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Abstract. Center-based clustering is a pivotal primitive for unsuper-
vised learning and data analysis. A popular variant is the k-means prob-
lem, which, given a set P of points from a metric space and a parameter
k < |P|, requires finding a subset S C P of k points, dubbed centers,
which minimizes the sum of all squared distances of points in P from
their closest center. A more general formulation, introduced to deal with
noisy datasets, features a further parameter z and allows up to z points of
P (outliers) to be disregarded when computing the aforementioned sum.
We present a distributed coreset-based 3-round approximation algorithm
for k-means with z outliers for general metric spaces, using MapReduce
as a computational model. Our distributed algorithm requires sublinear
local memory per reducer, and yields a solution whose approximation
ratio is an additive term O(v) away from the one achievable by the
best known polynomial-time sequential (possibly bicriteria) approxima-
tion algorithm, where vy can be made arbitrarily small. An important
feature of our algorithm is that it obliviously adapts to the intrinsic
complexity of the dataset, captured by its doubling dimension D. To the
best, of our knowledge, no previous distributed approaches were able to
attain similar quality-performance tradeoffs for general metrics.
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1 Introduction

Clustering is a fundamental primitive for data analysis and unsupervised learn-
ing, with applications to such diverse domains as pattern recognition, informa-
tion retrieval, bioinformatics, social networks, and many more [19]. Among the
many approaches to clustering, a prominent role is played by center-based clus-
tering, which aims at partitioning a set of data items into k£ groups, where k is an
input parameter, according to a notion of similarity modeled through a metric
distance over the data. Different variants of center-based clustering aim at min-
imizing different objective functions. The k-means problem is possibly the most
popular variant of center-based clustering. Given a set P of points in a general
metric space and a positive integer k < |P|, the discrete version of the problem
requires to determine a subset S C P of k points, called centers, so that the sum
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of all squared distances of the points of P from their closest center is minimized.
(In Euclidean spaces, centers may be chosen also outside the set P, giving rise
to a wider spectrum of feasible solutions.)

Since the objective function of k-means involves squares of distances, the
optimal solution is at risk of being impacted by few “distant” points, called
outliers, which may severely bias the optimal center selection towards reducing
such distances. In fact, the presence of outliers is inevitable in large datasets,
due to the presence of points which are artifacts of data collection, either repre-
senting noisy measurements or simply erroneous information. To cope with this
limitation, k-means admits a heavily studied robust formulation that takes into
account outliers [8]: when computing the objective function for a set of k centers,
the z largest squared distances from the centers are not included in the sum,
where z < |P| is an additional input parameter representing a tolerable level of
noise. This formulation of the problem is known as k-means with z outliers.

There is an ample and well-established literature on sequential strategies
for different instantiations of center-based clustering, with and without outliers.
However, with the advent of big data, the high volumes that need to be pro-
cessed often rule out the use of unscalable, sequential strategies. Therefore, it is
of paramount importance to devise efficient clustering strategies tailored to typ-
ical distributed computational frameworks for big data processing (e.g., MapRe-
duce [12]). The primary objective of this paper is to devise scalable, distributed
strategies for discrete k-means with z outliers for general metric spaces.

1.1 Related Work

The body of literature on solving k-means without outliers sequentially is huge.
For brevity, we report only the results relative to the discrete case on general
metrics, which is our target scenario. The best sequential algorithms to date for
this scenario are the deterministic (6.357 + €)-approximation algorithm of [1],
or the randomized PTAS of [10] for spaces of constant doubling dimension. A
simpler and faster randomized option is the k-means++ algorithm of [2], whose
approximation ratio, which is O(log k) in expectation, can be lowered to a con-
stant by running the algorithm for pk centers, with p = O(1) [27]. For the
distributed case, a 3-round MapReduce algorithm for k-means is presented in
[23]. For arbitrarily small v > 0, the algorithm attains an approximation ratio
which is a mere O () term away from the best sequential approximation attain-
able for the weighted variant of the problem, where the weight w,, of each point
p € P multiplies the square-distance contribution of p to the objective function.

