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ABSTRACT 

A constitutive law for the Reynolds stresses during boundary layer laminar-to-turbulent 

transition, constructed in previous work by elastic-net regression on an experimental data base, 

has been incorporated in an algebraic intermittency model. The objective is prediction 

improvement of transition in a separated layer under an elevated free-stream turbulence level. 

The modelling for such cases functions through additional production terms in the transport 

equations of turbulent kinetic energy and specific dissipation rate of a k-ω turbulence model. A 

sensor detects the front part of a separated layer and activates the production terms. These 

express the effect of Klebanoff streaks generated upstream of separation on the Kelvin-

Helmholtz instability rolls in the separated part of the layer. By the Klebanoff streaks, the 

breakdown is faster and the speed of breakdown increases by the combined effects of a large 

adverse pressure gradient and an elevated free-stream turbulence level. 
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NOMENCLATURE 

fSS shear sheltering factor  S       shear magnitude 

k turbulent kinetic energy  Tu     turbulence intensity 

ks small-scale turbulent kinetic energy        intermittency factor 

kl large-scale turbulent kinetic energy        specific dissipation rate 

INTRODUCTION 

Accurate prediction of separation of a laminar boundary layer and transition to turbulent state in 

the separated layer is crucial for analysis and design of turbomachinery components. Without an 

adequate model for separation-induced transition, the intensity of the breakdown in a separated 

boundary layer may be seriously underestimated by RANS-based approaches. This may lead to a too 

large separation bubble with delayed turbulent boundary layer reattachment. Shortcomings of 

transition models in reproducing the flow characteristics of a separated boundary layer may thus cause 

a significant lack of quality in the prediction of turbomachinery flows. 
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The flow within a separated boundary layer depends critically on the Reynolds number, the free-

stream turbulence level and the pressure gradient magnitude. Under a low free-stream turbulence 

level, Kelvin-Helmholtz instability leads to spanwise-oriented vortices, commonly called rolls. They 

grow while moving downstream and become unstable by spanwise perturbations, which finally cause 

breakdown and production of turbulence. The turbulent mixing typically results in reattachment of 

the layer due to increased momentum transfer in the wall-normal direction. 

In a laminar boundary layer that separates, but that is perturbed by strong turbulence in the free-

stream, Klebanoff streaks form in the attached part of the boundary layer, upstream of separation. The 

streaks are induced inside the attached laminar layer, due to deep penetration of low-frequency 

components of perturbations by free-stream fluctuations while high-frequency fluctuations are 

filtered-out by the boundary layer shear. This low-pass filtering by the laminar layer is called the 

shear-sheltering effect (Jacobs and Durbin, 2001). When separation occurs, the Klebanoff streaks, 

produced upstream of separation, interact with the Kelvin-Helmholtz rolls (McAuliffe and Yaras, 

2010, Hosseinverdi and Fasel, 2019). Under a low free-stream turbulence level, the rolls cover the 

full-span of the separated shear layer. But, under a high free-stream turbulence level, the streaks cause 

splitting of the rolls into part-span rolls. The breakdown process in the separated boundary layer then 

becomes faster. 

A transition model has to take into account the breakdown process in a separated boundary layer 

for various levels of free-stream turbulence and adverse pressure gradient. The objective of the 

present work is the improvement of the predictions by a basic transition model, when applied to flows 

with transition in a separated boundary layer under an adverse pressure gradient and elevated free-

stream turbulence. The improvements are relevant for simulations of turbomachinery flows. 

THE MODIFIED ALGEBRAIC INTERMITTENCY MODEL 

The transport equations of the algebraic intermittency model have the same form as in a previous 

model version (Kubacki and Dick, 2016). A production term, PKleb , derived from the elastic-net 

regression model for Reynolds stresses in transitional flows by Lengani et al. (2020), has been added 

to the production terms of the turbulent kinetic energy, k , and specific dissipation rate,  , to model 

laminar-to-turbulent transition in a separated boundary layer subjected to an elevated turbulence level. 

