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Abstract
We construct a flexible dynamic linear model for the analysis and prediction of mul-
tivariate time series, assuming a two-piece normal initial distribution for the state 
vector. We derive a novel Kalman filter for this model, obtaining a two components 
mixture as predictive and filtering distributions. In order to estimate the covariance 
of the error sequences, we develop a Gibbs-sampling algorithm to perform Bayes-
ian inference. The proposed approach is validated and compared with a Gaussian 
dynamic linear model in simulations and on a real data set.

Keywords  Two-piece normal distribution · Skew-normal distribution · Bayesian 
inference · Kalman filter · FFBS algorithm

1  Introduction

State-space models have been extensively considered in diverse areas of application 
for modeling and forecasting time series. An important special case is the class of 
dynamic linear models (hereafter dlm). This class of models includes the ordinary 
static linear model as a special case, and assumes that the parameters can change 
over time, thus incorporating in the observational system variations that can signifi-
cantly affect the observed behavior of the process of interest. The dlm is defined by

for t = 1,… , T  , where Yt is a r × 1 response vector, Ft is a p × r matrix that links the 
observed data with �t , a p × 1 vector of latent states at time t, Gt is a p × p transition 

Yt =F
⊤

t
�t + �t (observation equation),

�t =Gt�t−1 + �t (system or state equation),

 *	 Bruno Scarpa 
	 bruno.scarpa@unipd.it

1	 Dipartimento di Scienze Statistiche, Università di Padova, Padua, Italy
2	 Departamento de Estadística, Pontificia Universidad Católica de Chile, Santiago, Chile
3	 Dipartimento di Matematica “Tullio Levi Civita”, Università di Padova, Padua, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-023-01355-3&domain=pdf
http://orcid.org/0000-0002-9628-5164


	 E. Aliverti et al.

1 3

matrix, which describes the evolution of the state parameters. The terms �t and �t 
are mutually independent white-noise vectors of dimension r × 1 and p × 1 , respec-
tively, with zero-means and constant variance-covariance matrice V and W , respec-
tively. The most popular case is the Gaussian dlm, which assumes that

all being mutually independents for each t = 1,… , T  , where Nk(�,�) denotes the 
k-variate normal distribution with mean vector � and variance-covariance matrix � . 
For an extensive introduction to dlms with a Bayesian perspective, refer to West and 
Harrison (1997), Petris et al. (2009). In this article, we focus on a setting where Ft 
and Gt are known, consistently with classical Kalman filter setting (Kalman 1960) 
and recent developments in state-space models (e.g., Fasano et al. 2021).

Leveraging the properties of the multivariate normal distribution and the 
structure of the Gaussian dlm, it is possibile to derive closed form expressions 
for the predictive and filtering distributions and conduct dynamic inference on 
the states �t via Kalman filter, conditioning on Ft,Gt,W and V . However, Naveau 
et al. (2005) observed that the Gaussian assumption may be questionable for a 
large number of applications, as many distributions used in a state-space model 
can be skewed. In order to mitigate this issue, Naveau et  al. (2005) assumed 
that state initial parameter vector �0 follows a multivariate closed skew-normal 
distribution, preserving the typical assumptions of independence and normality 
for the error sequences �t and �t . From this work, several authors have proposed 
different mechanisms to obtain dlm with more skewness. For instance, Kim et al. 
(2014) extended the results in Naveau et  al. (2005) by assuming a scale mix-
tures of closed skew-normal distributions for the initial state parameter vector 
�0 ; Cabral et al. (2014) proposed a Bayesian dlm relaxing the assumption of nor-
mality and assuming an extended skew-normal (Azzalini and Capitanio 1999) 
for the initial distribution of the state parameter; Arellano-Valle et  al. (2019) 
proposed a dlm in which the error sequence �t in the observational equation are 
assumed to have multivariate skew-normal distribution. Furthermore, several 
authors have been dealing with a similar problem; see, for example, Gualtierotti 
(2005), Pourahmadi (2007), Corns and Satchell (2007), among many others.

In this work we take a similar perspective, and derive a novel dlm that allows 
one to induce asymmetry by means of a scalar parameter, inducing a skewed 
initial distribution for the state space parameter �0 . Our purpose is to replace 
the normal distribution for �0 by a more flexible one, incorporating asymmetry 
via a two-piece normal (tpn) mixing distribution. Using this simple method, we 
obtain an extension of the classic Kalman filter, and closed form expressions 
for one-step-ahead and filtering distributions. These results are further combined 
into a Markov-Chain Monte Carlo procedure via a forward filtering–backward 
sampling algorithm to provide inference on the covariances V and W of the error 
terms, providing posterior inference on the unknown quantities.

