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Abstract: Electronic coherence signatures can be directly identified in the time–frequency maps
measured in two-dimensional electronic spectroscopy (2DES). Here, we demonstrate the theory
and discuss the advantages of this approach via the detailed application to the fast-femtosecond
beatings of a wide variety of electronic coherences in ensemble dimers of quantum dots (QDs),
assembled from QDs of 3 nm in diameter, with 8% size dispersion in diameter. The observed
and computed results can be consistently characterized directly in the time–frequency domain
by probing the polarization in the 2DES setup. The experimental and computed time–frequency
maps are found in very good agreement, and several electronic coherences are characterized at
room temperature in solution, before the extensive dephasing due to the size dispersion begins. As
compared to the frequency–frequency maps that are commonly used in 2DES, the time–frequency
maps allow exploiting electronic coherences without additional post-processing and with fewer
2DES measurements. Towards quantum technology applications, we also report on the modeling of
the time–frequency photocurrent response of these electronic coherences, which paves the way to
integrating QD devices with classical architectures, thereby enhancing the quantum advantage of
such technologies for parallel information processing at room temperature.

Keywords: 2D femtosecond electronic spectroscopy; photocurrent action spectroscopy; CdSe quantum
dot dimers; electronic coherences in quantum dot dimers; quantum technologies

1. Introduction

Semi-conducting nanoparticles, or quantum dots (QDs), are a promising hardware
for a wide variety of quantum technologies [1–7]. Recently, we proposed to exploit the
femtosecond fast-beating electronic coherences in small, few-nm QDs and QD dimers
for implementing quantum parallel information processing at room temperature [8–11],
using electronic coherences as logic variables. Our scheme offers a significant quantum
advantage, as for a set of N coupled quantum states, N2 − 1 coherences can be used to
process information in parallel [8,12].
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In previous joint theoretical–experimental studies [7,13–15], we reported how elec-
tronic coherences could be observed and tuned in ensembles of small (mean diameter,
D = 2.5 to 3 nm), size-dispersed (σ = 5% to 9%) CdSe QDs and QD quasi-homodimers
(Figure 1), addressed in a two-dimensional electronic spectroscopy (2DES) BOXCARS
setup (see Supplementary Materials Section S1). In this setup, the polarization response is
measured as a function of the first two delay times, T1 and T2, and directly in the frequency
domain, ω3, of the third delay time, T3, using a CCD camera (see Figure 2a). A Fourier
transform along the first delay time, T1, brings the maps into the frequency domain, ω1,
and allows retrieving the conventional 2DES response as a function of (ω1, T2, ω3), as
shown in Figure 2d [5,16–18]. A good agreement was found between the computed and
experimental coherence responses of small ≈3 nm QDs and QD dimers along T2 traces of
points extracted at different coordinates in the frequency (ω1, ω3) maps [13–15].
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Figure 1. (a) Schematic representation of a CdSe quasi-homodimer. The dimer is assembled by
covalently bonding two QDs with a 0.55 nm S(CH3)2S ligand. The QDs are drawn from an ensemble
with a mean diameter, D, of 3 nm and size dispersion, σ. (b) A high-resolution transmission electronic
microscopy (HR-TEM) image of one of the quasi-homodimers prepared for this work. (c) A larger
TEM micrograph of the CdSe QDs dimers.

The ( ω1, ω3) frequency maps of the (ω1, T2, ω3) response provide ( ωi
1, ω

j
3

)
coordinates

for coherences between pairs of excited electronic states (i,j) evolving along T2, where ωi
1

corresponds to the excitation of state i, ωi
1 = ωi −ωGS, and ω

j
3 is the emission from state j,

ω
j
3 = ωj −ωGS. Bringing T1 to the frequency domain, however, requires a large sampling

of this delay time, as well as computationally expensive FFT post-processing [19]. Here, we
show, by comparing experimental and computed data for the BOXCARS setup [20], that the
electronic coherences can be equally accurately probed along T2 traces in time–frequency
(T1, ω3) polarization maps, which require a smaller number of 2DES measurements and less
post-processing. In (T1, ω3) time–frequency maps, there can be several coherences between
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excited states that beat along T2 at a specific address (T1, ω3) in the map. The reason is
that the coherences along T2 are only partially resolved: they are resolved along ω3 but not
along T1. All the coherences between the excited states i and j, that have a common state j
that emits at the frequency ω

j
3 and a different state i, will beat at the same address (T1, ω3)

in the map. Therefore, by measuring a single point in the (T1, ω3) time–frequency maps,
one can characterize a family of coherences that beat along T2. The ability to simultaneously
process all these coherences enhances their potential for exploitation in parallel quantum
information processing.
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Figure 2. (a) Time ordering of the three fs laser pulses as used in the 2DES experiment and in the
modeling. (b–d) Different possible representations of the final three-dimensional signal obtained after
a 2DES measurement (or of modeled data). The final cube of polarization response data can be cast as
a function of: (b) the three time delays between pulses (T1, T2, T3) (Equation (4)), and (c) the first two
time delays between pulses and the third delay in the frequency domain (T1, T2, ω3) (Equation (8)).
These are the data studied in this work. (d) The first and third delays in the frequency domain and
the second delay in the time domain (ω1, T2, ω3). This is the representation typically used when
2DES measurements are published, as was the case in [7]. In panels (b–d), the green, purple and
orange lines schematically represent the beatings of three different electronic coherences along T2.