A considerable number of sequential algorithms have also been proposed
for k-means with z outliers. Here, we report only on the works most relevant
to our framework, and refer to [13] for a more detailed overview of the liter-
ature. In [16], a randomized local search strategy is described, which runs in
time O (|P|z + (1/e)k*(k + 2)*log(|P|4)), yielding a 274-approximate bicrite-
ria solution with k centers and O((1/e)kzlog(|P|A)) outliers, where A is the
ratio between the maximum and minimum pairwise distances. For spaces of
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doubling dimension D, [14] devises a different (deterministic) local search strat-
egy yielding a bicriteria solution with (1 + )k centers and z outliers, achieving
an approximation 1+ O (g), in time O ((k‘/&)|P|(D/5)9(D/E) log(|P|A)). Finally,
the LP-based approach of [21] yields the first non-bicriteria solution featuring
an expected 53.002 - (1 + ¢)-approximation in time \P\O(l/ES).

The literature on distributed approaches to k-means with outliers is more
scant. The simple, sequential coreset-based strategy of [26] can be easily made
into a 2-round MapReduce algorithm yielding a solution featuring a nonconstant
O (log(k + z)) approximation and local memory +/|P|(k + z). In [15], an LP-
based algorithm is developed for the coordinator model, yielding a O (1 + 1/¢)-
approximate bicriteria solution, with an excess factor (1+¢) either in the number
of outliers or in the number of centers, using O(Lk + z) communication words,
where L is the number of available workers. In the coordinator model, better
bounds have been obtained for the special case of Euclidean spaces in [9,22].

1.2 Owur Contribution

We present a scalable coreset-based distributed MapReduce algorithm for k-
means with z outliers, targeting the solution of very large instances from general
metrics. The algorithm first computes, distributedly, a coreset of suitably selected
input points which act as representatives of the whole input, where each coreset
point is weighted in accordance to the number of input points it represents.
Then, the final solution is computed by running on the coreset an a-approximate
sequential algorithm for the weighted variant of the problem, defined similarly
to the case without outliers. Our approach is flexible, in the sense that the final
solution can also be extracted through a sequential bicriteria algorithm returning
a larger number pk of centers and/or excluding a larger number 7z of outliers.
Our distributed algorithm features an approximation ratio of a + O (7y), where
v is a user-provided accuracy parameter which can be made arbitrarily small.
The algorithm requires 3 rounds and a local memory at each worker of size

0 (\/ |P|(pk + 72)(c/7)?" log? |P|>, where c is a constant and D is the doubling

dimension of the input. For reasonable configurations of the parameters and,
in particular, low doubling dimension, the local space is substantially smaller
than the input size. It is important to remark that the algorithm is oblivious to
D, in the sense that while the actual value of this parameter (which is hard to
compute) influences the analysis, it is not needed for the algorithm to run. As a
proof of concept, we describe how the sequential bicriteria algorithms by [16] and
[14] can be extended to handle weighted instances, so that, when used within our
MapReduce algorithm, allow us to get comparable distributed approximations.

We remark that the main contributions of our algorithm are: (i) its simplicity,
since our coreset construction does not require multiple invocations of complex,
time-consuming sequential algorithms for k-means with outliers (as is the case
in [15]); and (ii) its versatility, since it is able to exploit any sequential algorithm
for the weighted case (bicriteria or not) which can be run on a small coreset,
with a minimal extra loss in accuracy. In fact, to the best of our knowledge, ours
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Table 1. Notations used throughout the paper: P is a set of n points, S is a subset of
P, and 0 < z < |P| is an integer parameter.

cost(P, S) = Y epdp, S)?

OPTw(P) = mingcp,s|=k cost(P, S)

out; (P, S) = z points of P farthest from S

OPTy,.(P) = mingcp,sj= cost(P\out, (P, S),S)

cost(P,w,S) = > pwpd(p, S)?

OPTy(P,w) = mingcp, g/=k cost(P,w,S)

OPTy,.(P,w) = mingcp,s|=x cost(P, W, S), where W is obtained from w

by subtracting z units from points of P farthest from S

is the first distributed algorithm that can achieve an approximation arbitrarily
close to the best one achievable by a (possibly bicriteria) polynomial sequential
algorithm. Finally, we observe that our MapReduce algorithm can solve instances
of the problem without outliers with similar approximation guarantees, and its
memory requirements improve substantially upon those of [23].