�t

ind.
∼ Nr(0,V), �t

ind.
∼ Np(0,W), �0 ∼ Np(m0,C0),
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2 � Two‑piece normal and skew normal distributions

2.1 � Two‑piece normal distributions

According to Arellano-Valle et al. (2005), a continuous random variable Y follows a 
two-piece normal (tpn) distribution with location � , scale � and asymmetry param-
eter � if its density function for any y ∈ ℝ can be written as

where �(x) denotes the density of a standard Gaussian and IA(x) denotes the indica-
tor function of the set A; we write such a distribution compactly as Y ∼ TPN(�, �, �) . 
Skewness is controlled via two functions a(�) and b(�) satisfying the following 
properties: 

	 (i)	 a(�) and b(�) are positive-valued functions for � ∈ (�L, �U) , a possibly infinite 
interval;

	 (ii)	 one of the functions is (strictly) increasing and the other is (strictly) decreas-
ing;

	 (iii)	 there exists an unique value �∗ ∈ (�L, �U) such that a(�∗) = b(�∗) , and therefore 
the tpn density (1) becomes 

In addition, the tpn distribution has several interesting formal properties in terms 
of stochastic construction (Arellano-Valle et  al. 2005). The following list includes 
those most relevant for the purposes of this work:

P1. The tpn density (1) can be expressed as a finite mixture of two truncated nor-
mal densities fa and fb given by

That is,

where

P2. If Y ∼ h , then Y
d
= � + �W�V  , where the notation d

= indicates equality in 
distribution. Specifically, V ∼ TN(0, 1, [0,∞]) , a truncated normal with location 0, 
scale 1, truncated over the positive real line, while W� is an independent discrete 
random variable with probability function

(1)h(y) =
2

�(a(�) + b(�))

{
�

(
y − �

�a(�)

)
I[�,∞)(y) + �

(
y − �

�b(�)

)
I(−∞,�)(y)

}
,

h(y) =
2

�a(�∗)
�

(
y − �

�a(�∗)

)
.

fa(y) =
2

�a(�)
�

(
y − �

�a(�)

)
I[�,∞)(y), fb(y) =

2

�b(�)
�

(
y − �

�b(�)

)
I(−∞,�)(y).

(2)h(y) = �afa(y) + �bfb(y), y ∈ ℝ,

(3)�s =
s(�)

a(�) + b(�)
, s = a, b.
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which can be rewritten as

with s = sign (w) and �s defined by (3). Equivalently, if Y = � + �W� |X| , where 
X ∼ N(0, 1) and is independent of W� , then Y ∼ h . This stochastic representation 
allows one to obtain the mean and variance of Y leveraging the law of total 
expectation; refer to Arellano-Valle et al. (2020) for further details.

2.2 � Skew‑normal distribution

A random vector Y has a multivariate Skew-Normal sn distribution with location 
vector � , positive definite scale matrix � and skewness/shape vector � , denoted by 
Y ∼ SNp(�,�,�) , if its density function is given by

Here, �p(⋅;�,�) denotes the density function of the p-variate normal distribution 
with mean vector � and variance-covariance matrix � , and Φ(⋅) is the cumulative 
distribution function of a standard normal. The sn random vector Y ∼ SNp(�,�,�) 
can be introduced as the location-scale transformation Y = � +�

1∕2X , where X has 
the following stochastic representation:

where � = �∕(1 + �⊤�)
1∕2 , X0 ∼ N(0, 1) and X1 ∼ Np(0, Ip − ��⊤) , which are 

independent. By (4) we can get that if Y ∼ SNp(�,�,�) , then there are two 

independent random quantities Z and U , with Z
d
= |X0| and U

d
= �

1∕2X1 , such that

where � = �
1∕2� . Note that Z ∼ HN(0, 1) and U ∼ (0,� − ��

⊤) . Thus, using (5), 
it can be shown that the mean vector and variance-covariance matrix of Y are given 
respectively by

p(w;�) =

⎧
⎪⎨⎪⎩

�a if w = a(�),

�b if w = −b(�),

0 otherwise,

p(w;�) = �(s+1)∕2
a

�
(s−1)∕2

b
I{−1,1}(s),

f (y;�,�,�) = 2𝜙p(y;�,�)Φ(�⊤
�

−1∕2(y − �)), y ∈ ℝ
p.

(4)X
d
= �|X0| + X1,

(5)Y = � + �Z + U,

E(Y) = � +

√
2

𝜋
� and var (Y) = � −

2

𝜋
��

⊤.
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3 � A two‑piece normal dynamic linear model

3.1 � The initial state distribution

Our proposal in this section is to derive a more flexible dlm that regulates asym-
metry through a simple scalar parameter. Specifically, preserving the classical 
independence assumptions, we consider the dlm defined by

for t = 1,… , T  , replacing the initial state parameter �0 distribution with the follow-
ing hierarchical specification:

The model defined by the Eqs. (6, 7) and (8, 9) will be referred to as two-piece nor-
mal dynamic linear model (hereafter tpn-dlm).

As a first important result, we note that the hierarchical specification (8, 9) 
leads a mixture of two multivariate skew-normals as initial distribution for �0 . Its 
proof can be derived as a direct extension of Proposition 2 in Arellano-Valle et al. 
(2020), and so it is omitted here.

