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Abstract—The analysis of memory dumps presents unique
challenges, as operating systems use a variety of (often un-
documented) ways to represent data in memory. To solve this
problem, forensics tools maintain collections of models that
precisely describe the kernel data structures used by a handful of
operating systems. However, these models cannot be generalized
and developing new models may require a very long and tedious
reverse engineering effort for closed source systems. In the last
years, the tremendous increase in the number of IoT devices,
smart-home appliances and cloud-hosted VMs resulted in a
growing number of OSs which are not supported by current
forensics tools. The way we have been doing memory forensics
until today, based on handwritten models and rules, cannot simply
keep pace with this variety of systems.

To overcome this problem, in this paper we introduce the
new concept of OS-agnostic memory forensics, which is based
on techniques that can recover certain forensics information
without any knowledge of the internals of the underlying OS.
Our approach allows to automatically identify different types of
data structures by using only their topological constraints and
then supports two modes of investigation. In the first, it allows to
traverse the recovered structures by starting from predetermined
seeds, i.e., pieces of forensics-relevant information (such as a
process name or an IP address) that an analyst knows a priori or
that can be easily identified in the dump. Our experiments show
that even a single seed can be sufficient to recover the entire
list of processes and other important forensics data structures in
dumps obtained from 14 different OSs, without any knowledge
of the underlying kernels. In the second mode of operation, our
system requires no seed but instead uses a set of heuristics to
rank all memory data structures and present to the analysts only
the most ‘promising’ ones. Even in this case, our experiments
show that an analyst can use our approach to easily identify
forensics-relevant structured information in a truly OS-agnostic
scenario.

I. INTRODUCTION

The analysis of volatile memory is gaining more and more
importance as part of digital forensics and incident response
investigations. This is because the system memory contains
artifacts, related both to the current and the past state of the
system, that cannot be extracted from any other component.
However, the analysis of volatile memory presents unique
challenges, as operating systems (OSs) have diverse internal
organization ways they store and represent data, with only
a few constraints imposed by the underlying hardware and
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memory management unit (MMU). Unfortunately, this great
flexibility becomes a great challenge for forensic analysis tools.
For example, the kernel needs to keep track of all processes
running inside the system, including their names, memory
layout, loaded libraries, and open file descriptors—just to name
a few among the many pieces of information required to
track processes during their execution. OSs organize this set
of information by using data structures, such as linked lists,
trees, and arrays. To extract this data from memory dumps
and reconstruct the aforementioned structures, analysts must
know the (often undocumented) kernel internals to locate and
interpret the raw bytes in the dump. This, which is often called
the semantic gap, constitutes the main problem of memory
forensics.

To solve this problem, forensics tools like Volatility [23]
and Rekall [4] maintain collections of precise descriptions of
the kernel data structures used by popular OSs (e.g., Windows,
Linux, and macOS). Thanks to these OS-specific models,
called profiles, these tools can extract relevant forensics in-
formation from memory dumps. However, profiles need to
be constantly updated because the internal data structures
used by OSs often change with version updates. Furthermore,
for highly configurable OSs like Linux, it is often necessary
to create specific profiles for the individual machines that
analysts want to investigate. While recent works [16], [18]
have partially overcome this problem by reconstructing Linux
profiles directly from the memory dumps, these solutions are
tailored to the data structure of the Linux kernel-which are
supposed to be known in advance.

Memory forensics is a very active research area and has
largely improved over the last decade. However, it still relies on
manual rules that exist only for a handful of OSs. While this
was sufficient in the past, today investigations often involve
a broad range of devices, ranging from network routers to
smart home appliances and smartwatches, all of which operate
on a variety of OSs. For instance, recently Cekerevac et
al [2] studied 56 different OSs adopted in the IoT space
alone (a list that does not even include OSs used in network
appliances, such as CISCO 10S). Sadly, most of these systems
are currently unsupported by memory analysis tools. Even
worse, the current approach is based on a long and tedious
human effort to reverse engineer the required OS internal
details; this makes extending memory forensics support to a
large number of OSs completely impractical.

A. Introducing OS-agnostic Memory Forensics

Currently, available forensics tools can extract information
from a memory dump by relying on two techniques: (i) the
OS is manually analyzed by the tool writers [4], [23], who



manually compiled a set of rules to extract the forensics-
relevant information for that OS (ii) the OS is instrumented
(e.g., by analyzing its source code [1], [6], [9], [10] running
it on instrumented VMs [5], [11], or by taking snapshots in
different states [19], [22]). The first rule-based approach, which
is the standard among memory forensic tools, requires months
of work to add support to a new operating system. The second
solution, proposed by researchers but not commonly used in
practice, requires instead complete and privileges access to
the target systems. None allows an analyst to recover any
information from a memory dump extracted from a device
running an OS that is either unknown (no source code, no
installation disks or the possibility to run it on a VM) or
unsupported by ordinary forensics tools. This situation can
occur when, for example, memory is acquired from IoT or
industrial devices, network appliances, or VMs that are running
uncommon OSs. This is why memory forensics today does not
exist for such cases.

