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Current insights and
advances into plant male
sterility: new precision breeding
technology based on genome
editing applications

Silvia Farinati, Samela Draga, Angelo Betto, Fabio Palumbo,
Alessandro Vannozzi, Margherita Lucchin and Gianni Barcaccia*

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University
of Padova, Legnaro, PD, Italy
Plant male sterility (MS) represents the inability of the plant to generate functional

anthers, pollen, or male gametes. Developing MS lines represents one of the

most important challenges in plant breeding programs, since the establishment

of MS lines is a major goal in F1 hybrid production. For these reasons, MS lines

have been developed in several species of economic interest, particularly in

horticultural crops and ornamental plants. Over the years, MS has been

accomplished through many different techniques ranging from approaches

based on cross-mediated conventional breeding methods, to advanced

devices based on knowledge of genetics and genomics to the most advanced

molecular technologies based on genome editing (GE). GEmethods, in particular

gene knockout mediated by CRISPR/Cas-related tools, have resulted in flexible

and successful strategic ideas used to alter the function of key genes, regulating

numerous biological processes including MS. These precision breeding

technologies are less time-consuming and can accelerate the creation of new

genetic variability with the accumulation of favorable alleles, able to dramatically

change the biological process and resulting in a potential efficiency of cultivar

development bypassing sexual crosses. The main goal of this manuscript is to

provide a general overview of insights and advances into plant male sterility,

focusing the attention on the recent new breeding GE-based applications

capable of inducing MS by targeting specific nuclear genic loci. A summary of

the mechanisms underlying the recent CRISPR technology and relative success

applications are described for the main crop and ornamental species. The future

challenges and new potential applications of CRISPR/Cas systems in MS mutant

production and other potential opportunities will be discussed, as generating

CRISPR-edited DNA-free by transient transformation system and

transgenerational gene editing for introducing desirable alleles and for

precision breeding strategies.
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1 Introduction

Plant male sterility (MS) refers to the inability of the plant to

generate functional anthers, pollen, or male gametes, although

female fertility remains unaffected (Kaul, 1988). Therefore, male

sterile plants cannot undergo self-pollination, but they can be

fertilized by male fertile plants. The establishment of MS lines is a

major goal in F1 hybrid production and marketing because by

disabling self-fertilization, it is possible to facilitate the exploitation

of heterosis in predominantly autogamous species (Longin et al.,

2012; Kim and Zhang, 2018; Li et al., 2022; Ramlal et al., 2022). In

the past, the main way to avoid considerable shares of progeny

derived from self-pollination, even in species with predominantly

allogamous fertilization, was to perform physical emasculation with

chemical, mechanical or even manual methods. The main

advantage in the use of MS lines is the reduction of costs, time

and energy related to these emasculation procedures (Colombo and

Galmarini, 2017). For these reasons, MS lines have been developed

in several species of economic interest (Abbas et al., 2021; Wang

et al., 2023), particularly in horticultural crops and ornamental

plants (Yamagishi and Bhat, 2014; Barcaccia et al., 2016; Khan and

Isshiki, 2016; Jindal et al., 2019; Singh and Khar, 2021). MS exhibits,

in most cases, Mendelian inheritance, which is controlled either by

the coordinated action of nuclear and cytoplasmatic genes or

exclusively by nuclear genes (Kaul, 1988). The first scenario,

defined as cytoplasmic male sterility (CMS), or three-line breeding

system, relies on loci localized within the mitochondrial genome

(Rogers and Edwardson, 1952; Chen and Liu, 2014). Cytoplasmic

maternal inheritance causes all progeny derived from plants

carrying the S locus (sterile) cytoplasm to inherit the male sterility

trait (Budar and Pelletier, 2001; Yamagishi and Bhat, 2014; Xu et al.,

2022). This condition can be overcome by nuclear genes that are

functional in dominant conditions (Jindal et al., 2019); they are

defined as restorers of fertility (Rf) and can suppress or downregulate

the CMS genes and revert male sterility (Schnable and Wise, 1998;

Ning et al., 2020). In contrast, genic male sterility (GMS), also

reported as nuclear male sterility (NMS), or two-lines breeding

system, is generally controlled by single nuclear genes, mostly by

recessive alleles (ms) (Colombo and Galmarini, 2017;

Manjunathagowda, 2021).

Although genes involved in MS have not yet been characterized

in many species, the complex molecular mechanisms at the bases of

GMS and CMS have been studied in the most important crops at

the transcriptomic, biochemical and epigenetic levels (Fan et al.,

2016; Li et al., 2019; Liu et al., 2022; Nie et al., 2023). Potential

limitations in the application of MS systems in agricultural species

reside first in the availability of MS resources, in the difficulty

encountered when introgressing the trait into commercial varieties

(e.g., linkage drag issues), and in the maintenance of the MS lines.

Furthermore, considering that MS is detectable only during

flowering stages, selecting plants characterized by GMS systems

may be a challenge for preventing self-pollination. In addition, MS

can be influenced by environmental conditions, resulting in

instability and being a major issue for conducting crosses.

Nevertheless, external conditions have been successfully exploited
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in rice and wheat, manipulating temperature or photoperiod to

guarantee alternating cross-pollination or self-pollination

(environmental genic male sterility – EGMS) (Zhou et al., 2012;

Meng et al., 2016).

Developing MS lines therefore represents one of the most

important challenges in plant breeding programs. Over the years,

MS has been accomplished through many different techniques

ranging from cross-mediated breeding to advanced methods

based on knowledge of genetics and genomics to the most

advanced molecular technologies based on genome editing (GE).

If MS sources have not been found in the species of interest or if

their transfer to the productive varieties is hindered by technical

limitations, MS can also be induced by mutagenesis with chemical

or physical agents (Hawkes et al., 2011). At present, the ability to

precisely recognize and edit DNA sequences can have a significant

impact on functional genomics and crop advancement studies. The

recent development of GE-based technologies has provided

researchers with powerful tools not only for decoding gene

functions but also for improving or introducing new plant traits.

This progress offers an increasing number of approaches considered

revolutionary in molecular biology since it allows modifications at

genomic loci in a precise and efficient manner (Malzahn et al.,

2017). GE methods, being less time-consuming, can accelerate the

creation of new genetic variability with the accumulation of

favorable alleles, able to dramatically change the biological

process and resulting in a potential efficiency of cultivar

development bypassing sexual crosses (Chen and Gao, 2014; Gao,

2015; Arora and Narula, 2017; Scheben et al., 2017). Furthermore,

since the development of a new commercial male-sterile line using

traditional breeding systems usually takes several years or decades,

these modern genetic engineering techniques can reduce

dramatically the breeding time (Zhou et al., 2016).

Starting from these assumptions, the aim of this manuscript is to

provide a general overview of insights and advances into plant male

sterility, first providing a brief description of conventional breeding

programs, and then focus attention on the recent new breeding GE-

based applications capable of inducing MS by targeting specific nuclear

genic loci. In particular, a summary of the mechanisms underlying the

recent CRISPR technology and relative success applications will be

described for the main crop and ornamental species. Finally, we discuss

the future challenges and potential opportunities of such technologies

for introducing desirable alleles and improving many traits for

precision breeding strategies.
2 MS based-conventional
breeding methods

The selection of improved varieties through conventional

breeding primarily relies on phenotypic observations and the

breeder’s experience. For planning a promising plant breeding

program, the following association establishment between

phenotype and relative genotype results is fundamental (Chen

and Lubberstedt, 2010). As reported in the Introduction section,

MS is an important trait for different purposes, primarily for the
frontiersin.org
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production of hybrid seeds. The development and propagation

process of an F1 hybrid obtained through an MS system involves

multiline maintenance strategies (Khan and Isshiki, 2016; Kim and

Zhang, 2018; Xu et al., 2022; Scariolo et al., 2023). Various

agronomic strategies can be used to introduce the MS trait in a

commercial line of interest through conventional breeding

approaches: after identifying naturally occurring male sterility

within a species, the MS trait may be transferred to elite

germplasm by cross pollination (Yamagishi and Bhat, 2014;

Bruns, 2017; Zheng et al., 2020). Briefly, as schematically reported

in Figure 1, CMS bases on a three-line system that includes, in

addition to the MS line, a fertility restorer line and a maintainer line

(Chen and Liu, 2014). Conversely, the use of the Mendelian

recessive genes of GMS requires the discrimination of male fertile

and sterile progeny prior to anthesis to ensure the maintenance of

the MS line. This task can be challenging unless functional

molecular markers associated with the MS locus are available

(Wu et al., 2016). EGMS could overcome this problem by altering

specific environmental conditions to make MS lines either male

fertile or sterile (Sun et al., 2022).