The ability to measure electronic coherences in the directly measured data, without the
need to compute full frequency maps, greatly enhances the potential for the use of electronic
coherences of QDs in room-temperature quantum technologies. Towards applications
to quantum information processing, the recently proposed photocurrent action-based
setup [21–28] presents several advantages over the BOXCARS one for 2DES: it is a collinear
setup, easier to operate, and the output is a photocurrent that can be processed easier and
integrated with a classical computer. It is, therefore, of interest to investigate how electronic
coherences are probed in the photocurrent response. We show, computationally, that the
electronic coherences can also be robustly probed with the action-based photocurrent
response.

2. Materials and Methods
2.1. Synthesis of 3 nm CdSe QDs and Assembly into Quasi-Homodimers in Solution

The colloidal CdSe QDs were prepared in solution by mixing cadmium and sele-
nium precursors using a hot-injection technique [29] in the presence of long-alkyl-chain-
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coordinating agents. Such molecules act as an organic capping layer on the QD surface,
helping the controlled and quasi-epitaxial growth of the nanoparticles, allowing their
dispersion in organic solvents, and preventing their aggregation. This approach allows
controlling the growth parameters, the precursor ratio, and the temperature of the synthesis,
for preparing small, 2.5 to 3.5 nm in diameter, QDs with narrow size distributions varying
from 5 to 9% in mean diameter, making any further purification procedure unnecessary [30].
More detailed information can be found in the Supplementary Materials Section S2 and
in [31].

Quasi-homodimers of CdSe QDs, with mean diameter D = 3 nm and size distribution
σ = 8%, are assembled in solution by bonding pairs of size-dispersed QDs with a short
(≈ 0.5 nm) propanedithiol ligand (see [31] for details of this procedure and [7] for the
details of the synthesis of the QD dimers used in this work). Due to the unavoidable size
dispersion, the QD dimers are not identical nano-objects. A schematic representation of a
QD quasi-homodimer constructed in this fashion is shown in Figure 1a, and a transmission
electronic microscopy (TEM) image of one of the dimers prepared for this work is shown
in Figure 1b. A larger TEM micrograph of the dimers is shown in Figure 1c. Not all the
QDs in the ensemble will be bonded together with the ligand to form dimers, and therefore,
the dimer solution will retain a proportion of single QD monomers. The ratio of dimers to
monomers in the sample is estimated at approximately 60:40.

2.2. 2DES Experimental Methods

The 2DES experiment is implemented using a fully non-collinear setup, in which three
fs laser pulses in the visible range are incident upon the dimer solution from different
spatial directions, fulfilling the BOXCARS phase-matching conditions [19]. For the 2DES
measurements of a QD dimer ensemble assembled into a solid-state multilayer device,
see [7]. Additional details about the experimental conditions are reported in the Supple-
mentary Material (SM) Section S1. The experiment probes the optical polarization of the
ensemble as a function of the delay times between the pulses, or of their corresponding
frequencies. By giving independent control over the delay times, the BOXCARS setup
(see Figure S1 of the Supplementary Materials) allows the signal in the different phase-
matching directions (PMDs) to be easily extracted. For a description of the experimental
setup, see [19], and for details on this implementation, see [7], as well as the Supplementary
Materials Section S1.

The three exciting pulses and the final signal observation are separated in time by the
delay times, as defined in Figure 2a. The delay time, T0, is the time interval between the
arbitrary origin of the time axis, set as the center time of the Local Oscillator (LO), and
the first pulse, centered at t1. The LO is the fourth pulse, used as a time reference and
employed for heterodyne detection [19].

The first delay time, the excitation or coherence time (T1), is the time separation
between the first and second pulses. The second delay time, the population time (T2), is
the time between the second and third pulses, and the third delay time, the rephasing or
emission time (T3), is the time between the third pulse and the observation. The time at
which the measurement is performed is defined as:

t ≡ T0 + T1 + T2 + T3 (1)

The polarization response from the ensemble can be measured in specific PMDs as
a function of the delay times (T1, T2, T3). Repeated measurements with different delays
produce a “cube” of data, in which the polarization in a particular PMD is stored as
a function of the delay parameters. Figure 2b shows the polarization in the rephasing
direction in the time domain, as a function of (T1, T2, T3). Each of the delay times (T1, T2,
T3) can be brought to the frequency domain (ω1, ω2, ω3) by Fourier transform, leading
to what is sometimes referred to as 3D electron spectroscopy [32]. Figure 2c shows the
same response as Figure 2b, only in the time–frequency domain (T1, T2, ω3). This is
the typical form of the data obtained as raw output of a BOXCARS experimental setup,
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such as the one used for this work. Indeed, as explained above, in a typical BOXCARS
experiment, the signal is measured while scanning the time intervals T1 and T2, whereas the
dependence on the third time interval is measured directly in the frequency domain, ω3, by
the detector [16]. For ease of interpretation, the signal is then typically Fourier-transformed
along T1 [5,16–18]. This leads to a representation of the same data as a function of the
excitation and emission frequencies and the population time (ω1, T2, ω3), as shown in
Figure 2d. Regardless of the chosen representation, the electronic coherences between the
excited electronic states of the QD dimers can be probed by analyzing the data in these
cubes as a function of the population time, T2, as illustrated in Figure 2b–d. Coherences in
the frequency maps (ω1, ω3) (Figure 2d) were studied in our previous work [7], while here,
we analyze the (T1, ω3) time–frequency maps.

2.3. Theoretical Methods

We model the electronic structure of each QD from two-hole, one-electron single-
particle states. These single-particle electronic states are calculated using an effective
mass-k.p Hamiltonian [33–36], constructed for CdSe using the size distribution of the
ensemble (see [13–15]). This approximation defines two-holes, one-electron mono-excitons,
1S and 2S, per QD. When the laser intensity is weak enough, the formation of bi-excitons,
two-electron, two-hole states, can be neglected [15,37].

