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Background: Bradykinesia has been reported in patients with dystonia. Despite

this, the pathophysiological mechanisms of bradykinesia in dystonia remain

largely unknown.

Methods: We here performed a comprehensive literature search and reviewed

clinical and experimental studies on bradykinesia in patients with dystonia.

Results:Many studieshavedocumented thepresenceof bradykinesia inpatientswith

idiopathic and inherited isolated dystonia, regardless of the presence of parkinsonism.

In addition, bradykinesia has been observed as a side effect in dystonic patients who

have undergone deep brain stimulation, in those with functional dystonia as well as in

those with combined dystonia, e.g., dystonia-parkinsonism. These clinical and

experimental findings support the hypothesis that dysfunction in a brain network

involving the basal ganglia, primary sensorimotor cortex, and cerebellum may play a

key role in the pathophysiology of both bradykinesia and dystonia.

Conclusion: Bradykinesia is frequently observed in dystonia. We may gain

insights into the pathophysiological underpinnings of two distinct movement

disorders by investigating this issue. Furthermore, a deeper understanding of

bradykinesia in dystonia may have terminological implications in this field.
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Introduction

Bradykinesia, along with other associated motor features such as hypokinesia,

sequence effect, and hesitations/halts, is traditionally believed to be a motor symptom

resulting from basal ganglia dysfunction and it is considered the hallmark feature of

Parkinson’s disease (PD) and atypical parkinsonism [1–8]. However, bradykinesia has
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also been described in numerous clinical and experimental

studies in non-parkinsonian conditions, including dystonia [9].

It is interesting to note from a historical perspective that

Verger and Cruchet introduced the term “bradykinesia” in their

early 20th-century treatise on spasmodic torticollis to describe

the movement slowness observed in patients with dystonia, or

what they referred to as “bradykinesie spasmodique” [10, 11].

After the original description, several clinical and experimental

studies have documented the presence of movement slowness in

patients with dystonia, often referred to as bradykinesia. Notably,

one relevant, albeit under-recognized topic, is the presence of

bradykinesia in patients with idiopathic and inherited isolated

dystonia, where dystonia is the predominant motor feature [12].

The issue has been primarily explored through case reports, case

series, and a range of clinical and experimental studies [13–25].

The occurrence of bradykinesia as a side effect of pallidal deep

brain stimulation (DBS) has also been noted in more recent

observations [26–29]. Furthermore, clinical studies have shown

that bradykinesia has been observed in patients diagnosed with

functional dystonia [30]. The issue of combined dystonia, which

mainly refers to dystonia-parkinsonism syndrome has been

extensively reviewed from both a phenomenological and

pathophysiological perspective [31–34]. In this context, given

the complex etiology of dystonia-parkinsonism, that can result

from a variety of factors affecting the basal ganglia such as

structural, metabolic, drug-induced, infectious, autoimmune,

or genetic diseases, the presence of bradykinesia is not

unexpected [31, 33, 35].

Observing bradykinesia in hyperkinetic movement disorders

like dystonia offers a unique opportunity to gain insight into the

underlying pathophysiological mechanisms shared by the

coexistence of two distinct movement disorders characterized

by opposing phenomenological features. From a

pathophysiological perspective, bradykinesia in dystonia might

seem at first sight a paradox as these are two disorders that were

originally interpreted based on opposing patterns of basal ganglia

dysfunction [1, 6, 31, 36–40]. However, interpretations

concerning the dysfunction of the basal ganglia and other

interconnected brain areas have been changing over the years

[6, 41, 42]. In this regard, both bradykinesia and dystonia can

now be interpreted as motor disorders resulting from network

dysfunction, and there may therefore be an overlap between the

mechanisms underlying both disorders [6, 9, 41–45].