The identification of functional molecular markers linked to

specific traits can be of primary importance to allow future selection

programs mediating marker-assisted selection (MAS), which

identifies the following mapping gene responsible for the
Frontiers in Plant Science 03
observed phenotype (Page and Grossniklaus, 2002; Schneeberger,

2014; Aklilu, 2021). The use of MAS results in fact in a useful

predictive tool for the identification of male sterile genotypes,

mapping markers closely associated with the MS locus

(Mackenzie, 2012). The complexity and long times of these

breeding strategies make the exploration of the molecular

mechanisms a key feature to improve productivity and other

traits of interest (Bohra et al., 2016; Van Ginkel and Ortiz, 2018;

Yu et al., 2021a). On the basis of these articulated schemes of MS

maintenance, defining the conditions in which the markers can be

predictive molecular tools of genotype is a key point of each

program. Furthermore, starting from the knowledge of a well-

characterized mechanism of the MS system in model species,

substantial genetic resources can be used for the discovery of

homologous ms-related genes in other species (Leino et al., 2003;

Fernandez Gomez and Wilson, 2014; Morales et al., 2022).
2.1 CMS system

Four different models have been described to explain how CMS

can produce male sterility Chen and Liu (2014):

i) Cytotoxicity model: the proteins encoded by the CMS genes

directly cause the death of the cells involved. At the basis of the
B CA

FIGURE 1

Production and maintenance strategies for MS systems. (A) Three-line system for cytoplasmic male sterility (CMS), involving an MS line with sterile
cytoplasm (S) and restorer gene in recessive homozygous condition (rfrf), crossed with a maintainer line carrying normal fertile cytoplasm (N) and rf
alleles for its maintenance, in addition to a fertility restorer line with N or S cytoplasm without distinction and restorer alleles in dominant
homozygous, hence functional, condition (RfRf), crossed with the MS line for F1 hybrid production. The F1 hybrid consequently brings S cytoplasm
and is heterozygous for the restorer gene (Rfrf), hence male fertility. Maintainer and restorer lines are self-pollinated for their maintenance. (B)
Three-line system for genic male sterility (GMS), involving a recessive homozygous MS line for the MS gene (msms), crossed with a heterozygous
maintainer line (Msms) for maintenance, producing half recessive homozygous and half heterozygous progeny, in addition to a dominant
homozygous restorer line (MsMs), crossed with the MS line for heterozygous and fertile F1 hybrid production. (C) Two-line system for environmental
genic male sterility (EGMS), involving a recessive homozygous MS line, kept in permissive environmental conditions (i.e., low temperatures or short-
day photoperiod) in order to make it become male fertile and self-pollinate for its maintenance, while kept in restrictive conditions (i.e., high
temperatures or long-day photoperiod) to make it male sterile and to cross it with a dominant homozygous restorer line for F1 hybrid production.
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mechanisms by which this occurs it has been hypothesized that

there is mitochondrial dysfunction, but a well-defined model has

not yet been developed, lacking molecular evidence of cytotoxicity

itself. As a result, a simple explanation for CMS in these systems is

that the CMS proteins cause mitochondrial malfunction in the

anthers’ sporophytic or gametophytic cells, resulting in male

abortion (Levings, 1993).

ii) Lack of energy model: the cellular respiration process is

altered. In fact, CMS proteins can act as dysfunctional

homologues of parts of complexes forming the electron transport

chain, or changing proton gradients critical to the cellular

respiration process, resulting in no ATP production. The

molecular evidence supports the concept that some CMS are

caused by an energy deficit in growing anthers, which demand

more energy (Sabar et al., 2003; Wang et al., 2013).

iii) Asynchronous programmed cell death (PCD) model: PCD is

induced in tapetum cells earlier than its normal course. It is

implemented through the release of cytochrome C, a protein

complex of the electron transport chain, and by increasing the

production of reactive oxygen compounds (ROS, from Reacting

Oxygen Species). By starting the autolysis before the pollen is

mature, the tapetum cannot continue to nourish it and this does

not complete its development. Plant male gametophytes form in

anthers through cooperative contacts between sporophytic (anther

wall) and gametophytic (microspore) cells, as well as correct PCD-

controlled cellular degeneration of the tapetum, the deepest cell

layer of the anther wall tissue (Mah, 2005).

iv) Retrograde regulation model: some CMS proteins are able to

regulate the expression of nuclear genes, including some involved in

the processes for correct reproduction. For example, they can

disturb the formation activity of the stamens, in place of which

carpels or petals develop. Or they can nullify the action of fertility

restorative genes, when they are in their recessive allelic/haplotype

form (Linke et al., 2003).

By comparing the proteomes of CMS and fertile lines, some CMS

causative proteins, such as URF13 of maize CMS-T (Forde et al., 1978)

and truncated COX2 of sugar beet CMS-G (Ducos et al., 2001), were

discovered in other CMS systems. The CMS candidate genes were

found in a few cases, such as radish CMS-Ogu (Bonhomme et al., 1991)

and wheat alloplasmic CMS-AP (Rathburn and Hedgcoth, 1991), by

analyzing the mitochondrial DNAs of segregating somatic hybrids

(cybrids) produced from protoplast fusion between CMS-carrying lines

and normal fertile lines. However, owing of the difficulties in acquiring

cybrids and the uncertainty of recombination events between the

mitochondrial DNAs of the fusion lines, this strategy is ineffective

for most crops. Several methodologies can be used to identify CMS

candidate genes. The most common approach is to look for changes in

mitochondrial gene organization and/or mitochondrial transcriptome

or proteome differences in CMS cytoplasm lines with and without the

Rf gene(s). Nuclear Rf genes perform their action at different levels,

involving various steps of protein synthesis or cellular metabolism

(Chen and Liu, 2014).

Since in the case of CMS, 100% of offspring individuals will be

MS, the use of molecular markers results a strategic key if identified

and mapped in association with Rf genes. Table 1 shows main

examples of the important crop classes for which mapped and
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retrievable information regarding reproducible, codominant

molecular markers linked to Rf genes, offering fast and reliable

detection tools to select, by MAS, parental lines for production of

the desired progeny (Jordan et al., 2010; Yan et al., 2017).

In addition to major cereal crops and species, a great interest in

mapping CMS-related loci has also been reflected in ornamental

plants such as sunflower and petunia (Bentolila et al., 1998;

Gentzbittel et al., 1999; Feng and Jan, 2008; Yue et al., 2010; Liu

et al., 2012; Qi et al., 2012; Liu et al., 2013; Talukder et al., 2019).
2.2 GMS system

Several molecular mechanisms underlie GMS in different species,

in many of them genes coding transcription factors are capable of

modifying the expression of genes involved in reproductive processes.

The result is disturbance of gamete formation, due to failure of

homologous chromosome separation in meiotic anaphase I and

delayed of programmed cell death in tapetum (Jeong et al., 2014).

