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Algebraic Reduction of Hidden Markov Models
Tommaso Grigoletto and Francesco Ticozzi

Abstract—The problem of reducing a Hidden Markov Model
(HMM) to one of smaller dimension that exactly reproduces the
same marginals is tackled by using a system-theoretic approach.
Realization theory tools are extended to HMMs by leveraging
suitable algebraic representations of probability spaces. We
propose two algorithms that return coarse-grained equivalent
HMMs obtained by stochastic projection operators: the first
returns models that exactly reproduce the single-time distribution
of a given output process, while in the second the full (multi-
time) distribution is preserved. The reduction method exploits
not only the structure of the observed output, but also its initial
condition, whenever the latter is known or belongs to a given
subclass. Optimal algorithms are derived for a class of HMM,
namely observable ones.

I. INTRODUCTION

Hidden Markov processes are an ubiquitous class of stochas-
tic models that has extensive application in modeling and
prediction for speech [1], [2], biological systems [3]–[6],
information and communication systems [7]–[9]. Dedicated
optimal control and estimation methods have been developed
for this class of models, see e.g. [10]–[12].

In the development of the realization theory for HMMs,
two related yet well distinct problems emerge: constructing
an HMM from data, and reducing an existing model, when
possible, to an equivalent one of smaller size. For an analysis
and review of the first one, see for example [13], [14], and
more recent results in [15]. In this paper, we shall focus on the
reduction problem. Besides its theoretical interest, methods for
model reduction are critical in effectively addressing problems
in large-scale systems [16]–[18]. A characterization of equiv-
alent HMMs, that is, models that produce the same output
marginals of a given one, is proposed in [19]. Their treatment
of equivalent HMMs is based on the definition of effective
spaces, which specify equivalence classes of HMMs, repre-
senting the HMM analogue of minimal realizations spaces for
linear systems. In the same paper, the authors pose the problem
of finding a minimal equivalent HMM. As a reduction to the
effective space does not guarantee to preserve the positivity of
the model, the problem has so far remained unsolved.

In this paper, we show how effective spaces can be extended
so that the reduced model remains an HMM. In fact, we
propose a general approach to the model reduction problem
that is based on an algebraic description of probability spaces.
While this is done very frequently and almost implicitly,
we take a deeper look into the algebraic structures and the
associated representations. In particular, we shall need minimal
algebraic models that represent a set of random variables
(r.v) and conditional expectations. Such an algebraic approach
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has been developed to generalize the classical Kolmogorov
description to the non-commutative case so that it suitably
covers quantum mechanics [20]–[22], but it has proven useful
in many other areas, from random matrix theory (see, e.g.
the insightful introduction [23]) to algebraic statistics [24].
In our setting, the algebraic framework and the induced
matrix representations allow us to leverage on observability
and reachability ideas in the characterization of equivalent
models, as well as linear-algebraic algorithms that compute
reduced models. Our approach remains deeply rooted in the
system-theoretic analysis of the dynamical model and can be
seen as a way to construct reduced stochastic realizations for
an HMM. Furthermore, the proofs of effectiveness for the
proposed methods all hinge on a result of model reduction
for switched linear systems, In order to maintain the focus on
HMM, the latter is presented in Appendix A).

In what follows, we deal with reductions of a given HMM
that exactly reproduce the marginals of the original systems.
This allows us to clearly illustrate the working and theoretical
foundation of the method: extension to approximate reduction
will be the focus of upcoming work.

Similar problems have been studied from different perspec-
tives: in particular, the concept of lumpability of Markov pro-
cesses [25], which induces coarse-grained processes analogous
to those presented here, has been employed to characterize a
class of exactly reducible HMMs (2-lumpable systems), see
[26] and references therein. Other works, as [27] and refer-
ences therein, reframe the problem using cellular automata for
hidden information sources and study reductions of Markov
transition kernels within this abstract approach.

The differences between our approach and the existing
results are manifold, both in the tools used and the nature
of the results. In the proposed framework, we introduce and
solve two types of reduction problems: preserving only the
single-time marginal, or the full (multi-time) distribution of
the outcomes. We show that the former, which is of interest
in model reduction of master equations for statistical models
or mixing processes and algorithms [28], can lead to further
reduction and smaller final models, as one might expect. In
addition, our reductions leverage not only the structure of the
measured process, but also the particular initial distribution
of the HMM. We show that the initial conditions are indeed
critical for obtaining minimal reductions in many situations,
in particular, when the original model is initialized in an
equilibrium density. The method hinges on the use of con-
ditional expectations as projections for obtaining a reduced
representation of the dynamics. While the idea is certainly
not new to the control community, see e.g. the derivation
of Kalman filters [10], [29], in this work we develop it
in an algebraic framework. After representing a conditional
expectation as a linear operator, we construct stochastic, non-
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square factorization of its dual with respect to the inner
product associated to the expectation: the factors are then
used to obtain the reduced probabilistic description, preserving
its stochastic character. Lastly, we make direct contact with
system-theoretic ideas in a linear-algebraic framework, which
allows for effective, practically implementable algorithms for
the reduction process. In fact, while the whole analysis could
be carried out in the infinite-dimensional case, we here restrict
to the finite case: in order to derive computable algorithms a
finite-dimensional approximation would be needed anyway.

The structure of the paper is as follows: In Section II
we review the fundamentals of the algebraic probabilistic
models needed for our aims. The approach is directly borrowed
from non-commutative probability [22], [30] and its use in
quantum theory, where the algebras used for embedding the
probability space need not be commutative (and are typically
infinite-dimensional [21]), and can then be used to model
quantum systems [20]. As remarked above, in this work we
only use commutative, finite-dimensional associative algebras,
represented as Rn endowed with its element-wise product.
Subsection II-B is focused on conditional expectations as
linear maps on algebras, their duals, and their representations.
These are some of the key tools in the development of our
method.

Section III is devoted to introducing the notation and the
problems of interest, namely obtaining reduced models that
reproduce either the single-time marginals or the multi-time
marginals of a given HMM, while Section IV presents some
preliminary results that build upon [19] from an explicit
system-theoretic perspective. The main results of the section
are obtained specializing a switched-system result that we
derive in Appendix A to maintain the focus on HMMs. The
key ideas we leverage to obtain reduced HMMs are described
in V, where a class of reduction algorithms for the single-
time marginal problem is developed. Section VI then extends
and adapts these ideas to the multi-time marginal problem.
A key point in our analysis is that, in order to develop the
algorithms, we must switch from the abstract quotient spaces
of [19] to a representative effective subspace. We show that
the choice of representative has a non-trivial effect on the
reduction itself. How to select this and other parameters used
in the algorithms is discussed in Section VII, where we provide
optimal choices for a class of models that includes observable
HMMs and Markov chains. The same choices prove to be
optimal in all the tested examples, also in the presence of
non-observable components of the reachable space. Some
particularly instructive examples are given in Section VIII,
and an outlook on future developments is provided with the
concluding remarks in Section IX.

A. Basic Notation

In the following, we typically denote vectors v P Rn in
boldface, and matrices in capitals V P Rnˆm. We denote
1, the vector of all ones, and 0 the vector of all zeros. The
matrix transpose of V is V T . Given a vector x P Rn and
the standard basis teiu for Rn, we define its support as the
vector space supppxq “ spantei|e

T
i x ‰ 0u. Given a vector

space V Ď Rn, its support is defined as the vector space
supppVq “ spantei|Dx P V s.t eTi x ‰ 0u. diagp¨q is the
operator that, given a vector v, diagpvq returns a diagonal
matrix with rdiagpvqsi,i “ vi.

II. ALGEBRAIC APPROACH TO PROBABILITY THEORY

The central idea in algebraic probability models is to
represent all the key ingredients of a classical probabilistic
model as elements of a suitable algebra A , endowed with a
probability functional (or state) p. In the following sections,
we start from a probability space pΩ,Σ,Pq and briefly review
how to construct an algebraic representation pA , pq, with
A Ď Rn. Correspondingly, we show that any pair pA , pq
admits a classical representation. This allows for a natural
probabilistic interpretation of the proposed reduction method.

A. Fundamentals of algebraic probabilistic models

1) Events and σ-Algebras: Throughout the rest of this
article, we will consider finite-dimensional probability spaces
pΩ,Σ,Pq. Without loss of generality, we can assume Ω “

t1, . . . , nu.
The first step in the construction entails the vector repre-

sentation of events. The latter are in 1-to-1 correspondence
to indicator functions: let IEpωq be the indicator function
associated with the event E. Since the probability space is
finite-dimensional, we can further associate indicator functions
to vectors in Rn. In particular, each indicator of an elementary
event ω P Ω can be associated to its corresponding vector of
the standard basis, i.e. eω P Rn. Similarly, we can define
indicator vectors for any event E P Σ as fE “

ř

ωPE eω . For
these vectors, pfEqω “ 1 if ω P E and zero otherwise. Notice
that fΩ “ 1, and fH “ 0.

Let us denote with FΣ the set of indicator vectors of
the events of the σ-algebra Σ. Let ^ denote the element-
wise product pv ^ wqi “ viwi, _ denote the modified sum
operation defined as v_w “ v`w´v^w and ␣ denote the
negation operation defined as ␣v “ 1 ´ v. By construction,
the set FΣ equipped with the operations ^,_,␣ is isomorphic
to the σ-algebra Σ with X,Y, ¨. In the following, we refer to
FΣ as a vector σ-algebra, and we will drop the subscript when
unnecessary.

A vector partition of Ω is a subset P Ď Fzt0u such that
fi ^ fj “ 0, for all fi,fj P P , i ‰ j and 1 “ _fjPPfj .
The finest resolution in F is a partition respFq such that f “
_fjPrespFqcjfj with cj P t0, 1u, for all f P F .

Note that respFq is not necessarily equal to the standard
basis of Rn since, in general, Σ is contained but not equal to
the power set of Ω. We shall also denote respΣq to indicate
the finest resolution of a classical σ-algebra.