Organization of the Paper. Section 2 contains the main definitions and some
preliminary concepts. Section 3 describes a simplified coreset construction (Sub-
sect. 3.1), the full algorithm (Subsect. 3.2), and a sketch of a more space-efficient
coreset construction, which yields our main result (Subsect. 3.3). Finally, Sect. 4
discusses the extension of the algorithms in [16] and [14] to handle weighted
instances. Section 5 provides some final remarks.

2 Preliminaries

Let P be a set of points from a metric space with distance function d(-,-). For
any point p € P and subset S C P, define the distance between p and S as
d(p, S) = minges d(p, q). Also, we let p° denote a point of S closest to p, that
is, a point such that d(p, p®) = d(p, S), with ties broken arbitrarily. The discrete
k-means problem requires that, given P and an integer k < |P|, aset S C P of k
centers be determined, minimizing the cost function cost(P, S) =3 p d(p, S )2.
We focus on a robust version of discrete k-means, known in the literature as k-
means with z outliers, where, given an additional integer parameter z < |P|, we
seek a set S C P of k centers minimizing the cost function cost(P\out, (P, S), S),
where out, (P, S) denotes the set of z points of P farthest from S, with ties broken
arbitrarily. We let OPTy(P) (resp., OPTy .(P)) denote the cost of the optimal
solution of k-means (resp., k-means with z outliers) on P. The following two facts
state technical properties that will be needed in the analysis. (Proofs, omitted
for brevity, can be found in the full version of this extended abstract [11].)

Fact 1. For every k,z > 0 we have OPTy1,(P) < OPTy ,(P).



478 E. Dandolo et al.

Fact 2. For any p,q,t € P, S C P, and ¢ > 0, we have:

d(p, ) < d(p,q) +d(g, 5)
d(p,t)* < (1 +c)d(p, q)* + (1 +1/c)d(q,t)*.

In the weighted variant of k-means, each point p € P carries a positive inte-
ger weight w,,. Letting w : P — Z% denote the weight function, the problem
requires to determine a set S C P of k centers minimizing the cost function
cost(P,w,S) = > cpwp - d(p, S)2. Likewise, the weighted variant of k-means
with z outliers requires to determine S C P which minimizes the cost function
cost(P, W, S), where W is obtained from w by decrementing the weights asso-
ciated with the points of P farthest from .S, progressively until exactly z units
of weights overall are subtracted (again, with ties broken arbitrarily). We let
OPTy(P,w) and OPTy (P, w) denote the cost of the optimal solutions of the
two weighted variants above, respectively. Table 1 summarizes the main nota-
tions used in the paper.

<
<

Doubling Dimension. The algorithms presented in this paper are designed
for general metric spaces, and their performance is analyzed in terms of the
dimensionality of the dataset P, as captured by the well-established notion of
doubling dimension [18], extensively used in the analysis of clustering [6,10] and
other primitives [5,7], and defined as follows. For any p € P and r > 0, let the
ball of radius v centered at p be the set of points of P at distance at most r
from p. The doubling dimension of P is the smallest value D such that for every
p € P and r > 0, the ball of radius r centered at p is contained in the union of
at most 2° balls of radius r/2, centered at suitable points of P. The doubling
dimension can be regarded as a generalization of the Euclidean dimensionality
to general spaces. In fact, it is easy to see that any P C RY™ under Euclidean
distance has doubling dimension O (dim).

