrawals. Simulation param-
eters for T = 5, 10: m = 2, nA = 30, nB = 10; for T = 20: m = 2, nA = 30, nB = 20. MC
simulation based on 10000 paths.

T ᾱ fair price αmin fair price αmax fair price
5 2.783% 99.72 2.262% 100.46 2.826% 99.65
10 1.582% 99.75 1.284% 100.35 1.635% 99.52
20 0.829% 99.49 0.655% 100.36 0.907% 99.38

Table 2. Numerical results for the first validation test: dynamic withdrawals. Simulation
parameters for T = 5, 10: m = 2, nA = 30, nB = 10; for T = 20: m = 2, nA = 30, nB = 20.

We now benchmark our algorithm to the LSM method under the S+S withdrawal scheme.

Along with the processes r and S, we also need to simulate the evolution of the accounts A and

B and take into account the intermediate cashflows equal to G at each anniversary date. For

this test, we use the parameters reported in Table 5 below, corresponding to the 2021 market

scenario and we set α = 13.51% and βn = 15%, for all n = 1, . . . , N .10 The results of this test

are reported in Table 3. We can observe that our algorithm produces fair values that are not

statistically different from those obtained through the LSM-based algorithm.

Finally, we test the numerical stability of our algorithm, assessing the impact of the dis-

cretization parameters (m, nA, nB), introducing the step-up feature and allowing for dynamic

9In our notation, the parameters listed in [GMZ19, Table 3] are given by: σ = 20%, r0 = 5%, a = 1, σr = 20%,
ρ = −50%.
10As explained in Section 4.2, in the 2021 scenario this specification of α and β ensures that a GMWB annuity
without the step-up feature is sold at par (i.e., it has an initial market value of P = 100).
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T method without step-up with step-up

5
S+S 96.02 98.14

LSM
95.97 98.24
±0.07 ±0.09

10
S+S 99.32 101.95

LSM
99.26 101.82
±0.10 ±0.15

20
S+S 101.10 102.84

LSM
101.22 102.98
±0.14 ±0.21

Table 3. Numerical results for the second validation test: static withdrawals and surrender
option. S+S values are computed using our algorithm; LSM values are computed using the
Least Squares Method of [LS01]. Simulation parameters: T = 5, 10: m = 2, nA = 30, nB = 10;
for T = 20: m = 2, nA = 30, nB = 20.

Ā = B̄ nA = nB m = 2 m = 3 m = 4

200
21 102.6023 102.5968 102.5996
41 102.6026 102.6016 102.6014

300
31 102.5976 102.6031 102.6032
61 102.6012 102.6002 102.6028

400 41 102.5977 102.5998 102.5998

Table 4. Fair value of a GMWB with step-up with dynamic withdrawals for different values
of m, Ā = B̄ and nA = nB . T = 10, α = 13.51%, βn = β = 15%, n = 1, . . . , N , and remaining
parameters as in Table 5.

withdrawal strategies. We test several combinations of parameters m, nA, nB, choosing them in

such a way that the guaranteed minimum benefit G is a multiple of the step of the grid. Table 4

reports the results. All fair values differ only if not rounded to the second decimal figure. In par-

ticular, we observe that increasing m, the number of nodes between two consecutive anniversary

dates along the binomial tree for r, yields negligible improvements in the accuracy. This is due

to the fact that the process r has a limited variability and it can be represented efficiently by a

binomial tree with a small number of nodes. We can conclude that the algorithm is numerically

stable and the resulting fair values do not depend significantly on the discretization parameters.

Remark 4.2 (On the construction of the grid A× B). As Table 4 shows, choosing a finer grid

A × B (i.e., choosing higher values for nA and nB) does not improve significantly the accuracy

of the algorithm. We acknowledge here that choosing a uniform grid does not always represent

the most efficient choice, nor is necessary for our algorithm to work. More specifically, if there

is no step-up nor bonus feature only B has to be uniform, with nB chosen in such a way that

G is a multiple of ∆B, while a non-uniform grid A (like the one proposed in [GMZ19]) can be

adopted for the investment account. However, if step-up or bonus features are included, then G

must be a multiple of ∆A as well. For this reason, we shall work with a uniform grid A× B.

4.2. Pricing of GMWB annuities and interest rate scenarios. In this section, we present

our numerical results on the valuation of GMWB annuities in two different interest rate scenarios.

4.2.1. Parameter specification. The parameters characterizing the market model described in

Section 2.2 are reported in Table 5. These parameters have been chosen to reflect the current

European market, considering the EuroStoxx50 as the underlying equity fund. We set σS =
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20%11 and q = 2%12. Since the cashflows of the GMWB annuity depend solely on the return of

the index (and not on its level), we can normalize its initial value to S0 = 100 with no loss of

generality. The yield curve is modelled according to the ECB’s methodology, adopting Svensson

parametrization. In the notation of Section 2.2, the market instantaneous forward rate at t = 0

is given by

fM (0, T ) = β0 + β1e
− T

τ1 + T
β2
τ1

e
− T

τ1 + T
β3
τ2

e
− T

τ2 ,

for all T ≥ 0, using for the parameters βi, i = 0, . . . , 3, τj , j = 1, 2, the official estimates of the

ECB.13 The corresponding yield curve y(0, T ), defined by y(0, T ) := 1
T

∫ T
0 fM (0, t)dt, is then

explicitly given by

y(0, T ) = β0 + (β1 + β2) τ1

(
1− e

− T
τ1

T

)
− β2e

− T
τ1 + β3

(
τ2
1− e

− T
τ2

T
− e

− T
τ2

)
.

For the Hull-White time-independent parameters a and σr, we take the values calibrated in the

benchmark analysis of [RT19], with a = 10% and σr = 2%. We also set ρ = 0.5.14 Figure 2

shows the yield curve, the instantaneous forward rate curve and the resulting long-run mean of

r (θ(t), determined by (7)). As we can see, at 12/31/2021 the interest rate is markedly negative

and is expected to stay negative for a significant time.

underlying short-term instantaneous
fund, S rate, r forward, fM (0, t)
S0 = 100 r0 = −0.67% β0 = 0.3202
σS = 20% a = 10% β1 = −1.0501
q = 2% σr = 2% β2 = 13.2616

β3 = −14.7208
ρ = 50% τ1 = 1.8168

τ2 = 1.8656

Table 5. Parameters of the financial market model as of 12/31/2021.

In line with the literature, we assume that the PH is a 65 years old man at inception of the

contract and we account for mortality risk adopting the survival probabilities published by the

United States Social Security Administration.15

As far as the GMWB annuity is concerned, we consider a maturity T = 10 and we set P = 100.

This implies that the guaranteed minimum amount that can be withdrawn at each anniversary

date without paying any withdrawal penalty is equal to G = 10.

4.2.2. Fair fees and pricing of GMWB annuities. Table 6 reports the fair prices of the GMWB

annuity for different values of the management fee and of the withdrawal penalty. We assume a

constant withdrawal penalty, setting all βn’s equal to a constant β. This simplifying assumption

enables us to analyze in a clear way the determinants of the fair value of a GMWB annuity16.

11Value taken from the ECB annual report on the index volatility (available at https://sdw.ecb.europa.eu).
12This figure corresponds to the weighted average of the annualized dividend yields of the index’s constituents,
which can be found at http://www.dividendsranking.com/Index/EURO-STOXX-50.php.
13See https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_

curves/html/index.en.html.
14As will be documented below, the impact of the parameters a, σr, ρ is of second order with respect to the other
model parameters and fair values are not significantly impacted by reasonable variations of these parameters.
15The corresponding mortality table is available at https://www.ssa.gov/oact/STATS/table4c6.html
16In some GMWB contracts, withdrawal penalties are specified as decreasing over time. As described in the
previous sections, our valuation framework is applicable to generic time-dependent penalties.. Moreover, the
analysis of Section 4.4 will show that, in a low/negative interest rate environment, withdrawals exceeding the

https://sdw.ecb.europa.eu
http://www.dividendsranking.com/Index/EURO-STOXX-50.php
https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
https://www.ssa.gov/oact/STATS/table4c6.html
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Figure 2. Yield curve, forward rate curve and long-run mean in percentage points as of
12/31/2021.