2) Random variables: Random variables (r.v.) are Σ-
measurable functions Xpωq : Ω Ñ A Ă R, where A “ txiu
is the finite set of outcomes of X, called the alphabet. Let
Ei “ X´1pxiq. An r.v. X can also be represented as linear
combination of indicator function Xpωq “

ř|A|

i“0 xiIEi
pωq.
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Using the vector representation fEi
of indicator functions

IEi in the previous equation, each X can also be represented
as a vector

x “

|A|
ÿ

i“1

xifEi
P Rn

such that tfiu Ă FΣ forms a partition of Ω. Notice that in the
vector formalism, the notion of FΣ-measurability is equivalent
to the condition x P spantFΣu. Here and elsewhere, the
boldface font x is used for (vector representations of) r.v.s,
while x denotes the corresponding outcome. As we show
below, spantFΣu has the property of being an algebra, namely
a vector space (or subspace) that is closed under the element-
wise product^. An algebra is unital if it contains 1. The whole
Rn is then an unital algebra, and we denote its subalgebras
using the script font, e.g. A . A non-unital algebra A still
contains the vector 1A , which has entries 1 on the support of
A and 0 otherwise and acts as the product identity in A .

The following proposition collects some known facts which
clarify the relation between FΣ and A “ spantFΣu and
proves that it is indeed an algebra.

Proposition 1. If F Ă Rn is a vector σ-algebra, then A “

spantFu is the smallest subalgebra in Rn containing F , and
it is unital. Conversely, let A be any unital subalgebra in Rn

and idempA q :“ tf P A |f ^ f “ fu Ă A be the set of
idempotent vectors in A . Then idempA q is the smallest σ-
algebra such that every element in A is F-measurable and
respidempA qq forms an orthogonal basis for A .

A proof of this proposition is reported in Appendix B for
completeness. This proposition shows that, not only does the
space of FΣ-measurable random variables form an unital sub-
algebra, but, more importantly, given any unital subalgebra A ,
it is possible to find the minimal (vector) σ-algebra that makes
every random variable in A measurable. For convenience, in
the following, we refer to respidempA qq as respA q.

3) Probability and expectations: Let now consider a prob-
ability measure P : Ω Ñ r0, 1s. For any probability measure
Pr¨s on Σ we can define a vector as follows

p :“
ÿ

ωPΩ

Prωs
⟨fω,fω⟩

fω.

Then, for any fE P FΣ it is immediate to verify that
PrEs “ ⟨p,fE⟩. In particular, notice that if we can write
p :“

ř

frPrespA q prfr, we find that p can be interpreted as a
random variable in the same algebra, p P A .

A vector p is said to be a probability vector if pi ě 0 for
all i and 1Tp “ 1. The set of probability vectors in A is
defined as DpA q :“ tp P A |pi ě 0 @i, 1Tp “ 1u. Note
that DpA q “ DpRnq XA .

Consider a r.v. X and let us denote again with fi the
indicator function associated to the outcome xi. It then holds
that PrX “ xis “ ⟨p,fi⟩. Similarly, we can compute the
expectation of a random variable as Erxs “

ř

j xjPrEjs “
ř

j xj ⟨p,fj⟩ “ ⟨p,x⟩.

In summary, we have shown that an unital subalgebra A
can subsume both the σ-algebra and the space of measurable

random variables of a given probability space. Moreover,
it is equivalent to a probability space when paired with a
positive linear functional, associated to the inner product with
a probability vector p. Conversely, given a pair pA ,pq, we
can always construct a (classical) probability space associated
with the pair. This can be done by choosing Ω “ t1, . . . , nu
and the underlying σ-algebra Σ associated to idempA q as in
Proposition 1. Lastly, p represents the probability distribution
associated with the functional PrEs “ ⟨p,fE⟩.

B. Stochastic maps and Conditional Expectations

Let us now focus on the maps between probability vectors.
Consider two unital subalgebras F of Rn and G of Rm. A

linear map between probability vectors P r¨s : DpF q Ñ DpG q,
p ÞÑ q “ P rps is called a stochastic map. Such a map can be
represented as a (column)-stochastic matrix P P Rmˆn, i.e. a
matrix such that pP qi,j ě 0 @i, j and 1T

mP “ 1T
n .

In the following, the main task will be to find reduced
descriptions of linear dynamics associated with stochastic
maps. In doing this, we exploit the properties of a particular
class of stochastic maps: the duals of conditional expectations.

Recall that the conditional expectation of an r.v. given a
σ-algebra Σ with finest resolution respΣq can be written as
follows:

ErX|Σs “
ÿ

EPrespΣq

ErIEXs
ErIEs

IEpωq. (1)

Let consider a vector r.v. x P F Ď Rn, a unital algebra
A Ď F with taiu “ respA q and d “ dimpA q ă n, and
the underlying probability measure p. Following the previous
definition, we can define the conditional expectation for the
vector r.v. with respect to an algebra A :

Eprx|A s :“
d
ÿ

j“1

⟨p,x^ aj⟩
⟨p,aj⟩

aj .

Noticing that it is a linear operator acting on x we can
represent it as a matrix E|A ,p P Rnˆn, namely:

E|A ,p “

d
ÿ

j“1

ajpp^ ajq
T

⟨p,aj⟩
. (2)

Consider the inner product of the conditional expectation of
x with a probability distribution q, which we have shown
to correspond to its expectation. The dual of the conditional
expectation is then a map on the probability distribution
defined as: 〈

q,E|A ,px
〉
“

〈
ET

|A ,pq,x
〉

which gives in

ET
|A ,p “

d
ÿ

j“1

pp^ ajqa
T
j

⟨p,aj⟩
. (3)

It is immediate to verify that ET
|A ,p is stochastic.

The conditional expectation and its adjoint are orthogonal
projectors with respect to a modified inner product. Notice that
p^A “ spantp^ aiu “ diagppqA .
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Lemma 1. Let consider the modified inner product ⟨v,w⟩p “
Eprv^ws, with p ą 0. Then E|A ,p is the orthogonal projector
onto A with respect to the inner product ⟨¨, ¨⟩p and ET

|A ,p is
the orthogonal projector onto p^A with respect to the inner
product ⟨¨, ¨⟩p´1 .

The proof of this lemma is reported in Appendix B for
completeness.
Remark 1. Note that the above Lemma also implies that E|A ,p

acts as the identity on A while ET
|A ,p acts as the identity on

p ^ A . Furthermore, they are orthogonal projections for the
standard inner product ⟨¨, ¨⟩ if (and only if) p P DpA q and is
positive, namely p “

ř

j λjaj P Rn with λj ą 0,
ř

j λj “ 1.
In this case, we have E|A ,p “ ET

|A ,p.

Consider the standard basis teju for Rd, where d is the
dimension of A . We can then construct a (full-rank) stochastic
factorization of ET

|A ,p.

Proposition 2. Define

J “
d
ÿ

j“1

pp^ ajqe
T
j

⟨p,aj⟩
P Rnˆd, R “

d
ÿ

j“1

eja
T
j P Rdˆn. (4)

Then J,R are stochastic matrices that satisfy JR “ ET
|A ,p,

RJ “ Id, kerpRq “ A K and kerpJT q “ pp^A qK.

Proof. J and R are clearly positive since both taju and teju
are vectors of zeros and ones and p is positive. J is clearly
stochastic, 1T

nJ “ 1T
d since 1T

n pp ^ ajq “ ⟨p,aj⟩. On the
other hand, we have 1T

dR “
řd

j“1 a
T
j “ 1n, since A is

unital.
We can then observe that aT

j pp ^ akq “ ⟨p,aj ^ ak⟩ “
⟨p,aj⟩ δj´k to conclude that RJ “ Id. Finally, if we consider
x P A K, i.e. ⟨x,aj⟩ “ 0 for all j we obtain Rx “ 0 and,
similarly, if x P pp^A qK, i.e. ⟨x,p^ aj⟩ “ 0 for all j we
obtain JTx “ 0.

This stochastic factorization induces a reduction in the prob-
abilistic description. In fact, we have that for each distribution
q and r.v. p:〈

q,E|A ,px
〉
“

〈
ET

|A ,pq,x
〉
“ ⟨JRq,x⟩

“
〈
Rq, JTx

〉
“ ⟨qq, qx⟩

where we define the reduced distribution as qq :“ Rq P DpRdq

and reduced random variable qx :“ JTx P Rd. This property
shows that, given an unital algebra A , it is possible to reduce
the probabilistic description of the set of measurable events to
the space Rd with d “ dimpA q. For this reason, we name R
the stochastic reduction and J the stochastic injection.

In order to obtain smaller reduced models, it is useful
to notice that even if A is a non-unital subalgebra of Rn,
namely the subalgebra has limited support, we can still use the
reduction via factorization. In particular, we can use definitions
(2), (3) and (4) to define orthogonal (for a modified product)
projections on the algebra, their dual, and their factorization.
We use the notation E|A ,p for simplicity, even if these are not
true conditional expectations. One relevant difference, in this
case, is highlighted in the following.

Corollary 1. Let A be a non-unital subalgebra and p be such
that pi ą 0 for all i, then ET

|A ,p allows for a factorization
ET

|A ,p “ JR with J and R as defined above. Moreover, J
is stochastic while R is stochastic over the support of A , i.e
1T
dR “ 1T

supppA q
and 1T

supppA q
J “ 1T

d .

Proof. The proof is the same as 2 with the only difference
that

řd
j“1 a

T
j “ 1supppA q and 1T

supppA q
pp ^ ajq “ ⟨p,aj⟩

holds, since A is not unital.

III. HMM AND PROBLEM DEFINITION

Throughout the rest of this work, we consider stochastic
processes that can be described as Markov processes or Hidden
Markov processes (HMPs).