The transport equations read:  

( ) * *max ,k Kleb KH
j j

Dk k k
P P P k

Dt x x
    



   
= + − + +  

    

,    (1) 

( )max , 2 d
k Kleb

j j j j

D k k
P P

Dt k x x x x

   
   

 

     
= − + + +  

      

.   (2) 

The production terms Pk = s S
2 and PKH are the same as used by Kubacki and Dick (2016).  is the 

intermittency variable, s is the small-scale eddy viscosity, which is a part of the total eddy viscosity, 

and ij ijS 2S S= is the magnitude of the shear rate tensor ijS =  ( )/ /1
i j j i2 U x U x  +    

( )/1
k k ij3 U x −   . 

The original model functions well for bypass transition in an attached boundary layer by the 

variables νs and γ, and for transition in a separated layer under a low free-stream turbulence level by 

the PKH -term. The model functions, but not with good quality, for transition in a separated layer under 

an elevated level of free-stream turbulence. 
For modelling bypass transition in an attached boundary layer, the turbulent kinetic energy, k , is 

split into a small-scale part, ks , and a large-scale part, kl , by s SSk f k= and l sk k k= − . 
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The shear-sheltering effect is expressed with the function fSS , which contains three constants, CS, 

C and Ck. The function and the constants (see Table 1) are the same as in the model version by 

Kubacki and Dick (2016) (see also Kubacki et al., 2020). The fSS -function is: 

exp( ( / ) )2
SS SSf C k y= − ,   with   ( )SS S kC C 1 f = + ,    (3) 

where  and kf  are functions that express curvature effects and contain C and Ck. 

The shear-sheltering function models the damping of the small-scale turbulent fluctuations by the 

boundary layer shear. With s SSk f k=  and l sk k k= − , only the large-scale turbulent fluctuations, 

with energy kl , penetrate to the vicinity of the wall in a laminar layer. The large-scale fluctuations 

physically generate the streaks. They do not produce turbulence directly, but only indirectly when the 

streaks cause breakdown. The small-scale fluctuations, with energy ks , are restricted to the outer part 

of the layer. These contribute directly to the production of turbulent kinetic energy, which is expressed 

by the production terms Pk = s S
2. When the turbulence penetrates sufficiently close to the wall, the 

breakdown is simulated by activation of the intermittency function: 

min max , ,
k y

1 0 1
A




  
 = − 

  
  

.       (4) 

The value of the constant A (see Table 1) is the same as in the previous model version. 

The small- and large-scale eddy viscosities are defined by: 

s
s
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k
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
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=  

 
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
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2

S
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 
.  (5) 

The effective eddy viscosity, used in the Navier-Stokes equations, is .T s l = +  At walls, the 

standard conditions for k and  are imposed (Wilcox, 2008): k = 0,  = 6 /(β0 y
2). 

The PKH -production term (Kelvin-Helmholtz) in Eq. (1) is 

2
KH KH KHP C F S= , with   1 0 1

2 2

S
KH

KH

R
F min max , ,

. A

  
= −   

  
 and   

2

S

S y
R


= .  (6) 

The production term PKleb (Klebanoff) in Eqs. (1) and (2) is 

Kleb Kleb KlebP C f kS= .       (7) 

The fKleb -function is a sensor for detection of the front part of a separated boundary layer, defined as 

the product of three functions: 

Kleb wf f f f = ,   with       (8) 
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 

,  
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  
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,  exp

2

t
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w

R
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c

  
 = − 
   

.  (9) 

The f - and f -functions are the same as used by Kubacki et al. (2020) in a first version of the 

current model. By the value a = 0.95, the f -function is zero in the outer zone of a laminar boundary 

layer, also a separated one, in the turbulent part of an attached turbulent boundary layer and in the 

free-stream. The b = 150 determines the (strong) steepness of this function. The f -function is near 

to unity close to a wall. The Reynolds number Re = y2/ is about 85 in wall vicinity due to the wall 
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boundary condition of . By the value a = 150, the f -function is near to unity away from a wall, 

outside an attached laminar boundary layer and outside the viscous sublayer of an attached turbulent 

boundary layer. The value b = 5 determines the steepness of this function. The f -function is near 

to zero close to a wall. By the value a = 150, the f -function reaches unity away from a wall, but 

still inside a separated laminar boundary layer, if this layer is sufficiently far away from the wall. This 

way, the product of the f - and f -functions becomes different from zero in the outer zone of a 

separated laminar boundary layer. 