This paper builds upon our previous work [9] and further

explores the relationship between bradykinesia, here specifically

referred to as movement slowness [7], and dystonia. We first

focused our discussion on clinical and experimental studies

investigating bradykinesia in patients with idiopathic and

inherited isolated dystonia (both focal/segmental and

generalized), and other intriguing and new aspects that have

emerged in recent literature including bradykinesia in patients

with dystonia treated with DBS and in patients with functional

dystonia. While acknowledging the issue of dystonia-

parkinsonism, we only provide a brief overview of this topic

as it has already been extensively covered by other authors

[31–34].

Our comprehensive literature search on PubMed included

full-text papers such as original clinical and experimental studies

and reviews, published in English until March 2023, using the

search terms “bradykinesia,” “movement slowness” and

“hypokinesia” in combination with “dystonia.” We also

manually searched the reference lists of identified articles for

additional relevant studies. We screened articles based on their

title and abstract, excluding non-English papers and those with

no available full text. Based on the available data, we discussed

pathophysiological and terminological issues related to

bradykinesia in dystonia.

Bradykinesia in idiopathic and
inherited dystonia

Several clinical studies have reported that patients with

idiopathic and inherited isolated dystonia exhibit slow

movements and other related motor abnormalities, often

specifically referred to as bradykinesia [9]. For instance,

decreased arm swing [13, 18] as well as hypomimia, a type of

facial bradykinesia [46], have been described in patients with

cervical dystonia (CD), focal hand dystonia (FHD) and laryngeal

dystonia [13, 18]. Anecdotally, bradykinesia and other

parkinsonian signs have been reported during the disease

course in 3 dystonic patients in whom the evolution of

dystonia and bradykinesia was inversely proportional [47], as

well as in larger series of patients with late-onset focal or

segmental (mostly cervical) dystonia [20, 25]. Finally,

bradykinesia and other associated motor features have been

clinically reported in patients with pathogenic variants that

typically cause isolated dystonia, such as KM2TB [48, 49] and

ANO3 variants [50], as well as in one case of DYT1 dystonia, a

monogenic generalized isolated dystonia, who exhibit clumsiness

in foot tapping without decrement [51].

Building on clinical evidence, neurophysiological investigations

have shown altered voluntary movement execution in idiopathic

and inherited isolated dystonia [9]. Studies on voluntary movement

execution demonstrated movement slowness, reduced movement

amplitude and altered rhythm in patients with FHD, performing

rapid wrist and elbow flexions [52, 53], and in patients with CD

performing both horizontal arm extensions [17] and neck

movements [19]. More complex movements, e.g., reaching arm

movements, are slowed and characterized by altered trajectories in

some studies [54, 55], including observations in DYT1 patients

performing movements without visual feedback [54] and in other

studies of patients with isolated dystonia [55]. However, some

studies found different results in patients with FHD and CD

[56]. Kinematic analysis of finger movements in patients with

blepharospasm, CD, and FHD has provided variable results.
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Some studies have demonstrated altered timing parameters, but

normal movement velocity and amplitude [57, 58]. Simultaneous

and sequential upper limb and fingermovements were characterized

by movement slowness, irregular rhythm, and longer pauses, but no

progressive reduction of amplitude and velocity during movement

repetition was observed, indicating no sequence effect [15, 59–62].

Notably, a recent kinematic study that assessed finger tapping

movements in patients with both focal or generalized dystonia,

demonstrated that bradykinesia ameliorated when patients executed

their ‘Geste Antagoniste’, which improved not only the dystonic

muscle contraction but also voluntary movement velocity and

rhythm [63]. Finally, a few studies have investigated neck

movements in patients with CD and have consistently found

evidence of slowness together with prolonged movement time

and reduced amplitude [19, 56, 64, 65], and the impairment was

higher when the patient moved toward the dystonic side [56, 64]. In

addition, these studies have also reported longer pause durations

between movements [19, 56, 65], as well as poor smoothness during

neck movements in CD patients [66]. On the other hand, neck

movements in FHD patients were found to be normal [56]. Relevant

to the understanding of movement execution in dystonia several

authors also investigated movement preparation. These studies have

yielded varying results when measuring the reaction time (RT),

which was normal in some reports [16, 54, 67–70] while abnormally

prolonged in others [15, 23, 61].