Model of Computation. We present and analyze our algorithms using the
MapReduce model of computation [12,24], which is one of the reference models
for the distributed processing of large datasets, and has been effectively used
for clustering problems (e.g., see [3,6,25]). A MapReduce algorithm specifies a
sequence of rounds, where in each round, a multiset X of key-value pairs is first
transformed into a new multiset X’ of pairs by applying a given map function
in parallel to each individual pair, and then into a final multiset Y of pairs by
applying a given reduce function (referred to as reducer) in parallel to each subset
of pairs of X’ having the same key. Key performance indicators are the number
of rounds and the maximum local memory required by individual executions of
the map and reduce functions. Efficient algorithms typically target few (possibly,
constant) rounds and substantially sublinear local memory. We expect that our

algorithms can be easily ported to the popular Massively Parallel Computation
(MPC) model [4].
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3 MapReduce Algorithm for k-Means with z Outliers

In this section, we present a MapReduce algorithm for k-means with z outliers
running in O (1) rounds with sublinear local memory. As typical of many efficient
algorithms for clustering and related problems, our algorithm uses the following
coreset-based approach. First, a suitably small weighted coreset T is extracted
from the input P, such that each point p € P has a “close” proxy w(p) € T,
and the weight w, of each ¢ € T is the number of points of P for which ¢ is
proxy. Then, the final solution is obtained by running on 7' the best (possibly
slow) sequential approximation algorithm for weighted k-means with z outliers.
Essential to the success of this strategy is that 1" can be computed efficiently
in a distributed fashion, its size is much smaller than |P|, and it represents P
well, in the sense that: (i) the cost of any solution with respect to P can be
approximated well in T'; and (ii) 7" contains a good solution to P.

In Subsect. 3.1 we describe a coreset construction, building upon the one
presented in [17,23] for the case without outliers, but with crucial modifications
and a new analysis needed to handle the more general cost function, and to allow
the use of bicriteria approximation algorithms on the coreset. In Subsect. 3.2
we present and analyze the final algorithm, while in Subsect. 3.3 we outline
how a refined coreset construction can yield substantially lower local memory
requirements.

3.1 Flexible Coreset Construction

We first formally define two properties that capture the quality of the coreset
computed by our algorithm. Let T be a subset of P weighted according to a
proxy function m : P — T, where the weight of each ¢ € T is wy, = [{p € P :

m(p) = q}l.

Definition 1. For v € (0,1), (T, w) is a -y-approximate coreset for P with
respect to k and z if for every S,Z C P, with |S| < k and |Z| < z, we have:

|cost(P\Z, S) — cost(T, W, S)| <~ -cost(P\Z,S5),
where W is such that for each g € T, Wy =wy, —|{p € Z : w(p) = q}|.

Definition 2. For vy € (0,1), (T, w) is a vy-centroid set for P with respect to k
and z if there exists a set X C T of at most k points such that

cost(P\out, (P, X),X) < (1++)-OPTy .(P).

In other words, a y-approximate coreset can faithfully estimate (within relative
error ) the cost of any solution with respect to the entire input dataset P,
while a 7-centroid set is guaranteed to contain one good solution for P. The
following technical lemma states a sufficient condition for a weighted set to be
an approximate coreset.
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Lemma 1. Let (T, w) be such that 3 pd(p ,m(p))? < 6-OPTy ,(P). Then,
(T, w) is a y-approzimate coreset for P with respect to k and z, with v = 5+2V0.

Proof. Consider two arbitrary subsets S, Z C P with |S| = k and |Z| = z, and
let w be obtained from w by subtracting the contributions of the elements in Z
from the weights of their proxies. We have:

[cost(P\Z, S) — cost(T, W, 8)| = | > dp,5)* =D yd(q, S

peEP\Z q€eT
< Y |dp,$)* —d(n(p), 5)?|
pEP\Z
< > (dp,7(p) + 2d(p, S))d(p, 7 (p))
pEP\Z

(since, by Fact 2, —d(p, () < d(p, s> —d(x(p), S) < d(p,(p))

= > dpw@)+2 Y d P, 7(p))-

pEP\Z pEP\Z

By the hypothesis, we have that Y pd(p,7(p))*> < § - OPTy .(P), and since
OPTy . (P) < cost(P\Z, S), the first sum is upper bounded by § - cost(P\Z, S).
Let us now concentrate on the second summation. It is easy to see that for any
a,b,c > 0, we have that 2ab < ca® + (1/¢)b?. Therefore,

2 3 dp,S) - dp, () SV Y dlp, S+ (1Y) Y dlp,w(p)?

pEP\Z pEP\Z pEP\Z
< 2V§ - cost(P\Z, S).