The spin 1/2 of the hole of each pair is coupled to the p-type orbitals (l = 1) localized
on the Se atoms [38,39]. These spin orbit interactions split each of the S bands into two
sub-bands of states, with angular momentum: L = 1± 1/2 state and L = 1/2, 3/2. The
total angular momentum, L± the spin 1/2 of the s-type orbital localized on the Cd atoms,
leads to an eight-fold degeneracy of the L = 3/2 state and a four-fold degeneracy of the
L = 1/2 state. These states further undergo a loss of degeneracy due to crystal field and
Coulomb interactions [36,38–40]. The S3/2 state then forms a band of eight fine-structure
(FS), singly excited electronic states, of which five are dark and three are bright, and the
S1/2 state forms a band of four FS states, of which all are bright. In this way, 4 bands of
24 FS states are formed per QD with energetic ordering: 1S3/2, 1S1/2, 2S3/2, and 2S1/2.
Figure 3d shows the stick spectrum of an ensemble-averaged monomer calculated over a
3 nm/8% ensemble of 4000 QDs [8,13].

When 2 QDs drawn from the size-dispersed ensemble of monomers are covalently
bonded to form quasi-homodimers, the 24 FS states of each QD are coupled by interdot
electronic Coulomb interactions to create a manifold of 48 FS states per dimer. Since the
two QDs in a given dimer slightly differ in size, quasi-homodimers are formed: the quasi-
isoenergetic bands of each QD are split by Coulomb interdot interactions into a higher and
a lower dimer band. This creates eight bands of FS singly excited states per dimer. These
bands are energetically ordered as: 1SL

3/2, 1SH
3/2, 1SL

1/2, 1SH
1/2, 2SL

3/2, 2SH
3/2, 2SL

1/2, and 2SH
1/2,

although in dimers made from ensembles with larger D and/or size dispersion, the FS
states of these bands interdigitate and the bands overlap [13,15].

The size differences of the two QDs assembled in each quasi-homodimer mean that
they do not obey the optical selection rules of exact homodimers and that all the states will
share the oscillator strength. Consequently, all singly excited dimer FS states will be bright,
although some FS states will be almost dark. Figure 3b shows the stick spectrum calculated
for the 3 nm/8% ensemble averaged over an ensemble of 4000 dimers [8,13].

Figure 3a shows the measured absorption spectra of the dimer solution along with the
calculated absorption spectrum for the 3 nm/8% ensemble-averaged dimer and monomer,
where the inhomogeneous broadening due to the finite size dispersion is taken into account.
This figure also shows the spectral profile of the laser pulse used for the 2DES measurements.
Only the 1SL

3/2 and the 1SH
3/2 dimer bands and the 1S3/2 monomer band fall within the

laser pulse energy bandwidth. Tables S1 and S2 in Supplementary Materials, Section S3
present the calculated transition energies, inhomogeneous broadening and corresponding
dephasing times, and transition dipole moments from the ground to the 1SL

3/2 and 1SH
3/2
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band FS states in the dimer, and from the ground to the 1S3/2 band FS states in the monomer,
averaged over 4000 dimer/monomer ensembles.
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Figure 3. (a) Measured (violet) absorption spectra of the QD dimer sample and the calculated
absorption spectra of the QD dimers (azure) and monomers (green), with the spectral profile of the
laser pulse (orange) used for the 2DES measurement. (b) Calculated stick spectrum for the averaged
dimer computed from an ensemble of 4000 3 nm/8% dimers. (c) Calculated stick spectrum for the
averaged monomer computed from an ensemble of 4000 3 nm/8% monomers. The five electronic
coherences between specific electronic FS states discussed in this work (four in the dimer, one in
the monomer) are identified with horizontal, double-arrowed lines between their constituent FS
states. (d) Inhomogeneous broadening of the four dimer electronic coherences in frequency, ω3.
Patterns are superimposed onto a (T1, ω3) map, indicating the range of ω3 in which the four dimer
electronic coherences can be found. The vertical grey pattern indicates the range corresponding to
the inhomogeneous broadening of the 450 cm−1 and 680 cm−1 coherences, and the horizontal grey
pattern indicates the range of the 840 cm−1 and 1300 cm−1 coherences. All four dimer coherences
will be found in the overlapping square pattern region. (e) Emission dipole strengths of the four
dimer electronic coherences. The color labeling of the FS bands and coherences in this figure is used
throughout.

Since the laser pulses are short, several electronic states of the 1SL
3/2 and the 1SH

3/2
dimer bands are simultaneously excited, which led to a superposition of several excited
FS electronic states. The electronic dimer coherences discussed in the Results Section are
coherences between the FS excited states, either within (‘intra’-band) or between (‘inter’-
band) the 1SL

3/2 and 1SH
3/2 bands.

We specifically focus on four electronic coherences of the dimer, two intra-band and
two inter-band, labeled by the periods of their oscillations, which are governed by the
energy difference of the two FS states involved. The first intra-band coherences between the
3rd FS state and the degenerate 4th/5th FS states, all in the 1SL

3/2 band, have a frequency
of ≈ 680 cm−1. The second intra-band coherences between the degenerate 1st/2nd FS
states and the degenerate 4th/5th FS states, all within the 1SL

3/2 band, have a frequency
of ≈ 840 cm−1. The first inter-band coherences between the degenerate 4th/5th FS states
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in the 1SL
3/2 band and the 11th FS state in the 1SH

3/2 band fall at ≈ 450 cm−1. The second
inter-band coherences between the degenerate 1st/2nd FS states in the 1SL

3/2 and the 11th
FS state in the 1SH

3/2 band have a frequency of ≈ 1300 cm−1.
All these coherences, both intra- and inter-band, are interdot in character, due to the

delocalization of the wavefunctions of the 1S FS states over the whole dimer [7]. The
horizontal double-headed arrows superimposed onto the dimer stick spectrum (Figure 3b)
identify these four coherences, and their calculated frequencies, periods, inhomogeneous
dephasing times, and emission dipole strengths are presented in Table S3 of Section S3 of
the Supplementary Materials. Throughout this work, the 450 cm−1 coherences are labeled
in cyan, and the 680 cm−1, 840 cm−1, and 1300 cm−1 coherences in purple, green, and
orange, respectively.