A stochastic process txtu is a collection of r.v.s taking
values in the finite alphabet Ax, indexed by time t. Without
loss of generality, we can assume Ax “ t1, 2, . . . , nu. As
the alphabet is independent of time, we can choose a fixed
resolution of indicator vectors tfiu with respect to which
xt is measurable at all times, the standard basis for Rn

being the most compact one. With this choice, txtu is a
sequence in Rn. In the following we thus denote by x0:k a
stochastic process with t “ 0, . . . , k, with x0:k P Ak`1

x an
ordered sequence of its outcomes, i.e. x0:k “ x0, x1, . . . , xk,
where xi P Ax for all i and |x0:k| “ k ` 1. Then, the
joint probability of a sequence of outcomes can be written
as P rx0 “ x0, . . . ,xk “ xks “ P rx0:k “ x0:ks. A stochastic
process txtu in Rn is an homogeneous Markov process if

Prxt`1 “ xt`1|x0:t “ x0:ts “ Prxt`1 “ xt`1|xt “ xts

and such probability is independent of t for all pairs xt`1, xt.
In this case, we have that there exists an initial probability

vector p0 P Rn and a stochastic matrix P P Rnˆn called the
transition probability matrix such that Prx0 “ x0s “ ⟨p0,fx0

⟩
and Prxt`1 “ xt`1|xt “ xts “ fT

xt`1
Pfxt

where fxt

represents the elementary event associated with the outcome
xt.

The main focus of this work are partially-observed HMPs,
better known as HMPs. The following definition adapts [13,
Definitions 9.2 and 9.3] to our setting.

Definition 1 (Hidden Markov processes). A stochastic process
tytu in Rm taking values in Ay is an HMP if there exist a
Markov process txtu in Rn taking values in Ax such that
tpyt,xtqu is jointly Markov and Pryt “ yt,xt “ xt|yt´1 “

yt´1,xt´1 “ xt´1s “ Pryt “ yt,xt “ xt|xt´1 “ xt´1s for
all t.

For HMPs, there exists an initial probability distribution p0
and transition probability matrix P P Rnˆn defined as before,
as well as a stochastic matrix C P Rmˆn, called emission
probability matrix, such that Pryt “ yt|xt “ xts “ e

T
yt
Cfxt

,
where teiu is the standard basis for Rm, and eyt represents
the elementary event associated to yt.

Definition 2 (Hidden Markov models). We define a Hidden
Markov Model (HMM) as the couple θ “ pP,Cq.

The HMM θ and the initial distribution p0 completely
characterize the evolution of the probability distributions,
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leaving n,m and the alphabets implicit. In fact, the marginal
distribution evolution can be modeled by

#

ppt` 1q “ Ppptq

qptq “ Cpptq
(5)

associated to θ and initial condition pp0q “ p0 and can then
be computed as

Pθ,p0
ryt “ yts “ e

T
yt
CP tp0.

Notice that we made the dependence on the HMM θ and initial
distribution p0 explicit whenever necessary to distinguish
distributions induced by different models.

We are ready to state the first of the problems we will
address in the following sections.

Problem 1 (Single-time marginals). Given an HMM θ “
pP,Cq and a finite set of initial probability distributions
S Ă DpRnq find a reduced HMM qθ “ p qP , qCq of dimension
d ď n and a linear map Ψr¨s : S Ñ DpRdq, p0 ÞÑ qp0 such
that

Pθ,p0ryt “ yts “ P
qθ,Ψrp0s

ryt “ yts

for all t ě 0 and for any initial conditions p0 P S.

The second problem that we address targets multi-time
probability distributions.

Problem 2 (Multi-time marginals). Given an HMM θ “

pP,Cq and a finite set of initial probability distributions
S Ă DpRnq find a reduced HMM qθ “ p qP , qCq of dimension
d ď n and a linear map Ψr¨s : S Ñ DpRdq, p0 ÞÑ qp0 such
that

Pθ,p0ry0:k “ y0:ks “ P
qθ,Ψrp0s

ry0:k “ y0:ks

for all sequences of the output process y0:k and for all initial
conditions p0 P S.

Remark 2. Although Problem 2 is more natural than Problem
1 for the typical HMM setting, the latter is also interesting
in particular cases, which include efficiently simulating an
unmeasured stochastic evolution, and reproducing the mixing
properties of lifted chains with more compact models. In fact,
while we derive solutions of Problem 2 that are also solutions
for Problem 1, the size of the effective multi-time reduced
model is going to be in general significantly larger, as it
must exactly reproduce all transition probabilities – see also
Proposition 3 below.

Remark 3. As we pointed out before, in Problems 1 and 2 we
have assumed that S is a finite set. This assumption can be
relaxed since, as we show below, the proposed solution works
for any initial condition contained in spantSu. For this reason,
when dealing with linear spaces of initial conditions one can
study the problem where S are the generators of the set.

IV. PRELIMINARY RESULTS:
A SYSTEM THEORETIC VIEWPOINT

Finding minimal realization of linear systems has been
a central problem in control and system theory, for which
well-established solutions are available. Nonetheless, when

positivity is required on the reduced model, the minimal
realization problem is, to the best of our knowledge, still open.
In this section, we review some existing results, and extend
and adapt them so that they can be used in our scenarios. In
particular, we shall allow for non-minimal realizations in order
to guarantee their positivity.

A. Single time-marginal problem

Let us start by considering model (5) with initial condition
p0 P S. Let us define the non-observable subspace as:

N :“ ker

»

—

—

—

–

C
CP

...
CPn´1

fi

ffi

ffi

ffi

fl

. (6)

The subspace N can be characterized as the largest P -invariant
subspace contained in kerC [31], [32]. In the case of HMM
the non-observable subspace has another useful property.

Lemma 2. For all x P N it holds 1Tx “ 0.

Proof. From the definition of non-observable space, we have
that x P N if and only if CP tx “ 0 for all t ě 0. If we
then left-multiply by 1T on both sides we obtain 1TCP tx “
1TP tx “ 1Tx “ 1T0 “ 0 for all x P N .

Next, define R as the smallest linear space that contains
all probability distributions pptq generated by the HMM for
every t ě 0 and any initial distribution p0 P S:

R :“ spantP tp0|t ě 0,p0 P Su. (7)

Remark 4. The space R is, in fact, the reachable subspace of
a state-space model in the typical form:

#

p̃pt` 1q “ P p̃ptq `Buptq

qptq “ Cp̃ptq
(8)

where B P Rnˆ|S| is a matrix whose columns are the initial
conditions in S. This model reproduces the trajectories of
(5) for inputs corresponding to discrete impulses. The non-
observable subspaces of (5) and (8) are the same, and the
subspace R coincides with the reachable subspace of model
(8), and thus shares the same properties: R is the smallest
P -invariant subspace that contains spantSu. In light of this,
we call the R defined above the reachable subspace.

Lastly, we call effective subspace E any subspace

E Ď Rn such that pRXN q ‘ E “ R (9)

namely, a completion of the intersection RXN to the reach-
able subspace R. Notice that the choice of E is not unique, in
fact, any representative of the quotient space R{pRXN q is a
suitable candidate for this choice. The most natural choice for
the effective subspace is of course the orthogonal complement
(with respect to the natural inner product) of R X N in
R, which we shall denote with EK. Any other orthogonal
complement, with respect to a modified inner product, would
also be a suitable choice for E .
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Remark 5. The situation is reminiscent of the classical linear
state-space analysis proposed by Rosenbrock [33], where all
representatives of the quotient space R{pRXN q are equivalent
and associated to minimal realizations. In our case, however,
E needs to be further extended to ensure positivity of the
reduced dynamical matrix, a notion that depends on the
chosen reference basis. For this reason, not all choices of the
effective subspace are equivalent. While we will show how the
algorithm we propose works with any choice of the effective
subspace, in Section VII we will argue that the choice of the
representative E of R{pRXN q plays a key role in constructing
an optimal reduction.

As we just recalled, the restriction of model (8) to (any)
E corresponds to a minimal realization (yet not necessarily
positive or stochastic). The next corollary shows that the same
reduction method can be used for the HMM (5), while also
allowing for extensions of the effective space. In this case, the
minimality of the linear realization may be lost, but will later
allow us to enforce positivity. The proof relies on a related
result for general autonomous switching systems we present
in detail in Appendix A.

Corollary 2. Consider an effective subspace E for the HMM
(5) and a subspace V such that E Ď V with d “ dimpVq. Let
ΠV be the orthogonal projection onto V with respect to an
arbitrary inner product ⟨¨, ¨⟩, such that ΠVpRXN q Ď RXN .
Let R : Rn Ñ Rd and J : Rd Ñ V be two (non-square)
factors of the orthogonal projection, ΠV “ JR.

Define the reduced model p qP , qCq “ pRPJ,CJq and the
map qp0 “ Rp0, for all p0 P S. Then the linear systems
associated with the pairs pP,Cq and p qP , qCq reproduce the
same marginal distribution at a specific time instant, i.e.

CP tp0 “ qC qP t
qp0

for all t ě 0 and any initial condition p0 P spantSu.

Proof. This result follows from the application of Theorem 4
reported in Appendix A with only one Fi “ P , H “ C and
xp0q “ p0.

In the following sections, we shall construct V so that the
reduction is also an HMM.

B. Multi-time marginal problem

For the multi-time marginal problem, following on the
seminal work [19], we will consider C for our initial model
to have only zero or one entries, i.e. C P t0, 1umˆn. The
assumption is not restrictive, as any Hidden Markov Process
admits a realization with C of this type [13, Theorem 9.4].

The minimal reduction of the system producing the multi-
time distribution can be obtained along the same lines. Calcu-
lating the probability of a sequence of events is however more
involved: [19, Lemma 1] provides a closed form for such a
computation. We report it here for completeness.

Lemma 3. Given an HMM θ and an initial probability
distribution p0, the probability of a sequence of outcomes is
given by

Pθ,p0
ry0:k “ y0:ks “ 1TP y0:k

C p0

where
P y0:k

C “ P y1:k

C diagpeTy0
Cq,

P y1:k

C “

1
ź

i“k

P yi

C , P yi

C “ diagpeTyi
CqP, i ą 0.