Coherently, we also observe that the fair values in the static case are much less sensitive to

β than in the other two cases. Indeed, under static withdrawals, β affects only the terminal

cashflow of the annuity. The step-up feature always increases the value of the GMWB annuity.

The increment in the price due to the step-up feature is decreasing in α, since the step-up feature

is less likely to bring a real benefit if the management fee is high and the expected net growth

of the investment account is therefore low.

We now determine fair management fees. By definition, the fair management fee is the value

α such that the fair value of the GMWB annuity coincides with its nominal amount (P = 100),

for a suitable penalty β. In the market setting described in Section 4.2.1, it turns out to be very

difficult to match the fair value of a GMWB annuity with P , especially when step-up and bonus

features are included. As explained in more detail below, this is specifically due to the negative

interest rate scenario. Therefore, we choose to determine fair fees in such a way that the fair

value of a standard version of the GMWB annuity (i.e., without step-up and bonus features, but

allowing for dynamic withdrawals) is equal to P = 100, whereas the value of additional features

is assumed to be paid at inception as an extra premium on top of P .

Looking at the left panel of Table 6, we see that P = 100 is almost matched in the dynamic

withdrawal case when α = 15% and β = 15%. Fixing β = 15%, the fair fee results equal to

α = 13.51%.17 We take this combination of α and β as our benchmark configuration. With

these values of α and β the value in the static withdrawal case turns out to be 99.13, which is

very close to P . This is due to the large value of β, which penalizes excess withdrawals and,

therefore, reduces significantly the difference between static and dynamic withdrawal strategies.

This effect is clearly visible from the analysis of optimal withdrawal strategies reported in Section

4.4. In particular, Figure 4 shows that there are very large regions where the optimal withdrawal

guaranteed amount occur more rarely than in the case of positive rates. For this reason, the following results
are not significantly affected by the assumption of a constant withdrawal penalty β. This is also in line with the
findings of [CVF08, Section 4.5].
The left panel of Table 6 considers a GMWB annuity without step-up feature, which is instead included in the
right panel. For each combination of α and β we consider the three main withdrawal schemes: static withdrawals
without surrender option (scheme S), static withdrawals with surrender option (scheme S+S), dynamic with-
drawals (scheme D). Obviously, adding the option of a full surrender and then of dynamic withdrawals increases
the value of the annuity. The difference across the three withdrawal schemes is decreasing in β, because large
withdrawal penalties reduce significantly the benefits of a full surrender or of the dynamic withdrawal strategy
17A penalty of β = 15% is greater than what usually considered in the literature. As shown below, smaller values
of β lead to acceptable fair management fees only in a positive interest rate scenario. In the 31/12/2021 scenario,
the fair fee α associated to β = 10% would be larger than 50%, which is clearly unfeasible in practice.
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2021: Without α
step-up 0% 5% 10% 15% 20%

β

0%
S 110.53 103.53 101.10 100.43 100.27

S+S 111.81 106.07 104.89 104.77 104.75
D 119.48 111.46 109.03 108.36 108.18

5%
S 110.21 103.13 100.64 99.94 99.76

S+S 110.61 104.07 102.22 101.92 101.87
D 115.63 107.35 104.85 104.14 103.95

10%
S 109.88 102.74 100.19 99.45 99.26

S+S 110.01 103.03 100.79 100.28 100.17
D 112.88 104.65 102.22 101.48 101.27

15%
S 109.59 102.37 99.77 98.99 98.77

S+S 109.62 102.41 99.88 99.18 99.01
D 111.13 103.18 100.64 99.86 99.62

20%
S 109.32 102.02 99.36 98.53 98.29

S+S 109.34 102.02 99.37 98.56 98.33
D 110.00 102.32 99.71 98.89 98.63

2021: With α
step-up 0% 5% 10% 15% 20%

β

0%
S 120.82 110.09 105.1 102.67 101.35

S+S 123.08 115.07 110.03 107.56 106.24
D 131.22 118.83 113.40 110.87 109.56

5%
S 119.70 109.35 104.36 102.01 100.82

S+S 122.12 112.60 107.40 104.80 103.43
D 126.35 114.14 108.97 106.55 105.28

10%
S 118.48 108.47 103.68 101.42 100.24

S+S 121.34 110.87 105.64 103.03 101.67
D 122.40 110.89 106.06 103.78 102.57

15%
S 117.37 107.69 103.01 100.84 99.68

S+S 118.97 108.57 104.06 101.77 100.42
D 119.37 108.80 104.31 102.07 100.87

20%
S 116.68 106.90 102.47 100.32 99.15

S+S 116.83 107.25 102.93 100.90 99.60
D 117.10 107.49 103.16 100.98 99.81

2021: Without step-up α = 13.51%

β = 15%
S 99.13

S+S 99.32
D 100.00

2021: With step-up α = 13.51%

β = 15%
S 101.36

S+S 101.95
D 102.60

Table 6. Fair value of a GMWB annuity at t = 0 for different values of α and β. T = 10
and market model parameters as in Table 5, as of 12/31/2021. Parameters: m = 2, nA = 30,
nB = 10 for the left panel, nB = 30 for the right panel.

strategy coincides with G = 10, while large optimal withdrawals that would differentiate the

dynamic scheme from the static one are located only on very extreme, and therefore unlikely,

regions of the plane.

Including the step-up feature, the fair value in the static (resp. dynamic) case increases to

101.36 (resp. 102.60). Equivalently, taking the standard GMWB annuity (without step-up and

bonus features) as benchmark, the extra premium to be paid at inception for the step-up feature

would amount to 2.60. Keeping β = 15%, including the step-up feature in the nominal amount

would yield a fair fee α = 27.58%, which represents a unrealistically large value in practice.

4.2.3. Impact of negative interest rates. To fully analyze the consequences of the negative interest

rate environment on the pricing of GMWB annuities, we consider an alternative interest rate

scenario, calibrated to the current market scenario, as of end of 202218. As a consequence of the

recent changes in the monetary policy, the 2021 and 2022 interest rate scenarios exhibit striking

differences on the level and on the outlook of the interest rate. Indeed, the current level of the

interest rate is positive (r0 = 2.19%) and, as shown in Figure 3, is expected to remain positive

in the long term.

The level and the shape of the term structure of interest rates are relevant determinants of

the value of GMWB annuities. Table 7 reports the fair values and fees for the 2022 scenario.

We immediately observe that, even with a smaller penalty β = 10%, fair fees are significantly

smaller than in the 2021 scenario (α = 0.6270% in the 2022 scenario). The finding that fair fees

are decreasing in the level (and in the outlook) of the interest rate is consistent with the results

of [CVF08] and [SL16]. Moreover, the magnitude of fair fees in the current 2022 scenario is in

line with the results of [GMZ19]. Indeed, as mentioned in the introduction, most of the previous

related works assume positive interest rates, typically ranging from 2% to 5%. In such interest

18The parameters of the forward rate curve as of 12/30/2022 are β0 = 1.2109, β1 = −0.1090, β2 = 4.3116,
β3 = 3.9468, τ1 = 10.0911, τ2 = 0.7052. For sake of comparability, we leave unchanged the other parameters,
σr, a, σS , ρ and q. The analysis of an additional interest rate scenario, as of end of 2015, is reported in the
Supplementary Material.
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Figure 3. Yield curve, forward rate curve and long-run mean in percentage points as of
12/30/2022.