In the experiments, the pulse excites electronic states in the 1S3/2 band of the monomers
that are also present in the sample, thereby creating monomer electronic coherences. The
higher-energy monomer bands do not fall within the laser pulse energy bandwidth. Since
five of the eight FS states in the 1S3/2 band are dark, or practically dark (see Table S2 of
the Supplementary Materials, Section S3), only one type of electronic coherence will be
produced non-negligibly in the monomers. This is the coherence between the 1st/2nd and
3rd FS states, which has a frequency of 180 cm−1. This coherence, identified in Figure 3c
with a double-headed arrow, will be labeled in yellow throughout this paper. The calculated
frequency, period, inhomogeneous dephasing time, and emission dipole strength of this
coherence are shown in Table S3.

The size dispersion of the QD ensemble causes an inhomogeneous broadening of the
energies of the transitions between electronic states in the dimer and in the monomer, the
values of which are presented in Tables S1 and S2 in the Supplementary Materials. In the
time domain, the size dispersion leads to the dephasing of the coherences, which have a
finite lifetime. In the (T1, ω3) time–frequency domain, the size dispersion, therefore, leads to
dephasing along T1 and to an inhomogeneous broadening of emission bands along ω3. The
inhomogeneous broadening of the bands corresponding to the four dimer coherences on
which we focus is represented as shaded areas on the time–frequency (T1, ω3) map reported
in Figure 3d. Traces along T2 for points localized in a given ω3 band on the (T1, ω3) map
will, therefore, exhibit beating periods that are characteristic of coherences (i,j) involving
an excited state j, that emits in the range of ω3 values specified by the inhomogeneously
broadened transition frequency ( ωj −ωGS

)
.

Figure 3e shows the emission dipole strengths of the same four dimer electronic
coherences. As was the case in [7], the rather monotonic distribution of these values results
from the 8% size dispersion of the ensemble, which breaks the exact homodimer limit of
fully dark and bright states. The rather even distribution of dipole strengths of the four
coherences means that they will appear in the T2 traces of points on the time–frequency
(T1, ω3) maps with commensurate strength. This is a useful feature of disordered QD
quasi-homodimers for applications in quantum technologies because it means that more
coherences are available for implementing information processing.

In this work, the partial polarizations in specific PMDs are modeled using a phase-
modulated approach [41], which is numerically more straightforward to implement than
a full simulation of the BOXCARS setup. In the experimental BOXCARS setup, phase
modulation is not needed since the different PMDs are spatially separated by using a
non-collinear setup [5,16–18]. On the other hand, a phase modulation of the train of pulses
is experimentally implemented in 2DES collinear setups that measure action observables
such as fluorescence or photocurrent [21–24,26,27,42].

To simulate the polarization response as measured in the BOXCARS setup, we compute
the polarization of the ensemble of QD dimers subject to sequences of three collinear fs
phase-modulated laser pulses. The electric field time profile of the pulse sequence is given
as:

ε(t) = ∑3
n=1 εn(t) (2)
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where εn(t) is the electric field of each pulse, defined as:

εn(t) = ε0e
(− (t−tn)2

2σ2
n

)
cos(ωnt + φn) (3)

In Equation (3), ε0 is the electric field strength, σn is the width of the Gaussian envelope,
ωn is the carrier frequency, and tn is the time at which the nth pulse is centered, as shown
in Figure 2a. In all the calculations, we use: ε0 = 8.775× 107 W/cm2, ωn = 2.36 eV, and
σn = 3.9 f s, for n = 1, 2, 3, in agreement with the experimental values.

We modulate the carrier envelope phase of the pulse, φn, for each set of delay times
(T1, T2, T3). The modulation of φn is expressed as φn ≡ 2πknu, where kn ≡ mn/L. By
choosing the constants mn of each pulse as integer divisors of L, with m1 6= m2 6= m3, after
L repetitions for u varying from 1 to L, each of the carrier envelope phases, φn, will have
gone through a different number of complete cycles.

The computations are repeated for ranges of delay times (T1, T2, T3), modulating
the carrier envelope phases of the pulses for each set of values (T1, T2, T3). In this way,
the polarization of the ensemble is computed as a function of the delay times and phase
modulation, u, Pu(T1, T2, T3). The wave vector of each PMD is presented as a linear
combination of the mn : kl = l1m1 + l2m2 + l3m3, where the additional factors of u/L
modulate the carrier envelope phase of the pulses. For the rephasing direction: (l1, l2, l3) =
±(−1,+1,+1).

The polarization of the ensemble in a particular PMD is extracted by Fourier trans-
forming along the phase modulations, u, and identifying the signal by the value of kl .

Pkl (T1, T2, T3) = ∑L
u=1 Pu(T1, T2, T3)·e−

i2π
L kl u (4)

One of these Pkl (T1, T2, T3) values is shown in Figure 2b. Pu(T1, T2, T3) is calculated
from the time-dependent ensemble density matrix, ρens, as described in [8,13]:

Pu(t) = Tr[µ ρens(t)] (5)

where µ is the ensemble dipole matrix. The density matrix, ρens(t), is propagated along
time, for each set of delay time and phase modulation parameters, using the ensemble
Liouville approach [8,13].