Proposition 3.1  Under the hierarchical representation defined by Eqs. (8, 9), the ini-
tial density of �0 is given by

where, for s = a, b , �s is defined by (3), and

Here it should be noted that from the well-known matrix inversion formula

we get, for s = a, b , that 1 − �⊤
s
�

−1
s
�s = (1 + �⊤

s
C0

−1�s)
−1

> 0 and 
�⊤
s
�

−1
s

= (1 + �⊤
s
C0

−1�s)
−1
�⊤
s
C0

−1 , so that the term �s defined in Proposition 3.1 
can be rewritten as

(6)Yt =F
⊤

t
�t + �t, �t ∼ Nr(0,V),

(7)�t =Gt�t−1 + �t, �t ∼ Np(0,W),

(8)�0|� ∼Np(m0 + ��0,C0),

(9)� ∼TPN(�, �0, �0).

(10)
p(�0) = 2𝜋a𝜙p(�0;�0,�a)Φ(�⊤

a
(�0 − �0)) + 2𝜋b𝜙p(�0;�0,�b)Φ(�⊤

b
(�0 − �0)),

�0 = m0 + 𝜇�0, �s = 𝜎0s(𝛾0)�0,

�s = C0 + �s�
⊤
s
, �s = (1 − �⊤

s
�

−1
s
�s)

−1∕2
�s

−1�s.

�
−1
s

= (C0 + �s�
⊤
s
)−1 = C0

−1 −
C0

−1�s�
⊤
s
C0

−1

1 + �⊤
s
C0

−1�s

,
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The distribution of the initial random vector �0 can be written as

which correspond to the density of a two-component mixture of the multivariate 
skew-normal densities reported in Sect. 2.2. Specifically, from Proposition (3.1), we 
see that the initial state parameter is distributed as

where

3.2 � The Kalman filter

Our next step is to develop a Kalman filter based on the new initial distribution 
given by (12), and assuming that the conditional distribution of � corresponds to a 
mixture of two truncated Gaussian densities.

Let Dt = {y1,⋯ , yt} denote the available information at time t, where yi indicates 
a realization of the random variable Yi . In the proposed tpn-dlm we consider a con-
ditionally normal distribution for �0 given � , with a tpn initial distribution for � (8). 
Furthermore, we assume by induction that

Specifically, the conditional distribution of � correspond to a mixture of two trun-
cated Gaussian with locations �s

t−1
 , scales �s

t−1
 and mixing weights �s

t−1
 with s = a, b 

and truncation point � , defined by the initial distribution given in 9.
Leveraging the conditional independence properties of the tpn-dlm outlined in 

Eq. 7, the one-step-ahead predictive distribution of �t given (�,Dt−1) is given by

�s = (1 + �⊤
s
C0

−1�s)
−1∕2

C0
−1�s.

(11)

p(�0) = 2�a�p(�0;m0 + ��0,C0 + �a�⊤
a )Φ

⎛

⎜

⎜

⎜

⎝

�⊤
aC

−1
0 (�0 − �0)

√

1 + �⊤
aC

−1
0 �a

⎞

⎟

⎟

⎟

⎠

+ 2�b�p(�0;m0 + ��0,C0 + �b�⊤
b )Φ

⎛

⎜

⎜

⎜

⎝

�⊤
bC

−1
0 (�0 − �0)

√

1 + �⊤
bC

−1
0 �b

⎞

⎟

⎟

⎟

⎠

,

(12)�0 ∼ �aSNp(�a,�a,�a) + �bSNp(�b,�b,�b),

�s = �0 and �s = (1 − �⊤
s
�

−1
s
�s)

−1∕2
�

−1∕2
s

�s, s = a, b.

(13)
�t−1|�,Dt−1 ∼ Np(mt−1 + �� t−1,Ct−1),

�|Dt−1 ∼ �a
t−1

TN(�a
t−1

, �a
t−1

, [�,∞)) + �b
t−1

TN(�b
t−1

, �b
t−1

, (−∞,�)).

(14)�t|(�,Dt−1)
d
= Gt(�t−1|(�,Dt−1)) + �t ∼ Np(at + �bt,Rt),
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where

Similarly, using (6) we find that the one-step-ahead predictive distribution of Yt 
given (�,Dt−1) becomes

where

In other words, from (14) and (16) we have that

and therefore

Finally, by applying the properties of the conditional normal distribution, we obtain 
the following filtering distribution of �t given (�,Dt):

where

with at , bt , Rt and �t defined as in (15) and (17), respectively.
The above results are formalized below:

Proposition 3.2  Consider the TPN-dlm defined by Eqs. (6)-(7) and (8)-(9), with the 
induction assumptions (13). Then: 

(i)	� The one-step-ahead conditional predictive distribution of 

(ii)	� The one-step-ahead conditional predictive distribution of 

(15)at = Gtmt−1, bt = Gt� t−1, Rt = GtCt−1G
⊤

t
+W.