2022: Without α
step-up 0% 1.25% 2.5% 3.75% 5%

β

0%
S 99.65 96.14 93.17 90.68 88.64

S+S 102.55 100.12 98.51 97.55 97.01
D 107.05 104.24 102.25 100.83 99.87

2.5%
S 99.57 96.05 93.06 90.57 88.52

S+S 101.60 98.93 97.05 95.79 95.11
D 105.29 102.35 100.35 98.89 97.85

5%
S 99.49 95.96 92.96 90.46 88.40

S+S 100.81 97.94 95.70 94.25 93.31
D 103.78 100.72 98.61 97.05 95.91

7.5%
S 99.41 95.87 92.86 90.35 88.28

S+S 100.28 97.08 94.69 92.84 91.69
D 102.66 99.46 97.11 95.43 94.22

10%
S 99.32 95.78 92.76 90.24 88.16

S+S 99.83 96.53 93.81 91.78 90.27
D 101.76 98.47 95.90 94.01 92.67

2022: With α
step-up 0% 1.25% 2.5% 3.75% 5%

β

0%
S 109.86 106.11 102.77 99.84 97.27

S+S 116.22 113.12 110.46 108.26 106.53
D 119.81 115.52 112.12 109.28 107.08

2.5%
S 109.27 105.55 102.25 99.34 96.80

S+S 114.5 111.35 108.65 106.36 104.53
D 117.6 113.27 109.87 107.06 104.83

5%
S 108.68 104.99 101.72 98.85 96.34

S+S 112.87 109.65 106.90 104.54 102.58
D 115.52 111.16 107.77 105.01 102.85

7.5%
S 108.10 104.44 101.20 98.36 95.88

S+S 111.41 108.07 105.26 102.88 100.83
D 113.66 109.36 106.00 103.39 101.24

10%
S 107.54 103.91 100.7 97.88 95.43

S+S 110.11 106.71 103.78 101.34 99.27
D 112.05 107.88 104.59 101.99 99.84

2022: Without step-up α = 0.6270%

β = 10%
S 97.48

S+S 98.09
D 100.00

2022: With step-up α = 0.6270%

β = 10%
S 105.66

S+S 108.35
D 109.84

Table 7. Fair value of a GMWB annuity at t = 0 for different values of α and β. T = 10 and
market model parameters as of 12/31/2022. Parameters: m = 2, nA = 30, nB = 10 for the
panels with no step up feature, nB = 30 for the panels with the step up feature.

rate environment, considering a withdrawal penalty of about 10%, the fair fees are typically

expressed in basis points.

An important conclusion that we can draw from our analysis is that, in a low interest rate

environment, selling a GMWB at par comes necessarily with large withdrawal penalties and

management fees. Indeed, the role of the interest rate is twofold: on the one hand, it determines

the discount factor; on the other hand, it represents the expected rate of return of the underlying

index under the pricing measure. Negative interest rates increase the present value of future

cashflows, while the protective features of the GMWB annuity mitigate the adverse effect on

the expected rate of return of the index, thereby yielding overall higher fair values.

Table 8 shows a decomposition of the fair value of a GMWB annuity with step-up in the

two interest rate scenarios. The percentages are expressed with respect to the fair value of a

GMWB annuity with step-up in the dynamic withdrawal case and the column “CB” refers to

the present value of ten annual constant cashflows equal to G. The column “time value” reports
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scenario CB time value GMWB value step-up value
2021 99.91 97.38% 0.09% 2.53%
2022 86.10 78.44% 12.60% 8.96%

Table 8. Decomposition of the fair value of the GMWB annuity with the step-up feature under
the dynamic withdrawal scheme. CB is the present value of ten annual constant cashflows equal
to G. Parameters as in Tables 6 and 7.

the ratio between CB and the total value of the GMWB annuity with step-up, while the columns

“GMWB” and “step-up” report the proportion of value due to the GMWB and step-up features,

respectively. We can observe that the value decomposition changes significantly across the two

interest rate scenarios. In particular, the 2021 scenario is characterized by very low interest

rates and, therefore, the time value alone accounts for more than 97% of the total value of the

annuity. Additional features such as GMWB and step-up can only be included at the expense

of large penalties and management fees, thereby reducing their contribution to the total value

of the annuity. On the contrary, in the current 2022 scenario, both the GMWB and the step-up

feature represent significant portions of the total value of the GMWB annuity with step-up.

4.2.4. Value of the surrender feature. The different interest rate environment impacts also the

value of the surrender option when comparing the value of a GMWB annuity under the S and

S+S schemes. Indeed, considering Tables 6 and 7 and restricting to the cases α ∈ {0%, 5%}
and β ∈ {0%, 5%, 10%} for which the fair value of the annuity is reported in both tables, we

can verify that the percentage increase in the value of the annuity when moving from the S to

the S+S scheme is much larger in the current 2022 scenario rather than in the 2021 one. For

example, for α = β = 5%, in the 2021 scenario with no step-up (resp. with step-up) the annuity

is worth 103.13 (resp. 109.35) under S and 104.07 (resp. 112.60) under S+S scheme, so that

the surrender feature yields a 0.91% (resp. 2.97%) value increase. The same percentage in the

2022 scenario reads instead 5.56% (resp. 6.47%). This is due to the fact that in a low/negative

interest rate environment there is little incentive to surrender the contract before maturity.

4.3. Determinants of the GMWB annuity’s price. In this section, we analyze the impact

of mortality risk, we perform a sensitivity analysis with respect to the model parameters and

we determine the additional value due to the bonus feature.

4.3.1. Mortality risk. Several previous works (from the seminal paper [CF08] to the more recent

work of [GMZ19], for instance) do not consider mortality risk claiming that it is a diversifiable

risk that should not be priced. To check whether mortality risk has a sizable impact, we compute

the fair values for the benchmark cases considered in Tables 6 and 7 removing mortality risk.

The results are shown in Table 9. We can observe that removing mortality risk yields a small

increase of the fair values in the 2021 scenario, while it yields a small decrease in the current

2022 scenario. This is possible since the cashflow (5) of the death benefit does not coincide with

the one associated to a voluntary surrender. Therefore, there is no strict dominance of the case

without mortality risk over the one which accounts for it, nor the other way round. The main

factor determining the results of Table 9 is again the term structure of interest rates. Indeed, in

the 2021 scenario interest rates are negative and this implies that, on average, the present value

of future cashflows is higher than their nominal amounts: if a sudden death event takes place,

the PH cannot benefit anymore from this situation and this reduces the value of the annuity. In

the current scenario, instead, interest rates are positive and the present value of future cashflows

is strictly smaller than their nominal value. In this case, a sudden death event might interrupt

the discounting effect, thereby yielding a higher fair value.
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2021: Without step-up,
α = 13.51%

no mortality risk

β = 15%
S 100.58

S+S 101.27
D 101.62

2021: With step-up,
α = 13.51%

no mortality risk

β = 15%
S 103.55

S+S 104.10
D 104.69

2022: Without step-up,
α = 0.6270%

no mortality risk

β = 10%
S 96.75

S+S 97.39
D 99.60

2022: With step-up,
α = 0.6270%

no mortality risk

β = 10%
S 105.55

S+S 108.12
D 109.67

Table 9. Fair values of a GMWB annuity at t = 0, with no mortality risk. Parameters as in
Tables 6 and 7.

4.3.2. Impact of the parameters of the market model. We now analyse the sensitivity of the fair

value of a GMWB annuity with respect to the parameters of the model described in Section 2.2.