In particular, several nuclear genes have been found responsible for

MS, causing arrest of microspore development. Furthermore, as

mentioned in Introduction section, the male sterility can also

depend on environmental conditions, and in this case the GMS is

define as EGMS. Temperature-sensitive genic male sterile (TGMS)

and photoperiod-sensitive genic male sterile (PGMS) lines were

developed especially in cereals crops like rice and wheat. TGMS

lines are sterile at high temperatures and fertile at low temperatures,

while PGMS lines can either be sterile when the day is longer than the

night and fertile when it is shorter, or vice versa. In China, EGMS

lines occupy 20% of the area dedicated to the cultivation of hybrid

rice (Li et al., 2007). Also in this case, the molecular markers result

strategic keys if identified and mapped in association with the ms

locus, as testified in past (Barcaccia et al., 2016). However, to date, in

more than 610 species of flowering plants the MS trait is under

investigation, and specifically in the past few decades, at least 40 GMS

genes have been identified by MAS and characterized in model

Arabidopsis and rice (Chen and Liu, 2014; Singh et al., 2019; Wan

et al., 2019). As similarly reported in Tables 1, 2 shows main examples

of the several crop classes for which mapped and retrievable

information regarding reproducible, codominant molecular

markers linked to nuclear male sterility genes. Molecular markers

such as SSR, RFLP, SCAR, and SNP were fully employed for mapping

male sterility genes, while insertion−deletion (InDel), target region

amplification polymorphism (TRAP), sequence-related amplified

polymorphism (SRAP), high resolution melting (HRM), and

conserved orthologous set (COS) markers were sporadically used

among these research studies. However, the data availability of

mapped genes was correlated with species of great agronomic and

economic importance: studies on cereals and other horticulture crop

were prevalent, resulting in numerous mapped markers and

associated genes involved in both MS systems, which offer open

access for hybrid production using male-sterile lines (Li et al., 2007;

Rout et al., 2021; Morales et al., 2022). These insights were interesting

because proper MAS application could offer competitive phenotypes

for market demand and contribute to reducing production costs,

which is also fundamental for ornamental plant companies.
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3 A new frontier of precision plant
breeding technology: GE mediated by
the CRISPR/Cas system

Novel GE technologies have been intensively developed through

diverse biological systems depending on sequence-specific nucleases

(SSNs). Upon induction, all SSNs may detect a specific DNA

fragment and cause double-stranded breaks (DSBs), repaired by
Frontiers in Plant Science 05
two endogenous repair machinery of plant. Initially, ZFNs (zinc-

finger nucleases) and TALENs (transcription activator-like effector

nucleases) were the two systems primarily employed in genome

editing techniques (Smith et al., 2006; Petolino, 2015; Malzahn et al.,

2017). However, the difficulties of array and vector design in each of

these methods, as well as the time-consuming work necessary to

construct vectors for each new DNA sequence target, have

hampered their widespread usage for plant genome editing. In

contrast, with subsequent scientific breakthroughs, CRISPR/Cas-
TABLE 1 Male sterility-related molecular markers mapped to Rf genes in CMS system.

Species Gene locus CMS type LG/Chrom Molecular markers Reference(s)

Cereals

Maize

Rf1 CMS-T (S) 3 RFLP Schnable and Wise, 1994

Rf2 CMS-T (S) 9 RFLP Schnable and Wise, 1994

Rf8, Rf* CMS-T (S) 2L RFLP Dill et al., 1997

Rf3 CMS-S (G) 2L SSR, AFLP Zabala et al., 1997; Zhang et al., 2006

Rf4 CMS-C (S) 8 CAPS Dewey et al., 1991; Liu et al., 2022

Rf5 CMS-C(S) 5 RFLP Sisco, 1991

Soybean
Rf3 CMS (G) 9 CAPS, SSR Sun et al., 2022

Rf-m CMS-M(G) 16 SSR Wang et al., 2016

Wheat

Rf1 CMS-T (S) 1A SNP Melonek et al., 2021

Rf3 CMS-T (S) 1B SNP Geyer et al., 2016; Melonek et al., 2021

Rf9 CMS-T (S) 6AS SNP Shahinnia et al., 2020

Rice

Rf1 CMS-BT (G) 10 RFLP Komori et al., 2004

Rf4 CMS-WA (S) 10 SSR, SNP, InDel Tang et al., 2014

Rf2 CMS-LD (G) 2 CAPS, SNP Itabashi et al., 2011

Rf5 CMS-HL (G) 10 SSR Hu et al., 2012

Rf17 CMS-WA (S) 4 SNP Fujii and Toriyama, 2009

Rf98 CMS-RT98(G) 10 SSR Igarashi et al., 2016

Rf3 CMS-WA (S) 1 RAPD, RFLP, SSR Zhang et al. 1997; Ahmadikhah and Karlov, 2006

Rf6 CMS-BT (G) 8 SNP Liu, 2004; Zhang et al., 2017; Zhang et al., 2019

Horticultural Pepper Rf CMS-Peterson 6 SCAR, CAPS Jo et al., 2016; Kang et al., 2022

Non-food

Rapeseed Rf1 CMS-Pol (S) 18 RFLP Jean et al., 1997

Cotton
Rf2 CMS-D8(G) 19 RAPD, CAPS, AFLP, SSR Wang et al., 2007

Rf1 CMS-D2-2(S) D5 SNP, InDel Cheng et al., 2023; Wu et al., 2017

Ornamental

Petunia Rf NR 4 SSR Bentolila et al., 1998

Sunflower

Rf1 CMS-PET1(S) 13 SSR, TRAP Yue et al., 2010

Rf3 CMS-PET1(S) 7 SSR Liu et al., 2012

Rf5 CMS-PET1(S) 13 SSR Qi et al., 2012

Rf7 CMS-PET1(S) 13 SSR, SNP Talukder et al., 2019

Rf4 CMS-GIG2 3 SSR Feng and Jan, 2008;

Rf6 CMS-514A 4 SSR Liu et al., 2013

Msc1 CMS-PET1(S) 12 RFLP Gentzbittel et al., 1999
The class to which each species taken into account belongs is reported alongside. The linkage group (LG) or chromosome (chrom), and available molecular markers for MAS application are
indicated. CMS-type: S, sporophytic; G, gametophytic, indicates where the CMS acts. NR, Not reported.
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TABLE 2 Male sterility-related molecular markers mapped to relative genes associated with the GMS trait.

Species Gene
locus Type Gene function Role in ms LG/

Chrom
Molecular
markers Reference(s)

Cereals

Maize

Ms30 GMS GDSL Lipase
pollen exine formation, anther

cuticle development
4 SNP An et al., 2019

ms39 GMS
callose synthase12

(ZmCals12)

pollen development, plant
height, tassel length, tassel

branch number
3

InDel, SSR,
SNP

Zhu et al., 2018; Niu
et al., 2023

Ms28 GMS ZmAGO5c protein
regulation of the tapetum

development
5

InDel, SSR,
SNP

Li et al., 2021

ms40 GMS
bHLH transcription

factor
tapetum degeneration

retardation
4 InDel Liu et al., 2021

ms32 GMS
bHLH transcription

factor

regulator of both division and
differentiation during anther

development
2 RFLP

Moon et al., 2013;
Chaubal et al., 2000

Ms33 GMS
glycerol-3-phosphate

acyltransferase (GPAT)
tapetum development and
metabolism disruption

2L SSR Xie et al., 2018

Ms7 GMS
PHD finger

transcription factor
abnormal microspore wall
and tapetal cell development

7 SSR Zhang et al., 2017

Ms20 GMS
irregular pollen exine1

(ipe1)
anther cuticle and pollen

exine formation
1 SSR Wang et al., 2019

Soybean

mst-M GMS NA NA 13 CAPS, SSR Zhao et al., 2019

ms1 GMS kinesin protein
cell plate formation in male

gametogenesis
13 SSR

Yang et al., 2014b;
Fang et al., 2021

ms6 GMS
R2R3 MYB (GmTDF1-
1) transcription factor

anther development regulator 13 SSR
Yang et al., 2014b; Yu

et al., 2021

ms4 GMS PHD protein
failure of cytokinesis after
telophase II, coenocytic

microspores
2 SSR

Yang et al., 2014b;
Thu et al., 2019

Wheat

ms5 GMS GPI-anchored nsLTP pollen development 3AL SNP Pallotta et al., 2019

ms1 GMS GPI-anchored nsLTP pollen exine development 4BS
SSR, CAPS,

SNP

Yang et al., 2021;
Tucker et al., 2017;
Wang et al., 2017

Ms3 GMS NA NA 5A
centromere-

related
Maan et al., 1987

Rice

rpms1 rPGMS NA NA 8 SSR Peng et al., 2008

rpms2 rPGMS NA NA 9 SSR Peng et al., 2008

tms12-
1

P/
TGMS

small RNA osa-
smR5864w

regulator of the development
of the male reproductive

organ
12 SSR Zhou et al., 2012

tms2 TGMS
alpha-galactosidase
precursor (ORMDL)