In summary, clinical and experimental studies conducted on

patients with dystonia have reported the occurrence of

bradykinesia in this condition, either involving the body

segments affected by dystonia and those not affected by this

disorder. Clinical studies were mostly case series, and they did

not provide a detailed description of the bradykinesia features.

Neurophysiological studies provided evidence of slowed,

irregular and low amplitude voluntary movements in dystonia,

and some studies demonstrate the lack of sequence effect in these

patients [15, 59].

Bradykinesia in dystonia patients
treated with DBS

Deep brain stimulation (DBS) of the globus pallidus internus

(GPi) has been demonstrated as an effective treatment for

TABLE 1 Clinical and neurophysiological results of bradykinesia in dystonic patients treated with deep brain stimulation (DBS).

Study Diagnosis (number/range of
patients)

Major findings

Clinical studies

[72] GD (15) Akinesia with gait slowing

[74]a CD (11) Moderate/severe bradykinesia, altered handwriting

[75] CD (11) Mild parkinsonian signs (gait hesitation, impaired postural reflexes, slurred speech and micrographia)

[74] Tardive dystonia (9) Slight gait impairment in 2 patients

[78]a CD (29 treated with DBS vs. 22 non-surgical
control)

Bradykinesia and other parkinsonian signs, partially reversible upon switching stimulation off for 90 min

[81] 6 [CD (2), truncal dystonia (1), DYT-1 (1),
TD (2)]

Shuffling steps and difficulties with gait initiation and turning. Increasing voltages of DBS triggered FOG.
Improvement of gait after ceasing DBS.

[80] SD (11) Slowness in finger tapping movements, micrographia and FOG.

[82] CD (1), SD (1) Limb hypokinesia and FOG, partially improving with levodopa therapy

[83] CD (4), SD (3) Slowness of movement, dysarthria, gait difficulties

[76]a GD (8) Bradykinesia in 1 patient

[28]a GD (14), SD (22) Bradykinesia in 2 patients

[79]a Tongue dystonia (1), CD (1), hemidystonia (1) Bradykinesia, postural instability, and unsteady gait in 2 patients

Neurophysiological studies

[77] SD (10) Gait analysis (pressure sensitive insoles): reduction in stride length, walking distance, and gait velocity

[85] SD (33) Postural analysis (inertial sensors): altered postural reactions in the ON condition; higher number of steps,
shorter 1st step length, lower 1st step velocity

[26] CD (9) Finger-tapping and prono-supination movements (ultrasound sensors); ballistic movements
(goniometer): slowness of movement as compared to the preoperative evaluation

[29] SD (6) Finger-tapping kinematic recordings/Rest recording of pallidal activity: slowness of movements. Pallidal
low-beta activity (13–20 Hz) significantly predicted tapping velocity

[86]a CD (19), SD (3) Finger-tapping movements (joystick-button): bradykinesia with high frequency stimulation

Abbreviations: CD, cervical dystonia; SD, segmental dystonia; TD, tardive dystonia; DYT-1, Dyt-1–positive generalized dystonia; GD, generalized dystonia; HFS, high frequency

stimulation (≥130 Hz); FOG, freezing of gate.
aIndicates the papers which specifically referred to movement slowness as bradykinesia.
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medically refractory dystonia, resulting in a reduction of motor