The lemma follows since v = § 4+ 2v/9. a

The first ingredient of our coreset construction is a primitive, called
CoverWithBalls, which, given any set X C P, a precision parameter J, and
a distance threshold R, builds a weighted set Y C P whose size is not much
larger than X, such that for each p € P, d(p,Y) < dmax{R,d(q, X)}. Specif-
ically, the primitive identifies, for each p € P, a prozy w(p) € Y such that
d(p,7(p)) < dmax{R,d(p,X)}. For every ¢ € Y, the returned weight w,
is set equal to the number of points of P for which ¢ is proxy. Primitive
CoverWithBalls has been originally introduced in [23] and is based on a sim-
ple greedy procedure. For completeness, we report the pseudocode below, as
Algorithm 1. We wish to remark that the proxy function 7 is not explicitly
represented and is reflected only in the vector w. In our coreset construction,
CoverWithBalls will be invoked multiple times to compute coresets of increas-
ingly higher quality.

The second ingredient of our distributed coreset construction is some sequen-
tial algorithm, referred to as SeqkMeans in the following, which, given in input a



Distributed k-Means with Outliers in General Metrics 481

Algorithm 1: CoverWithBalls(P, X, ¢, R)

1Y« 0

2 while P # () do

3 q «—— arbitrarily selected point in P;

4 Y — YU{q}wg — 1;

5 foreach p € P do

6 if d(p,q) < dmax{R,d(p,X)} then
7

8

9

remove p from P;
wg «— wg + 1; {implicitly, ¢ becomes the proxy w(p) of p}
end
10 end
11 end
12 return (Y, w)

dataset Q and an integer k, computes a S-approximate solution to the standard
k-means problem without outliers with respect to @) and k.

We are ready to present a 2-round MapReduce algorithm, dubbed MRcoreset,
that, on input a dataset P, the values k and z, and a precision parameter -,
combines the two ingredients presented above to produce a weighted coreset
which is both an O()-approximate coreset and an O(7y)-centroid set with respect
to k and z. The computation performed by MRcoreset(P, k, z,~) in each round
is described below.

First Round. The dataset P is evenly partitioned into L equally sized sub-
sets, Py, P>, ..., Pr, through a suitable map function. Then, a reducer function
comprising the following steps is run, in parallel, on each P;, with 1 <i < L:

1. SeqkMeans is invoked with input (P;, k'), where £’ is a suitable function of k
and z that will be fixed later in the analysis, returning a solution S; C P;.
2. Let
R; = +/cost(F;,S;)/|P;|. The primitive CoverWithBalls(F;,S;,v/v20, R;)

is invoked, returning a weighted set of points (C;, w®?).

Second Round. The same partition of P into Py, Ps,..., Pr, is used. A suit-
able map function is applied so that each reducer receives, as input, a dis-
tinct P; and the triplets (|P;], R;, C;) for all 1 < j < L from Round 1
(the weights w® are ignored). Then, for 1 < ¢ < L, in parallel, the reducer
in charge of P; sets R = \/Zjil |P;|- RZ/|P|, C = UL, Cj, and invokes
CoverWithBalls(P;, C,v/v/23,R). The invocation returns the weighted set
(T, W),
The final coreset returned by the algorithm is (T, w’), where T = U~ | T; and
w7 is the weight function such that w™ is the projection of w” on P;, for
1<i<L.

We now analyze the main properties of the weighted coreset returned
by MRcoreset, which will be exploited in the next subsection to derive the
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performance-accuracy tradeoffs featured by our distributed solution to k-means
with z outliers. Recall that we assumed that SegkMeans is instantiated with
an approximation algorithm that, when invoked on input (F;, k'), returns a set
S; C P; of k' centers such that cost(P;,S;) < 3-OPTy (P;), for some 3 > 1. Let
D denote the doubling dimension of P. The following lemma is a consequence
of the analysis in [23] for the case without outliers, and its proof is a simple
composition of the proofs of Lemmas 3.6, 3.11, and 3.12 in that paper.