(16)Yt|(𝜑,Dt−1)
d
= F⊤

t
(�t|(𝜑,Dt−1)) + �t ∼ Nr(F

⊤

t
at + 𝜑F⊤

t
bt,�t),

(17)�t = F⊤

t
RtFt + V.

[
Yt

�t

]
|(𝜑,Dt−1)

d
=

[
F⊤

t
Gt

Gt

]
(�t−1|(𝜑,Dt−1)) +

[
F⊤

t
Ir

Ip 0

] [
�t

�t

]
,

[
Yt

�t

]
|(𝜑,Dt−1) ∼ Np+r

([
F⊤

t
at

at

]
+ 𝜑

[
F⊤

t
bt

bt

]
,

[
�t F⊤

t
Rt

RtFt Rt

])
.

(18)�t|(�,Dt) ∼ Np(mt + �� t,Ct),

(19)
mt = at + RtFt�

−1
t
(yt − F⊤

t
at),

� t = bt − RtFt�
−1
t
F⊤

t
bt,

Ct = Rt − RtFt�
−1
t
F⊤

t
Rt,

⎫⎪⎬⎪⎭

�t|(�,Dt−1) ∼ Np(at + �bt,Rt);

Yt|(𝜑,Dt−1) ∼ Nr(F
⊤

t
at + 𝜑F⊤

t
bt,�t);
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(iii)	� The conditional filtering distribution of 

The next proposition establishes the conditional distribution of �|Dt.

Proposition 3.3  Consider the TPN-dlm defined by Eqs. (6)-(7) and (8)-(9), with the 
induction assumptions (13). Then the conditional distribution of �|Dt has a finite 
mixture density of two truncated Gaussian distributions, given by

where, for s = a, b,

and

where

This representation allows to characterize the expected value and variance of 
� ∣ Dt , which can be expressed as

and

�t|(�,Dt) ∼ Np(mt + �� t,Ct).

(20)�|Dt ∼ �a
t
TN(�a

t
, �a

t
, [�,∞)) + �b

t
TN(�b

t
, �b

t
, (−∞,�))

𝜂s
t
=

𝜂s
t−1

+ 𝜏s
t−1

b⊤
t
Ft�

−1
t
(yt − F⊤

t
at)

1 + 𝜏s
t−1

b⊤
t
Ft�

−1
t
F⊤

t
bt

, 𝜏s
t
=

𝜏s
t−1

1 + 𝜏s
t−1

b⊤
t
Ft�

−1
t
F⊤

t
bt

,

𝜋a
t
= ct𝜋

a
t−1

𝜙r(yt;F
⊤

t
(at + 𝜂a

t−1
bt),�t + 𝜏a

t−1
F⊤

t
btb

⊤

t
Ft)Φ

�
−
𝜇 − 𝜂a

t√
𝜏at

�
,

𝜋b
t
= ct𝜋

b
t−1

𝜙r(yt;F
⊤

t
(at + 𝜂b

t−1
bt),�t + 𝜏b

t−1
F⊤

t
btb

⊤

t
Ft)Φ

⎛
⎜⎜⎜⎝

𝜇 − 𝜂b
t�

𝜏bt

⎞
⎟⎟⎟⎠
,

c−1
t

= 𝜋a
t−1

𝜙r(yt;F
⊤

t
(at + 𝜂a

t−1
bt),�t + 𝜏a

t−1
F⊤

t
btb

⊤

t
Ft)Φ

�
−
𝜇 − 𝜂a

t√
𝜏at

�

+ 𝜋b
t−1

𝜙r(yt;F
⊤

t
(at + 𝜂b

t−1
bt),�t + 𝜏b

t−1
F⊤

t
btb

⊤

t
Ft)Φ

⎛
⎜⎜⎜⎝

𝜇 − 𝜂b
t�

𝜏bt

⎞
⎟⎟⎟⎠

(21)E{� ∣ Dt} = �a
t

⎡⎢⎢⎢⎣
�a
t
+
√
�at

�

�
�−�a

t√
�at

�

Φ
�
−

�−�at√
�at

�
⎤⎥⎥⎥⎦
+ �b

t

⎡⎢⎢⎢⎢⎢⎣

�b
t
−

�
�bt

�

�
�−�b

t√
�bt

�

Φ

�
�−�bt√

�bt

�

⎤⎥⎥⎥⎥⎥⎦
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A simpler expression for Var{� ∣ Dt} can be obtained in terms of Chi-square cumu-
lative distribution function, adapting (Barr and Sherrill 1999).

Immediate consequences of these results are given in the following proposition.

Proposition 3.4  Consider the TPN-dlm defined by Eqs. (6)-(7) and (8)-(9), with the 
induction assumptions (13). Then: 

(i)	� The one-step-ahead predictive distribution of �t given Dt−1 is 

 where, for s = a, b , 

(ii)	� The one-step-ahead predictive distribution of yt given Dt−1 is 

 where �s
t
 and �s

t
 , for s = a, b , are defined above in Proposition 3.3.