impairment and disability in patients [28, 29, 71]. Despite its

effectiveness, several clinical reports have described the

occurrence of bradykinesia as a side effect in dystonia patients

treated with GPi DBS (Table 1) [29, 72–79]. Namely, motor

difficulty and slowing in previously non-dystonic extremities

have been reported as possible side effects in some cases. For

example, a relatively small sample of adult-onset CD and cranial-

cervical dystonia patients who underwent GPi DBS reported such

effects [73]. These patients also had difficulties with handwriting,

getting up from a chair, and walking [73]. Other clinical studies

have reported slowness in finger tapping movements,

micrographia, and freezing of gait (FOG) have been reported

in other clinical studies on patients with segmental dystonia after

DBS [80–82]. Movement slowness has been observed in patients

with dystonic head tremor after thalamic DBS [83]. Observations

on a larger sample of patients with various forms of dystonia have

confirmed that bradykinesia can be a side effect of GPi DBS [29,

78]. However, there is variability in the prevalence of this side

effect. For instance, a large retrospective study that assessing

long-term clinical outcomes and safety in 61 patients with

idiopathic, inherited and acquired dystonia who underwent

unilateral GPi-DBS reported no clinically overt bradykinesia

over the 6–10 years follow-up [84]. Moreover, a recent study

investigating the long-term effects of bilateral pallidal DBS in

36 consecutive patients with isolated generalized and cervical/

segmental dystonia reported that bradykinesia was only present

in two patients [28].

Some neurophysiological studies have objectively assessed

the motor function alterations after pallidal DBS in dystonic

patients [26, 29, 77, 85, 86]. Singh et al. conducted a

comprehensive analysis of both distal (finger tapping and

prono-supination) and proximal (ballistic) arm movements in

dystonic patients who underwent GPi DBS and compared their

performance to PD patients who received DBS targeting the

subthalamic nucleus (STN) [26]. In contrast to PD patients, who

show faster movements after surgery, patients with dystonia

exhibit decreased finger tapping, prono-supination, and arm

movement speed following GPi DBS, [26]. Another study on

patients with cervical and segmental dystonia found that the

tapping rate deteriorated when the DBS was set to a high

stimulation frequency during 30-seconds of tapping a joystick

button with their index finger [86]. The tapping speed after

cessation of pallidal stimulation increased over time in another

report on 6 patients with isolated dystonia [29]. GPi DBS may

also impact posture, as demonstrated by a study that utilized

gyroscopes to measure the velocity and amplitude of postural

reactions [85]. Finally, gait changes were reported in a study that

performed computerized gait analysis on 10 patients with

segmental dystonia who underwent bilateral pallidal DBS [77].

The subthalamic nucleus (STN) has also been explored as a

possible target for dystonia, based on intraoperative single unit

recordings performed in primary dystonia that showed similar

bursting and oscillatory activity in STN and GPi [87–90].

Concerning the possible occurrence of bradykinesia over time

in these patients, in a 3-years follow-up study, Ostrem et al.

clinically monitored 20 patients with medically refractory

isolated dystonia treated with STN-DBS; they reported a

worsened handwriting in 3 patients and the development of

movement slowness in 2 patients [91]. These data might seem

paradoxical given the strong efficacy of STN-DBS in improving

bradykinesia in PD. However, to date, no neurophysiological

study objectively assessed possible movements abnormalities in

dystonia patients before and after undergoing STN-DBS.

In summary, bradykinesia may occur in patients affected

by isolated dystonia treated with both GPi- and STN- DBS.

The present observation may highlight the role of basal

ganglia oscillations in bradykinesia pathophysiology.

Bradykinesia in functional dystonia

Functional movement disorders (FMDs) are defined as

abnormal movements that are involuntary and do not have a

clear neurologic cause or consistent neuroanatomy [30, 92–96].

Functional dystonia typically presents with fixed onset,

inconsistent resistance, and absence of a sensory trick [96].

Functional bradykinesia is characterized by an abnormal

slowness of movement that is not accompanied by a

decrease in movement amplitude or complete movement

arrest [94]. Other common features of functional

bradykinesia may include fatigue, giveaway weakness,

distractibility, and variability in movement [94]. Finally,

gait may be slow and stiff with decreased arm swing, but

the FOG is not typically observed. Interestingly, functional

dystonia and bradykinesia often coexist in patients with

FMDs, with up to 74% exhibiting two or more phenomena

[97]. However, no studies have specifically investigated the co-

occurrence of these two phenomena, and previous studies

have not emphasized this issue.

