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Abstract 

Arrhythmogenic sites in post-ischemic ventricular 

tachycardia (VT) are usually identified by looking for 

abnormal ventricular potentials (AVPs) in intracardiac 

electrograms (EGMs). Unfortunately, the accurate 

recognition of AVPs is a challenging problem for 

different reasons, including the intrinsic variability in the 

AVP waveform. Given the high performance of deep 

neural networks in several scenarios, in this work, we 

explored the use of transfer learning (TL) for AVPs 

detection in intracardiac electrophysiology.  

A balanced set of 1504 bipolar intracardiac EGMs 

was collected from nine post-ischemic VT patients. The 

time-frequency representation was generated for each 

EGM by computing the synchrosqueezed wavelet 

transform to be used in the re-training of the 

convolutional neural network.  

The proposed approach allows obtaining high 

recognition results, above 90% for all the investigated 

performance indexes, demonstrating the effectiveness of 

deep learning in the recognition of AVPs in post-ischemic 

VT EGMs and paving the way for its use in supporting 

clinicians in targeting arrhythmogenic sites. In addition, 

this study further confirms the efficacy of the TL 

approach even in case of limited dataset sizes. 

 

 

1.  Introduction 

One of the most frequent treatments for patients 

affected by post-ischemic ventricular tachycardia (VT) is 

silencing their myocardial arrhythmogenic sites by 

radiofrequency ablation. Typically, these regions are 

targeted during electroanatomic mapping procedures by 

visual inspection of the electrograms (EGMs) recorded 

locally, supported by some vendor-specific tools. During 

these clinical procedures, the cardiologists may aim at 

identifying target points for subsequent ablation, guided 

by the presence of so-called abnormal ventricular 

potentials (AVPs), thus leading to operator-dependent and 

time-consuming procedures. 

To overcome these limitations, some recent studies 

exploited artificial intelligence tools in this field [1], [2]. 

Specifically, to the best of our knowledge, only few 

automatic approaches based on machine learning were 

proposed so far to identify the arrhythmogenic sites in the 

treatment of VT, both considering features extracted from 

different domains [2] and/or simply the time-series of the 

recorded EGMs [1]. However, the application of more 

complex artificial intelligence tools, such as deep neural 

networks, has not been investigated yet. 

In this work, we propose an automatic approach 

exploiting a deep convolutional neural network (CNN) to 

support clinicians in targeting VT arrhythmogenic 

substrates in a fast, user-unbiased, and precise way. To 

this aim, we investigated the use of transfer learning (TL) 

for AVPs detection, by exploiting an annotated real 

dataset for both training and testing the CNN 

performance. 

 

2. Materials and methods 

A dataset composed of bipolar intracardiac EGMs 

collected from nine patients affected by post-ischemic VT 

during left ventricle electroanatomic mapping procedures 

at the San Francesco Hospital (Nuoro, Italy) has been 

used. A total of 1504 bipolar EGMs were included, 

equally divided into 752 physiological potentials and 752 

AVPs. All the EGMs were annotated by an expert 

cardiologist using an ad-hoc MATLAB graphical user 

interface [1], [3]. 
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The acquisition of all the bipolar EMGs was performed 

through the CARTO®3 mapping system (Biosense 

Webster, Inc., Diamond Bar, California). Given the 

adopted CARTO®3 recording settings (i.e., sampling rate 

equal to 1 kHz and band-pass filtering between 16 and 

500 Hz), for each recorded EGM, only the reference beat 

given by the CARTO®3 was considered, thus ensuring a 

proper EGM acquisition when the catheter was in contact 

with the endocardium. Specifically, for each EGM, we 

considered only a 500-ms window around the reference 

annotation provided by the CARTO®3 system. 

 

2.1  Image generation 

In order to implement the CNN-based automatic 

approach, a first step for the generation of the input 

images was needed.  

Specifically, since the presence of spectral signatures 

for the AVPs has been recently investigated [3], from 

each 500-ms EGM segment a time-frequency 

representation was obtained by means of the 

synchrosqueezed wavelet transform (SSWT) [4], thus 

providing the CNN with all the information about AVPs 

and physiological EGM instantaneous spectral contents.  

From the SSWT we extracted the modulus, resulting in 

a positive defined range of the image values, with 

different maximum levels. In order to obtain an unbiased 

representation for all the EGM spectrograms, the same 

upper limit was imposed for the saturation of all the input 

images. In this regard, we computed the maximum value 

for each SSWT representation, and we chose the median 

value of the maxima distribution as upper saturation limit.  

Furthermore, all images were generated by removing 

the time and frequency axes and setting the ‘jet’ colormap 

and the flat shading. Then, each instance was stored as a 

.jpg file with a spatial resolution corresponding to the 

input layer sizes of the adopted CNN (i.e., 227227). 

 

2.2  Adopted CNN and transfer learning 

approach 

Among the different CNNs available in the literature, 

in this investigation, we chose the AlexNet deep CNN 

network [5] to perform the AVP and physiological EGM 

recognition, because of its small number of weights with 

respect to other CNNs, and its capability to maintain high 

performances on different types of images. As can be 

seen from Figure 1, AlexNet is able to manage input 

images with size of 227227 by five convolutional layers 

and three fully-connected layers (FC6, FC7, and output 

layer). 

Indeed, AlexNet has been used in other scientific 

works [6], [7], demonstrating its versatility in various 

classification problems solved by TL. Due to the limited 

size of our dataset, in this work, a pre-trained version of 

 
 

Figure 1. Pipeline for CNN-based AVPs automatic 

recognition approach proposed in this work, along 

with a detailed representation of the AlexNet 

architecture. 
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the AlexNet network has been used, in which the weights 

were already imposed by a training stage on more than a 

million images from the ImageNet database. Originally, 

the network was able to classify a wide pool of images 

into 1000 object categories (e.g., keyboard, mouse, 

pencil, and many animals). However, among them, no 

AVP spectrogram or time-frequency representation was 

included, thus making our classification problem a very 

challenging issue for this model.  