sphingolipid homeostasis,
pollen development

7 SSR
Lopez et al., 2003;

Chueasiri et al., 2014

tms3(t) TGMS NA NA 6 RAPD, RFLP Subudhi et al., 1997

pms2 PGMS NA NA 3 RFLP Zhang et al., 1994

pms4 PGMS NA NA 4 SSR Huang et al., 2008

pms1 PGMS 21-PHAS gene
differential accumulation of

the phasiRNAs
7

SSR, CAPS,
InDel

Fan et al., 2016

tms5 TGMS RNase Z-S1 defective pollen production 2 CAPS, AFLP
Wang et al., 2003;
Yang et al., 2007;
Zhou et al., 2014

tms4(t) TGMS NA NA 2 Dong et al., 2000

(Continued)
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based genome editing systems (clustered regularly interspaced short

palindromic repeats/CRISPR-associated protein) have been

increasingly employed in the last decade (Li et al., 2013; Nekrasov

et al., 2013; Shan et al., 2015). Their use is constantly expanding in

numerous applications, resulting in a wider array of editing tools

developed for several purposes (Figure 2). CRISPR/Cas-based
Frontiers in Plant Science 07
systems are considered more robust and simpler for targeting

gene editing since they present a significant advancement over

previous systems, such as the simplicity and versatility in vector

design and construction for subsequent plant transformation (Chen

et al., 2019; Bhat et al., 2020; Nadakuduti and Enciso-Rodriguez,

2020; Zhu et al., 2020). An increasing number of studies attest to the
TABLE 2 Continued

Species Gene
locus Type Gene function Role in ms LG/

Chrom
Molecular
markers Reference(s)

AFLP, RFLP,
SSR

rtms1 rTGMS NA NA 10 AFLP Jia et al., 2001

tms6 TGMS NA NA 5 STS, SSR Lee et al., 2005

pms3 PGMS
long noncoding RNAs

(lncRNA)

pollen development of plants
grown under long-day

conditions
12 RFLP

Mei et al., 1999; Ding
et al., 2012

Horticultural

Chicory

ms GMS MADS-box gene flower development 4 SSR Cadalen et al., 2010

ms-
myb80

GMS
Myb 80 transcription

factor
anther development 9

SSR, CAPS,
SNP

Barcaccia and Tiozzo,
2012; Palumbo et al.,

2019

NMS GMS
hypothetical S-domain

RLK gene
anther development 5 SSR, SCAR

Cadalen et al., 2010;
Gonthier et al., 2013

Pepper

ms1 GMS
PHD finger

transcription factor
sporophytic factor controlling

anther and pollen
5 HRM Jeong et al., 2018

ms3,
msw

GMS NA NA 1, 5 CAPS Naresh et al., 2018

ms8 GMS NA
abortion of microspore

formation
P4 SCAR

Bartoszewski et al.,
2012

ms10 GMS NA NA 1 SSR Aulakh et al., 2016

Tomato

ps2 GMS
polygalacturonase gene

(PG)
blocking anther dehiscence,

fruit ripening
4 COS

Gorguet et al., 2006;
Gorguet et al., 2009

ms10 GMS
anthocyanin-related
GST gene (SlGSTAA)

role in anthocyanin transport 2 InDel Zhang et al., 2016

ms32 GMS
bHLH transcription

factor
pollen and tapetum

development
1 InDel Liu et al., 2019

ms15²6 GMS B-class MADS-box TM6 stamen development 2 InDel Cao et al., 2019

Non-food

Rapeseed

ftms GMS
putative b-(1,3)-

galactosyltransferase
(Bra010198)

microspore development A05 SSR Tan et al., 2019

ms3 GMS Tic40 protein
tapetal function and pollen

development
N19 SCAR

Huang et al., 2007;
Zhou et al., 2012

Ms-cd1 GMS
SALT-INDUCED AND

EIN3/EIL1-
DEPENDENT 1 (SIED1)

primary pollen mother cell
(PMC) and microspore

formation
3 SRAP

Zhang et al., 2011;
Liang et al., 2017

Cotton

ms5,
ms15

GMS NA NA 12 SSR Chen et al., 2009

ms6 GMS NA NA 26 SSR Chen et al., 2009

Ornamental Marigold Tems GMS
B class MADS-box

genes

floral organ homeotic
conversion of the petals and

stamens
NR AFLP, SCAR He et al., 2010
The class to which each species taken into account belongs is reported alongside. The linkage group (LG) or chromosome (chrom), and available molecular markers for MAS application are
indicated. NA, Not Applicable. rPGMS, reverse photoperiod-sensitive genic male sterility. rTGMS, reverse temperature-sensitive genic male sterility. P/TGMS, photoperiod, temperature-
sensitive male sterility.
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expanded applications of Cas9 nuclease for editing beyond double

strand breaks, and the accompanying benefits of those systems have

resulted in quick, widespread acceptance for editing applications in

a diverse range of plant species. Cas9-related nuclease, if associated

with an RNA guide (single guide RNA, sgRNA), is able to identify a

special site PAM (Protospacer Adjacent Motif) in the host DNA

and cut the target sequence recognized, mediated by the

complement to which the sgRNA binds (Mojica et al., 2009; Jinek

et al., 2012), inducing the development of modified and improved

forms of Cas9 and Cas9-like nucleases. In addition to Cas9, other

related enzymes (Cas12a, CasF, and Cms1), derived from other

CRISPR systems, have been implemented since they are potentially

useful for editing approaches, each with slightly different

capabilities to recognize and modify PAM sites (Zetsche et al.,
Frontiers in Plant Science 08
2015; Begemann et al., 2017; Gao et al., 2017; Li et al., 2018; Pausch

et al., 2020).

This approach is defined as a precision-type plant breeding

technology, and it is currently being utilized to change the

characteristics of various plants, including important crops, as well

as to produce new germplasm resources. (Gaillochet et al., 2021). The

applications have been primarily focused on traits related to stress

tolerance, disease resistance, quality improvement, and higher yields

with minimal input (Liu et al., 2022) (Figure 2A). In particular, the

CRISPR/Cas system has been widely employed to edit plant genomes

to modify genes in various ways, e.g., gene knockout, gene knock-in,

gene regulation, base editing, and prime editing (Zhang et al., 2021a).