Although no specific neurophysiological investigations have

been carried out in patients with functional dystonia and

bradykinesia, a recent study examined eyelid movements in a

patient with functional eyelid opening apraxia (EOA) using

kinematic methods, demonstrating more severely impaired

kinematic features in functional EAO as compared to EAO in

PD [98]. EOA is characterized by the inability to initiate eye

opening [99, 100]. It can occur in isolation or be associated with

various neurological conditions, including focal dystonia such as

blepharospasm [100]. In another case, eyelid opening apraxia

was observed as part of functional parkinsonism along with

involuntary facial movements and was considered a type of

facial bradykinesia [98, 101].

In summary, anecdotic cases have demonstrated the

coexistence of dystonia and bradykinesia in patients with

FMDs, although the present topic requires further investigation.
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Bradykinesia in dystonia-
parkinsonism

Numerous conditions can cause dystonia-parkinsonism,

including genetic and acquired disorders, as recently

highlighted in various review papers [31, 33, 35, 42, 102–109].

Bradykinesia is not unexpected, given the complex etiology of

dystonia-parkinsonism, that can result from a variety of basal

ganglia diseases. Notably, in dystonia-parkinsonism, the severity

of bradykinesia and dystonia strongly correlates, thus supporting

the hypothesis of a partially overlapping pathophysiological

mechanisms underlying the two disorders. It is plausible,

though, that bradykinesia in dystonia-parkinsonism may be at

least in part influenced by coexisting symptoms, e.g., diplegia/

hemiplegia, spasticity, and cognitive deficits [6, 9]. However, no

pathophysiological studies have investigated this aspect in detail.

Another critical aspect of dystonia-parkinsonism is that it is

assumed that the bradykinesia in these cases is similar to that

observed in PD. However, this assumption has not been well-

supported by clinical and experimental evidence. So far, few

neurophysiological studies have been conducted to evaluate

motor disturbances in patients with dystonia-parkinsonism

[110, 111]; when specifically investigated the sequence effect

was not observed [111].

In summary, dystonia-parkinsonism is a clinically and

etiologically heterogeneous syndrome. Notably, in these cases

the characteristics of bradykinesia have not been investigated

either clinically or experimentally. Therefore, the assumption

that bradykinesia in dystonia-parkinsonism is comparable to that

of PD is not supported by substantial evidence. Future studies

will necessarily have to investigate this topic in more detail.

Pathophysiological insight

The coexistence of bradykinesia and dystonia is intriguing

from a pathophysiological standpoint, as these two disorders

have historically been interpreted as do to opposing patterns of

basal ganglia dysfunction [1, 6, 31, 36–40].

One proposed explanation to reconcile this paradox is to

view bradykinesia as a secondary effect of the co-contraction

between agonist and antagonist muscles, a common dystonia

feature as demonstrated by electromyographic (EMG) recordings

[1, 6, 9]. In other words, co-contraction and impaired muscle

relaxation may interfere with the execution of voluntary

movement, as seen in FHD patients performing tasks that

trigger cramps [14, 52], or in patients with various forms of

focal dystonia performing isometric contraction and relaxation

tasks [16]. However, bradykinesia in dystonia has also been

observed during upper limb movements where co-contraction

activity cannot be clearly identified [53] and in non-dystonic

body segments where there is no co-contraction activity [9, 17].

Hence another plausible explanation is that bradykinesia and

dystonia may have common underlying pathophysiological

mechanisms, including abnormalities in the cortico-basal

ganglia-thalamic and cerebellar networks, as well as alterations

in dopaminergic neurotransmission [6, 6, 33, 35, 42].