Therefore, to retrain the model on our instances and 

adapt its behavior to binary classification, the final 

classification layers (i.e., the last fully connected, the 

softmax, and the classification output layers) have been 

modified. In particular, the fully connected layer has been 

substituted with a new fully connected layer of the same 

size with randomly initialized weights obtained by using 

the Glorot uniform initialization method, while the output 

size was modified from 1000 to binary (see Figure 1). 

As regards the training parameterizations and settings, 

different choices were made. Specifically, to update 

network weights we used the stochastic gradient descent 

with momentum as training algorithm, and the binary 

cross-entropy as loss function to compute the gradient. 

For the TL, according to many studies in the scientific 

literature [7], [8], we imposed a learning rate equal to 10-

4, since the weights of the different layers were already 

tuned on different types of images, rather than randomly 

initialized, thus allowing also slow little re-train to obtain 

good results. Furthermore, a batch size of 10 instances per 

iteration was selected, to provide a more stable and 

reliable training, which can improve generalization of the 

network predictions [9], while the momentum was set to 

0.9. Conversely, since the weights were randomly 

initialized in the new fully connected layer, the weight 

learning rate factor and the bias learning rate factor were 

increased by a factor of ten, to allow faster learning.  

To avoid overfitting, an early-stop condition was 

imposed by evaluating the validation set every 50 training 

iterations and arresting the training after nine times in 

which the loss stopped decreasing. 

All computations have been carried out in MATLAB 

2022a. 

 

2.3 Performance indexes 

To assess the efficacy of the proposed AVPs automatic 

recognition approach by CNN, we evaluated its 

performance in a 10-fold cross-validation. Specifically, 

eight folds were considered for the training set, while the 

remaining ones were used as validation and test sets.  

Performance evaluation was carried out by computing 

different metrics: accuracy (Acc), sensitivity (TPR), 

specificity (TNR), precision (PPV), and F1-score, as:  

 

𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)/(𝑃 + 𝑁)   (1) 

𝑇𝑃𝑅 = 𝑇𝑃/𝑃     (2) 

𝑇𝑁𝑅 = 𝑇𝑁/𝑁     (3) 

𝑃𝑃𝑉 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)    (4) 

𝐹1 = 2 (𝑇𝑃𝑅 × 𝑃𝑃𝑉)/(𝑇𝑃𝑅 + 𝑃𝑃𝑉)  (5) 

 

where P and N identify the total number of AVPs and 

physiological instances, TP and FP those EGMs correctly 

and erroneously classified as AVPs, respectively, and TN 

the EGMs properly recognized as physiological signals.  

 

3. Results 

Performance results are reported in Table 1 in terms of 

mean and standard deviation computed across the 10-fold 

cross-validation, while Figure 2 depicts the cumulative 

confusion matrix among the 10 folds, in which all the 

samples of the dataset have been tested. As can be seen, 

very high recognition performances, above 92%, were 

achieved both in terms of overall accuracy and true 

identification rates of the two classes (i.e., AVPs and 

physiological EGMs), with very high precision (mean F1 

equal to 0.92). Compared to previous studies, the 

obtained results are very promising: indeed, although in 

[2] performances equal to ~94% were reported in all 

metrics, these were obtained by using a significantly 

smaller dataset (i.e., 86 intracardiac EGMs) compared to 

the one introduced in this study. Furthermore, in [1], 

where a larger dataset was used (i.e., 953 intracardiac 

EGMs), the reported results showed remarkably lower 

accuracy performance (i.e., ~79% in both approaches) 

with respect to those obtained in the presented work. 

Despite the higher computation load related to the 

CNN, on a 64-GB NVIDIA Tesla P100 GPU cluster, the 

training time for each fold was fast, resulting equal to 

91.9 ± 16.2 sec on average, with a 1295 ± 263 number of 

training iterations. Remarkably, the best model according 

to the validation loss was reached after 845 iterations, 

corresponding to 5.62 epochs, due to the imposed 

validation frequency and patience.  

 

 

Table 1. Mean () and standard deviation (σ) for all 

indexes computed in the 10-fold cross-validation. 

 

Index  ± σ 

Acc (%) 92.5 ± 2.5 

TPR (%) 92.0 ± 4.0 

TNR (%) 93.0 ± 3.3 

PPV (%) 93.0 ± 3.0 

F1-score 0.92 ± 0.03 
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4. Conclusions 

In this study, we proposed an automatic approach to 

target arrhythmogenic sites using TL, exploiting the 

intracardiac signal signatures in a time-frequency 

representation. As it represents the first explorative study 

on the feasibility of detecting AVPs using deep learning 

architectures, we did not perform any hyperparameter 

optimization, but we adopted a series of generally 

acceptable values for the hyperparameters in the context 

of the TL.  

Despite the reported results are promising for the 

development of a computer-aided system for VT 

treatment by catheter ablation, it is important to underline 

that the proposed approach was not stressed by providing 

imbalanced test sets, as in typical real electroanatomic 

mapping scenarios, and that the dataset is limited in the 

number of entries and in the labeling bias due to the 

single annotator. As such, a deeper investigation on a 

larger dataset is needed, to demonstrate the 

generalizability and robustness of the proposed approach. 
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Figure 2. Cumulative confusion matrix across all the 

tested EGMs. 
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