In the above lemma, the multiplication by the diagonal
matrices diagpeTyt

Cq accounts for the conditioning of pt on
the outcome yt “ yt. Without the latter we obtain the formulas
for the single marginals.

In order to exploit system-theoretic tools, it is useful to
write the probability of a sequence of outcomes as the output
of a dynamical model. The dynamical model we are going
to present next resembles the “observables representations
of HMMs” described in [34]. Call ψptq “ Ppy0:t “ y0:tq.
We can obtain its evolution as the output of a discrete-time,
autonomous, switching, linear system described by

#

ϕpt` 1q “ P yt

C ϕptq

ψptq “ 1Tϕptq
(10)

with initial condition ϕy0p1q “ diagpeTy0
Cqp0, P yt

C defined as
in the previous lemma and where ψptq represents the probabil-
ity associated to the sequence of events y0:t. Clearly, the output
ψptq depends on the sequence of P yt

C , which in turn depends
on the outcomes of the sequence. The output at any time k ą 0
can be computed as ψpy0:kq “ 1T

ś1
i“k P

yi

C ϕy0
p1q, while

for l “ 0 we have ψpy0q “ 1Tϕy0p1q, thus recovering the
formulas of the lemma.

Given a finite set S of initial distributions of interest, the
corresponding set of initial conditions for this model is Φ “
Ť

y0
diagpeTy0

CqS.
Following the approach of [19] in a system-theoretic setting,

we can define the reachable, non-observable, and effective
subspaces for the multi-time problem. To avoid confusion
with the previous definitions, we call these the conditioned
subspaces and denote them with a C subscript. Given an
HMM pP,Cq and a set of initial conditions S we define the
conditioned non-observable subspace as:

NC :“ tv P Rn|1TP y0:l

C v “ 0, @y0:lu, (11)

and the conditioned reachable subspace as

RC :“ spantP y0:l

C p0, @y0:l, @p0 P Su. (12)

We can then define the conditioned effective subspace EC as
a completion of the intersection RC XNC to the conditioned
reachable subspace RC , i.e. EC‘pRCXNCq “ RC . As before,
the choice of EC is not unique, as any representative of the
quotient space RC{pRC XNCq is a suitable choice.

The properties of these spaces have been described in [19,
Lemma 3, Section 3]. We recap them in the following Lemma
for the reader’s convenience.

Lemma 4. NC and RC are P -invariant, diagpeTi Cq-invariant
for all i and thus, P y0:l

C -invariant for all sequences y0:l.
A result similar to Cayley-Hamilton Theorem holds and lets

us compute the spaces by using a finite number of generators:

NC “ tv P Rn|1TP y0:l

C v “ 0, @y0:l s.t. l ă nu, (13)
RC “ spantP y0:l

C p0, @p0 P S, @y0:l s.t. l ă nu. (14)
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We can then notice that NC is the non-observable subspace
of model (10) see e.g. [35], RC is its reachable subspace
and EC is its effective subspace. The second statement holds
trivially, while the first holds because NC is diagpeTi Cq-
invariant for all i. The third follows by combining the first
two.

An useful property of the propagator P y0:k

C is proved in the
following Lemma.

Lemma 5. The sum over all sequences y0:k of the same length
k of P y0:k

C is equal to the k-th power of P, i.e.
ÿ

y0:k

P y0:k

C “ P k

Proof. The statement is simply proved by observing that
ř

yi
diagpeyi

Cq “ I for all i and summing over all the
possible strings y0:k, starting from the first character.

The next Proposition shows that, in general, solving the
multi-time marginal case requires a larger model than the
single-time case defined before.

Proposition 3. It holds that

kerC Ě N Ě NC ,

S Ď R Ď RC ,

and also
E Ď EC .

The proof of this Lemma can be found in Appendix B.

Remark 6. This result clarifies the relation as well as the
distinction between problems 2 and 1. In fact, this Proposition
shows that, at least in principle, there could be a larger reduc-
tion if we are only interested in describing only the evolution
of the marginal distribution at a specific time. Moreover, the
conditioned effective subspace contains the effective subspace,
thus showing, due to Corollary 2, that a solution for Problem
2 is also a solution for Problem 1.

We now propose a class of effective model reductions for
the multi-time marginal problem.

Corollary 3. Consider any conditioned effective subspace EC
and subspace V such that EC Ď V with d “ dimpVq, and let
ΠV be the orthogonal projection onto V with respect to an
inner product ⟨¨, ¨⟩, such that ΠVpRC XNCq Ď RC XNC . Let
R : Rn Ñ Rd and J : Rd Ñ V be two (non-square) factors
of the orthogonal projection, ΠV “ JR.

Let then consider the reduced model pt qP yi

C u,1
T
mq “

ptRP yi

C Ju,1T
nJq and the map qϕp1q “ Rϕp1q for all ϕp1q P

Φ. Then the two models described by equations (10) and de-
noted by the couples ptP yi

C u,1
T
n q and pt qP yi

C u,1
T
mq reproduce

the same probability of a sequence of outcomes, i.e.

1T
n

0
ź

j“k

P
yj

C ϕp1q “ 1T
m

0
ź

j“k

qP
yj

C
qϕp1q

for any sequence y0:k and any initial condition ϕp1q P
spantΦu.

Proof. This result follows from the application of Theorem 4
reported in Appendix A with Fi “ diagpeTyi

CqP , H “ 1T ,
xp0q “ diagpeTy0

Cqp0.

Remark 7. At this point one may notice that Corollary 3
provides a reduction for model (10) which includes the condi-
tioning as part of the dynamics and in general may not translate
directly into a reduction of (5) in the HMM form p qP , qC, qSq.
Nevertheless, we anticipate here that the algorithm we propose
in Section VI for the multi-time case provides a model in
HMM form, thanks to Lemma 4. Thanks to Proposition 3 and
Corollary 2 the obtained model also reproduces the single-time
marginals.

Remark 8. The two main results in this section, Corollary 2
and 3, as well as the underlying Theorem 4 shown in Appendix
A, have been stated for time-invariant dynamics for sake of
simplicity. While it is possible to generalize the analysis to
time-dependent systems, in that case, Cayley-Hamilton-type
results do not apply and consequently, the computation of
reachable and non-observable spaces may become impractical.

V. SINGLE-TIME SOLUTION

In this section, we illustrate how to obtain solutions to
Problem 1 appropriately choosing V in Corollary 2. We first
discuss the intuition behind the method, next we present the
proposed solution in form of a parametric algorithm, and
prove that, under appropriate constraints, the algorithm indeed
provides a solution. Finally, in Section VII, propose a way to
choose the relevant parameters.

A. Intuition

The core idea behind the method stems from the fact that
in order to define an HMM we need an underlying probability
space and, as we have seen in Section II, any probability space
is associated to an algebra. This directly suggests that, in order
to preserve the (stochastic) HMM structure in the reduction
it is natural to restrict the model to an algebra whose dual
contains the effective subspace, and then use the dual of the
conditional expectation to obtain a stochastic reduction.

More in detail, consider the two stochastic reduction matri-
ces R and J obtained in Section II-B as factors of the dual
of a conditional expectation ET

|A ,p, which is an orthogonal
projection onto p ^ A with respect to the inner product
⟨¨, ¨⟩p´1 . Then, according to Corollary 2 we know that as long
as E Ď V “ p^A , and ET

|A ,p leaves RXN invariant, then
the reduced model reproduces the same marginal distribution
as the original one.

In order to choose A such that E Ď p ^ A we can ^-
multiply left and right by p´1 obtaining p´1 ^ E Ď A . Let
algpX q denote the minimal sub-algebra of Rn containing the
set X . Then, if we define A :“ algpp´1^Eq, we ensure that
E Ď p^A is satisfied and that the reduced model reproduces
the same marginal at a single time.

To make this idea more concrete, we provide a simple
illustrative example, which also highlights the importance of
choosing the distribution p to be used in ET

|A ,p.
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Example 1. Let us consider the following HMM:

P “

»

–

2{5 0 1{5
0 2{5 1{5
3{5 3{5 3{5

fi

fl , S “

$

&

%

»

–

1{5
1{5
3{5

fi

fl

,

.

-

C “

„

1 1 0
0 0 1

ȷ

.

Notice that p0 is an equilibrium, Pp0 “ p0 thus the output
distribution is equal to qptq “

“

2{5 3{5
‰T

, @t ě 0. We can
then compute the following.

R “ span

$

&

%

»

–

1{5
1{5
3{5

fi

fl

,

.

-

, N “ span

$

&

%

»

–

1
´1
0

fi

fl

,

.

-

and RXN “ spant0u and we can thus choose E “ R. If we
then choose p “ 1 we obtain

A “ algpRq “ span

$

&

%

»

–

1
1
0

fi

fl ,

»

–

0
0
1

fi

fl

,

.

-

and thus the relative factors of the dual of the conditional
expectation are

R “

„

1 1 0
0 0 1

ȷ

, J “

»

–

1{2 0
1{2 0
0 1

fi

fl

and the associated reduced HMM is

qP “

„

2{5 2{5
3{5 3{5

ȷ

, qC “

„

1 0
0 1

ȷ

, qp0 “

„

2{5
3{5

ȷ

which correctly reproduces the output marginal distribution
qptq “

“

2{5 3{5
‰T

, @t ě 0.
On the other hand, if we were to choose p “ p0 we would

obtain a different result. In fact, in that case, we have

A “ algpp´1 ^Rq “ span

$

&

%

»

–

1
1
1

fi

fl

,

.

-

and thus the relative factors of the dual of the conditional
expectation are R “

“

1 1 1
‰

, and J “
“

1{5 1{5 3{5
‰T

and the associated reduced HMM is qP “ 1, qC “
“

2{5 3{5
‰

and p0 “ 1 which also reproduces the output marginal
distribution and is clearly minimal (optimal reduction). This
shows that the choice of p is important if we are interested in
minimizing the dimension of the reduced model.