(22)

Var{� ∣ Dt} = �a
t

⎡

⎢

⎢

⎢

⎣

(�at )
2 + �at +

√

�at (� + �at )
�
(

�−�at
√

�at

)

Φ
(

−�−�at
√

�at

)

⎤

⎥

⎥

⎥

⎦

+ �b
t

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(�bt )
2 + �bt −

√

�bt (� + �bt )

�

(

�−�bt
√

�bt

)

Φ

(

�−�bt
√

�bt

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−
[

E{� ∣ Dt}
]2.

p(�t�Dt−1) = 𝜋a
t−1

𝜙p(�t;at + 𝜂a
t−1

bt,Rt + 𝜏a
t−1

btb
⊤

t
)Φ

�
−
𝜇 − 𝜒a

t√
𝜗at

�

+ 𝜋b
t−1

𝜙p(�t;at + 𝜂b
t−1

bt,Rt + 𝜏b
t−1

btb
⊤

t
)Φ

⎛
⎜⎜⎜⎝

𝜇 − 𝜒b
t�

𝜗bt

⎞
⎟⎟⎟⎠
,

𝜒 s
t
=

𝜂s
t−1

+ 𝜏s
t−1

b⊤
t
R−1
t
(�t − at)

1 + 𝜏s
t−1

b⊤
t
R−1
t
bt

, 𝜗s
t
=

𝜏s
t−1

1 + 𝜏s
t−1

b⊤
t
R−1
t
bt

.

p(yt�Dt−1) = 𝜋a
t−1

𝜙r(yt;F
⊤

t
(at + 𝜂a

t−1
bt),�t + 𝜏a

t−1
F⊤

t
btb

⊤

t
Ft)Φ

�
−
𝜇 − 𝜂a

t√
𝜏at

�

+ 𝜋b
t−1

𝜙r(yt;F
⊤

t
(at + 𝜂b

t−1
bt),�t + 𝜏b

t−1
F⊤

t
btb

⊤

t
Ft)Φ

⎛
⎜⎜⎜⎝

𝜇 − 𝜂b
t�

𝜏bt

⎞
⎟⎟⎟⎠
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(iii)	� The filtering distribution is 

 where �s
t
 , �s

t
 and �s

t
 , for s = a, b , are defined in in Proposition 3.3, and 

Proposition  3.4 shows the distribution of one-step-ahead predictive distribu-
tion of the states is typically skewed, and the same is true for the analogous pre-
dictive distribution of the response. Also, Proportion 3.4 shows that the filtering 
distribution is also typically skewed. This can be seen by comparing the results 
of our Proposition 3.4 with the results from the usual dlm (see, e.g., Petris et al. 
(2009)). Finally, since

and

then from equations (14), (16) and the property P3. of the tpn distribution (see 
Sect. 2.1), we obtain the following results:

Proposition 3.5  Under the tpn-dlm defined by Eqs. (6)-(7) and (8)-(9), with the 
induction assumptions (13), the one-step-ahead expected filtering and prediction 
distributions and their covariance matrices are, respectively, given by

where E{� ∣ Dt} and Var{� ∣ Dt} are derived in Eqs. 21 and 22, respectively.

(23)

p(�t|Dt) = �a
t �p(�t;mt + �at � t,Ct + �at � t�⊤

t )
Φ
(

−�−�at
√

�at

)

Φ
(

−�−�at
√

�at

)

+ �b
t �p(�t;mt + �bt � t,Ct + �bt � t�⊤

t )

Φ

(

�−�bt
√

�bt

)

Φ

(

�−�bt
√

�bt

) ,

𝛿s
t
=

𝜂s
t
+ 𝜏s

t
�⊤
t
C−1
t
(�t −mt)

1 + 𝜏st �
⊤
t
C−1
t
� t

, 𝜐s
t
=

𝜏s
t

1 + 𝜏st �
⊤
t
C−1
t
� t

.

E(�t|Dt−1) = E{E(�t|�,Dt−1)},

E(Yt|Dt−1) = E{E(Yt|�,Dt−1)},

Var(�t|Dt−1) = E{Var(�t|�,Dt−1)} + Var{E(�t|�,Dt−1)},

Var(Yt|Dt−1) = E{Var(Yt|�,Dt−1)} + Var{E(Yt|�,Dt−1)},

E(�t|Dt−1) = at + E{𝜑 ∣ Dt}bt,

Var(�t|Dt−1) = Rt + Var{𝜑 ∣ Dt}btb
⊤

t
,

E(Yt|Dt−1) = F⊤

t
at + E{𝜑 ∣ Dt}F

⊤

t
bt,

Var(Yt|Dt−1) = �t + Var{𝜑 ∣ Dt}F
⊤

t
btb

⊤

t
Ft,
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4 � Outline of Bayesian computation

In this section we combine the results obtained above to derive a forward filtering back-
ward sampling (ffbs) to conduct full Bayesian inference on the model’s parameters 
� = (�1,… ,�T ) , V and W via Markov-Chain Monte Carlo (mcmc). In particular, we 
assign Inverse-Wishart priors on the error covariances V and W as

where M and Z are positive definite matrix with size r × r and p × p , respectively, 
while � and g are scalars such that � > (r − 1)∕2 and g > (p − 1)∕2 . This choice 
guarantees that the covariance matrices V and W are positive definite.