The Liouville equation for the ensemble is given by [8]:

i} ∂

∂t
ρnm

ens(t) = ∑ij Lens
nm,ij·ρ

ij
ens(t) (6)

where Lens, the ensemble Liouville matrix, is constructed by averaging the Hamiltonian
matrices of the individual size-dispersed dimers over the ensemble and taking into account
the size dispersion of the QDs. The ensemble Hamiltonian explicitly includes the interaction
of the sequence of three laser pulses in the dipole approximation. Equation (6) is solved
numerically using the Cash–Karp Runge–Kutta method.

For a given set of delay times, (T1, T2, T3), the polarization is calculated for given sets,
u, of carrier envelope phases, ( φ1, φ2, φ3), using Equation (5), and parametrized in terms of
these delay times using Equation (1).

Pu(T1, T2, T3) = Pu(t) (7)

The polarization in each PMD is obtained by Fourier transform over u using Equation (4).
Here, we focus on the rephasing of PMD. The computed data, Preph(T1, T2, T3), are the time
domain “cube” (Figure 2b) and are converted into the time–frequency domain by Fourier
transforming the data along T3 ↔ ω3 (Figure 2c):

Preph(T1, T2, ω3)↔
∫

e−iω3T3 Preph(T1, T2, T3)dT3 (8)
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This produces a cube of data for the polarization of the ensemble in the rephasing
direction in the time–frequency domain, as shown in Figure 2d. These computed data can
be directly compared to the data measured in the BOXCARS setup in the time–frequency
domain.

A rotating frame (RF) [43] is applied to the measured and calculated Preph(T1, T2, ω3)
(Equation (8)) [19]. A reference frequency, ωre f , is subtracted along T1, thereby detuning
the optical frequency.

PRF
reph = Prepheiωre f T1 (9)

In the computations, we take ωre f ≡ ωn, the carrier frequency of the pulse (Equation (3)).
Working in the RF makes the electronic coherence between excited FS states clearer by
removing the fast-beating coherences between the excited FS states and the GS, which have
a much shorter dephasing time. This also allows for a less dense sampling in time along T1
and T3.

3. Results and Discussion
3.1. Comparison of Computed and Experimental Time–Frequency Polarization Maps

In our previous work [7], we showed that the electronic coherence response could
be consistently characterized in BOXCARS polarization measurements of both solid-state
and solution samples. Several electronic coherences between FS states in traces along T2
and their Fourier transforms (FTs) were characterized at specifically addressed points on
measured and calculated rephasing frequency maps, Preph(ω1, T2, ω3) (Equation (8)).

Figure 4 compares the real parts of the measured dimer sample (left) and the calculated
dimer (right) rephasing (T1, ω3) time–frequency maps at T2 = 20 fs. In this range of T1 values,
the main signal in both maps appears at an emission frequency around ω3 = 18,400 cm−1.
This frequency corresponds to the transition energy between the ground state and the
strongest dipole FS states in the first 1SL

3/2 dimer band. The experimental and calculated
time–frequency maps are in very good agreement. The differences between the measured
and calculated maps at emission frequencies below the main signal are attributable to
Rayleigh scattering in the measurement.

T2 traces are extracted from the measured and computed maps at points corresponding
to the green and pink dots in Figure 4 (see Supplementary Materials Section S4). Figure 4b
shows a calculated dimer map, but the same trace was also taken through the calculated
monomer maps.

These three traces, i.e., the measured averaged trace and the calculated dimer and
monomer traces, are then Fourier-transformed:∫

e−iω2T2 Preph(T1, T2, ω3)dT2 ↔ Preph(T1, ω2, ω3) (10)

Three replicates of the 2DES measurements were available. Therefore, we generated
three measured FTs (one per replicate), from which a mean and standard deviation are
produced. This mean measured FT is plotted with its standard deviation in Figure 5, along
with the calculated dimer and monomer FTs.

The mean measured FT shown in Figure 5 has peaks corresponding to all the dimer
coherences discussed in the theoretical model section. Their presence is made explicit
by the comparison to the calculated dimer FT. The peaks in the mean measured FT at
ω2 = 450 cm−1, 840 cm−1, and 1300 cm−1 are reliably characterized, with a narrow standard
deviation. The peak at ω2 = 680 cm−1 has a larger standard deviation, however it is still
distinctive. The region between ω2 ≈ 900 and 1200 cm−1 has a significantly larger standard
deviation and the peaks in this spectral range cannot be reasonably considered. The dimer
coherence peaks in the mean measured FT align closely with their corresponding peaks in
the calculated dimer FT. The alignment between the experimental and calculated FTs in the
frequency domain is very good in the cases of the ω2 = 450 cm−1, 680 cm−1, and 1300 cm−1

peaks, and within the resolution of the ω2 points in the measured FT in the case of the
840 cm−1 peak.
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Figure 5. FTs of the time traces through the measured (Equation (10)) and calculated maps. The blue
and green lines show the calculated dimer and monomer FTs, respectively, transformed along T2 at
the coordinate (T1 = 7.8 f s, ω3 = 17,186 cm−1) on the time–frequency maps. The pink line is the
mean of FTs from three measurements of the dimer solution sample, and the shaded area is their
standard deviation, see Supplementary Materials Section S4 for more details.