B. Proposed solution

We now formalize the proposed method to solve Problem 1
in the following Algorithm. Let ΓpR,N q be a map that selects
an effective space E given some R,N .

Notice that this algorithm depends, in addition to its inputs,
on two parameters: the first one, p, is a positive vector; the
second one, is the map Γ that selects the effective subspace.
We will discuss more in detail the choice of the effective
subspace in Section VII.

We are finally ready to prove that Algorithm 1 solves the
single-time marginal problem.

Algorithm 1: HMM reduction for problem 1
Input : pP,Cq, S.
Parameters: p, Γ.

1 Compute R and N using equations (7) and (6);
2 Compute E “ ΓpR,N q;
3 Compute A :“ algpp´1 ^ Eq;
4 Compute ET

|A ,p using equation (3) ;
5 If ET

|A ,ppRXN q Ę RXN : redefine
A :“ algpp´1 ^Rq and recompute ET

|A ,p ;
6 Compute the factors R and J of ET

|A ,p with the
definition given in equation (4);

Output : p qP , qCq “ pRPJ,CJq and R.

Theorem 1. For any choice of E and p positive i.e. pi ą 0
@i, Algorithm 1 provides a solution to Problem 1.

Proof. To prove the statement we have to prove that: i) The
reduced model qθ “ p qP , qCq and the linear map R provide the
same marginal distribution at any time as the original model;
ii) the reduced model qθ is an HMM, and Rp0 is a probability
vector.

We shall start by proving the first point. We do so leveraging
Corollary 2. First of all, we have that, for any vector p such
that pi ą 0 for all i the inner product ⟨¨, ¨⟩p is positive-definite
and thus well defined. Moreover, by definition of the algebra
A , we have that, for any choice of the effective subspace E
it holds E Ď p ^A so, by choosing V “ p ^A , and using
the restriction and injection map defined in equation (4), i)
follows from Corollary 2 if case ET

A ,ppRXN q Ď RXN .
If ET

A ,ppRXN q Ę RXN , pick Ñ “ t0u so that RXÑ “

t0u and Theorem 4 applies with V “ algpp^Rq .
Regarding ii) we have that, if A is unital, then Proposition

2 ensures that J and R are stochastic and thus RPJ and
CJ are stochastic and Rp0 is a probability vector for any p0
probability vector. If A is not unital, because of Corollary
1 we have, that J is stochastic (and thus CJ is stochastic)
but R is only stochastic over supppA q, i.e. 1T

dR “ 1T
supppA q

.
We next show that this condition is sufficient to show that the
reduced model is stochastic.

We shall first notice that supppEq “ supppA q Ĺ Rn. Let
assume that dimpsupppEqq “ k. Then we can consider a
permutation (that is a double-stochastic change of basis) T
such that Tx “

“

x1 0T
n´k

‰T
for all x P E , with x1 P Rk.

Then, since E is P -invariant
„

x1

0n´k

ȷ

“

„

P11 P12

P21 P22

ȷ

looooooomooooooon

TPTT

„

x1

0n´k

ȷ

P E

and thus P21 “ 0. This shows that supppEq is P -invariant.
Since P , T and TT are stochastic, TPTT is also stochas-
tic. This implies that 1T

k P11 “ 1T
k . Then, it holds that

1T
supppA q

TTTPTT “

“

1T
k 0T

n´k

‰

„

P11 P12

0 P22

ȷ

“
“

1T
k 0T

n´k

‰
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or, in other words 1T
supppA q

P “ 1T
supppA q

. We can also
verify that qP is stochastic by verifying the following chain
of equivalences: 1T

dRPJ “ 1T
supppA q

PJ “ 1T
supppA q

J “ 1T
d

where the last equality comes from Corollary 1. Finally, to
prove that Rp0 is a probability vector we can observe that
1T
np0 “ 1TΠEp0 ` 1TΠRXNp0

loooooomoooooon

“0

“ 1 and then re-use the

reasoning above.

Remark 9. In the proof of Theorem 1 we stated that a
positive vector p is necessary to have a well-defined inner
product ⟨¨, ¨⟩p. This assumption, however, can be relaxed to
the following: p is positive over supppEq “ supppA q, i.e.
pi ą 0 for all i such that eTi x ‰ 0 for some x P E . This is
due to the fact that the values of p where E has no support
has no role in the projection.

Although such p defines a positive semi-definite inner
product over Rn, it provides a positive definite inner product
over supppSq and this is sufficient to define the orthogonal
projection onto A . Consider, for example, the following case:
assume supppA q Ĺ Rn then let ps be a positive vector over
the supppA q, pn be a positive vector over the remaining
support, i.e. s.t. p :“ ps ` pn, suppppq “ Rn. We can then
notice that p ^ x “ ps ^ x and ⟨y,x⟩p “ ⟨y,x⟩ps

for all
x P supppA q and y P Rn. This implies that

ET
|A ,p “

d
ÿ

j“1

pp^ ajqa
T
j

⟨aj ,aj⟩p
“

d
ÿ

j“1

pps ^ ajqa
T
j

⟨aj ,aj⟩ps

“ ET
|A ,ps

.

The role of the positivity of p will be further discussed in
Section VII.

VI. MULTI-TIME SOLUTION

The solution of Problem 2 follows the same ideas presented
in the previous section. In fact, the algorithm we propose to
solve Problem 2 is identical to the previous algorithm but
for the involved subspaces. We now present our proposed
method to solve Problem 2. This method takes the form of
the following Algorithm, where Γ is defined as in the previous
section.

Algorithm 2: HMM reduction for problem 2
Input : pP,Cq, S.
Parameters: p, Γ.

1 Compute RC and NC using equations (14) and (13);
2 Compute EC “ ΓpRC ,NCq;
3 Compute AC “ algpp´1 ^ ECq;
4 Compute ET

|AC,p
using equation (3);

5 If ET
|AC,p

pRC XNCq Ę RC XNC : redefine
AC :“ algpp´1 ^RCq and recompute ET

|AC,p
;

6 Compute the factors R and J of ET
|AC,p

with the
definition given in equation (4);

Output : p qP , qCq “ pRPJ,CJq and R

We are finally ready to prove that Algorithm 2 solves the
multi-time marginal problem.

Theorem 2. For any choice of EC and p positive, i.e. pi ą 0
@i, Algorithm 2 provides a solution to Problem 2.

Proof. The proof of this theorem follows the lines of the
proof of Theorem 1. In fact, the proof of the fact that the
reduced HMM qθ is stochastic and Rp0 is a probability vector
is identical to the one given in 1. The only difference in the
two proofs regards proof of the fact that the reduced model qθ
with initial condition Rp0 provides the same probability of a
sequence of events as the model θ with initial condition p0.

From Corollary 3 we have that pRdiagpeTi CqPJ,1
TJq with

initial condition RdiagpeTi Cqp0 generates the same proba-
bility as the original model. Since RC and NC are both P
and diagpeTi Cq-invariant, Corollary 5 applies, thus leading
to the reduced HMM qθ “ pRPJ,CJq and initial conditions
Rp0.

VII. CHOOSING THE ALGORITHM’S PARAMETERS

In this section, we discuss what is the best choice of the
parameters for Algorithms 1 and 2. Being the structure of the
two algorithms identical, we only discuss the optimal choice of
E and p: the results can be extended directly to EC . The notion
of optimality is related to the dimension of the reduced system,
meaning: we want to find a choice of E and p positive such
that the reduced model returned by Algorithm 1 has minimal
dimension. This is equivalent to finding E and p such that
algpp´1 ^ Eq has minimal dimension.

A. Optimal distributions for observable HMMs

We shall start the discussion by finding the optimal choice
of p assuming that an effective subspace E is given. Before
we prove the main result of this section, we shall first state
the following useful result.

Lemma 6. Given a vector space W Ď Rn with generators
twiu, W “ spantwiu there exists a vector w :“

ř

i λiwi,
with λi ‰ 0 for all i and such that supppwq “ supppWq.

The proof of this Lemma can be found in Appendix B.

Theorem 3. Let consider a vector space W Ď Rn and a
vector w as in Lemma 6. Then there exists a unique algebra
A ˚ of minimal dimension such that W Ď x ^A ˚ for some
x P Rn. Moreover, A ˚ “ algpw´1^Wq and it is unital over
the support of W , i.e. 1supppWq P A ˚.

Proof. The existence of such a w is proved in Lemma 6.
Since A “ Rn satisfies W Ď x ^ A , for all x P Rn

and its possible sub-algebras are finite (corresponding to the
partition of n), A ˚ exists. To prove that it is an unique solution
we proceed by contradiction. Let assume that there exist
two different algebras A ,B Ď Rn with minimal dimension
dimpA q “ dimpBq and two vectors a, b P Rn such that
W Ď a ^ A and W Ď b ^ B. From Proposition 1 we
know that A “ spantaju and B “ spantbju where taiu

and tbiu are the finest resolutions in idempA q and idempBq
respectively. Clearly, if ai “ bi for all i then A “ B which
yields a contradiction. Therefore, we assume that there exists
an index j such that aj ‰ bi for all i. We can then notice that
for all v PW , we can write v “

ř

i µia^ ai “
ř

i νib^ bi.
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For j such that aj ‰ bi or all i we can then write

aj ^ v “ µja^ aj “
ÿ

i

νiaj ^ b^ bi.

The first equality implies that over the support of each aj

every v must be proportional to a^aj . The second equality,
on the other hand, due to the fact aj ‰ bj implies at least
two of the products aj ^ b ^ bi must be non-zero. In order
for the nontrivial sum to be always proportional to a^ aj it
must be that the coefficients νi appear always in a fixed ratio.
Hence, the corresponding bi can be substituted by their sum,
and still, generate the full W when multiplied by a suitable
vector b. This shows that B could not be a minimal algebra
unless ai “ bi for all i, up to a reordering.