Although the factors contributing to the differences in kinetic

bradykinesia features between PD and dystonia have not been

fully identified [22], one possibility is that variations in firing rate

[112–115] and synchronization of oscillatory activity in the basal

ganglia network [116–119] could be responsible for bradykinesia

or dystonia, respectively. Also, studies have shown that patients

with dystonia who undergo DBS to alleviate their symptoms may

develop bradykinesia [72, 73, 77, 78, 86] suggesting that

stimulation-induced changes in basal ganglia oscillatory

activities may play a significant role in the development of

bradykinesia in dystonia. In this regard, a recent

neurophysiological study demonstrated that the objectively-

measured bradykinesia induced by GPi-DBS in dystonia

patients is paralleled by an increased low-beta activity in the

GPi [29]. The positive relationship between low-beta oscillations

power and bradykinesia severity resembles that observed in PD

[120–123]. The authors speculated that in dystonia characterized

by a direct pathway hyperactivity, GPi-DBS might imbalance

brain rhythms by excessively suppressing pro-kinetic oscillations,

which may lead to a relative increase of anti-kinetic beta activity

[29]. However, more in general, the relationship between beta

oscillations and slowness observed in dystonia may support the

existence of common or related neurophysiological substrates in

bradykinesia pathophysiology regardless of the disease condition

(dystonia or PD). This view would also partially explain the

observation that the evolution of dystonia and parkinsonism is

inversely proportional [47], and that tapping speed has opposite

response to GPi DBS in dystonic and PD patients [26, 29, 86].

Abnormalities in the primary motor cortex (M1) are another

common factor in dystonia and bradykinesia [6, 9].

Abnormalities of intracortical excitability, as well as

maladaptive plasticity, have been demonstrated in M1 through

neurophysiological studies in patients with dystonia and

parkinsonism [6, 124, 125]. Interestingly, reduced GABA-A-

ergic inhibition at the M1 level, as assessed by short-interval

intracortical inhibition (SICI), is a cardinal neurophysiological

feature of dystonia and PD [6, 42, 126]. In PD, SICI changes

correlate with movement slowness severity and are thought to

reflect compensatory cortical mechanisms against motor

dysfunction [127, 128]. To date, the precise functional

significance of altered SICI in dystonia is unclear [42].

Abnormal sensory processing has also been identified as a

possible sensorimotor cortex abnormality that may underlie

dystonia and bradykinesia [129–134]. It has been found that

somatosensorimotor integration mechanisms, as quantified by

the somatosensory temporal discrimination threshold (STDT),

are critically impaired in both dystonia and parkinsonisms.

Dystonia patients exhibit abnormally increased STDT at rest,

and changes in STDT during motor execution may worsen
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dystonia during voluntary movements [135]. Similarly, STDT is

increased in PD, and this alteration correlates with the variability

in movement amplitude and speed, objectively measured using

sensors [136]. Furthermore, the analysis of movement-related

modifications of STDT has demonstrated that the temporal

coupling between tactile information and motor outflow is

altered in PD patients [137]. Finally, although less commonly

compared to nigrostriatal lesions, prefrontal lesions, including

the supplementary motor area, may also lead to dystonia and

parkinsonism, indicating that changes in motor integration at the

cortical level may also be involved in the pathophysiology of both

dystonia and bradykinesia [138, 139].

The cerebellum is another crucial node in the

pathophysiology of both bradykinesia and dystonia [6,

140–142], even though the precise pathophysiological

mechanisms underlying these motor disorders are not yet

fully understood. Regarding bradykinesia, it is worth noting

that the cerebellum is involved in encoding kinematic

parameters such as movement direction and velocity, as

shown by neurophysiological studies [143, 144]. Also,

neuroimaging studies demonstrated that cerebellar activity was

related to the severity of micrographia [145] and specific

bradykinesia characteristics in PD [146].