Additionally to the formulation in previous work (Kubacki et al., 2020), a small change is 

introduced to avoid spurious activity of the fKleb -function at the edge of an accelerating laminar 

boundary layer. This is done by multiplication by the wall-proximity function fw in Eq. (8). The fw -

function is based on the turbulent Reynolds number, Rt = k/(). The value of the cw constant is set 

to 2.0. The fw -function attains unity close to a wall and it evolves to zero approximately in the middle 

part of a boundary layer. The fw -function thus keeps the activity zone of the sensor for boundary layer 

separation fKleb nearer to the wall than that of fsep = f f, used in previous work. 

The major difference with respect to the previous extension of the originating model for coping 

with transition in separated state under elevated free-stream turbulence (Kubacki et al., 2020) is in 

the supplementary production term PKleb. In the previous version, a similar production term was made 

proportional to νS2, by analogy with the production term νsS
2 for bypass transition. The resulting 

model functions quite well, provided that the expression of intermittency (Eq. 4) is also made 

dependent on the sensor function fsep = f f. The development of the model started before the 

construction of the correlation of the Reynolds stress tensor and the shear rate tensor in transitional 

flows (Lengani et al., 2020). With the obtained correlation, it is now possible to construct the 

supplementary term PKleb on a rational basis. The outcome is that the modification of the intermittency 

function (Eq. 4) is not necessary anymore. The resulting model is thus much simpler. 

The PKH and PKleb terms are boosting terms in the transport equations (1-2). In a separated laminar 

boundary layer, both the shear-sheltering function (Eq. 3) and the intermittency factor (Eq. 4) have 

very low values. The production terms based on Pk are thus very small. By activation of the boosting 

terms, a local increase of the turbulent kinetic energy is obtained, which, when sufficiently strong, 

activates the intermittency factor (Eq. 4), which then starts the main production terms based on Pk. 

Part of the modelling of transition in separated state is thus done with the same terms as for bypass 

transition in an attached boundary layer. 

The functioning in a separated layer is that first PKH is activated by a sufficiently high value of 

the shear Reynolds number RS , thus shear far enough from a wall. The production by PKH is 

proportional to  S2, thus independent of the turbulence level. It represents turbulence produced by 

breakdown due to the instability of the Kelvin-Helmholtz rolls. Under a strong adverse pressure 

gradient, the production of modelled turbulent kinetic energy by this term is not sufficient to realise 

fast enough reattachment of the separated layer. When the separation zone becomes sufficiently large, 

the PKleb term becomes active. The production by this term is proportional to k S. Therefore, it can 

express the faster breakdown caused by the streaks perturbing the Kelvin-Helmholtz rolls under 

elevated free-stream turbulence. 

FUNCTIONING OF THE SENSOR FUNCTION FKLEB 

Figure 1 shows results for flow along a flat plate under a strong adverse pressure gradient and a 

moderately high free-stream turbulence level (Tu=1.5%). Contour plots of the mean velocity 

component in the plate direction and the fKleb -function are shown. There is a long separation bubble 

on the plate. As desired, the fKleb -function is mostly active in the front part of the separation bubble. 

FORMULATION OF THE BOOSTING SOURCE TERM PKLEB 

The PKleb by Eq. (7) is derived from the elastic-net regression model for the Reynolds stresses in 

transitional flows by Lengani et al. (2020). 
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Figure 1: 70LLTU12 case (moderately high turbulence level and strong APG). Contour plots 

of a) mean x-velocity component and b) fKleb -function for simulation of separation-induced 

transition with the present model. The x-velocity is negative in the blanked zone in panel (a).  

 

In that work, the Reynolds stress tensor ' 'i ju u  is written as ( )2
ij ij3

k  + , with ij  the unit tensor 

and ij  the nondimensional deviatoric stress tensor. The nondimensional tensor ij  is symmetric and 

has zero trace. It may thus be written as 
T

ij X X   =  , with X  its nondimensional eigenvector 

matrix and   its nondimensional eigenvalue matrix. The shear rate tensor ijS is also symmetric and 

has zero trace. Similarly to ij , it may be written as 
T

ij S S SS X X=  , with SX  its nondimensional 

eigenvector matrix and S  its dimensional eigenvalue matrix. 