Lemma 2. Let (C,w®) and (T,w?”) be the weighted coresets computed by
MRcoreset(P, k,z,7), and let 7€, 7T be the corresponding proxy functions. We
have:

> dp, 7 (p))? < 49* - OPTw(P), (withX =C,T)

peP

and
Cl =0 (IL]-K - (8v/25/7)" - 1og P ).
(T = 0 (I ¥ - (8v/28/)*" - 1og” |P))

As noted in the introduction, while the doubling dimension D appears in the
above bounds, the algorithm does not require the knowledge of this value, which
would be hard to compute. The next theorem establishes the main result of this
section regarding the quality of the coreset (T, wT) with respect to the k-means
problem with z outliers.

Theorem 1. Let v be such that 0 < v < +/3/8 —1/2. By setting k' = k+ z in
the first round, MRcoreset(P, k, z,7) returns a weighted coreset (T, wT) which
is a (4 + 4v?)-approzimate coreset and a 27~-centroid set for P with respect to
k and z.

Proof. Define o = 4y + 442 and, by the hypothesis on 7, note that o < 1/2.
The fact that (T, w?') is a o-approximate coreset for P with respect to k and
z, follows directly from Fact 1, Lemma 1 (setting § = 44?), and Lemma 2. We
are left to show that (T, w7) is a 27y-centroid set for P with respect to k and
z. Let S* C P be the optimal set of k centers and let Z* = out, (P, S*). Hence,
cost(P\Z*,5*) = OPTy .(P). Define X = {pT : p € S*} C T. We show that
X is a good solution for the k-means problem with z outliers for P. Clearly,
cost(P\out, (P, X),X) < cost(P\Z*, X), hence it is sufficient to upper bound
the latter term. To this purpose, consider the weighted set (C,w®) computed
at the end of Round 1, and let 7€ be the proxy function defining the weights
w®. Arguing as before, we can conclude that (C,w?) is also a g-approximate
coreset for P with respect to k and z. Therefore, since o < 1/2,

1

t(P\Z*, X) <
cost(P\Z*, X) < —

cost(C, WY, X) < (1 + 20)cost(C, wY, X),
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where W is obtained from w® by subtracting the contributions of the elements

in Z* from the weights of their proxies. Then, we have:

cost(C, w¢ , X) chd q, X
qeC

< (L4 > wfdlg, ¢ )+ (1+(1/7) Y 6fd(¢®, X)?
qeC qeC
(by Fact 2)
< (1+7)(1+0)OPTk(P) + (14 (1/7) Y wfd(q®
qeC

(since (O, wT)is ao-approximate coreset).

We now concentrate on the term »_ - uﬁgd(qs*,X )2. First observe that,

since X C T contains the point in 7" closest to ¢°~, we have d(¢°", X) = d(¢°",T)
and CoverWithBalls guarantees that d(¢° ,T) < (v/v/28) max{R,d(¢°",C)},
where R is the parameter used in CoverWithBalls. Also, for ¢ € C, d(¢°",C) <
d(¢®",q). Now,

S afd(g® < (7*/(28)) Y 0§ (R? +d(q, 57)?)

qeC qeC

L
< (/@) | (IPI==2)/IP)) Y|P - B + ) vy d(q, 57)

=1 qgeC

< (v*/(28)) Zcost P,S;) + chd (q,59%)?

i=1 qeC

< (v*/(28)) <5ZOPTk+Z :) + cost(C, w¢ s*))

i=1

(v?/2) <Z OPTgy.(P;) + cost(C, WC,S*)> (since 8 > 1).

1=1

Using the triangle inequality and Fact 1, it is easy to show that
25:1 OPT}4.(P;) < 4-OPTy . (P). Moreover, since (C, w®) is a o-approximate
coreset for P with respect to k and z, cost(C,w%,S*) < (1 + 0)OPTy .(P).
Consequently, > wSd(q%, X)* < (v*/2)(5 + 0)OPTy .(P). Putting it all
together and recalling that o = 4y + 442 < 1/2, tedious computations yield that
cost(P\Z*, X) < (1+27y)OPTy . (P). O

3.2 Complete Algorithm

Let SeqWeightedkMeansOut be a sequential algorithm for weighted k-means with
2 outliers, which, given in input a weighted set (T, w?) returns a solution S of
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pk centers such that cost(T, w’,S) < a- OPTy, (T, w), where p > 1 and w1
obtained from w by subtracting 7z units of weight from the points of T" farthest
from S, for some 7 > 1. Observe that values of p and 7 greater than 1 allow
for sequential bicriteria algorithms, that is, those requiring more centers or more
outliers to achieve an approximation guarantee on OPTy (T, w).