Let then A ˚ be the unique algebra of minimal dimension
such that W Ď x^A ˚ for some w. From Proposition 1 we
know that A ˚ “ spantaju where taiu is the finest resolution
in idempA ˚q. In particular taju forms an orthogonal basis
for A ˚ and its elements have completing mutually-orthogonal
supports, i.e. supppakq K supppajq for k ‰ j and

ř

j aj “

1supppWq. We can then observe that x^A ˚ “ spantx^aju

and that the vectors x ^ aj have complementary mutually-
orthogonal supports. Then for W Ď x ^A ˚ to hold it must
be that w “

ř

j µjx^ aj for all w PW .
By the above discussion we can write wi “

ř

j µ
i
jx ^ aj

for each generator of W . Notice that, for all j, µi
j ‰ 0 for

at least one i. Let then use the definition of w given in the
statement and, substituting the form of the wi we just reported
we obtain w “

ř

j σjx ^ aj with σj “
ř

i λiµ
i
j . From the

argument above, from the fact that λi ‰ 0 for all i and from
the fact that, by hypothesis, w has maximal support, we have
that σj ‰ 0 for all j. Because of the structure of tx^aju we
have that

paj ^wq
´1 “ aj ^w

´1 “ σ´1
j px^ajq

´1 “ σ´1
j x´1^aj ,

and thus w´1 “
ř

j σ
´1
j x´1 ^ aj . From this we have that

the vector space w´1^W is generated by vectors of the type

w´1 ^wi “
ÿ

j,k

σ´1
j µi

kx
´1 ^ aj ^ x^ ak “

ÿ

j

σ´1
j µi

jaj .

This proves that w´1 ^W Ď A ˚ and that any vector v P
w´1 ^W can be written as v “

ř

i viw
´1 ^wi “

ř

j ξjaj

with ξj :“
ř

i viσ
´1
j µi

j . Let then consider any two vectors
v,u P w´1 ^W and compute their ^-product,

v ^ u “

˜

ÿ

j

ξjaj

¸

^

˜

ÿ

j

ξ̂jaj

¸

“
ÿ

j

ξj ξ̂jaj .

This implies that algpw´1 ^Wq Ď A ˚. On the other hand,
it trivially holds that W Ď w ^ algpw´1 ^ Wq. But then,
since we assumed that A ˚ was the unique algebra of minimal
dimension such that W Ď x ^ A ˚ for some x it must hold
that algpw´1 ^Wq “ A ˚.

Finally, since w PW , then w´1^w “ 1supppWq P pw
´1^

Wq Ď A ˚.

Remark 10. Theorem 3 shows that, given any choice of the
effective subspace, we can construct a vector w such that the

algebra algpw´1 ^ Eq has minimal dimension. However, not
all such w are positive over the support of E . As a matter of
fact, it could happen that some choices of E do not contain
any non-negative vector, while w “ p being non-negative is
fundamental to construct a stochastic reduction.

Theorem 3 is nonetheless sufficient to determine the optimal
reduction for a class of HMMs, namely those for which R is
“observable”, i.e. RXN “ H.

Proposition 4. Let triu be an N -dimensional set of positive
generators of R and let p :“

ř

ri{N . Then, if RXN “ t0u,
A :“ algpp´1 ^Rq provides the optimal reduction.

Proof. By hypothesis we have RXN “ H. This implies that
E “ R. Then, using Theorem 3 we have that p “

ř

i ri{N ,
provides the minimal dimension for algpp´1 ^ Rq and thus
the optimal reduction.

Notice that this result applies in particular fully observable
HMMs, i.e. when the pair pP,Cq is observable, and thus to
finite-state Markov chains. In fact, the latter can be seen as
HMMs with C “ I . The corresponding optimal reduction is
then a maximally-lumped version of the original process [25].

B. Effective subspace for the general case

In order to address the general case, in addition to a
distribution p we also need to choose an effective subspace.
Example 2 below illustrates that not all effective spaces are
equivalent and lead to different dimensions for the reduced
model, making this choice critical towards the optimality of
the reduction. A natural candidate effective subspace is EK,
the orthogonal complement (with respect to the natural inner
product ⟨x,y⟩ “ xTy) of RXN in R. Let then tεiui“1,...,d

be the set of generators of EK. Then any choice of the effective
subspace can be described as E “ spantεi`niui“1,...,d, where
tniui“1,...,d is a set of vectors in N .

We next show that the choice of the orthogonal complement
EK always allows for finding a positive vector w “ p as
in the statement of Theorem 3, and hence a valid stochastic
reduction. The following proposition is instrumental to this
aim.

Proposition 5. Let p P Rn be a probability vector, and let
V be a vector space such that 1Tv “ 0 for all v P V . Let
then ΠV be the orthogonal projector on V with respect to
the standard inner product ⟨¨, ¨⟩. Then q :“ p ´ ΠVp is a
probability vector.

Proof. Let us start by defining w :“ 1{2 ´ p. We can then
write p “ 1{2 ´ w to notice that pi P r0, 1s if and only
if ´1{2 ď wi ď 1{2, that is if and only if ||w||8 ď 1{2.
Moreover, we have that 1Tp “ 1 if and only if 1Tw “ pn´
2q{2. We can then compute q:

q “ 1{2´w ´ΠV1{2`ΠVw

“ 1{2´ pI ´ΠVq
loooomoooon

“:ΠVK

w “ 1{2´ΠVKw

where we used the the hypothesis 1Tv “ 0 for all v P V to say
that ΠV1 “ 0. Then, since ΠVK is an orthogonal projection,
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and thus a contraction in norm, we have that ||ΠVKw||8 ď

||w||8. Then, using the argument above, we have that q is
a non-negative vector with qi P r0, 1s. Lastly we have that
1Tq “ 1T1{2´ 1Tw “ n{2´ pn´ 2q{2 “ 1.

The result we are after is then obtained as a corollary of
the previous one.

Corollary 4. Let EK be the orthogonal complement of R X

N to R. Let triu be an N dimensional set of probability
vectors such that R “ spantriu. Then εi :“ ri´ΠRXNri are
such that EK “ spantεiu. Moreover, ε “

ř

i εi{N satisfies
supppεq “ supppEq and εi ě 0 for all i.

Proof. From Lemma 2 we have that 1Tx “ 0 for all x P N
and thus, by applying the proposition above on every generator
of R we have that the set tεiu is a set of probability vectors.
Being ε a convex combination of probability vectors it is itself
a probability vector and it shares the same support as E .

Other choices are possible, and the choice of the effective
subspace can influence the dimension of the reduced model,
as illustrated in the following example.

Example 2. Consider the following spaces:

R “ span

$

’

’

&

’

’

%

»

—

—

–

1{2
1{2
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
1
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

,

/

/

.

/

/

-

, N “ span

$

’

’

&

’

’

%

»

—

—

–

0
0
1
´1

fi

ffi

ffi

fl

,

/

/

.

/

/

-

then we clearly have that R X N “ N . Let us denote with
EK the orthogonal complement of RXN to R, i.e.

EK “ span

$

’

’

&

’

’

%

»

—

—

–

1{2
1{2
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
1{2
1{2

fi

ffi

ffi

fl

,

/

/

.

/

/

-

.

We can easily notice that EK is an unital algebra. Let us now
consider another completion E of RXN to R. In general, we
can write

E “ span

$

’

’

&

’

’

%

»

—

—

–

1
1
a
´a

fi

ffi

ffi

fl

,

»

—

—

–

0
0

1` b
1´ b

fi

ffi

ffi

fl

,

/

/

.

/

/

-

for some values a, b P R. We can then consider two
cases. First, if a “ 0 and b ‰ 0 we can choose v “
“

1 1 1` b 1´ b
‰T

thus obtaining algpv´1 ^ Eq “ EK.
On the other hand, if we have a ‰ 0 and b ‰ 0 we
can choosew “

“

1 1 a` 1` b ´a` 1´ b
‰T

(assuming
that a` b ‰ ˘1) thus obtaining

algpw´1 ^ Eq “ span

$

’

’

&

’

’

%

»

—

—

–

1
1
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
1
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

,

/

/

.

/

/

-

.

This example shows that the choice of the effective subspace
can affect the size of the reduced model.

VIII. EXAMPLES

Example 3. Let consider the HMM provided in [19, Example
3]:

P “

»

—

—

—

—

–

1{3 1{6 1{4 1{4 0
1{6 1{3 0 1{4 1{4
1{3 1{6 1{4 1{4 0
1{6 1{6 1{6 0 1{2
0 1{6 1{3 1{4 1{4

fi

ffi

ffi

ffi

ffi

fl

, S “

$

’

’

’

’

&

’

’

’

’

%

»

—

—

—

—

–

1{5
1{5
1{5
1{5
1{5

fi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

.

/

/

/

/

-

C “

»

–

1 1 1 0 0
0 0 0 1 0
0 0 0 0 1

fi

fl .

We shall start by studying the single-time marginal prob-
lem. We can observe that p0 P S is an equilibrium
for P and thus R “ spantSu and also that N “

spant
“

1 ´2 1 0 0
‰T
u. Clearly, the intersection contains

only the zero vector, R X N “ t0u and thus the effective
subspace can be taken as the reachable one: EK “ R. If we
then take p “ p0 we obtain A “ algpp´1 ^ Eq “ spant1u.
The corresponding stochastic reduction and injection matrices
are R “ 1T and J “ p which provide the (trivial) reduced
model:

qP “
“

1
‰

, qS “
␣“

1
‰(

, qC “
“

3{5 1{5 1{5
‰T
.

We next focus on the multi-time marginal problem. We have
that NC “ N , while the conditioned-reachable is equal to:

RC “ span

$

’

’

’

’

&

’

’

’

’

%

»

—

—

—

—

–

1{5
1{5
1{5
0
0

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

0
0
0
1{5
0

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

0
0
0
0
1{5

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

1
´2
1
0
0

fi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

.