In a mean 2D flow, the expressions are: 

0
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

 
 =  

− 
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S 0

0 S
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 =  

− 
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cos( ) sin( )
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S S
S

S S

X
 

 

− 
=  
 

,  
cos( ) sin( )

sin( ) cos( )
X

 


 

 

 

− 
=  
 

. 

The  -angles express the orientation of the first eigenvectors. 

Both tensors are obtained by: 

cos( ) sin( )

sin( ) cos( )

T
ij ij

0 2 2
S or X X

0 2 2

  
 

  

   
    = =       − −   

. 

With S   = − , the ij -matrix can be written as: 

cos( ) sin( )

sin( ) cos( )

S S
ij

S S

2 2 2 2

2 2 2 2


   
 

   

+  +  
  =    +  − +  

.     (10) 

The angle s  is determined by the velocity field. Representation of the Reynolds stress tensor 

thus requires expressions for   and  . The production term Pk in the k- and ω- equations is: 

( )2 2
ij ij ij ij ij3 3

k S k S  − + = − . The result with the expression (10) is: 
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[ cos( )cos( ) sin( )sin( )]2 2
k ij ij S S3 3

P k S k S 2 2 2 2 2 2       = − = − +  

      cos( )2
3

k S 2 = −  = [ cos( )]2
3

k S 2 −  .     (11) 

Correlations for   and   have been constructed as polynomial expansions of a Reynolds 

number, a non-dimensional representation of S and a non-dimensional representation of k. The basic 

term for   is about 0.557 and for –   about 1 radian. With these values, the production term (11) 

becomes: .kP 0 155k S= . Therefore, we express PKleb by Eq. (7) with CKleb = 0.155, without any 

further tuning. We do not take higher-order terms in the expansions of   and   into account. This 

is technically possible and we tested the use of the expressions (results are not shown here). The 

correlations are valid for a large range of transitional flows, but we only need these in the limited area 

defined by fKleb. Because the PKleb -term is only used in a limited area, the higher-order terms have 

almost no effect. 

 

Table 1. Transition model constants.  

Bypass transition 

A  SC  C  kC  1a  2a  

12.0 21.0 10.0 6.0 0.30 0.60 

Separation-induced transition 

KHC  KHA  KlebC  a  b  a  b  wc  

2 550 0.155 150 5 0.95 150 2 

 

RESULTS OF UNIGE FLAT PLATE CASES 

The quality of the PKleb -term (Eq.7) for transition in a separated boundary layer is illustrated by 

simulation of four flows over a flat plate from the data base by Simoni et al. (2019). The selected 

cases (Table 2) are with transition in a separated boundary layer subjected to a strong (70LTU12) and 

a moderate (70HTU9) adverse pressure gradient, bypass transition in an attached boundary layer 

(220LTU5), and a flow without transition along the plate (150LLTU5). The cases are part of the 48 

cases (called UNIGE) used by Lengani et al. (2020) for the elastic-net regression. The four cases 

presented were used for tuning of the model constants. We tested the model performance on other 

flows from the same data base, but these results are not shown here. 

 

Table 2. Selected UNIGE cases. The Reynolds number is based on the plate length and the mean 

free-stream velocity at the leading edge of the plate. The turbulence intensity, Tu, is defined at 

the boundary layer edge at the inlet to the computational domain (60 mm downstream of the 

leading edge of the plate). 

Test case Re Tu [%] Pressure gradient Transition mode / flow 

70LTU12 70000 2.5 strong APG separation-induced 

70HTU9 70000 3.5 moderate APG separation-induced 

220LTU5 220000 2.5 low APG bypass 

150LLTU5 150000 1.5 low APG no transition/laminar 

 

The flow domain of the measurements by Simoni et al. (2019) is trapezoidal, as shown in Fig. 2. 