Table 10 reports the sensitivity of the fair value of the GMWB annuity with respect to changes

in σS , σr and ρ in the 2021 scenario, while the results for the current 2022 scenario are reported

in Table 11. In Table 10, we also report the results of an additional numerical test, consisting in

the computation by Monte Carlo simulations of the 95% confidence interval of the fair value of a

GMWB annuity (with and without step-up feature, with static withdrawals). This test aims at

assessing the reliability of our algorithm across different configurations of the model parameters.

Out of the 100 prices computed by relying on our algorithm, only 7 do not belong to the Monte

Carlo confidence interval. The largest absolute difference between the value obtained through

our algorithm and the Monte Carlo estimate is equal to 0.26, while the average of all differences

is 0.00, implying that our valuation algorithm has no systematic bias.

The sensitivity analysis reveals the following roles of the model parameters:

σS : Fair values are always increasing in the volatility σS of the underlying fund, across all

interest rate scenarios and withdrawal policies, with and without the step-up feature.

This finding is in line with the literature and reflects the optionality of the GMWB

annuity. The sensitivity is small when there is no step-up feature, because in this case

the return of the underlying fund determines only the terminal cashflow. Including the

step-up feature, the sensitivity is instead quite large, since the return of the underlying

fund might lead to an increase of the benefit account at each anniversary date.

σr: Fair values are almost always increasing in the volatility σr of the interest rate, across

all scenarios and withdrawal policies, with and without the step-up feature. This finding

is coherent with, e.g., [KZ18, Section 5.2] and can be explained as follows. A larger

σr makes extreme realizations of r more likely. On the one hand, high values of r are

associated to higher values of the expected return of S, with a positive effect on the

GMWB annuity’s cashflows, but with a negative effect due to the stronger discounting.

On the other hand, low values of r decrease the expected return of S, with a negative

effect on the cashflows, but with a positive effect due to a milder discounting. There

is therefore a trade-off in the role of σr, taking also into account that the optionality

of the GMWB annuity and its guarantees shield only the negative impact of r on the

cashflows, whereas the impact on the discounting is unaffected. We can also observe

that fair values are more sensitive to changes in σr in the dynamic withdrawal case.
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2021: Without σS
step-up 10% 15% 20% 25% 30%

σr

1%
S (MC)

98.60 98.60 98.91 99.35 99.67
±0.039 ±0.039 ±0.041 ±0.048 ±0.068

S 98.57 98.67 98.89 99.26 99.70
D 98.62 98.74 98.99 99.41 99.94

1.5%
S (MC)

98.67 98.78 99.03 99.46 99.81
±0.056 ±0.056 ±0.057 ±0.062 ±0.074

S 98.63 98.75 99.00 99.39 99.84
D 98.95 99.08 99.35 99.79 100.32

2%
S (MC)

98.72 98.90 99.11 99.48 100.11
±0.073 ±0.073 ±0.074 ±0.077 ±0.086

S 98.71 98.85 99.13 99.54 100.00
D 99.57 99.71 100.00 100.45 101.00

2.5%
S (MC)

98.74 98.90 99.24 99.63 100.20
±0.091 ±0.09 ±0.09 ±0.093 ±0.103

S 98.82 98.98 99.29 99.72 100.18
D 100.55 100.69 100.99 101.44 101.99

3%
S (MC)

99.00 99.12 99.46 99.90 100.28
±0.109 ±0.108 ±0.108 ±0.11 ±0.118

S 98.96 99.14 99.48 99.92 100.38
D 101.79 101.94 102.23 102.67 103.21

2021: With σS
step-up 10% 15% 20% 25% 30%

σr

1%
S (MC)

98.69 99.57 101.33 103.53 106.31
±0.04 ±0.043 ±0.056 ±0.079 ±0.115

S 98.70 99.62 101.27 103.54 106.34
D 98.79 99.77 101.49 103.78 106.42

1.5%
S (MC)

98.74 99.59 101.31 103.54 106.32
±0.056 ±0.058 ±0.065 ±0.086 ±0.118

S 98.68 99.65 101.29 103.54 106.30
D 99.13 100.15 101.90 104.21 106.89

2%
S (MC)

98.74 99.68 101.38 103.62 106.29
±0.073 ±0.073 ±0.079 ±0.094 ±0.122

S 98.70 99.70 101.36 103.61 106.24
D 99.77 100.82 102.60 104.94 107.62

2.5%
S (MC)

98.80 99.72 101.37 103.63 106.28
±0.091 ±0.091 ±0.094 ±0.107 ±0.129

S 98.71 99.67 101.46 103.54 106.27
D 100.75 101.82 103.63 105.96 108.64

3%
S (MC)

98.81 99.75 101.38 103.59 106.26
±0.109 ±0.108 ±0.11 ±0.121 ±0.143

S 98.87 99.80 101.36 103.53 106.27
D 102.01 103.08 104.89 107.22 109.88

2021: Without σr
step-up 1% 1.5% 2% 2.5% 3%

ρ

-90%
S (MC)

98.82 98.83 98.87 98.86 98.99
±0.135 ±0.118 ±0.109 ±0.102 ±0.093

S 98.78 98.81 98.86 98.94 99.05
D 98.83 99.12 99.71 100.68 101.90

-50%
S (MC)

98.87 98.86 98.90 98.93 99.03
±0.134 ±0.12 ±0.111 ±0.103 ±0.095

S 98.80 98.84 98.90 98.99 99.10
D 98.87 99.17 99.76 100.72 101.95

0
S (MC)

98.88 98.98 99.02 99.02 99.13
±0.134 ±0.121 ±0.109 ±0.1 ±0.098

S 98.84 98.91 99.00 99.12 99.26
D 98.93 99.26 99.88 100.85 102.09

50%
S (MC)

98.91 99.08 99.08 99.23 99.41
±0.13 ±0.115 ±0.106 ±0.098 ±0.09

S 98.89 99.00 99.13 99.29 99.48
D 98.99 99.35 100.00 100.99 102.23

90%
S (MC)

98.85 99.16 99.23 99.50 99.81
±0.125 ±0.115 ±0.104 ±0.094 ±0.088

S 98.93 99.08 99.25 99.45 99.68
D 99.03 99.42 100.09 101.08 102.31

2021: With σr
step-up 1% 1.5% 2% 2.5% 3%

ρ

-90%
S (MC)

101.42 101.16 101.23 101.10 100.93
±0.264 ±0.234 ±0.209 ±0.195 ±0.183

S 101.23 101.22 101.14 101.20 101.06
D 101.87 102.17 102.83 103.79 104.99

-50%
S (MC)

101.36 101.17 101.29 101.30 101.18
±0.23 ±0.209 ±0.19 ±0.176 ±0.17

S 101.28 101.22 101.22 101.23 101.21
D 101.57 101.90 102.58 103.57 104.81

0
S (MC)

101.22 101.27 101.20 101.28 101.38
±0.184 ±0.171 ±0.162 ±0.155 ±0.147

S 101.23 101.26 101.30 101.27 101.30
D 101.49 101.85 102.54 103.55 104.80

50%
S (MC)

101.29 101.12 101.40 101.41 101.44
±0.151 ±0.141 ±0.133 ±0.132 ±0.129

S 101.30 101.29 101.38 101.28 101.43
D 101.49 101.90 102.60 103.62 104.89

90%
S (MC)

101.29 101.37 101.60 101.53 101.63
±0.128 ±0.118 ±0.115 ±0.111 ±0.112

S 101.28 101.33 101.39 101.44 101.59
D 101.57 102.09 102.83 103.90 105.21

Table 10. Fair value of a GMWB annuity at t = 0 for different values of σS and σr (resp. σr

and ρ) in the top (resp. bottom) panel. Rows labelled by S (resp. D) refer to the case of static
(resp. dynamic) withdrawals. When static withdrawals are considered, rows labelled by (MC)
display the Monte Carlo estimate with 100000 paths and the 95% confidence interval. T = 10,
α = 13.51%, β = 15% and remaining parameters as in Table 5, as of 12/30/2021. Parameters:
m = 2, nA = 30, nB = 10 for the left panel with no step-up feature, nB = 30 for the right panel
with the step-up feature.