/

/

/

/

-

.

This implies that the intersection RC XNC “ NC and thus:

ECK “ span

$

’

’

’

’

&

’

’

’

’

%

»

—

—

—

—

–

1
1
1
0
0

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

0
0
0
1
0

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

0
0
0
0
1

fi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

.

/

/

/

/

-

.

Then, we can notice that EC is a unital algebra and by taking
p “ 1{5 we obtain the stochastic reduction and injection
matrices

R “

»

–

1 1 1 0 0
0 0 0 1 0
0 0 0 0 1

fi

fl , J “

»

—

—

—

—

–

1{3 0 0
1{3 0 0
1{3 0 0
0 1 0
0 0 1

fi

ffi

ffi

ffi

ffi

fl

that leads to the reduced model

qP “

»

–

2{3 3{4 1{4
1{6 0 1{2
1{6 1{4 1{4

fi

fl , qS “

$

&

%

»

–

3{5
1{5
1{5

fi

fl

,

.

-

qC “

»

–

1 0 0
0 1 0
0 0 1

fi

fl .
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Example 4. Consider the HMM defined by:

P “

»

—

—

–

1{2 0 1{3 1{4
0 1{3 1{3 1{4
1{2 0 1{3 0
0 2{3 0 1{2

fi

ffi

ffi

fl

, S “

$

’

’

&

’

’

%

»

—

—

–

1
0
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
1
0
0

fi

ffi

ffi

fl

,

/

/

.

/

/

-

C “

„

1{4 1{4 1{2 7{16
3{4 3{4 1{2 9{16

ȷ

.

In this case we are only interested in the single-time marginal
problem. We can notice that R “ Rn and thus

RXN “ N “ span

$

’

’

&

’

’

%

»

—

—

–

1
´1
0
0

fi

ffi

ffi

fl

,

»

—

—

–

´1
0
´3
4

fi

ffi

ffi

fl

,

/

/

.

/

/

-

.

Then we can consider the effective subspace as the orthogonal
complement of N , that is

EK “ span

$

’

’

&

’

’

%

»

—

—

–

4{9
4{9
0
1{9

fi

ffi

ffi

fl

,

»

—

—

–

0
0
4{7
3{7

fi

ffi

ffi

fl

,

/

/

.

/

/

-

.

Then we can define p :“ 1{4 to obtain

A “ algpp´1 ^ EKq “ span

$

’

’

&

’

’

%

»

—

—

–

1
1
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
1
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

,

/

/

.

/

/

-

.

Notice that in this case, the dimension of the algebra is greater
than the effective subspace. We thus obtain the stochastic
reduction and injection matrices

R “

»

–

1 1 0 0
0 0 1 0
0 0 0 1

fi

fl , J “

»

—

—

–

1{2 0 0
1{2 0 0
0 1 0
0 0 1

fi

ffi

ffi

fl

that leads to the reduced model

qP “

»

–

5{12 2{3 1{2
1{4 1{3 0
1{3 0 1{2

fi

fl , qS “

$

&

%

»

–

1
0
0

fi

fl

,

.

-

qC “

„

1{4 1{2 7{16
3{4 1{2 9{16

ȷ

.

Suppose that, instead of the orthogonal complement, we
were to consider the following space as an effective subspace:

E “ span

$

’

’

&

’

’

%

»

—

—

–

6
5{2
3{2
´1

fi

ffi

ffi

fl

,

»

—

—

–

2
5{6
25{2
´25{3

fi

ffi

ffi

fl

,

/

/

.

/

/

-

.

We can immediately notice that there is no convex combination
of the generators of E such that it is positive, however, if we
consider v “

“

8 10{3 14 ´28{3
‰T

we have that

A “ algpv´1 ^ Eq “ span

$

’

’

&

’

’

%

»

—

—

–

1
1
0
0

fi

ffi

ffi

fl

,

»

—

—

–

0
0
1
1

fi

ffi

ffi

fl

,

/

/

.

/

/

-

thus showing that a smaller algebra could be found for the
reduction, if we were to consider vectors that are not non-
negative.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we exploited system-theoretic ideas and alge-
braic representation of probability spaces to obtain effective
reductions of HMMs that preserve the marginals of the orig-
inal output process, in either the single- or multi-time case.
While optimal reductions are explicitly characterized for a
class of HMMs, including observable ones, the freedom of
choice in the effective subspace makes finding the optimal
reductions more challenging in the general case. Nonetheless,
we provide an algorithm that produces reduced HMMs of
minimal dimension in all considered examples. Based on the
analytical and numerical examples we examined, we formulate
the following conjecture on the optimality of the natural
orthogonal complement.

Conjecture 1. Let EK be defined as the (standard) orthogonal
complement of N X R to R, and let p be defined as in
Corollary 4. Then, given any other choice of E and w non-
negative it holds that

dimpalgpp´1 ^ EKqq ď dimpalgpw´1 ^ Eqq.

Remark 11. If the effective subspace is already an alge-
bra with respect to a p - inner product then dimpEKq “

dimpalgpp´1^EKqq, since dimpEKq “ dimpEq and dimpEq ď
dimpalgpw´1 ^ Eqq by Theorem 3 then the choice of EK is
optimal. Also notice that removing the assumption that w is
non-negative makes the statement false. A counterexample is
presented at the end of Example 4. However, having w non-
negative is necessary in order to obtain a stochastic model.

Proving the conjectured minimality may require novel math-
ematical ideas: the choice of E , EC that minimize the size of the
generated algebras is equivalent to identify the representative
of the quotient space that can be described with the least
number of indicator vectors, and a way to relate this notion
to orthogonality to N does not seem straightforward to find.

Other natural developments of the proposed framework
include a relaxation of the method so that it allows for approx-
imate preservation of the marginals, thus yielding reductions
in practical situations where noise and partial knowledge
might make the exact equivalence we require in this work too
stringent, due to the fact that controllable pairs are a dense set
[36]. In addition, in many algorithms used to estimate HMMs
from data, e.g. [34], the dimension of the “hidden” state space
(i.e. n) is assumed to be known. When this is not the case,
one could estimate an HMM with a larger than necessary
number of hidden variables, and then use an approximate
reduction scheme to reduce the estimated model to one of
more manageable size. Future work will also be devoted to
the adaptation and application of the method to approximate
coarse-graining of large-scale systems, to address otherwise
untreatable problems [16]–[18].

The algebraic approach also naturally extends to the non-
commutative domain, and our method will be extended to
quantum systems, in particular quantum walks and open
systems in general. Analogies between HMM and quantum
walks have been already noted in [37], as well as [38] and
[39], which extend the result of [19] to include quantum walks.
Lastly, the algebraic viewpoint makes our results potentially
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interesting towards the solution of outstanding open problems
in realization theory and model reduction for positive systems
[40].
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APPENDIX A
A REDUCTION RESULT FOR SWITCHING AUTONOMOUS

SYSTEMS

This appendix is dedicated to introducing a general condi-
tion ensuring exact model reduction for switching autonomous
systems. Both the single-time and the multi-time marginals
can be described by the dynamics of this type. Consider a
discrete-time, autonomous, switching, linear system

$

’

&

’

%

xpt` 1q “ Fixptq

yptq “ Hxptq

xp0q P I

denoted by the triplet ptFiu, H, Iq. The evolution at any time
clearly depends on the sequence of evolutions Fi activated.
Let us denote with yps0:lq the output of the system at time
l associated to a sequence s0:l “ sl, . . . , s0 of length l of
selected evolution Fsk . The output at any time l ą 0 can be
computed as yps0:lq “ H

ś0
j“l Fsjx0 while for t “ 0 we

have yp0q “ Hx0.
Let R Ď Rn be a linear subspace such that I Ď R and

is Fi-invariant, i.e. FiR Ď R, for all i. Let Ñ Ď Rn be a
linear subspace such that Ñ Ď kerH and is Fi-invariant, i.e.
FiÑ Ď Ñ , for all i. Let then define E to be any completion
of RX Ñ to R, i.e. R “ pRX Ñ q ‘ E .

Theorem 4. Consider any subspace V such that E Ď V with
m “ dimpVq and let ΠV be the orthogonal projection onto V
with respect to an inner product ⟨¨, ¨⟩ . Assume that ΠVpRX
Ñ q Ď R X Ñ , and let R : Rn Ñ Rm and J : Rm Ñ V be
two factors of the orthogonal projection, ΠV “ JR.

Let consider the reduced model pt qFiu, qH, qIq “

ptRFiJu, HJ,RIq. Then the reduced model reproduces
the same output as the original model, i.e.

H
0
ź

j“l

Fsjx0 “ qH
0
ź

j“l

qFsj qx0

for any sequence s0:l and any initial condition x0 P spantIu
and the relative qx0 “ Rx0.

Proof. Let W1 be the completion of RX Ñ to Ñ , i.e. Ñ “

W1‘pRXÑ q; let W2 be the completion of pRXÑ q‘E‘W1

to Rn, i.e. Rn “W1‘W2‘E‘pRXÑ q; let T the remainder
sub-space, such that Rn “ V ‘ T and thus T Ď pÑ XRq ‘
W1‘W2. Let us also denote with ΠT the orthogonal projector
onto T with respect to the considered inner product ⟨¨, ¨⟩.
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«

0
ź

j“l

Fsj ´ΠV

0
ź

j“l

FsjΠV

ff

x0 “

«

pΠV `ΠT qFslpΠV `ΠT q

0
ź

j“l´1

Fsj ´ΠV

0
ź

j“l

FsjΠV

ff

x0

“

«

rΠVFslΠV `ΠT FslΠV ` FslΠT s

0
ź

j“l´1

Fsj ´ΠVFslΠVΠV

0
ź

j“l´1

FsjΠV

ff

x0

“ ΠVFslΠV

˜

0
ź

j“l´1

Fsj ´ΠV

0
ź

j“l´1

FsjΠV

¸

x0

loooooooooooooooooooooomoooooooooooooooooooooon

v

`

«

rΠT FslΠV ` FslΠT s

0
ź

j“l´1

Fsj

ff

x0

“ ΠVFslΠVv `ΠT FslΠV

0
ź

j“l´1

Fsjx0 ` FslΠT

0
ź

j“l´1

Fsjx0 (15)

We can notice that, for any sequence s0:l we have that
qH
ś0

j“l
qFsj qx0 “ HΠV

ś0
j“l FsjΠVx0 and thus the state-

ment can be also be put in the form

H

«

0
ź

j“l

Fsj ´ΠV

0
ź

j“l

FsjΠV

ff

x0 “ 0

for any sequence s0:l and for any x0 P I. To prove the
statement we will thus show that for any sequence s0:l and
for any initial condition x0 P I it holds

«

0
ź

j“l

Fsj ´ΠV

0
ź

j“l

FsjΠV

ff

x0 P Ñ XR.