A further intriguing aspect relates to the observation of

dystonia and parkinsonism resulting from dopamine receptor

blockade, supporting to the hypothesis that the dopaminergic

systemmay play a role in the pathophysiology of these twomotor

disorders. This is further corroborated by genetic evidence

demonstrating that disruption of dopamine synthesis leads to

dystonia and parkinsonism, as seen in variants of PARKIN or

GCH1 genes. Furthermore, in the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) lesion animal model, dystonia with a

decline in striatal dopamine and dopamine 2-like receptors

precedes the onset of parkinsonism [33]. Thus, extensive

research has highlighted the role of dopaminergic dysfunction,

abnormal basal ganglia circuitry, and altered cortical and

cerebellar function in the pathophysiology of both

bradykinesia and dystonia [1, 6, 9, 61, 124, 142, 147–150].

In summary, evidence suggests that both bradykinesia and

dystonia can be interpreted as motor disorders resulting from

network dysfunction, and there may be an overlap between the

mechanisms underlying both disorders [6, 41–45, 142]

(Figure 1).

Terminological issues

A critical point to consider is that bradykinesia in dystonia may

not display the same motor characteristics as in PD, such as the

sequence effect [6, 7, 9]. As a result, the term “bradykinesia” has been

avoided inmany studies on dystonia to describemovement slowness

and other motor abnormalities in these patients. Some authors, for

example, have highlighted the absence of “true bradykinesia” in

dystonic patients [11, 51], arguing that the combination of

movement slowness and the sequence effect, as defined by

clinical criteria in PD, is not observed in dystonia [3]. The

absence of the sequence effect in dystonia has led some

researchers (Haggstrom et al.), suggesting using the term “non-

decremental bradykinesia” to describe movement slowness in

dystonia [22]. However, in other instances the term bradykinesia

seemedmore appropriate when referred to dystonia. This is the case

of bradykinesia induced by DBS in dystonic patients [28, 29, 73, 78],

due to a common pathophysiological background, e.g., beta-band

oscillations [40]. Finally, it is important to note, that as in dystonia,

the sequence effect may also be absent in advanced PD stages of and

atypical parkinsonism [7, 151].

Inconsistencies in using the term bradykinesia extend beyond

dystonia and are also present in other pathological conditions where

motor disturbances, such as slowness of movement, have been

observed [9]. The presence of bradykinesia in non-parkinsonian

conditions and the possibility of common pathophysiological

mechanisms underlying bradykinesia in pathophysiologically

distinct conditions supports using the term bradykinesia in

dystonia, as recently proposed [7]. Accordingly, the term

bradykinesia should be used to describe the slowness of

voluntary movements, as it is a non-specific finding that can be

present in various conditions, including dystonia. Therefore, when

there is a combination of motor alterations, such as bradykinesia

with sequence effect and additional features, typical for the clinical

picture of parkinsonism, all features should be spelled out

individually and not implied. Further studies are needed to

elucidate the relationship between the variable phenomenology of

bradykinesia and the underlying etiology, including causes of

dystonia [7]. In dystonia, once this aspect is clarified similarly to

FIGURE 1
The figure illustrates the various brain areas and circuits
involved in the motor control in humans. Red text and arrows
reflect the nodes and pathways which demonstrated overlapping
abnormalities between bradykinesia and dystonia.
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the tremor in dystonia [12, 152], one could adopt the term

“bradykinesia in dystonia” when bradykinesia is present in a

dystonic patient but involves a body segment not affected by

dystonia, and the term ‘dystonic bradykinesia’ when bradykinesia

involves the body segment affected by dystonia.

Concluding remarks

Despite the use of varied and heterogeneous terminology across

studies, there is evidence to suggest the consistent occurrence of

bradykinesia in patients with dystonia, including not only those

with dystonia-parkinsonism [31, 33], but also those with isolated

dystonia [13–20, 20–25]. The findings discussed in this paper have

important implications for the pathophysiology of bradykinesia and

dystonia, indicating that theymay be relatedmotor disorders resulting

fromnetwork dysfunction. This perspective supports using of the term

bradykinesia and other related terms in describing the phenomenology

of voluntary movement alterations in patients with dystonia.
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