The boundaries are the AB, BC and CD sides. The height of the AB and CD sides is 10 and 40 mm, 
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respectively. The BC side starts at 10 mm above the plate at 60 mm downstream the leading edge and 

ends at 40 mm above the plate at the streamwise distance of 300 mm. The AB and BC sides are inflow 

boundaries with imposed values of the mean velocity components and the turbulent quantities k and 

. Determination of the turbulent kinetic energy on the boundary AB requires splitting of measured 

fluctuations into turbulent and coherent parts. The splitting was done with the procedure described 

by Simoni et al. (2019). The CD boundary is an outflow boundary with imposed pressure and zero 

normal flux conditions for the velocity components and the turbulent quantities. Standard no-slip 

conditions were specified along the plate. 

 

 

Figure 2: UNIGE flat plate (Simoni et al. 2019). Computational domain (bounded by AB, BC, 

CD sides) and boundary conditions. The AB and BC sides are inlets on which LDV data of 

mean velocity components and turbulent quantities are available. Flow is from left to right. 

 

Steady 2D incompressible Navier-Stokes equations were employed. The convective terms in the 

momentum and the transport equations were discretised with the second-order upwind scheme and 

the diffusive terms with the central scheme, available in the ANSYS Fluent CFD-package (version 

18.2). The transition model was implemented by the UDF-functionality. The solution of the RANS-

equations was obtained with the coupled pressure-based algorithm with iterations done until the 

normalised residuals of the momentum and the transport equations were reduced below 10-6. 

A hybrid grid was generated with a structured part near the plate and an unstructured part away 

from the plate. The total number of cells was 36000. The nondimensional distance y+ was below 0.01 

along the plate. A grid sensitivity study was performed with a coarser grid with 25000 cells (y+ about 

1 along the plate) and a finer grid with 77000 cells, obtained by refining the unstructured part (y+ 

below 0.01). The grid independence of the results was verified by inspection of the shape factor 

profiles along the plate (not shown). No essential differences were observed between the results on 

the three grids. Therefore, the basic grid with 36000 cells was selected for the final study. 

Figure 3 presents measured and computed mean velocity components and turbulent kinetic energy 

at the distance y/L=0.04 above the plate, for the 150LLTU5 and 220LTU5 cases. The bars indicate 

uncertainty bounds: relative error 3% on mean velocity components and relative error 6 to 10% on 

rms of fluctuating velocity components. The agreement between measurements and simulations is 

good. The agreement is similar for the two other cases (not shown). It means that proper inlet values 

of flow variables and modelled scalars are specified along the AB and BC sides.  

Figure 4 shows the evolution of the shape factor along the plate obtained with the previous version 

(Kubacki and Dick, 2016b) and the current modified version of the algebraic transition model. The 

comparison is made with measurements by Simoni et al. (2019). The uncertainty in the measured 

shape factor is shown by error bars (6 to 10%). Both models produce results with similar quality for 

the cases without transition along the plate (Fig. 4 a) and with bypass transition (Fig. 4 b). 

The modified model produces results with much better quality for the cases with separation-

induced transition (Fig. 4 c and d). The extension of the separation bubble and the position of the 

maximum shape factor are well predicted for the cases with separated-flow transition (70LTU12, 

70HTU9). But the maximum value of the predicted shape factor is lower than the experimental value. 

This is caused by the way of modelling the transition, which is not entirely physically correct. The 

transition in separated state is modelled by production of turbulent quantities k and  by the terms 

PKH and PKleb. In reality, perturbations by Kelvin-Helmholtz instability and by Klebanoff streaks are 

initially coherent and only produce turbulence at the breakdown of the coherent flow. The fluctuations 
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are thus initially of laminar type. By the current modelling, without description of laminar fluctuation 

kinetic energy, the initial fluctuations are represented as turbulent. Taking into account this inherent 

feature of the modelling, the results prove that the PKleb -term (Eq. 7) functions well for modelling 

the effects of the Klebanoff streaks on the separated boundary layer. 

 

         

Figure 3: UNIGE flat plate. Mean x- and y-velocity components and turbulent kinetic energy, 

k, along y/L=0.04 for a) 150LLTU5 and b) 220LTU5 cases. Symbols denote the PIV results by 

Simoni et al. (2019). The bars indicate the uncertainty bounds of the experimental data.  