Conditionally on the latent states, such distributions are conjugate, as the model is 
conditionally Gaussian. Therefore, the full conditional distributions of V and W are 
again Inverse-Wishart with

In order to sample from �|(DT ,�) we rely on backward recursions and decompose 
the filtered distribution for the state parameters following Carter and Kohn (1994), 
Frühwirth-Schnatter (1994), as

where

and with

V ∼ IWr(�,M) W ∼ IWp(g,Z),

(24)V|(DT ,�) ∼ IWr

(
� +

T

2
,
1

2

T∑
t=1

(yt − F⊤

t
�t)(yt − F⊤

t
�t)

⊤ +M

)
,

(25)W|(DT ,�) ∼ IWp

(
g +

T

2
,
1

2

T∑
t=1

(�t − Gt�t−1)(�t − Gt�t−1)
⊤ + Z

)
.

(26)p(�|DT ,�) =

T∏
t=0

p(�t|�t+1,Dt,�)

(27)= p(�T |DT ,�)

T−1∏
t=0

p(�t|�t+1,Dt,�),

(28)�t ∣ (�t+1,Dt,�) ∼ N(ht,Ht)

ht =mt + 𝜑� t + CtG
⊤

t+1
R−1
t+1

(�t+1 − at+1 − 𝜑bt+1)

Ht =Ct − CtG
⊤

t+1
R−1
+1
Gt+1Ct.
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4.1 � mcmc algorithm

Posterior sampling can be performed combining the above results in a mcmc 
algorithm, alternating the Kalman filter with sampling from the conditional 
distributions. The following pseudo-code illustrates the steps of a single mcmc 
iteration:

1.	 Sample � using the following modified ffbs algorithm: 

	 1a.	 For t = 1,… , T  , update the parameters of the distribution �t|Dt using the 
Kalman filter given in Sect. 3.2 (forward filtering)

	 1b.	 For t = 1,… , T  , sample �|Dt from the conditional distribution outlined in 
Eq. 20;

	 1c.	 Sample �T |DT from the filtering distribution reported in Eq. 23;
	 1d.	 For t = T − 1, T − 2,… , 1 , sample �t|(�t+1,Dt,�) from the distribution 

outlined in Eq. 28, conditioning on the �t+1 sampled in the previous step 
(backward smoothing)

2.	 Sample V from its Inverse-Wishart full-conditional distribution, outlined in 
Equation (24);

3.	 Sample W from its Inverse-Wishart full-conditional distribution, outlined in 
Equation (25);

5 � Simulation

We propose a simulation study to compare the performance of the proposed 
approach against a Gaussian dlm, focusing on different settings with varying 
sample size. We focus on univariate settings, assuming that the matrices {Gt} 
and {Ft} are unidimensional and do not depend on time, namely F = G = 1 . We 
simulated T = 50 observations from the dlm defined by

with different specification of the initial distribution �0 and the disturbances �t and 
�t . Specifically, we focus on the following settings: 

(1)	 Scenario 1: data are generated from a two-piece dlm, with initial distribution 
�0|� ∼ N(−3 + 2�, 2) and � ∼ TPN(3,

√
3, 0.5) , letting a(�) = 1 + �  and 

b(�) = 1 − � , with Gaussian errors �t ∼ N(0, 5) and �t ∼ N(0, 3)

(2)	 Scenario 2: data are generated from a Gaussian dlm, with �0 ∼ N(−3, 2) and 
Gaussian errors �t ∼ N(0, 5) , �t ∼ N(0, 3)

(3)	 Scenario 3: data are generated from a dlm with heavy tails, simulating �0 , �t and 
�t from independent Student’s t distribution with 3 degrees of freedom.

Yt = �t + �t,

�t = �t−1 + �t,
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We chose diffuse inverse-gamma distributions as priors for V and W, which in 
this case are scalar, with parameters � = M = g = Z = 0.001 . We compare 
our approach with a Gaussian dlm with same prior distributions, running both 
algorithms for 5000 iterations after 500 burn-in samples, and focusing on the 
one-step-ahead predictions and state parameters. Examination of traceplots of 
the parameters, auto-correlation function and Rubin’s diagnostics showed no 
evidence against convergence.