ρ: The impact of the correlation ρ between market and interest rate risks is almost always

positive19, with a more pronounced effect for larger values of σr, coherently with the

findings reported in [GIZ19, Section 4.1.2]. However, the sensitivity is rather small and

of second order if compared to the volatility parameters, in line with [KZ18, Section 5.2].

a: The impact of the speed of mean reversion parameter a is of the same order of magnitude

of ρ. Table 12 reports the fair values for different values of a. The variations in the fair

values are quite limited and the monotonicity varies across different withdrawal schemes,

interest rate scenarios and depending also on the presence of the step-up feature.

19We acknowledge that small instabilities, due to numerical imprecision, arise when the fair price varies very little
with the correlation, like in the 2021 scenario with static withdrawals when the step-up feature is included.
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2022: Without σS
step-up 10% 15% 20% 25% 30%

σr

1%
S 92.42 94.63 96.25 96.98 96.93
D 93.31 95.5 97.51 99.07 100.00

1.5%
S 93.13 95.72 97.43 98.03 97.72
D 94.13 96.81 99.26 101.10 102.10

2%
S 93.36 95.95 97.48 97.82 97.25
D 94.51 97.38 100.00 101.85 102.82

2.5%
S 93.35 95.73 96.96 97.01 96.20
D 94.70 97.64 100.25 102.01 102.90

3%
S 93.15 95.20 96.07 95.84 94.82
D 94.80 97.71 100.22 101.86 102.64

2022: With σS
step-up 10% 15% 20% 25% 30%

σr

1%
S 94.91 98.96 102.66 105.58 107.65
D 95.87 100.18 104.95 109.44 113.14

1.5%
S 96.07 100.87 105.13 108.42 110.73
D 97.24 102.58 108.29 113.66 118.18

2%
S 96.50 101.42 105.66 108.88 111.12
D 97.88 103.69 109.84 115.59 120.50

2.5%
S 96.58 101.31 105.28 108.26 110.30
D 98.24 104.28 110.61 116.56 121.65

3%
S 96.42 100.78 104.38 107.04 108.85
D 98.47 104.59 111.00 117.02 122.19

2022: Without σr
step-up 1% 1.5% 2% 2.5% 3%

ρ

-90%
S 96.53 90.55 87.09 84.48 82.29
D 97.93 92.99 90.79 89.46 88.54

-50%
S 97.39 93.58 91.09 89.14 87.50
D 98.94 95.80 94.14 93.01 92.14

0
S 97.29 96.00 94.77 93.56 92.37
D 98.86 98.12 97.50 96.95 96.44

50%
S 96.25 97.43 97.48 96.96 96.07
D 97.51 99.26 100.00 100.25 100.22

90%
S 94.80 98.04 99.22 99.24 98.57
D 95.60 99.59 101.69 102.75 103.22

2022: With σr
step-up 1% 1.5% 2% 2.5% 3%

ρ

-90%
S 104.49 95.76 91.42 88.44 86.09
D 108.13 99.98 96.49 94.44 93.02

-50%
S 105.22 99.81 96.63 94.29 92.40
D 108.45 103.58 101.12 99.56 98.40

0
S 104.66 103.14 101.68 100.26 98.86
D 107.52 106.69 106.00 105.39 104.84

50%
S 102.66 105.13 105.66 105.28 104.38
D 104.95 108.29 109.84 110.61 111.00

90%
S 99.79 105.84 108.49 109.21 108.83
D 101.59 108.68 112.72 115.11 116.60

Table 11. Fair value of a GMWB at t = 0 for different values of σS and σr (resp. σr and
ρ) in the top (resp. bottom) panels. Rows labelled by S (resp. D) refer to the case of static
(resp. dynamic) withdrawals. T = 10, α = 0.6720%, β = 10% and remaining parameters as of
12/30/2022. Parameters: m = 2, nA = 30, nB = 10 for the left panel with no step up feature,
nB = 30 for the right panel with the step up feature.

2021: Without a
step-up 5% 10% 15% 20% 25%

S 99.16 99.13 99.10 99.08 99.06
D 100.68 100.00 99.61 99.39 99.25

2021: With a
step-up 5% 10% 15% 20% 25%

S 101.25 101.36 101.37 101.46 101.47
D 103.25 102.60 102.22 102.01 101.88

2022: Without a
step-up 5% 10% 15% 20% 25%

S 95.8 96.75 97.77 99.05 100.82
D 99.06 99.6 100.3 101.36 102.99

2022: With a
step-up 5% 10% 15% 20% 25%

S 104.17 105.66 107.14 108.8 110.84
D 108.95 109.84 110.93 112.39 114.46

Table 12. Fair value of a GMWB at t = 0 for different values of a. Parameters as in Tables 6
and 7.

4.3.3. Valuation of the bonus feature. We now analyze a GMWB annuity with step-up and bonus

features. As already mentioned, the step-up feature alone delivers a significant benefit, with the

consequent difficulty of selling at par a GMWB with step-up, unless significant penalties and fees

are applied. We consider a relatively small bonus equal to b = 2.5 (i.e., b = 2.5% of P ). Table

13 reports the fair values of the benchmark GMWB annuity in the two interest rate scenarios.

Clearly, when the bonus feature is included, the fair values increase significantly. This is due

to the fact that, when the bonus feature is present, the PH is prone to substitute moderate

withdrawals with zero withdrawals in order to gain the bonus. This possibility is even more

valuable in the 2021 scenario, when interest rate are negative. The impact of the bonus feature

on the optimal withdrawal strategies is illustrated in Figure 7 in the next section.

4.4. Optimal withdrawal strategies. In this section, we investigate numerically the optimal

withdrawal strategies. For each interest rate scenario, we consider the benchmark GMWB
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scenario α β no step-up step-up only step-up + bonus
2021 13.51% 15% 100.00 102.60 112.55
2022 0.6720% 10% 100.00 107.54 114.98

Table 13. Fair value of a GMWB annuity with b = 2.5, dynamic withdrawals. Parameters:
m = 2, nA = nB = 80.

annuity, with and without the step-up feature, at five years after inception. We consider the

optimal withdrawal strategies associated to the three central values among the 5(m+1) possible

values of r along its binomial tree discretization (see Section 3). In the 2021 scenario, where

r0 = −0.67%, the three central nodes at t = 5 are r = 2.79%, r = 0.48%, r = −1.82%,

representing three benchmark situations: the interest rate is positive/almost zero/negative. For

the 2022 scenario, where r0 = 2.19%, the three central nodes are r = 5.65%, r = 3.35% and

r = 1.04%. For each node, we consider the nA × nB matrix containing the optimal withdrawal

decisions associated to all points in the grid A× B (see Section 3). Figures 4 and 5 display the

optimal withdrawal strategies in the 2021 and 2022 market scenarios, respectively.

4.4.1. No step-up feature. We can observe that, in the 2022 scenario when the interest rate is

positive (see panels g, h, i), the optimal withdrawal policies are qualitatively similar to the ones

shown in [CVF08] (considering a constant and positive interest rate), in [GMZ19] (considering

a Hull-White model with a negligible probability of negative rates) and in [GIZ19] (considering

a strictly positive CIR interest rate process).