For v > 0, the complete algorithm first extracts a weighted coreset (T, w’) by
running the 2-round MRcoreset(P, pk, 7z,7) algorithm, setting k' = pk + 72 in
its first round. Then, in a third round, the coreset is gathered in a single reducer
which runs SeqWeightedkMeansOut (7, w’, k, z) to compute the final solution S.
We have:

Theorem 2. For 0 <y <./3/8—1/2 and p,7 > 1, the above 3-round MapRe-
duce algorithm computes a solution S of at most pk centers such that

cost(P\out,,(P,S),S) < (a+O(v)) - OPTy .(P),
and requires O (|P|*/* - (pk + 72)'/3 - (8y/2B/7)?P - log? |P|) local memory.

Proof. Let T be the coreset computed at Round 2, and let Z C P be such that
the weight function W', associated to the solution S computed in Round 3, can
be obtained from w7 by subtracting the contribution of each point in Z from
the weight of its proxy in T'. Clearly, |Z| < 7z and cost(P\out,.(P,S5),5) <
cost(P\Z, S). Now, let o = 4y + 492 < 1/2. We know from Theorem 1 that
(T, w?) is a o-approximate coreset for P with respect to pk and 7z. We have:

cost(T, w7, S)

- 1
cost(P\Z,S) < 1

A

< (14 20)cost(T,w?,8) < (1+0 (7)) - a-OPTy.(T,w).
Since OPT 7. (P) < OPTy . (P), Fact 1 and Lemma 2 can be used to prove that
both (C,w®) (computed in Round 1) and (7, w?’) are s-approximate coresets
for P with respect to k and z. A simple adaptation of the proof of Theorem 1
shows that (T, w') is a 27y-centroid set for P with respect to k and z. Now, let
X C T be the set of at most k points of Definition 2, and let W’ be obtained
from w’ by subtracting the contributions of the elements in out, (P, X) from
the weights of their proxies. By the optimality of OPT}, (T, w) we have that

st(T, W', X)
o)cost(P\out, (P, X), X)

<
<

co
(1+
1+
Putting it all together, we conclude that

cost(P\out,. (P, S),S) < cost(P\Z,S) < (a+ O (7)) - OPTy,.(P).

The local memory bound follows from Lemma 2, setting L = (| P|/(pk+72))"/3.
O
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3.3 Improved Local Memory

The local memory of the algorithm presented in the previous subsections can
be substantially improved by modifying Round 2 of MRcoreset(P,k,z,7v) as
follows. Now, each reducer first determines a (-approximate solution S to
weighted k-means (without outliers) on (C,w®), with k' = k + 2 centers,
and then runs CoverWithBalls(C,Sc,~v/v/23, R), yielding a weighted set C’,
whose size is a factor |L| less than the size of C. Finally, the reducer runs
CoverWithBalls(P;, C’,v/v/208, R). A small adaptation to CoverWithBalls is
required in this case: when point p € C' is mapped to a proxy g € C’, the weight
of ¢ is increased by wg rather than by one. With this modification, we get the
result stated in the following theorem, whose proof follows the same lines as the
one of Theorem 2, and is found in the full version of this extended abstract [11].

Theorem 3. For 0 < v < (\f - ﬂ)/6 and p, 7 > 1, the modified 3-round
MapReduce algorithm computes a solution S of at most pk centers such that

cost(P\out,;(P,S),S) < (a+ O (7)) - OPTy .(P),

and requires O (|P|Y/? - (pk + 72)1/2 - (8\/23/7)?P -log? |P|) local memory.