Gene knockout/-in and base and/or prime editing mediated by

CRISPR/Cas-related tools have resulted in flexible and successful
B

A

FIGURE 2

GE applications in precision plant breeding approaches. (A) Schematic representation of the main applications of GE for crop improvement through
CRISPR/Cas and related systems. Examples of genes modified for improving specific traits are listed in each specific box for various reference crops.
(B) Simplified representation of the workflow for MS generation mediated by CRISPR/Cas technology applied to target genes. In summary, gene
editing is induced by transient or stable expression of a Cas nuclease and gRNA through the transformation/transfection of the ribonucleoprotein
(RNP) complex or DNA vector. Both CRISPR machinery reagents can be delivered into plant cells using biolistic transformation or other methods,
according to suggested transformation/transfection protocols related to species, plant tissues and the methodological approach followed. Such
events can lead to the generation of edited whole plants. The transgene locus is usually heterozygous in the first generation of transgenic plants
(T0). Afterwards, elimination of the CRISPR/Cas cassette transgene (yellow star) by genetic segregation, according to Mendelian genetics, occurred
to obtain transgene-free material. Transgene-free and edited T1 plants can be identified by PCR-based genotyping. The transgenerational GE
principle and potential applications in plants are highlighted schematically in circles: transgenic plants represented as a chromosome pair are
hemizygous for a CRISPR/Cas9-containing T-DNA locus (yellow stars) and edited in both alleles (grey circles). When crossed with a WT, the resulting
progeny either lacks the T-DNA and inherits a single edited allele or inherits the T-DNA, resulting in (transgenerational) editing of the inherited WT
allele. TGE for continued editing of homoeoalleles in polyploids species: a transgenic line may have edits only in a subset of homoeoalleles at the
homologous chromosomes. After self-crossing and selecting plants that inherited the T-DNA, all homoeoalleles may now be edited. The details can
be found within the text.
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strategic ideas used to alter the function of key genes and their

associated networks, regulating complicated crop traits (Gaillochet

et al., 2021). The successes of CRISPR/Cas application in crop

improvement have been reviewed in many papers, which are

focused on the improvement of crop resistance to fungi, bacteria,

and viruses, typically mediating targeting susceptibility systems to

increase resistance (Wang et al., 2014; Malnoy et al., 2016;Wang et al.,

2016; Nekrasov et al., 2017; Borrelli et al., 2018; Ma et al., 2018; Pu

et al., 2018; Wang et al., 2018b; Dong and Ronald, 2019; Oliva et al.,

2019; Mishra et al., 2021), resistance to an assortment of herbicides (Li

et al., 2015; Chen et al., 2017; Zong et al., 2018; Zhang et al., 2019;

Kuang et al., 2020), and abiotic stresses such as drought, salinity, high

temperatures, and soil pollution (Lou et al., 2017; Nieves-Cordones

et al., 2017; Shi et al., 2017; Tang et al., 2017; Pan et al., 2020). In

particular, the main purposes of food crop improvement research

using GE technology are to raise yield (e.g., grain size/weight/number

per panicle) and crop quality traits determined by internal (e.g.,

contents of nutrients and bioactive substances) and external (e.g., size,

color, and texture) factors related to a response to adverse

surrounding environments (Shan et al., 2015; Zhang et al., 2016b;

Lou et al., 2017; Dahan-Meir et al., 2018; Wang et al., 2018c; Chen

et al., 2019; Ma et al., 2019; Voss-Fels et al., 2019; Wang et al., 2020;

Zhu et al., 2020; Liu et al., 2021b). To simplify the overview of this

complicated scenario, Figure 2A summarizes the main traits that can

be enhanced by genome editing, with a list of example genes edited by

the CRISPR/Cas system to improve related plant species.
4 CRISPR/Cas system applications for
producing MS

In addition to stress response, and traits related to quality and yield,

CRISPR/Cas-based technology offers a new strategic tool to affect other

crop traits associated to fertility/sterility (Figure 2B). As described in

section 2, researchers have employed several strategies for integrating

MS traits into genomes of interest using information and methods

arising from conventional breeding approaches, with the aim to

guarantee high varietal purity breeding and to have better offspring

in terms of uniformity, yield, and stress tolerance (Bao et al., 2022).

Thanks to important forward genetic tools, as mutagenesis approaches

and TILLING populations, it has been possible to discover and

investigate new candidate genes controlling male sterility.

Furthermore, the increasing number of transcriptomic and

proteomic studies in recent decades, mostly on crop species, has

allowed us to characterize an emergent number of genes with

different roles in the development of male reproductive organs and

consequently with a putative role in MS induction. If the role of these

genes is confirmed as influencer of MS trait, they could be potential

targets for subsequent gene editing strategies (Carroll, 2011; Li et al.,

2012). The elucidation of molecular processes regulating anther and

pollen development has increased the identification and

characterization of new putative candidate male-sterility genes

(MSGs) in several species, allowing the development and effective use

of numerous biotechnology-based male-sterility systems for crop
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hybrid breeding (Perez-Prat and Van Lookeren Campagne, 2002;

Whitford et al., 2013; Wu et al., 2016; Zhang et al., 2019). As

reported in more detail in following sections, CRISPR/Cas

technology is resulted a novel, rapid and alternative method for the

generation of MS lines through target gene editing, both in food crops

(monocots and horticultural dicots) and in the increasing ornamental

sector, implementing also the knowhow underlying male sterility in

plants (Cong et al., 2013; Wang et al., 2018a).
4.1 Generation of MS mutant by CRISPR/
Cas-related system

The CRISPR/Cas system, especially based on Cas9, has been

successfully applied for the generation of male sterile lines in

important worldwide food crops (Barman et al., 2019; Okada

et al., 2019). Studies in main crops, such as rice, soybean, maize,

and tomato, have reported that pooled CRISPR/Cas9 methods can

result in valid strategies to generate a population of mutants for the

MS trait (Jacobs et al., 2017; Meng et al., 2017; Liu et al., 2019; Liu

et al., 2020). The application of CRISPR/Cas technologies for

generating mutants with a male sterile phenotype is an effective

tool, mainly mediating a knock-out approach towards target GMS

genes with nuclear origin since, compared to cytoplasmic male

sterile lines, it is much easier and more useful to produce hybrid

seeds (Qi et al., 2020).

Generally, MS mutants result from mutations in target genes

involved in microsporogenesis and/or microgametogenesis. Meiosis-

related, tapetum-specific and transcription regulatory genes, such as

eme1/exs, tpd1, ams and ms1, have been elucidated as key candidate

genes involved in these biological processes (Canales et al., 2002; Zhao

et al., 2002; Yang et al., 2003). Furthermore, many Arabidopsis

transcription factors (TFs) genes, such as MYB103, DYT1, TDF1,

AMS, bHLH10, bHLH89 and bHLH91, have been investigated as

direct controllers of pollen development (Sorensen et al., 2003; Zhang

et al., 2006; Zhang et al., 2007; Zhu et al., 2008; Zhu et al., 2015; Pan

et al., 2020). The molecular and functional information has been then

easily transferred from models to crops, as reported for Arabidopsis

and rice, in which two analogous pathways regulating pollen and

tapetum development have been identified in previous research

(Fu et al., 2014; Jeong et al., 2014; Zhu et al., 2015; Mishra et al.,

2018). In tomato, two homologous genes have been identified as

regulators of tapetum and pollen formation. The first, SlMS10

(Solyc02g079810_ms1035) gene, encoding a basic helix-loop-helix TF

(bHLH) and homologue to AtDYT1 and OsUDT1, carries both PCD

and meiosis alteration in the tapetum during microsporogenesis (Jeong

et al., 2014). Its editing has confirmed that SlMS10 is a possible good

target candidate for male sterility induction since its knockout

mediated by the CRISPR/Cas9 system conferred a male sterility

phenotype (Jung et al., 2020). Recently, Liu and colleagues

demonstrated that the creation of a mutation in ms1035 by CRISPR/

Cas9 technology in association with its linkage marker genes led to

marker use for creating mutants exhibiting complete male sterility and

recognition during the early developmental stage, confirming

promising application possibilities in the production of hybrid seeds
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(Liu et al., 2021a). The second, Solyc01g081100, homologous to the

AtbHLH10/89/90 and OsEAT1 genes, is a candidate gene for the male

sterile 32 (ms32) mutant, a locus affecting tapetum and pollen

development, and for this reason, it is suggested as a good target for

gene editing to quickly develop such lines of interest (Liu et al., 2019).