Interestingly, even in the absence of the step-up feature, the optimal withdrawal policy in

the 2021 scenario is markedly different, demonstrating that a market environment with negative

rates significantly alters the optimal withdrawal decisions. To the best of our knowledge, this

phenomenon has never been reported in the literature. When the interest rate is close to zero

(panel b) or even negative (panel c) and the benefit account is greater than the investment

account, it is not convenient anymore to withdraw in excess of G, since the PH can benefit

from the low interest rate environment and she is better off by withdrawing only G, without

any penalty, and cashing in more later in time. If, on the contrary, the investment account is

larger than the benefit account and sufficiently far away from zero, it is optimal to withdraw

more than G in order to protect the investment account from the management fee α. When the

interest rate is markedly negative (panel c), we see that there is a wider region in the bottom

left corner where it is optimal to withdraw less than the guaranteed amount G.

4.4.2. Step-up feature. The inclusion of the step-up feature changes significantly the optimal

withdrawal policies, showing a peculiar behavior that has never been reported in the literature

so far. In the two interest rate scenarios, we can observe that, when the interest rate is positive

(panels d, j, k, l), the A × B plane splits into three regions: the one on the left of the bisector

(when B > A), a region on the top right of the bisector (when A > B and A > A∗, where A∗

is a threshold that depends on the interest rate level) and a smaller region on the bottom left

of the the bisector (when A > B and A ∈ [0, A∗]). In the first region (B > A) it is always

optimal to withdraw more than the guaranteed amount G. This is because when B > A it is

relatively unlikely that A will matter for both the step-up and the terminal payoff. Therefore,

the PH is better off by withdrawing from the benefit account rather than waiting until maturity,

due to the positivity of interest rates. In the second region it is optimal to withdraw only the

minimum guaranteed amount G, because the PH wants to benefit as much as possible from the

step-up feature that is likely to increase the benefit account when A > B. In the third region

it is optimal to withdraw less than the guaranteed minimum G or nothing at all, because both
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2021, t = 5, r = 0.4847%
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2021, t = 5, r = -1.8247%
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Figure 4. Optimal withdrawal policies at t = 5 for different level of the interest rate. T = 10
and model parameters as of 12/31/2021. Parameters: m = 3, nA = 40, nB = 20 for the panels
with no step-up feature, nB = 40 for the panels with the step-up feature.

accounts are too close to zero. Since, anyway, the investment account is worth a bit more than

the benefit account, it is convenient to wait for the next step-up, taking also into account the

fact that the penalty will not be relevant for small values of the accounts.
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Panel h) Panel k)
2022, t = 5, r = 3.345%
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2022, t = 5, r = 1.0356%
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Figure 5. Optimal withdrawal policies at t = 5 for different level of the interest rate. T = 10
and model parameters as of 12/30/2022. Parameters: m = 3, nA = 40, nB = 20 for the panels
with no step up feature, nB = 40 for the panels with the step up feature.

When interest rates are negative (panels c, f) the first two regions described above are replaced

by a large region where it is optimal to withdraw only the guaranteed amount G. Indeed, in the

presence of a negative interest rate, it is generally optimal to wait and restrict withdrawals to the
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minimum guaranteed amount G, in order to avoid excessive penalties in the future withdrawals

or in the payoff at maturity.

4.4.3. Optimal withdrawals under smaller penalties/fees. For the sake of completeness we report

in Figure 6 the optimal withdrawal policies in the 2021 scenario considering smaller fees and

penalties: α = β = 10% in the left panels (panels m, n, o) and α = β = 5% in the right

ones (panels p, q, r). In this case, when the interest rate is positive (panels m, p), the region

associated to no withdrawal becomes significantly larger and covers parts of Figure 4 (panel d)

where it was optimal to withdraw the guaranteed amount G. This is explained by the lower

penalties and fees, which make it attractive to wait for possible better payoffs at later dates.

When the interest rate is close to zero (panels n, q) the PH either withdraws G or nothing and

when the interest rate is negative (panels o, r) she withdraws nothing at all.

4.4.4. Optimal withdrawals with bonus feature. Finally, Figure 7 shows how the presence of the

bonus feature affects optimal withdrawals. Comparing Figure 7 with the right panels of Figures

4 (panels d, e, f) and 5 (panels j, k, l), we see that the inclusion of the bonus feature removes all

regions where it was optimal to withdraw only the guaranteed amount G and where it is now

optimal to make no withdrawal at all, in order to gain the bonus. Indeed, when the interest rate

is low (or even negative) (panels t, u) there is no incentive to withdraw since by waiting the PH

can receive the bonus, while the discounting does not penalize future cashflows.

5. Conclusions

In the present paper, we analyzed GMWB annuities in the context of a stochastic model

of a financial market with interest rate risk. We considered a comprehensive specification of

the contract, allowing for several features including dynamic withdrawals, the possibility of

surrender, step-up and bonus features, and taking also into account mortality risk. Despite the

presence of correlation between market and interest rate risks, the structure of our model enables

us to consider the interest rate process as the only relevant driving process, exploiting the explicit

description of the joint probability distribution. We framed the valuation problem into a dynamic

programming setting and we developed a reliable and flexible algorithm for its numerical solution.

We have analyzed the determinants of the fair value of GMWB annuities and the corresponding

optimal withdrawal strategies in relation to two interest rate scenarios, characterized respectively

by low/negative rates (at 12/31/2021) and positive rates (at 12/30/2022).

Our results show that low (possibly negative) interest rates profoundly affect the valuation

of GMWB annuities and their optimal withdrawal policies. In particular, we have shown that

selling at par GMWB annuities in a low interest rate environment requires setting very large

penalties for excess withdrawals and management fees. Low/negative interest rates pose serious

challenges to insurance companies, as mid to long maturity products with protective features

are either extremely costly to replicate or necessitate large penalties and fees that might make

those products unattractive for retail investors.

Among the possible directions of further research, we believe that the extension of our frame-

work to regime-switching models is particularly promising (see, e.g., [Cos17, ISZ16, KSZZ22]).

Indeed, the different interest rate behavior from the 2021 scenario to the 2022 scenario can

be interpreted as the outcome of a regime-switch, corresponding to a change in the monetary

policy. The extension to regime-switching interest rate models can therefore take into account

macroeconomic risks that are not reflected in simple diffusive models for the interest rate.
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With step-up, α = β = 10% With step-up, α = β = 5%
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Panel n) Panel q)
2021, t = 5, r = 0.4847%
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2021, t = 5, r = -1.8247%
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Figure 6. Optimal withdrawal policies at t = 5 for different level of the interest rate. T = 10
and model parameters as as of 12/31/2021. Parameters: m = 3, nA = 40, nB = 40.
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Figure 7. Optimal withdrawal policies at t = 5 of a GMWB with b = 2.5 for different level of
the interest rate across the two different scenarios. Parameters: m = 2, nA = nB = 80.
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Appendix A.

A.1. The binomial discretization for the interest rate process. Following the work of

[NR90] on lattice discretizations of diffusions, we consider the following binomial discretization

of the interest rate process r = (rt)t≥0 defined by

drt = (θ(t)− art)dt+ σrdW
r
t , r0 ∈ R.

Let ∆t = n/T be the time step of a uniform discretization of the interval [0, T ]. The binomial

tree we consider for r is a discrete-time stochastic process r̃ = (r̃t)t=0,∆t,...,n∆t such that

r̃t+∆t =

{
r̃t +∆r with probability πt,

r̃t −∆r with probability 1− πt,

where ∆r := σr
√
∆t and

πt =


1
2 + θ(t)−ar̃t

2σr

√
∆t, if 0 ≤ 1

2 + θ(t)−ar̃t
2σr

√
∆t ≤ 1,

0, if 1
2 + θ(t)−ar̃t

2σr

√
∆t < 0,

1, if 1
2 + θ(t)−ar̃t

2σr

√
∆t > 1.