The mean measured FT has a broad peak at ω2 ≈ 200 cm−1 with a small standard
deviation. This signal is primarily caused by the acoustic phonon beating [44]. This phonon
signal is not present in the calculated dimer FT because our model does not include the
coupling to the two phonon modes. However, in addition to the signal from the acoustic
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phonon, the 180 cm−1 monomer coherence also contributes to this broad peak, although
this contribution is not resolved in the measured data. It should be noted that the coherence
between the 1st/2nd and 3rd FS states in the 1S3/2 is also present in the dimer with a
similar frequency. However, as the calculated dimer FT shows, this dimer coherence makes
less of a contribution than the monomer coherence.

Figure 5 shows that the four peaks in the measured mean FT at ω2 = 450 cm−1,
680 cm−1, 840 cm−1, and 1300 cm−1 are caused by coherences in the dimer, as there are no
monomer coherences in their ω2 vicinity.

The dimer coherences discussed above are clearly defined in both the measured and
calculated FTs in the time–frequency domain. Producing results in this way, as opposed to
using ( ω1, ω3) frequency–frequency maps, leads to a drastic reduction in the number of
the 2DES measurements needed. The ω3 coordinate where the measured traces are taken
is consistent with the address in the frequency domain and depends upon the transition
energies of the excited FS states involved in the coherences to the ground state. The
coherences observed in Figure 5 can be best observed within a limited range of T1 values,
because at higher values of T1, the fast-beating coherences between the ground state and
the mono-excitons generated by the interaction with the first pulse is already de-phased.
Hence, intra- and inter-band dimer coherences can be found in the time–frequency maps
in a small range of short T1 values and in a range of ω3 values which is defined by the
transition energies from the FS states involved in the coherences to the GS.

The fact that the same electronic coherences can be characterized in the time–frequency
domain as in the frequency–frequency domain of the 2DES experiments, and hence can be
exploited in the directly measured data, is advantageous in two respects. The first is that the
need for a post-processing step, such as Fourier transforming along T1 ↔ ω1 , is removed.
This yields a computational reduction of O(NT1logNT1), where NT1 is the number of
measurements along T1. Following the removal of the FT step, the second advantage gained
is the requirement for far fewer measurements along T1 than are required to sufficiently
resolve the FT needed to obtain frequency–frequency maps (see Supplementary Materials
Section S5). As it has been discussed, measurements up to T1 = 10 f s provide an adequate
range in which the coherences can be exploited. This range is at least an order of magnitude
smaller than the T1 range required to resolve the FT of T1 for frequency domain maps,
according to the Nyquist limit. As discussed above, in the frequency maps, the (ω1, ω3)
address at which a coherence ‘i-j’ will beat along T2 is given by the values of the ( ωi −ωGS)
and ( ωj −ωGS

)
transition frequencies. In the time–frequency measurements discussed

here, since only the third time interval, T3, is Fourier-transformed, only the addresses of
the coherences along ω3 are resolved. All the intra-band and inter-band i-j coherences can
be found in traces along T2 in different ranges of ω3 but at the same value of T1. This
partial resolution of the addresses of the coherences significantly reduces the number of
time delays that need to be sampled to characterize or exploit them for quantum technology
applications.

3.2. Modeling of Action-Based Photocurrent Response

The 2DES action-based fluorescence and photocurrent measurements [21–28,42] are a
practical alternative to the polarization BOXCARS ones because they can be implemented
with a much simpler collinear setup [5]. In addition, the photocurrent is a more appropriate
choice of observable for quantum technology applications, as photocurrent measurements
can be directly interfaced with classical electronics. Using the phase modulation approach
described above, here, we report on the computed photocurrent response of electronic
coherences of an ensemble of monomeric QDs. We set the pulse parameters to access the
mono- and bi-exciton states of the QDs and show how electronic coherences involving
bi-exciton states can be characterized in the (T1, T2, ω3) photocurrent action signal in
the double-quantum coherence (DQC) PMD. Note, while the DQC PMD spectra can be
easily measured with a phase modulation setup [21], such measurements are harder with
the BOXCARS setup because of the lack of fully reliable procedures to correctly phase
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the signal [45] and the possible contribution of a strong, spurious, non-resonant solvent
response [46].

Figure 6 shows the level structure of the mono- and bi-excitonic states of a single CdSe
QD of 3 nm. It comprises the ground state |0 〉, two mono-exciton states, |1 〉 and |2 〉, the
S1 and the S2 states, and the three bi-exciton states, |3 〉, |4 〉, and |5 〉, which correspond
to a double-excitation to S1, to an excitation to S1 and to S2, and to a double-excitation
to S2, respectively. These five excited states are represented by blue horizontal lines in
the figure. The horizontal red dashed lines in Figure 6 show the carrier frequency (and
twice the carrier frequency) of the laser pulse (Equation (3)) used in the simulations and
the allowed dipole transitions are indicated with green vertical arrows. The calculated
transition energies between these states averaged over an ensemble of 4000 monomeric
QDs with 8% size dispersion, as well as the energies of the coherences between them, are
presented in Table S4, along with the corresponding periods and dipole transition moments.
Also presented are the dephasing lifetimes due to the size dispersion.

The energy bandwidth of the laser pulses was selected so that the only transitions
energetically allowed are those between the GS and the mono-exciton band and between
the mono- and bi-exciton bands, as shown in Figure 6. Intra-band transitions between the
states of the mono- or the bi-exciton bands are not resonant with the laser pulse.