Furthermore, knockout by CRISPR/Cas9 of the SlAMS gene, encoding

another basic helix-loop-helix (bHLH) TF, caused downregulation

leading to abnormal pollen development, which in turn decreased

pollen viability and subsequently generated a male-sterile phenotype

(Bao et al., 2022). Recently, other tomato CRISPR/Cas9-edited lines

with male sterility phenotypes were obtained by knock-out of

SlPHD_ms1 (Solyc04g008420), encoding a PHD-type TF involved in

pollen formation and tapetum development, suggesting a key role for

SlPHD in male sterility and aiding research into the regulatory

processes of pollen and tapetum growth in tomato (Gökdemir et al.,

2022). With analogous purposes, CRISPR/Cas technology was also

applied in other horticultural crops, as demonstrated in cucurbit

species. For example, the knockout of eIF4E by CRISPR/Cas9 in

melon highlighted for the first time the association between eIF4E

editing and the development of male sterility (Pechar et al., 2022). In

watermelon (Citrullus lanatus L.), knockout of ClATM1 by CRISPR/

Cas9 causes male sterility, confirming its self-regulatory activity and

providing new insights into the molecular mechanism underlying

anther development (Zhang et al., 2021b).

In monocots, several CRISPR/Cas systems for producing MS

have been reported as successful applications in precision breeding.

An improved CRISPR/Cas9 system was driven by the TaU3 RNA

polymerase III U3 promoter, and three homologous alleles

expressing the wheat redox enzyme NO POLLEN 1 (NP1) were

altered to produce totally male-sterile wheat mutants (Li et al.,

2020). Furthermore, with recent molecular identification of theMs1

gene and exploiting strategies related to transgenerational gene

editing (see below section 5.2), it has been possible to extend the

use of the CRISPR/Cas9 system to generate Ms1 knockout wheat

lines that exhibit male sterility in the first generation, demonstrating

the utility of the CRISPR/Cas9 system for the rapid generation of

nuclear male sterility in hexaploid species like wheat (Okada et al.,

2019). Chen and colleagues created a CRISPR/Cas9 vector in maize

to target the male sterility gene 8 (Ms8). The resulting mutant was

male-sterile, which was compatible with Mendelian genetic rules

and was stably acquired by subsequent generations (Chen et al.,

2018b). Furthermore, editing ZmMTL (ZmPLA1) with the CRISPR/

Cas9 system has produced maternal haploid inducers with powerful

haploid identification markers useful for breeding doubled-haploid

crops, such as maize itself (Dong et al., 2018). Additionally,

ZmMS26, a known nuclear fertility gene (Loukides et al., 1995;

Djukanovic et al., 2013) that is conserved in other monocots, like

rice, wheat, and sorghum (Cigan et al., 2017), was subjected to

precision editing: targeted mutagenesis of MS26 utilizing the

modified I-CreI homing endonuclease or CRISPR/Cas9 resulted

in the generation of new ms26 male sterile lines (Djukanovic et al.,

2013; Svitashev et al., 2015; Qi et al., 2020). In rice, gene knockout

by CRISPR/Cas9 of the OsHXK5 gene resulted in male sterility,

contributing to demonstration that OsHXK5 contributes to a large

portion of the hexokinase activity necessary for the starch

utilization pathway during pollen germination and tube growth,
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as well as for starch biosynthesis during pollen maturation (Lee

et al., 2020).
4.2 Environmental genic male sterility

The success of CRISPR/Cas technology application has also

been provided in EGMS conditions, or rather the ability to switch

from fertile to sterile conditions and vice versa, by adjusting

environmental variables such as temperature and photoperiod.

Great progress has been recently achieved in the understanding of

PGMS or TGMS traits in cereal crops, and several genes controlling

P/TGMS traits have been investigated and transferred, mediating

conventional breeding and/or biotechnological transformation, in

specific lines on which more than 30% of cereal hybrid production

depends in China (Ding et al., 2012; Zhou et al., 2012; Zhang et al.,

2013; Huang et al., 2014; Zhou et al., 2014). Several studies

elucidated the molecular genetic mechanisms at the base of

EMGS, confirming also the interesting role assumed by

phasiRNAs (phased small-interfering RNAs) generated by long-

noncoding RNAs. In rice, for example, the phasiRNAs originated

from PMS1T locus regulates PSMS in rice (Fan et al., 2016).

Especially in rice, in the last few years, many genes influencing

PGMS or TGMS traits have been discovered and cloned, and several

reports describe different CRISPR/Cas-based approaches to obtain

photo- and thermosensitive male-sterile lines. For example, a

simple and efficient rice TGMS cultivation system using CRISPR/

Cas9 editing technology was proposed to knock out the TMS5

(thermosensitive genic male-sterile 5) gene target, with great value in

new commercial “transgene free” TGMS rice lines (Zhou et al.,

2016). TMS5 is a nuclear recessive gene that controls the TGMS

trait and extensively used in two-line hybrid rice breeding. It was

the first spontaneously mutated Oryza sativa ssp. indica, identified

more than 30 years ago, and encodes an RNase ZS1 endonuclease,

able to degrade the temperature-sensitive ubiquitin fusion

ribosomal protein L40 (UbL40) mRNA (Zhou et al., 2014). A

study found that when plants were grown under a high

temperature regime, several tms5 mutants developed in a

background of the japonica type showed a high degree (85.3%) of

pollen sterility (Zhou et al., 2016), confirming that targeted

modification of TMS5 by the CRISPR/Cas9 system is a successful

approach to develop TGMS lines for hybrid rice production. Huang

et al. targeted the TMS5 gene, producing a mutant that was entirely

male-sterile at high temperatures but male-fertile at low

temperatures, with a pollen fertility transition temperature fixed

at 28°C. (Huang et al., 2014). Recent studies revealed the molecular

mechanism of tms5 leading to male sterility in rice to easily obtain

excellent TGMS lines (Fang et al., 2022) and potentially applicable

in other crops. CRISPR/Cas9-engineered mutation of TMS5 also

resulted in the formation of thermosensitive male sterility in maize

(Li et al., 2017). In addition, Li et al. altered the carbon starvation

CSA gene in pollen grains of the rice variety ‘Kongyu 131’ and found

that the csamutant had a male-sterile phenotype in short-day and a

male-fertile phenotype in long-day conditions. (i.e., photosensitive

nuclear male sterile mutant) (Li et al., 2016), whereas in tomato,

Shen and colleagues generated photosensitive/thermosensitive
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male-sterile lines by using CRISPR/Cas9 modifying the genic male-

sterile 2-2 (PTGMS2-2) gene (Liu et al., 2019).
5 New potential applications
of CRISPR/Cas systems in MS
mutant production

5.1 Generating CRISPR-edited DNA-free by
transient transformation system

As described in the previous sections, site-specific genome editing

by CRISPR/Cas9 technology is becoming a progressively more

successful tool for functional, basic and applied plant research

because it can generate a high rate of mutation while being

relatively easy to use (Zhang et al., 2013; Lowder et al., 2015; Ma

et al., 2015; Wang et al., 2016). Numerous methods have been used to

create CRISPR-edited plants devoid of CRISPR constructs and other

transgenes because the lack of any transgenes in gene-edited plants is

a requirement for the commercialization of any CRISPR-edited

plants with stable valuable traits. For public approval, gene

elimination or bypassing alien elements to edit endogenous genes is

fundamental and could be a strategic approach, even if transgenic

intermediates are transiently necessary (Figure 2B). The main

different strategies useful to avoid the maintenance of transgene

integration have been deeply described by He and Zhao, 2020 (He

and Zhao, 2020). Commonly, after CRISPR-mediated mutagenesis,

the Cas9 gene and associated DNA sequences are eliminated through

genetic segregation, which frequently allays public concerns about

genetically modified individuals. The biggest advantage of the

method is that it could allow the selection of plants that no longer

contain the T-DNA sequence, producing plant materials not

containing any foreign DNA even though they were produced

using transgenic technology mediating stable transformation

methodologies. However, the fact that many commercial crop

varieties are polyploid, heterozygous, or asexually reproduced

complicates these efforts. Many commercial cultivars’ genome

complexity, long juvenile phase, and/or self-incompatibility limit

the development of CRISPR-mediated transgenic crops since

backcrossing is required to remove the CRISPR transgene.