As discussed in the example following [NR90, Theorem 1], since rt is normally distributed and

the first two moments of r̃t+∆t − r̃t match the ones of drt as the time step ∆t goes to zero, the

process r̃ converges in distribution to its continuous-time counterpart r as n → +∞.

A.2. Proof of Proposition 2.4. As shown in [BM06, Subsection 3.3.1], it holds that

rs = rn−1e
−a(s−(n−1)) +

∫ s

n−1
e−a(s−u)θ(u)du+ σr

∫ s

n−1
e−a(s−u)dW r

u , for all s ≥ n− 1.

In particular, if ∆t represents the time between two consecutive anniversary dates n and n− 1,

(20) rn = rn−1e
−a∆t +

∫ n

n−1
e−a(n−u)θ(u)du+ σr

∫ n

n−1
e−a(n−u)dW r

u

and∫ n

n−1
rsds = rn−1

∫ n

n−1
e−a(s−(n−1))ds+

∫ n

n−1

∫ s

n−1
e−a(s−u)θ(u)duds+ σr

∫ n

n−1

∫ s

n−1
e−a(s−u)dW r

u ds

= rn−1
1− e−a∆t

a
+

∫ n

n−1

∫ s

n−1
e−a(s−u)θ(u)duds+ σr

∫ n

n−1

1− e−a(n−u)

a
dW r

u ,

(21)

where we have applied stochastic Fubini’s theorem on the Wiener integral. We now compute

the joint characteristic function of (
∫ n
n−1 rsds, rn,W

S
n −WS

n−1). For any (u1, u2, u3) ∈ R3, using

equations (20) and (21), we have that

E
[
exp

(
iu1

∫ n

n−1
rsds+ iu2rn + iu3(W

S
n −WS

n−1)

) ∣∣∣∣Fn−1

]
= exp

(
iu1

(
rn−1

1− e−a∆t

a
+

∫ n

n−1

∫ s

n−1
e−a(s−u)θ(u)du ds

)
+iu2

(
rn−1e

−a∆t +

∫ n

n−1
e−a(n−u)θ(u)du

))
× E

[
exp

(
iu1σr

∫ n

n−1

1− e−a(n−u)

a
dW r

u + iu2σr

∫ n

n−1
e−a(n−u)dW r

u

+ iu3

∫ n

n−1
(ρdW r

u +
√

1− ρ2dW⊥r
u )

) ∣∣∣∣Fn−1

]
,
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where we have used a Cholesky decomposition to write WS
t = ρW r

t +
√
1− ρ2W⊥r

t , for all

t ≥ 0, where W⊥r is a standard Brownian motion independent of W r. By independence, the

last conditional expectation can be computed as follows:

E

[
exp

(
i

∫ n

n−1

(
u1σr

1− e−a(n−u)

a
+ u2σre

−a(n−u) + u3ρ

)
dW r

u

)∣∣∣∣∣Fn−1

]
·

× E
[
exp
(
iu3
√
1− ρ2

(
W⊥r

n −W⊥r
n−1

))∣∣∣Fn−1

]
= exp

(
−1

2

∫ n

n−1

(
u1σr

1− e−a(n−u)

a
+ u2σre

−a(n−u) + u3ρ

)2

du

)
exp

(
−u23

2
(1− ρ2)∆t

)
.

Let us define

µ1,n−1 := rn−1
1− e−a∆t

a
+

∫ n

n−1

∫ s

n−1
e−a(s−u)θ(u)du ds,

µ2,n−1 := rn−1e
−a∆t +

∫ n

n−1
e−a(n−u)θ(u)du,

µ3,n−1 := 0

and

σ11 :=
σ2
r

a2

∫ n

n−1
(1− e−a(n−u))2du,

σ22 := σ2
r

∫ n

n−1
e−2a(n−u)du,

σ33 := ∆t,

σ12 :=
σ2
r

a

∫ n

n−1
e−a(n−u)(1− e−a(n−u))du,

σ13 := ρ
σr
a

∫ n

n−1
(1− e−a(n−u))du,

σ23 := ρσr

∫ n

n−1
e−a(n−u)du.

The explicit expressions of these parameters appearing in the statement of the proposition can

be obtained by explicitly computing the integrals, with the function θ : R+ → R given as in (7).

Using this notation, the joint characteristic function of (
∫ n
n−1 rsds, rn,W

S
n −WS

n−1) has the form

exp
(
iµ⊤

n−1u− 1

2
u⊤Σu

)
,

where

µn−1 :=

 µ1,n−1

µ2,n−1

0

 , Σ :=

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 and u :=

 u1
u2
u3

 ,

thus proving that (15) holds. Given this result, the fact that the distribution of WS
n − WS

n−1

conditionally on Fn−1 ∨ σ(
∫ n
n−1 rsds, rn) is given by (16) is standard (see for instance [Eat83]).

The only thing that needs to be checked is the existence of Σ−1
22 , where

Σ22 :=

[
σ11 σ21
σ21 σ22

]
.
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Figure 8. Yield curve, forwaed rate curve and long-run mean in percentage points as of
12/30/2015.

To this effect, we compute

detΣ22 = σ11σ22 − σ2
12 =

σ4
r

2a4
e−2a∆t(ea∆t − 1)

(
2− 2ea∆t + a∆t(1 + ea∆t)

)
.

Recalling that a > 0, the fact that detΣ22 > 0 follows by noting that, for any x > 0, it always

holds that ex − 1 > 0 and 2− 2ex + x(1 + ex) > 0. □

Appendix B. Supplementary Material

We provide here the details and the results of the valuation of general GMWB annuities

within a third interest rate scenario. More precisely, we consider here an intermediate scenario

between the ones analyzed in the paper considering the market as of the end of 201520, when

the current interest rate level was mildly negative (r(0) = −0.29%) as in 2021, but the outlook

was much more positive as in 2022. Indeed, looking at Figure 8, we can see the interest rate

was expected to become positive after a couple of years and increase even further afterwards.

Table 14 parallels Tables 6 and 7 of the paper. As we can see, in this new scenario it is possible

to let the withdrawal penalty take the standard value of β = 10% while getting a reasonable

fair management fee of α = 6.60%. As for the decomposition of the fair value of the GMWB

annuity described in Table 8 of the paper for the other two scenarios, in the 2015 one we get

again an intermediate situation in which CB (the present value of ten annual constant cashflows

equal to G) accounts for the 91.09%, GMWB (the fair value of the annuity without the step-up

feature) for the 3.59% and the step-up feature for the 5.31%.

Table 15 parallels Table 9 of the paper, showing that in this intermediate scenario, like in the

2021 one, accounting for mortality risk delivers a small increase of the fair values.

Tables 16 and 17 parallel Tables 10, 11 and 12 of the paper displaying the sensitivities of the

fair value of the GMWB annuity with respect to market model parameters. As expected, the

impact of σS and σr is again of first order whereas the one of ρ and a is of second order.

Finally, Figures 9 and 10 parallels Figures 4, 5 and 7 of the paper displaying optimal with-

drawal strategies for the 2015 scenario. Interestingly, we notice that optimal strategies are

qualitatively similar to the ones of the 2021 scenarios for low levels of the interest rates and to

the ones of the 2022 scenario for larger values. Therefore, this 2015 scenario looks indeed like

the midpoint between the other two.