Figure 1, 2, and 3 show the one-step-ahead predictions and filtered estimates 
in the three scenarios. Current empirical findings indicate that, as expected, the 
main advantage of the proposed approach is more evident in the initial part of 
the series, where the impact of the initial distribution is substantial. This result is 
clearly seen in Fig. 1, where the tpn-dlm is correctly specified, and the Gaussian 
dlm tend to underestimate the state parameter and the one-step-ahead predictions. 
When data are generated from a Gaussian dlm, as in Fig. 2, the tpn initial distri-
bution is incorrectly specified. However, its impact vanishes after few steps, and 
its one-step-ahead predictions are indistinguishable from a Gaussian dlm. Lastly, 
Fig. 3 focuses on a setting where both models are incorrectly specified, in terms 
of initial and distribution of the errors. We observe that the proposed tpn-dlm is 
robust again such misspecification, obtaining one-step-ahead predictions and esti-
mates for the state parameters that are closer to the true level.

These findings are further explored replicating the simulations scenarios for 
different sample sizes, ranging T ∈ {10, 50, 100} , with T = 50 corresponding to 
the results from Figs. 1,2 and 3. Results are reported in Table 1, comparing the 
Mean Squared Error (mse) of the expected value of the one-step-ahead distribu-
tions under both approaches. Empirical results are consistent with the previous 

One step ahead predictions State parameter
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Gaussian DLM TPN−DLM

Fig. 1   One-step-ahead predictions and filtered estimates for Scenario 1. Black lines denote the observed 
time series and the true state parameters
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discussion, with the tpn-dlm performing particularly well with small sample 
sizes, under correct specification and with heavy-tails processes.

One step ahead predictions State parameter

0 10 20 30 40 50 0 10 20 30 40 50

−15
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Time
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Fig. 2   One-step-ahead predictions and filtered estimates for Scenario 2. Black lines denote the observed 
time series and the true state parameters
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Fig. 3   One-step-ahead predictions and filtered estimates for Scenario 3. Black lines denote the observed 
time series and the true state parameters
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6 � Analysis of real data

Finally, we illustrate the tpn-dlm by analyzing the quarterly earnings in dollars per 
Johnson and Johnson share from 1960 to 1980 (Shumway et al. 2000, Example 1.1).

Data are characterized by a seasonality larger in the starting and ending years, 
almost missing for the central years. Trend is increasing and regular. Following 
Shumway et al. (2000), the time series will be modelled with the trend and seasonal-
ity components added to a white noise

trend will be modelled as follow

and we assume that the seasonal component is expected to sum to zero over a com-
plete period of four quarters

We may express the model in state-space form, by choosing [Tt, St, St−1, St−2]⊤ as 
state vector:

The parameters to be estimated are the observation noise variance, V, and the state 
noise variances associated with the trend, W11 , and the seasonal components, W22 . 

Yt = Tt + St + �t;

Tt = �Tt−1 + �t1

St + St−1 + St−2 + St−3 = �t2.

Yt =
�
1 1 0 0

�⎡⎢⎢⎢⎣

Tt
St
St−1
St−2

⎤
⎥⎥⎥⎦
+ vt where vt ∼ N(0,V)

⎡⎢⎢⎢⎣

Tt
St
St−1
St−2

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

� 0 0 0

0 − 1 − 1 − 1

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

Tt−1
St−1
St−2
St−3

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣

�t1

�t2

0

0

⎤⎥⎥⎥⎦

where

⎡⎢⎢⎢⎣

�t1

�t2

0

0

⎤⎥⎥⎥⎦
∼ N4

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎣

W11 0 0 0

0 W22 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

Table 1   Mean squared error for the expected value of the one-step-ahead distribution

T = 10 T = 50 T = 100

Gaussian TPN Gaussian TPN Gaussian TPN

Scenario 1 118.74 43.01 327.60 251.34 599.97 524.32
Scenario 2 183.86 206.06 560.51 580.75 996.08 1016.96
Scenario 3 93.45 28.62 418.34 351.09 806.81 742.56
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In addition, we need to estimate the transition parameter associated with the growth 
rate, � . Following Shumway et al. (2000), Example 6.27, we write � = 1 + � , where 
0 < 𝜁 ≤ 1 , and we rewrite the trend component as

so that, conditionally on the states, � is the slope of the linear regression of 
(Tt − Tt−1) on Tt−1 and �t1 is the error. We choose a reference uninformative prior 
on (� ,�t1) and weakly informative priors for the remaining parameters by letting 
� = M = 0.001 and g = 0.05 and Z = diag {0.05, 0.05, 0, 0} . We ran the algorithm 
for 5000 iterations collected after 5000 burn-in samples. Examination of traceplots 
of the parameters, auto-correlation function and Rubin’s diagnostics showed no evi-
dence against convergence. Fig.  4 displays the comparison of the trends ( Tt ) and 
season ( Tt + St ) along with 99% credible intervals for Gaussian dlm and tpn-dlm. 
Figure 5 displays the data and the one-step-ahead predictions for the time series Yt , 
again along with 99% credible intervals for Gaussian dlm and two-piece dlm.