We will prove this statement by induction.
Let then consider the case of t “ 0. We have to prove

rI ´ΠV sx0 P Ñ XR. Then by noticing that, pI ´ΠVqx0 “

ΠT x0 and that ΠT x0 P Ñ X R, the statement is proved in
the case t “ 0.

Assume then that

v :“

«

0
ź

j“l´1

Fsj ´ΠV

0
ź

j“l´1

FsjΠV

ff

x0 P Ñ XR

and we want to prove that
«

0
ź

j“l

Fsj ´ΠV

0
ź

j“l

FsjΠV

ff

x0 P Ñ XR.

By rewriting this as in Equation (15) we can observe that it
is equal to the sum of three parts. We can then notice that:

‚ v P Ñ XR, ΠVv P Ñ XR by assumption, thus, PΠVv P
Ñ XR and also ΠVPΠVv P Ñ XR;

‚
ś0

j“l´1 Fsjx0 P R by hypothesis, ΠT
ś0

j“l´1 Fsjx0 P

Ñ XR and FslΠT
ś0

j“l´1 Fsjx0 P Ñ XR;
‚
ś0

j“l´1 Fsjx0 P R by hypothesis,
ΠV

ś0
j“l´1 Fsjx0 P R, FslΠV

ś0
j“l´1 Fsjx0 P R

and ΠRFsjΠV
ś0

j“l´1 Fsjx0 P Ñ XR.

Finally, since all three summands belong to Ñ XR, their sum
also belongs to the same subspace, and the statement is proved.

In order to apply the result to our multi-time problem, we
need a straightforward extension.

Corollary 5. Under the assumptions of Theorem 4, let us
further assume that Fi are factorized as Fi “ DiA, that R
and Ñ are A-invariant and Di-invariant for all i and also
that I “

Ť

iDiS for some set S.
Then the matrices t qFiu of the reduced model can be taken

to be qFi “ qDi
qA with qDi “ RDiJ , qA “ RAJ. .

The proof of this corollary follows exactly that of Theorem
4, where HΠV

ś0
j“lpΠVDsjAΠVqΠVDix0 is substituted by

HΠV
ś0

j“lpΠVDsjΠVAΠVqΠVDiΠVx0, and in the induc-
tion we leverage the fact that Ñ ,R and thus Ñ X R are
invariant for ΠV , A and Di, for all i.

APPENDIX B
PROOFS

This Appendix collects some proofs that were not included
in the main text to improve readability.

Proof of Proposition 1. Let start with the first part of the
statement. The fact that A is closed under linear combinations
and 1 P A follows directly from the definition of A . The
closure of A under element-wise product follows from the
closure of F under the same operation. In particular let
consider x,y P A , then x ^ y “

ř

i,j xiyjfi ^ fj and ,
since fi P F for all i, fi ^ fj P F and thus x ^ y P A .
So A is an algebra, namely the set of F-measurable random
variables, and it is the minimal one by construction.

We can then consider the second part of the statement.
First of all, notice that the vectors that are idempotent for the
element-wise product are composed only of zeros and ones.
Let then consider a general element x P A and let xi˚ “

maxi“1,...,n |xi|. We can then compute x1 “ x{xi˚ P A that
will have value 1 in the positions where x has value xi˚ ,
possibly values -1 in the position where x has value ´xi˚

and values in the range p´1, 1q in all the others positions.
We can then define x2 “ 0.5px1 ` x1 ^ x1q P A that will
have have value 1 in the positions where x has value xi˚

and values in the range p´1, 1q in all the others positions.
Finally the first idempotent element of the desired set is
f1 “ limnÑ8px

2qn P A with element-wise power. Notice
that f1 will have 1 in the same positions as x1 and zeros in
all the others. This implies that f1 is idempotent. By iterating
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the procedure on x´ xi˚f1, and so on, we obtain the whole
set of idempotent elements tfiu Ă A such that x “

ř

i xifi
up to a reordering of the coefficients xi. We shall denote with
idempxq the function that, given an element x, returns the
set of idempotent elements tfiu that generate x. We then
have that idempA q Ě YxPA idempxq by definition, while to
prove idempA q Ď YxPA idempxq it suffice to notice that each
element of idempA q is also an element of A . This implies
idempA q “ YxPA idempxq. Then, by construction, it holds
that spantidempA qu “ A .

We shall then notice that F “ idempA q contains the
elements, 0,1 P A, and is closed under the operations ^, _
and ␣. This shows that idempA q is a σ-algebra. Then, since
A “ spantidempA qu then any element in A is idempA q-
measurable. Moreover, idempA q is minimal because subtract-
ing any element from it would make that element (seen as a
r.v.) non-measurable. We thus have F “ idempA q.

Finally, respFq Ă F is such that fi ^ fj “ 0, for all
fi,fj P respFq i ‰ j. This implies that ⟨fi,fj⟩ “ δi´j

which means that is a set of orthogonal vectors. Moreover f “
_fjPSfj with S Ď respFq for all f P Fzt0u or, equivalently,
f “

ř

j cjfj with cj P t0, 1u for all f P F . This implies that
A “ spantrespAqu and thus respA q is an orthogonal basis
for A and dimpA q “ |respA q|.

Proof of Lemma 1. First of all, note that the modified inner
product can be written in many equivalent forms: ⟨v,w⟩p “
Eprv ^ws “ ⟨p,v ^w⟩ “ ⟨p^ v,w⟩ “ ⟨v,p^w⟩.

Let us then consider E|A ,p. We can notice that
imagepE|A ,pq “ A and that E2

|A ,p “ E|A ,p. It remains to be
proven the fact that E|A ,p is self adjoint with respect to the
inner product ⟨¨, ¨⟩p, that is

〈
v,E|A ,pw

〉
p
“

〈
E|A ,pw,v

〉
p

.
Such an equality can be rewritten, using equivalent forms of
the modified inner product above, as

〈
v,p^ p^ E|A ,pw

〉
“〈

p^ p^ E|A ,pv,w
〉
. That is equivalent to prove that p ^

E|A ,p is self-adjoint with respect to the standard inner product,
which can be verified by simply computing it.

Identical reasoning can be done for ET
|A ,p. Note that

imagepET
|A ,pq “ p ^ A , that pET

|A ,pq
2 “ ET

|A ,p and that
p´1 ^E|A ,p is self adjoint with respect to the standard inner
product and the statement is proved.

Proof of Proposition 3. Both kerC Ě N and S Ď R are
well-known properties. We have to prove that N Ě NC and
R Ď RC .

Regarding the reachable space we have that
spantP y0:lp0,@y0:l s.t. l “ k,@p0 P Su Ě

spantP kp0,@p0 P Su for all k ě 0. This is proven
directly using lemma 5.

For the non-observable subspace it holds that
»

—

–

1Tdiagpe0qPP
y0:l´1

C
...

1TdiagpemqPP
y0:l´1

C

fi

ffi

fl

“ CPP
y0:l´1

C p0.

Then, we have that kerrCPP y0:l´1

C s “ kerrCP ls for all y0:l´1

of length l, for any length l. Once again this is proved by
using Lemma 5. Consider a vector v P kerrCPP

y0:l´1

C s for
all y0:l´1. Then it holds that CPP y0:l´1

C v “ 0 summing both

sides of this equation over all sequences y0:l´1 of length l´1
and using the Lemma above we obtain CP |y0:l´1|`1v “ 0,
thus proving the statement.

The statement on the effective subspaces follows directly
from the other two.

Proof of Lemma 6. We shall start by constructing a vector rw
such that suppp rwq “ supppWq. Starting from it we then
construct a vector w such that it is a linear combination of
every generator.

By definition of support of a vector space, for each ei P
supppWq there exists a vector xi P W such that eTi xi ‰ 0,
forming a set txiu. Without loss of generality, we assume
i “ 0, . . . ,m with m “ dimpsupppWqq. We can then define
rw0 “ x0 and iteratively compute rwi “ rwi´1 ` λixi with
λi R t´e

T
j rwi´1{e

T
j xi,@j|e

T
j xi ‰ 0u Y t0u. Since this set is

finite, it is always possible to choose a suitable λi P R for
each i. At the end of the iteration process, we obtain rw “

rwm “
řm

i“0 λixi P W . To prove that suppp rwq “ supppWq
we can simply observe that eTj rw “

řm
i“0 λie

T
j xi ‰ 0 by

construction for all ej P supppWq. On the other hand, for
every ej R supppWq, eTj xi “ 0 for all i and thus eTj rw “ 0.

This rw must be described as a linear combination of some
of the generators, say rw “

ř

iPS λiwi, for some set of indices
S. We can then use the same procedure as before: takewi such
that i R S, by choosing any λi R t´eTj rw{eTj wi,@j|e

T
j wi ‰

0u Y t0u we have suppp rw ` λiwiq “ supppWq. Iterating
this procedure on the remaining vectors twi|i R Su we obtain
w “ rw `

ř

iRS λiwi such that supppwq :“ supppWq.
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