20The parameters of the instantaneous forward curve as of 12/30/2015 are β0 = 3.0270, β1 = −3.3810, β2 =
37.9604, β3 = −43.1112, τ1 = 1.5904, τ2 = 1.6993.
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2015: Without α
step-up 0% 2.5% 5% 7.5% 10%

β

0%
S 107.74 102.94 99.86 98.01 96.96

S+S 111.18 106.59 104.06 102.94 102.57
D 115.31 110.27 107.45 105.90 105.07

5%
S 107.45 102.61 99.49 97.61 96.54

S+S 109.97 104.92 101.87 100.29 99.62
D 111.71 106.47 103.60 102.02 101.16

10%
S 107.16 102.28 99.13 97.21 96.11

S+S 109.21 103.83 100.41 98.41 97.36
D 109.31 104.03 101.16 99.50 98.58

15%
S 106.90 101.98 98.79 96.84 95.72

S+S 107.71 102.31 99.51 97.51 96.28
D 107.91 102.77 99.71 97.95 96.94

20%
S 106.66 101.7 98.47 96.49 95.34

S+S 107.05 101.98 98.60 96.92 95.65
D 107.20 102.09 98.89 97.00 95.92

2015: With α
step-up 0% 2.5% 5% 7.5% 10%

β

0%
S 117.28 110.93 106.65 103.62 101.51

S+S 120.51 115.44 111.85 109.31 107.53
D 126.98 119.73 114.97 111.80 109.66

5%
S 116.37 110.05 105.68 102.87 100.82

S+S 117.87 112.68 109.01 106.40 104.51
D 122.34 115.17 110.53 107.56 105.53

10%
S 115.33 109.20 104.92 102.14 100.14

S+S 115.67 110.37 106.57 103.90 101.96
D 118.64 111.81 107.52 104.73 102.81

15%
S 114.34 108.31 104.20 101.36 99.55

S+S 114.85 108.74 104.95 102.24 100.32
D 115.94 109.65 105.66 102.92 101.04

20%
S 113.56 107.53 103.43 100.74 98.98

S+S 113.78 107.60 103.72 101.04 99.13
D 114.07 108.29 104.38 101.70 99.81

2015: Without step-up α = 6.60%

β = 10%
S 97.79

S+S 98.51
D 100.00

2015: With step-up α = 6.60%

β = 10%
S 103.03

S+S 104.78
D 105.61

Table 14. Fair value of a GMWB annuity at t = 0 for different values of α and β. Rows
labelled by S (resp. S+S / D) refer to the case of static withdrawals (resp. static withdrawals
and surrender / dynamic withdrawals). T = 10 and market model parameters as of 12/30/2015.
Parameters: m = 2, nA = 30, nB = 10 for the panels with no step up feature, nB = 30 for the
panels with the step up feature.

2015: Without step-up,
α = 6.60%

no mortality risk

β = 10%
S 98.21
D 100.42

2015: With step-up,
α = 6.60%

no mortality risk

β = 10%
S 103.77
D 106.02

Table 15. Fair values of a GMWB annuity at t = 0, with no mortality risk. Parameters as in
Table 14.
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2015: Without σS
step-up 10% 15% 20% 25% 30%

σr

1%
S 95.15 96.04 97.32 98.63 99.63
D 96.55 97.26 98.45 99.92 101.31

1.5%
S 95.30 96.26 97.53 98.76 99.67
D 97.23 97.93 99.09 100.47 101.78

2%
S 95.52 96.53 97.79 98.95 99.78
D 98.16 98.86 100.00 101.35 102.58

2.5%
S 95.79 96.85 98.08 99.18 99.93
D 99.37 100.09 101.18 102.49 103.65

3%
S 96.11 97.20 98.4 99.43 100.11
D 100.79 101.54 102.58 103.83 104.96

2015: With σS
step-up 10% 15% 20% 25% 30%

σr

1%
S 96.89 99.37 102.73 106.71 111.12
D 97.53 100.64 104.60 109.04 113.64

1.5%
S 96.98 99.56 102.79 106.80 111.01
D 98.17 101.10 104.86 109.19 113.62

2%
S 97.09 99.70 103.03 106.78 111.11
D 99.10 101.92 105.61 109.87 114.21

2.5%
S 97.36 99.90 103.13 106.70 111.21
D 100.33 103.09 106.72 110.91 115.18

3%
S 97.45 100.07 103.38 107.11 111.15
D 101.78 104.50 108.10 112.23 116.43

2015: Without σr
step-up 1% 1.5% 2% 2.5% 3%

ρ

-90%
S 95.66 95.71 95.69 95.66 95.67
D 96.81 97.48 98.27 99.36 100.69

-50%
S 96.14 96.21 96.25 96.32 96.42
D 97.30 97.95 98.79 99.92 101.27

0
S 96.75 96.87 97.02 97.22 97.45
D 97.91 98.55 99.44 100.62 102.00

50%
S 97.32 97.53 97.79 98.08 98.40
D 98.45 99.09 100.00 101.18 102.58

90%
S 97.76 98.08 98.41 98.75 99.10
D 98.80 99.52 100.42 101.59 103.00

2015: With σr
step-up 1% 1.5% 2% 2.5% 3%

ρ

-90%
S 102.40 102.35 102.40 102.15 102.24
D 100.79 102.56 104.15 105.77 107.47

-50%
S 102.49 102.46 102.51 102.37 102.41
D 101.79 103.07 104.37 105.81 107.40

0
S 102.53 102.69 102.76 102.77 102.80
D 103.22 103.94 104.95 106.22 107.70

50%
S 102.68 102.86 103.03 103.13 103.36
D 104.60 104.86 105.61 106.72 108.10

90%
S 102.83 103.01 103.25 103.39 103.71
D 105.96 105.91 106.43 107.39 108.68

Table 16. Fair value of a GMWB annuity at t = 0 for different values of σS and σr (resp. σr

and ρ) in the top (resp. bottom) panel. Rows labelled by S (resp. D) refer to the case of static
(resp. dynamic) withdrawals. When static withdrawals are considered, rows labelled by (MC)
display the Monte Carlo estimate with 100000 paths and the 95% confidence interval. T = 10,
α = 6.60%, β = 10% and remaining parameters as in Table 15, as of 12/30/2015. Parameters:
m = 2, nA = 30, nB = 10 for the left panel with no step-up feature, nB = 30 for the right panel
with the step-up feature.

2015: Without a
step-up 5% 10% 15% 20% 25%

S 97.73 97.79 97.84 97.90 97.98
D 100.60 100.00 99.61 99.38 99.25

2015: With a
step-up 5% 10% 15% 20% 25%

S 102.79 103.03 103.12 103.13 103.13
D 106.17 105.61 105.26 105.06 104.94

Table 17. Fair value of a GMWB at t = 0 for different values of a. Parameters as in Table 15.

scenario α∗ β∗ no step-up step-up only step-up + bonus
2015 6.60% 10% 100.00 105.61 117.10

Table 18. Fair value of a GMWB annuity with b = 2.5, dynamic withdrawals. Parameters:
m = 2, nA = nB = 80.
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Figure 9. Optimal withdrawal policies at t = 5 for different level of the interest rate. T = 10
and model parameters as of 12/30/2015. Parameters: m = 3, nA = 40, nB = 20 for the panels
with no step-up feature, nB = 40 for the panels with the step-up feature.
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Figure 10. Optimal withdrawal policies at t = 5 of a GMWB with b = 2.5 for different level
of the interest rate across the two different scenarios. Parameters: m = 2, nA = nB = 80.


	1. Introduction
	2. General GMWB annuities and valuation framework
	2.1. The GMWB annuity
	2.2. The stochastic model
	2.3. Valuation by dynamic programming

	3. The valuation algorithm
	3.1. Structure of the algorithm
	3.2. Extensions of the model

	4. Numerical Results
	4.1. Algorithm validation
	4.2. Pricing of GMWB annuities and interest rate scenarios
	4.3. Determinants of the GMWB annuity's price
	4.4. Optimal withdrawal strategies

	5. Conclusions
	References
	Appendix A. 
	A.1. The binomial discretization for the interest rate process
	A.2. Proof of Proposition 2.4

	Appendix B. Supplementary Material