4 Instantiation with Different Sequential Algorithms
for Weighted k-Means

We briefly outline how to adapt two state-of-the-art sequential algorithms for
k-means with z outliers in general metrics, namely, LS-Outlier by [16] and
k-Means-0Out by [14], to handle the weighted variant of the problem. Both
these algorithms are bicriteria, in the sense that the approximation guarantee is
obtained at the expense of a larger number of outliers (LS-Outlier), or a larger
number of centers (k-Means-0ut). Then, we assess the accuracy-resource trade-
offs attained by the MapReduce algorithm of Sect. 3, when these algorithms are
employed in its final round.

Given a set of points P and parameters k and z, LS-Outlier starts with
a set C C P of k arbitrary centers and a corresponding set Z = out,(P,C)
of outliers. Then, for a number of iterations, it refines the selection (C,Z) to
improve the value cost(P\Z,C) by a factor at least 1 — ¢/k, for a given € > 0,
until no such improvement is possible. In each iteration, first a new set C’ is
computed through a standard local-search [20] on P\Z, and then a new pair
(Chews Znew) With minimal cost(P\ Zpew, Chew) is identified among the following
ones: (C',Z Uout,(P\Z,C") and (C",Z U out,(P,C"), where C” is obtained
from C’ with the most profitable swap between a point of P and a point of C’.

It is shown in [16] that LS-Outlier returns a pair (C,Z) such that
cost(P\Z,C) < 274-OPTy, .(P) and |Z| = O ((1/¢)kzlog(|P|A)), where A is the
ratio between the maximum and minimum pairwise distances in P. LS-Outlier
can be adapted for the weighted variant of the problem as follows. Let (P, w)
denote the input pointset. In this weighted setting, the role of a set Z of m
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outliers is played by a weight function w? such that 0 < wf < wy, for each
p € P, and Zpep wf = m. The union of two sets of outliers in the origi-
nal algorithm is replaced by the pointwise sum or pointwise maximum of the
corresponding weight functions, depending on whether the two sets are dis-
joint (e.g., Z and out,(P\Z,C")) or not (e.g., Z and out,(P,C")). It can be
proved that with this adaptation the algorithm returns a pair (C,w?#) such that
cost(P,w—w?, C) < 274-OPT}, (P, w) and > opep wf = O ((1/e)kzlog(|P|A)).

Algorithm k-Means-0Out also implements a local search. For given p,e >
0, the algorithm starts from an initial set C' C P of k centers and per-
forms a number of iterations, where C is refined into a new set C’ by
swapping a subset @ C C with a subset U C P\C (possibly of dif-
ferent size), such that |Q|,|U] < p and |C'| < (1 + ¢)k, as long as
cost(P\out,(P,C"),C") < (1 — ¢/k) - cost(P\out.(P,C),C). It is argued in [14]
that for p = (D/g)®P/9), k-Means-0ut returns a set C' of at most (1 + ¢)k
centers such that cost(P\out,(P,C),C) < (14 ¢€) - OPTy .(P), where D is the
doubling dimension of P. The running time is exponential in p, so the algorithm
is polynomial when D is constant.

The adaptation of k-Means-0ut for the weighted variant for an input (P, w)
is straightforward and concerns the cost function only. It is sufficient to sub-
stitute cost(P\out,(P,C),C) with cost(P, W, (), where W is obtained from w
by decrementing the weights associated with the points of P farthest from C,
progressively until exactly z units of weights overall are subtracted. It can be
proved that with this adaptation the algorithm returns a set C' of at most (1+¢)k
centers such that cost(P,w,C) < (1+¢) - OPTy .(P).

By Theorems 2 and 3, these two sequential strategies can be invoked in Round
3 of our MapReduce algorithm to yield bicriteria solutions with an additive O ()
term in the approximation guarantee, for any sufficiently small v > 0.

5 Conclusions

We presented a flexible, coreset-based framework able to yield a scalable, 3-round
MapReduce algorithm for k-means with z outliers, with an approximation qual-
ity which can be made arbitrarily close to the one of any sequential (bicriteria)
algorithm for the weighted variant of the problem, and requiring local memory
substantially sublinear in the size of the input dataset, when this dataset has
bounded dimensionality. Future research will target the adaptation of the state-
of-the-art non-bicriteria LP-based algorithm of [21] to the weighted case, and
the generalization of our approach to other clustering problems.
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