Measurements of incoherent actions’ signals, such as fluorescence or, as we show
here, photocurrent, require a setup with four pulses [22,23,26,47]. The nonlinear signals in
specific PMDs are obtained using the phase modulation approach described above.
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The action setup modeled is shown in Figure 7a,b [26]. A sequence of L trains of pulses
is incident upon the ensemble, with each train being constituted of four pulses separated
in time by the delay times T1, T2, and T3. Each train in the sequence has the same set of
delay times, and the trains are spaced apart from one another by the repetition time, trep.
The total electric field of each train is the same as in Equation (3), only the sum ran over
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n = 1, 2, 3, and 4. The action signal, from which the photocurrent is calculated, is recorded
along trep. For a given set of delay times (T1, T2, T3), the carrier envelope phases of the
four pulses are modulated from u = 1 to L. The sequence is repeated using different values
of the delay times, so the total photocurrent response is calculated as a function of the
delay times and the phase modulation, Pu(T1, T2, T3). The total photocurrent is separated
into the different PMDs using Equation (4), and these data are Fourier-transformed along
T3, PPMD(T1, T2, T3)↔ PPMD(T1, T2, ω3) . This post-processing produces a cube of data,
in which the photocurrent response in a specific PMD is stored as a function of T1, T2, ω3,
as shown in Figure 7c. The analysis of this cube allows identifying and exploiting the
coherences contributing to this PMD.
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using the approximated Liouville matrix given in Equation (6), to which we added the 
relaxation rates defined above. Additionally, a decay term was added to the Liouville ma-
trix to account for the dephasing of the coherences caused by phonon coupling with 
strength 𝛾 = 0.005 𝑒𝑉. Both the relaxation of the bi-exciton to the mono-exciton states and 
of the mono-exciton states to the ground state contribute to the photocurrent signal 
[23,47]. The action signal response from the relaxation of state |𝑚⟩ to state |𝑛⟩ is com-
puted as [47]: 

Figure 7. (a) Sequence of L phase modulation of 4 pulse trains used in the simulation. Each train has
a different value of u, from 0 to L, which modulated the carrier envelope phase, and the trains are
spaced by the laser repetition time, trep. (b) The 4 pulses in each train are separated by the delay times,
T1, T2, and T3, which are fixed in each sequence of L trains. The measurement is repeated using
sequences with different sets of delay times. (c) The observable response in a specific PMD stored
in a cube of data as a function of T1, T2 , and ω3. (d) The calculated stick spectrum with ground
state–mono-exciton transitions in blue and mono-exciton–bi-exciton transitions in pink. The pulse
envelope in the energy domain is superimposed onto the stick spectrum in green.

We take here for the pulse parameters: ε0 = 5× 10−6 a.u. (8.775 × 105 W/cm2),
ωn = 2.53 eV, and σn = 3.32 f s, for n = 1, 2, 3, and 4. The pulse envelope for these param-
eters in the energy domain is shown in Figure 7d, superimposed onto the stick spectrum
of the ground state–mono-exciton and mono–bi-exciton transitions. In the simulations,
L = 170, m1 = 0, m2 = 2, m3 = 5, and m4 = 34.

The observable response being computed is the photocurrent. We took the relax-
ation times in ranges typical for CdSe QDs [23,47]. The relaxation of the bi-exciton states
to the mono-exciton states is in the sub-picosecond range, and the mono-exciton states
are assumed to relax to the ground state with a lifetime of a dozen picoseconds. Con-
sequently, the relaxation time from the |3 〉 and |5 〉 bi-exciton states to the |1 〉 and |2 〉
mono-exciton state is fixed to be 318 fs, with corresponding rates of: Γ3→1 = Γ5→2 =
1.3× 10−2 eV. The relaxation time from the |4 〉 bi-exciton state to the |1 〉 and |2 〉mono-
exciton states is taken to be a little longer, at 636 fs, with a corresponding width in energy
of: Γ4→1 = Γ4→2 = 6.5× 10−3 eV. The relaxation time from the |1 〉 and |2 〉mono-exciton
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states to the |0 〉 ground state is taken to be 15.9 ps, with a corresponding width of: Γ1→0 =
Γ2→0 = 2.6× 10−4 eV.

The total photocurrent response is calculated from the density matrix of the ensemble
using the approximated Liouville matrix given in Equation (6), to which we added the
relaxation rates defined above. Additionally, a decay term was added to the Liouville
matrix to account for the dephasing of the coherences caused by phonon coupling with
strength γ = 0.005 eV. Both the relaxation of the bi-exciton to the mono-exciton states and
of the mono-exciton states to the ground state contribute to the photocurrent signal [23,47].
The action signal response from the relaxation of state |m 〉 to state |n 〉 is computed as [47]:

Respmn =
∫ taquisition

t4

dtΓmnTr[ |n 〉〈m|ρ(t) |m 〉〈n| ] (11)

The integral of Equation (11) is evaluated along the acquisition time of the experiment,
which runs from the time of the fourth pulse in the sequence over the repetition time to the
next sequence, trep, as shown in Figure 7a. In the simulations, trep is approximated as ∞
since it is much longer than all the relaxation processes of the mono- and bi-exciton states
to the ground state.

The total action signal response is:

Resp =
∫ taquisition

t4

dt∑m,n ΓmnTr[ |n 〉〈m|ρ(t) |m 〉〈n| ] (12)

The total photocurrent calculated from Equation (12) is separated into its non-linear
phase-matching components by Fourier transforming along the phase modulations
(Equation (4)). We report here on the DQC PMD: DQC = m4 +m3−m2−m1. As explained
before, this is a phase-matching direction, challenging to be reliably measured in the
BOXCARS setup, yet very appealing to quantify shifts of the energy correlation between
two mono-excitons, in particular to study many-body effects and excited-state landscapes
in a wide range of systems, including biomolecules and inorganic materials [19,21,48–50].

The calculated cube of data is then converted into the time–frequency domain by
Fourier transforming along PDQC(T1, T2, T3)↔ PDQC(T1, T2, ω3) .