In the past, plant transient transformation technology has been

widely used as an alternative approach to facilitate rapid and

efficient gene function analysis (Sheen, 2001; Chen et al., 2006).

Using transient transformation methods, such as particle

bombardment (Romano et al., 2003), transient transformation by

Agrobacterium sp. (Cui et al., 2017) and polyethylene glycol (PEG)-

mediated protoplast transfection (Cankar et al., 2022), excellent

results in plant research have been achieved. Among these, the

protoplast transient expression system has played a relevant role in

genomics and proteomics research, resulting in a potential, rapid,

and convenient technique for testing new technologies, such as GE

approaches. In general, transient expression methods for

protoplasts have been designed for many crop species, including

monocots, dicots, herbaceous and woody species, such as rice (Yang
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et al., 2014a), barley (Bai et al., 2014), corn (Cao et al., 2014), apple

(Maddumage et al., 2002), and grapevine (Zhao et al., 2016). These

findings demonstrate the possibility and feasibility of utilizing

protoplasts for CRISPR-mediated gene editing, particularly in

species with a protracted juvenile phase, heterozygosity, or

asexual propagation. Likewise, this strategy could represent the

most feasible way to directly apply CRISPR-mediated DNA-free

genome editing technologies for improving traits and increasing

commercial value, as already experimentally confirmed for food and

non-food crops, such as strawberry (Martin-Pizarro et al., 2019;

Wilson et al., 2019), potato (Gonzalez et al., 2019; Nicolia et al.,

2021; Zhao et al., 2021), lettuce (Woo et al., 2015), chicory (De

Bruyn et al., 2020; Cankar et al., 2022), Nicotiana tabacum (Lin

et al., 2018; Hsu et al., 2019) and Brassica oleracea (Lee et al., 2020;

Hsu et al., 2021), and ornamental species, as petunia (Yu et al.,

2021b). For these reasons, protoplast transient expression systems

represent a promising and valid approach for generating CRISPR-

edited DNA-free plant material and MS mutant production

(Figure 2B). Numerous studies describe the different gene

modification methods using transient expression of the Cas

protein and associated sgRNA, mediating the main delivery

methods into somatic plant cells, which may be done either as

DNA vectors, through Agrobacterium infiltration (Chen et al.,

2018a), or as ribonucleoprotein (RNP), using biolistic delivery

(Liang et al., 2018), nanotubes (Demirer et al., 2019), virus

transfection (Ellison et al., 2020), PEG-calcium (PEG–Ca2+)

(Toda et al., 2019). Because there is no foreign DNA present

during transfection, direct transfection of the RNP complex

eliminates the risk of plasmid DNA insertions into the plant

genome (Andersson et al., 2018). Genome editing is realizable

utilizing protoplasts without the insertion of foreign CRISPR

DNA and without the necessity for hybridization, introgression,

or back-crossing of progeny in the T0 generation. Furthermore,

protoplasts are single cells that are edited before the first cell

division: new plants grow from a single modified protoplast,

ensuring that all cells share the same genetic background and that

edited alleles are passed down to the next generation However,

RNP-mediated genome editing has been employed successfully in

many plant species, targeting genes with agronomic interest,

involved disease resistance (Malnoy et al., 2016), in grain yield

(Toda et al., 2019), nutritional composition (Andersson et al., 2018),

and male fertility (Svitashev et al., 2016). MS induction, using an

analogous approach, has been successfully achieved only in maize.

Svitashev and colleagues demonstrated the success of their research,

in which two male fertility nuclear genes (MS26 and MS45)

were targeted by purified Cas9 protein preassembled with in

vitro transcribed gRNAs, demonstrating DNA-free genome

editing in a major crop species using biolistically delivered Cas9–

gRNA RNPs on immature embryos and subsequent plant

regeneration (Svitashev et al., 2016). These positive results suggest

the potential of applying similar methodologies in other large crops

to increase the number of examples of male sterile lines CRISPR-

edited DNA-free by transient transformation system by

RNP complex.
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5.2 Transgenerational gene editing

Because CRISPR/Cas9 expression cassettes and target sites are

distributed throughout the genome, segregation and deletion of

CRISPR/Cas9 cassettes is conceivable through subsequent selfing or

crossing (Figure 2B). However, in crops with a high level of genome

complexity, highly heterozygous, polyploid genomes, and usually

propagated vegetatively, this is not easily achieved. Specifically,

efficient propagation and stacking of first-generation mutations

becomes increasingly difficult or nearly impossible with polyploidy.

Numerous new strategies have been developed to extend the

CRISPR toolbox, and many of these new schemes could also take

advantage from transgenerational gene editing (TGE)-based

strategies, defined as the continued ability of Cas9 to edit also

after cross: this means that if the Cas9 nuclease is still active, after

cross it will encounter a new WT allele, which can be edited to

create independent alleles. TGE has been utilized for a variety of

applications, some of which are not always defined as TGE, such as

the editing new alleles in polyploid crops, the creating allelic

variation, and the editing target genes in refractory genetic

backgrounds (Impens et al., 2022). Mutations are frequently

found only in a fraction of the homoeoalleles targeted by the

same sgRNA in polyploid crops such as hexaploid common

wheat (Triticum aestivum) and tetraploid cotton (Gossypium

hirsutum) (Wang et al., 2018a; Wang et al., 2018b; Wang et al.,

2018c). While expressing CRISPR/Cas9 for more than one

generation during TGE promotes on-target homoeoallele editing,

it does not always boost off-targeting.

On the basis of TGE, with the purpose of accelerating the

understanding of MS and ensuring speedy improvement, a new

approach (Ramadan et al., 2021) was tested for example in cotton

system, in which the use of pooled sgRNAs targeting single or

duplicated genes belonging to different families provided a large

number of intentional mutants that would help us know male

sterility in cotton itself. Furthermore, this strategy ensured a rapid

characterization of the key genes which may influence fertility in

cotton, with important consequences for cotton future genetic

improvement (Ramadan et al., 2021). Furthermore, as previously

mentioned, a TGE-based methodology was implemented to

facilitate the ongoing modification of homoeoalleles in species like

hexaploid wheat, which is not easily amenable to conventional

mutagenesis techniques. In this approach, a transgenic line may

exhibit modifications in only a subset of homoeoalleles. However,

through self-crossing and careful selection of plants inheriting the

T-DNA, it becomes possible to modify all homoeoalleles. Singh and

colleagues proposed an effective utilization of the CRISPR/Cas

system and next-generation sequencing for mutant analysis in

wheat. They successfully established the role of TaMs26 in wheat

pollen generation by combining mutations in TaMs26 from the A-,

B-, and D-genomes through crossing, resulting in the development

of male sterile plants (Singh et al., 2017). Orthologous Ms26

mutations in rice and sorghum plants, as in maize, confer a

recessive male sterile phenotype, and restoration of fertility in

these mutant sorghum plants was achieved by a copy of maize

Ms26 (Cigan et al., 2017). Afterwards, with recent molecular
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identification of the male fertility Ms1 gene, it has been possible

to extend the use of the CRISPR/Cas9 system to generate Ms1

knockout wheat lines with male sterility in the first generation,

demonstrating the potential of the CRISPR/Cas9 system for the fast

generation of GMS in hexaploid wheat (Singh et al., 2018; Okada

et al., 2019).