Figures 4 and 5 show that the 99% credibility intervals of state and response are 
different between of the two-piece dlm and dlm: as a consequence the entire distri-
butions of those quantities are different. In addition we note that skewness of predic-
tive distributions is maintained with the increasing of time, showing the usefulness 
of the two-piece dlm.

Mean squared error was 0.2131 for the two-piece dlm and 0.3512 for the dlm, 
showing an advantage towards the two-piece dlm. We also considered a BIC cri-
teria for competing alternative models k, k = 1, 2,… ,K , the smaller-is-better cri-
terion BIC is BICk = n logMSEk + mk log(n) , where MSEk is the predicting mean 
squared error and mk is the number of independent parameters used to fit model k. 
We obtained −70.18 for the dlm, where mk = 4 and −107.69 for the two-piece dlm, 
where mk = 5 , confirming that also including complexity of the model, two-piece 
dlm is preferable.

Tt − Tt−1 = �Tt−1 + �t1,

Trend Component

Gaussian DLM

Trend Component

TPN−DLM

Trend + Seasonal Component

Gaussian DLM

Trend + Seasonal Component

TPN−DLM

1960 1965 1970 1975 19801960 1965 1970 1975 19801960 1965 1970 1975 19801960 1965 1970 1975 1980

0
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10

15

Time

Fig. 4   Posterior estimate of trend ( T
t
 ) and trend plus season ( T

t
+ S

t
 ) along with corresponding 99% 

credible intervals for the Johnson &Johnson data
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7 � Conclusion

In this article we proposed a flexible dynamic linear model (dlm) for modeling 
and forecasting multivariate time series relaxing the assumption of normality for 
the initial distribution of the state space parameter, replacing it by a more flexible 
class of distributions, which is called two-piece normal distributions. This model 
allows the initial distribution of the state space parameter to be skewed, and the 
asymmetry can be controlled by a scalar parameter. We derive a Kalman filter for 
this model, obtaining a two component mixture as predictive and filtering distri-
butions that maintain skeweness.

In our opinion, the main contribution of this article is to present a simple 
and effective tool to model time series with possibly skewed distribution, like 
the Example 1.1 in Shumway et  al. (2000) here. Also since we obtained a two 
component mixture for predictive and filtering distributions so this new model 
can simultaneously deal with some issues related to departures from normality 
like skewed, heavy-tailed data and also, multi-modality.

Appendix: Proofs

Proof of Proposition 3.1  Using the hierarchical representation defined by Eqs. (8)-
(9), and the fact that � has a tpn density (2), we obtain
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Fig. 5   One-step-ahead predictions for the Johnson & Johnson quarterly earnings series. Dotted lines refer 
to 99% credible intervals
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By making the change of variables �a =
�−�

�0a(�0)
 and �b =

−(�−�)

�0b(�0)
 we have

	�  ◻

Proof of Proposition 3.3  By the induction hypotheses, the conditional distribution of 
� given Dt is

Using (6) and (16), we get

From the marginal/conditional representation of the multivariate normal distribu-
tion, we find, for s = a, b , the following identity:

where, for s = a, b,

p(�0) =∫
∞

−∞

�p(�0;m0 + ��0,C0)h(�;�, �0, �0)d�

=
2�a

�0a(�0) ∫
∞

�

�p(�0;m0 + ��0,C0)�

(
� − �

�0a(�0)

)
d�

+
2�b

�0b(�0) ∫
�

−∞

�p(�0;m0 + ��0,C0)�

(
� − �

�0b(�0)

)
d�

p(�0) = 2�a ∫

∞

0
�p(�0;�0 + �a�a,C0)�(�a;0, 1)d�a

+ 2�b ∫

∞

0
�p(�0;�0 + �b�b,C0)�(�b;0, 1)d�b

= 2�a�p(�0;�0,�a)∫

∞

0
�(�a;�⊤

a�
−1
a (�0 − �0), 1 − �⊤

a�
−1
a �a)d�a

+ 2�b�p(�0;�0,�b)∫

∞

0
�(�b;�⊤

b�
−1
b (�0 − �0), 1 − �⊤

b�
−1
b �b)d�b

= 2�a�p(�0;�0,�a)Φ

⎛

⎜

⎜

⎜

⎝
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−1
a (�0 − �0)
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−1
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⎞

⎟

⎟

⎟

⎠

+ 2�b�p(�0;�0,�b)Φ

⎛

⎜

⎜

⎜

⎝

�⊤
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−1
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⎟
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p(�|Dt) ∝ p(yt|�,Dt−1)p(�|Dt−1).
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Hence, we have

from where the inverse of the proportionality/normalization constant becomes

Therefore, the conditional distribution of � ∣ Dt can be written as

with

which correspond to the density of

𝜂s
t
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and the result is proved. 	�  ◻

Proof of Proposition 3.4  Part (i): by using (14) and (6) we have
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 where, for 

This proves part (iii). 	�  ◻
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