Figure 8a shows a (T1, T2) time map of the real part of the photocurrent response
in the DQC PMD for a value of ω3 = 20, 000 cm−1. The pathways contributing to the
DQC PMD using a third-order perturbative approach are enumerated as double-sided
Feynman diagrams by Damtie et al. [47]. We do not use a perturbative approach here,
instead we are computing the photocurrent response from the dynamics of the density
matrix (Equation (6)). However, the pulse strength used in the simulation is sufficiently
weak that the third-order perturbative treatment is a good approximation of the exact time-
dependent response and provides good insights into the excitation pathways contributing
to the signal. The double-sided Feynman diagrams which contribute to the DQC PMD all
have in common that the first pulse excites the ket from the ground state to a mono-exciton
state, and the second pulse excites this ket from the mono-exciton state to a bi-exciton
state. This means that for the duration of T1, the system will be in a coherence between the
ground state and a mono-exciton state, and that for the duration of T2, the system will be in
a coherence between the ground state and a bi-exciton state. These features clearly appear
in the time map of Figure 8a. If one compares the number of oscillations along the T1 axis
to those along the T2 axis, it is clear that there are more beatings in the same time along
T2 than T1. This reflects the fact that the ground–bi-exciton coherences have much shorter
periods, about two times shorter, than the ground–mono-exciton coherences (see Table S4).
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broadening resulting from the size dispersion of the ensemble, the peaks in Figure 8b are 
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The analysis of the computed photocurrent response in an additional PMD, the DQC 
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for additional post-processing by Fourier transforms along 𝑇ଵ and 𝑇ଶ. A sampling of the 
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Figure 8. (a) (T1, T2) Time map of the real part of the photocurrent response in the DQC PMD for
a value of ω3 = 20,000 cm−1. (b) Traces along ω3 at the points indicated in (a) with a green dot,
(T1, T2) = (6.0 f s, 6.0 f s), and a burgundy dot, (T1, T2) = (8.0 f s, 8.0 f s). The signal corresponding to
ground–mono-exciton state coherences is identified with blue arrows, and the signal corresponding
to mono–bi-exciton state coherences is identified with pink arrows.

Figure 8b shows the absolute values of the traces along ω3 of two points on the (T1, T2)
time map. The Feynman diagrams [47] show that the third pulse in the train can either
relax the ket from the bi-exciton state to a mono-exciton state or excite the bra from the
ground state to a mono-exciton state. This means that for the duration of T3, the system
can either be in a coherence between the ground and a mono-exciton state or between a
mono-exciton and a bi-exciton state. This is shown in Figure 8b, in which the fast-beating
responses corresponding to ground–mono-exciton as well as ground–bi-exciton coherences
are identified.

Note that the signal of the two traces plotted in Figure 8b, while being dominated by
the same primary frequencies, differs in the specific coherences which can be identified.
This small but important variability of the coherences in the ω3 traces of different (T1, T2)
points means that a comprehensive collection of coherence data still requires repetitions
for a small number of T1 and T2 values, albeit far fewer than would be needed if Fourier
transforms along these delay times were required. In addition to the inhomogeneous
broadening resulting from the size dispersion of the ensemble, the peaks in Figure 8b are
broaden by the coupling to the phonon modes.

The analysis of the computed photocurrent response in an additional PMD, the DQC
PMD, shows that coherences involving bi-exciton states can be observed in the action
signal photocurrent response of QD ensembles to 2DES. As in the case of the polarization
response, directly measured data in the (T1, T2, ω3) domain are usable without the need for
additional post-processing by Fourier transforms along T1 and T2. A sampling of the delay
time, T3, for fixed values of T1 and T2 enables to characterize all the coherences found in
the pathways contributing to the DQC PMD. This, in turn, means that fewer measurements
along these delay times are needed. Furthermore, these results show that the (T1, T2, ω3) is
the appropriate domain for looking at coherences in observables in the DQC PMD.
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4. Conclusions

We have shown that the electronic coherences resulting from the excitation of ensem-
bles of size-dispersed QDs and QD dimers by sequences of fs broad-bandwidth laser pulses,
as in 2DES, can be observed and characterized in the directly measured time–frequency
domain. This is the case for both polarization and action-based (here, photocurrent) mea-
surements. For the case of the cube of data that depends on three delay times, the electronic
coherences are characterized by robust and distinct beating patterns in the traces of the
signal, as a function of one delay time at a single point in the time–frequency domain of the
other two delay times. In the case of polarization measurements, we obtained very good
agreement between the modeled and experimental (T1 , ω3) time–frequency maps in the
rephasing PMD, and in the T2/ω2 traces along these maps.

Compared to the conventional (ω1 , ω3) frequency maps, the advantage of directly
exploiting time–frequency data leads to a considerable reduction of the number of time
intervals that need to be sampled. This is because, in a time–frequency map, the addresses
of the coherences are only partially resolved. All the coherences between excited states i
and j, which have a common state j, beat in the traces of points with the same T1 value.
By fixing ω3 to be within the inhomogeneous broadening of the transition j to the GS, and
recording a trace at a point (T1, ω3) along T2, one can characterize, at the same time, all the
beating frequencies of a family of coherences that involve the same emitting state j in the
chosen PMD, because the absorbing states i are not resolved along T1.

That several coherences are simultaneously accessible in the directly measured time–
frequency domain is a huge advantage for the exploitation of QD electronic coherences in
quantum technologies for parallel information processing. The savings in fewer measure-
ments and less computation time will greatly enhance the advantage of logical operations
encoded onto coherences over classical logic operations. Action-based photocurrent mea-
surements of electronic coherences are a step further in coherence exploitation since they
pave the way for QD devices to be integrated into classical architectures.
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