This evidence on transgenerational gene editing activity

demonstrates that TGE can contribute to novel variation in the

offspring of CRISPR/Cas9-expressing plants, and that Cas9-

inducible trait can be transferred by crossing the plants

expressing the gene editing constructs with the lines of interest.
6 Potential application of the CRISPR/
Cas system in MS ornamental species:
open perspectives

The interest in obtaining MS lines by molecular precision breeding

mediated by the CRISPR/Cas system has been generally described as a

fundamental step for the production of F1 hybrids in horticultural

crops. In contrast, in ornamental plant research, this aspect has not

been deeply investigated to date, despite an increasing number of

studies on potential CRISPR/Cas system applications in precision

breeding in ornamental plants being continually tested for improving

several traits. In fact, in ornamental species, where traits such as high

heterozygosity, large genomes, high chromosome numbers, polyploidy,

long life cycles, self-sterility, or the inability to produce seeds frequently

limit the applicability of conventional breeding methods, genome

editing approaches are particularly desirable (Azadi et al., 2016;

Sharma and Messar, 2017). Furthermore, obtaining nontransgenic

first-generation altered plants and permitting the development of

foreign DNA-free editing approaches would be extremely beneficial

in such instances. However, the potential of using such methodologies

in ornamental species breeding is dependent on information on the

availability of efficient transformation and regeneration protocols, as

well as the structure of plant genomes and function of genes. In recent

decades genome sequencing technology played a significant role,

allowing site-specific mutagenesis approaches on several key genes

controlling traits of high interest and suggesting that CRISPR/Cas9-

induced mutagenesis is effective also in ornamental sector (Zhang et al.,

2016a; Kishi-Kaboshi et al., 2017; Yan et al., 2019; Yu et al., 2021b). In

fact, it has been successfully employed to create gene knockouts and

induce genetic alterations in ornamental Petunia inflate and Petunia

hybrid (Subburaj et al., 2016; Zhang et al., 2016a; Sun and Kao, 2018;

Yu et al., 2021b; Xu et al., 2022), Chrysanthemum morifolium (Kishi-

Kaboshi et al., 2017), Dendrobium officinale (Kui et al., 2017), Ipomoea

nil (Watanabe et al., 2017), Lilium longiflorum and Lilium pumilum

(Yan et al., 2019), and Phalaenopsis equestris (Tong et al., 2020). In

particular, in polyploid species, such as chrysanthemum, the possibility

of mutating multiple copies of a target gene has been indirectly shown,

as demonstrated in other polyploid crops, e.g., hexaploid wheat (Wang

et al., 2014; Mekapogu et al., 2022).

Regarding MS induction, the production of male-sterile

ornamental plants is of great interest for many purposes, such as
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facilitating hybrid seed production, eliminating pollen allergens (i.e.,

gene escape), reduce the need for deadheading to extend the flowering

period, redirect resources from seeds to vegetative growth and increase

flower longevity and self-life (Garcia-Sogo et al., 2010). In past decades,

the production of engineered male sterile plants by canonical

transgenesis approaches was documented in ornamental Kalanchoe

blossfeldiana through the directed expression of the ribonuclease

Barnase gene under control of the PsEND1 promoter, which

determines tissue-specific expression of the Barnase gene in anther

tissues (epidermis, endothecium, middle layer, connective). The

Barnase gene affected normal anther development, inducing the

ablation of specific tissues at early stages of anther development with

a consequent lack of pollen at anthesis in transgenic flowers (Garcia-

Sogo et al., 2010). The use of this technology was especially useful to

produce environmentally friendly transgenic ornamentals carrying new

traits, as this modification would prevent gene flow between the

genetically modified plants and related species (Roque et al., 2007;

Gardner et al., 2009). A similar approach was used to efficiently create

male sterile versions of existing Pelargonium spp. cultivars, which

represent one of the most popular garden plants around the world,

have considerable economic importance in the market of ornamental

plants. Using a cotransformation protocol, two new traits were

introduced in P. zonale, one to produce long-life plants by inducing

the IPT gene during plant senescence and the other to produce male

sterile plants without pollen (Garcia-Sogo et al., 2012). With similar

molecular strategies and related purposes, male sterility was induced in

Chrysanthemums spp. In this specific case, since many wild

chrysanthemum relatives in the Compositae family are cross-

compatible with chrysanthemum cultivars, to reduce the possibility

of transgene flow into wild relatives, a male sterility trait using the

mutated ethylene receptor gene Cm-ETR1/H69A was introduced into

chrysanthemum cultivars (Shinoyama et al., 2012). Recently, thanks to

the release of whole genome sequence information (Hirakawa et al.,

2019), Shinoyama et al. (Shinoyama et al., 2020) reported an important

example of MS induction in Chrysanthemums spp. by a genome

editing approach targeting the CmDMC1 gene through the use of

TALENS technology to knock out all six identified CmDMC1 genes.

Two chrysanthemum cultivars with the TALEN expression vector

resulted in the development of lines with disruption of all CmDMC1

loci, successfully inducing male and female sterility (Shinoyama et al.,

2020). The interest in creating MS lines in ornamental species, together

with the positive results obtained in some of them, supports the idea of

implementing CRISPR/Cas-based technologies as a potential tool for

genetic improvement in floricultural research.
7 Concluding remarks and
future perspective

Conventional breeding approaches still depend on breeders

choosing materials based on phenotypic analyses. Breeders and

scientists choose purposefully different parents to produce crop

varieties that combine the desired characteristics of both parents.

However, the usefulness of traditional breeding methods may be

restricted to complex traits. To complement traditional breeding
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techniques, molecular breeders have developed and applied GE

technologies, which should supplement rather than replace

traditional breeding methods. Generally, two major criteria

should be considered while assessing the applicability and future

development of GE technology. Firstly, the development of cost-

effective, low-risk, and efficient transformation systems that align

with agricultural requirements is crucial in expanding the

utilization of this molecular techniques. Secondly, the regulatory

practices implemented by governments play a pivotal role.

Currently, there is a global debate around whether CRISPR-edited

lines should undergo similar regulations as conventional genetically

modified (GM) plants, or if they should be allowed to enter the

market without regulation once the CRISPR-cassette mediating

segregating cycles have been removed (Chen and Gao, 2014;

Voytas and Gao, 2014; Gao, 2015).

This review aims to emphasize that these approaches could make

available potential and alternative methods for many breeding

purposes. Several examples report that CRISPR/Cas technology has

thus far been proven to be successful in genome editing of numerous

food and non-food crops, as well as ornamental plants, whose genomes

have been efficiently modified to induce genetic variability, resulting in

a strong tool in plant genetics and precision breeding. The use of these

modification tools, in comparison to their adaptability and final use,

has provided a remarkable breakthrough in biological applications

thanks to a growing number of accessible genome sequencing data

related to the reduction in sequencing costs. In this intricate scenario,

this review provides an overview of recent successes for MS induction

based on GE applications, accelerating and lowering the cost of male

sterility induction by targeting known candidate functional loci. The

following development of male sterility, especially in food crops, has

been greatly investigated for seed hybrid production. Conditional MS

mutants, for example, created through genome editing, are particularly

useful in major crops such as rice andmaize, opening the possibility for

applying the idea to many other crops Interestingly an increasing

number of new additional applications of GE technology for MS

producing have been reported, especially in promising ornamental

species, in which the final goal of obtaining a MS ornamental species

arises from the need to have allergenic free plantmaterial. Furthermore,

because only a few nucleotides are changed to modify the genome, the

new improved methods based on simultaneous editing of gene

sequences could be an important starting point for the development

of new elite varieties by utilizing efficient and specific modifications at

genomic loci, offering advantages over GM crops. Many of these new

tools also benefit from TGE-based methods for editing additional

alleles in polyploid species. Additionally, according to the studies

mentioned above, the transient expression of the CRISPR/Cas

cassette, and in particular the direct transfection of the RNP

complex, exhibits a number of benefits compared to DNA plasmid

delivery, followed by stable integration. With a transient approach, we

have a DNA-free transfer, eliminating the possibility of unintended

recombinant DNA insertion into the plant genome, a bypass of the

cell’s transcriptional and translational machinery, with an immediate

activity of the RNP complex per single cell, and finally a quick

breakdown of complexes after delivery, which lowers the incidence

of mosaicism effects. For these reasons, they are regarded as the most

innovative and the new frontier of precision plant breeding programs,
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and this is the strategic direction that breeding could take in the future,

supporting the idea that these approaches could be the new strategic

assisted evolution technology towards reproductive systems, with

potential to form new varieties.
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