      

      

Figure 4: UNIGE flat plates. Shape factor evolutions on the plate for a) 150LLTU5 case 

(laminar boundary layer), b) 220LTU5 case (bypass transition), c) 70LTU12 and d) 70HTU9 

cases (separation-induced transition). The bars indicate the uncertainty bounds of the 

experimental data.  



9 

 

RESULTS OF PREVIOUSLY USED CASES 

It is essential that the modification by the PKleb -term (Eq.7) does not deteriorate the results of the 

tuning cases of the previous model version. Verification is presented here on some cases used in 

previous work: two ERCOFTAC T3C flat plate cases and the two flows over the N3-60 steam-turbine 

vane cascade, experimentally studied by Zarzycki and Elsner (2005). The computational grids consist 

of 0.8×105 and 1.1×105 cells for the T3C and N3-60 cases, respectively. We refer to Kubacki and 

Dick (2016) for the discussion of grid-independence study, numerical schemes and solver settings. 

Table 3 lists the inlet values of the mean and turbulent flow variables. The modified model produces 

identical evolutions of the free-stream turbulence levels as in previous work (not shown). 

Figure 5 shows the skin friction on the flat plate for the T3C cases. In these cases, bypass transition 

takes place inside the attached boundary layer. The transition onset is well predicted by both model 

versions, but the transition length is too short with respect to reality. The too rapid transition is due 

to the algebraic description of the intermittency. Once transition is triggered by activation of the 

intermittency function (Eq. 4), the intermittency grows rapidly towards the wall. The asymptotic 

behaviour in the turbulent region, at large distance from the leading edge is better with the modified 

model. This is not caused by the PKleb -term in Eqs. (1) and (2), but results from modification of the 

a2 constant in Eq. (5) from 0.45 to 0.6, as discussed in Kubacki et al. (2020). 

 

Table 3. Boundary conditions at the inlet of the computational domain and free-stream 

turbulence intensity in the leading edge plane for the ERCOFTAC flat plates and the N3-60 

cascade. U denotes the velocity normal to the inlet boundary. 

Test case U [m/s] Tu [%] lt [mm] TuLE [%] 

T3C5 8.95 ~ 3.0 7.0 3.0 

T3C3 3.85 ~ 3.0 9.8 3.0 

N3-60, Tu=0.4% 8.20 ~ 0.4 2.0 0.4 

N3-60, Tu=3.0% 8.20 ~ 3.0 9.0 3.0 

 

 

Figure 5: ERCOFTAC flat plates with variable streamwise pressure gradient. Skin friction 

coefficient on the plate surface for T3C5 and T3C3 cases. 

 

Figure 6 shows the shape factor on the suction-side of the N3-60 blade at low (Tu=0.4%) and 

high (Tu=3%) free-stream turbulence levels. With the low free-stream turbulence level (Fig. 6 a), the 

transition is by Kelvin-Helmholtz instability in the separated shear layer near to the trailing edge of 

the blade. The transition is started with the PKH -term and the PKleb -term is not active. The results by 

the previous model and the modified model are identical and agree very well with the experiment. 

With the high free-stream turbulence level (Fig. 6 b), bypass transition is triggered in the attached 

laminar boundary layer. Also in this case, the previous model and the extended model produce 

identical and good results. 
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Figure 6: N3-60 turbine cascade. Shape factor on suction side of the blade for the free-stream 

turbulence level at the leading edge of the blade equal to a) Tu=0.4% and b) Tu=3%. 

CONCLUSIONS 

The elastic-net regression model for Reynolds stresses in transitional flows by Lengani et al. 

(2020) has been incorporated into an algebraic intermittency model by a production term in the k - 

and  - equations. The production term is activated by a sensor function detecting the front part of a 

separated boundary layer. The extended model does not alter the good results of the previous model 

for bypass transition and for transition in a separated boundary layer under a low free-stream 

turbulence level. The modified model improves the predictions of the previous model for transition 

in a separated boundary layer subjected to an elevated turbulence level combined with a moderate or 

high adverse pressure gradient.  
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