To solve this problem, we propose a paradigm shift in the
way we perform memory forensics. While profiles, custom
rules, and dynamic introspection remain valuable solutions that
are likely to provide better results when they can be applied, we
believe a new approach is needed to quickly extend memory
analysis to a broader class of target systems. If today the field is
driven by a complete knowledge of the internal data structures,
we propose instead the first step towards what we call OS-
agnostic memory forensics, which would allow analysts to
perform memory forensics without any information about the
underlying OS.

Our approach relies only on OS-agnostic properties of
the data structures used by kernels to organize data. In fact,
like all software, OS kernels store information in a collection
of data structures that can be detected and reconstructed
due to their topological properties. As shown by Oliveri and
Balzarotti [15], for most CPU architecture it is possible to
reconstruct the kernel address space in an OS-agnostic way by
using only information derived from the hardware configura-
tion of the machine. It is by using this information that we
reconstruct in-memory kernel data structures like linked lists
and trees.

In this paper, we first propose new algorithms to identify
forensics-relevant data structures in a fully-automated way.
As forensics-relevant we consider all those data structures
which contain, or point to, the information needed during
a forensics analysis, thus excluding data structures that are
used by the OS only for its basic functioning (e.g., data
structures for hardware management, communication among
its internal parts, synchronization, etc.). Our technique takes as
input a single memory dump and a function to extract pointers
from raw data. It then, without human intervention, extract
forensics-relevant data structures based on their topological
properties. We investigate two complementary approaches to
perform this task. In the first, we start by observing that the
vast majority of data structures are irrelevant from the point of
view of a forensics analysis. Forensic-relevant data structures
can be identified because they reference or embed specific
seeds, which are pieces of information that an analyst knows
a priori or can be easily carved from the memory. Examples
of seeds are the name of a process, an IP address, or a file
name. Seeds are important because the analyst can use them

as “anchors” to filter data structures and then automatically
extract information of the same type. For instance, knowing
just one process name can be sufficient to (i) identify a data
structure (such as a doubly-linked list) that points to it, and (ii)
explore all the elements of that structure and print the strings
that are referenced by pointers located at the same offset in the
data structure. Even with no previous knowledge of the OS,
this automated procedure allows a forensic analyst to list all
process names—once one of them is known.

The second approach we explore is a seed-less analysis.
Once again with no prior knowledge of the OS, we show it
is possible to retrieve structured forensics information from
a memory dump to be used as a bootstrap for advanced
analysis. For instance, by filtering and ranking the extracted
data structures according to the statistical properties of their
fields, an analyst can use our system to look for data structures
referring to forensics-relevant strings. We will show that this
approach can retrieve most of the data structures retrieved with
the first approach, with the advantage of being applicable when
analysts do not known valid seeds.

We implemented our techniques in a proof-of-concept
tool, Fossil, and we performed experiments to retrieve data
structures from 14 different operating systems. Our results
show that our OS-agnostic approach to memory forensics
can provide invaluable information to analysts facing memory
dumps taken from less known, or unknown, OSs. We will
release Fossil as an open-source project [14], together with
the part of the dataset not covered by particular OS license
restrictions.

II. DATA STRUCTURES IN MEMORY FORENSICS

Kernels organize information in a variety of data structures
(DSs) which can, in turn, be implemented in many different
ways. DSs like linked lists, doubly-linked lists and n-ary trees
are all based on logical relations among components linked
through pointers. On the other hand, structures that require
fast access like arrays, stacks and queues are based instead on
data locality. As shown in the left part of Figure 1 even a very
simple DS like a linked list can be implemented in different
ways: pointers among items of the list can refer to the top of
the adjacent elements or they can point to a fixed offset within
them, data can be stored as part of the items themselves or in
auxiliary structures referenced by pointers, and the pointer that
signals the end of the linked list can be a NULL pointer or a
pointer that points to itself. The more complex the structure is,
the greater the chances that an OS will implement it by using
unique features and tricks, to maximize performance.

Furthermore, multiple “basic” DSs can be combined to
form more complex ones. For example, hash tables can be im-
plemented as an array of pointers to linked lists and filesystem-
related structures often use tries, which are a type of search
tree whose nodes have a variable number of children. In this
case, a node’s children could be represented as a linked list,
as shown in the right part of Fig. 1.

Since it is impossible to cover all possible DSs and all
possible ways these structures might be implemented in OSs,
we need to establish a hierarchy based on their forensics-
relevance. In fact, complex DSs may be extremely rare, they
may not contain forensic-relevant information, they may be
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Fig. 1: On the left side, two examples of different implementations of linked lists. On the right side, two examples of complex
data structures: a hash table and a trie implemented using arrays and linked lists. Grey cells are pointers while barred ones

contain data.

used only as a fast way to access already organized data, or
they might be implemented in a very optimized way which
requires deep knowledge of the OS code to be recovered from
the dump. At the same time, simple and easy-to-manage DSs
could be dominant in fundamental tasks of the OS which do
not require leading performance but great stability and easy
usage. To guide our selection of DSs that are more commonly
traversed during memory forensics, we perform a survey on
which of them are required by the Volatility framework [23]
to extract information for Linux and Windows memory dumps.

Out of all existing plugins, 79% traverse doubly-linked
lists, 23% use arrays, 10% explore trees and 12% extract
information from simple linked lists. In the majority of the
case (73%) the required information is stored inside the DS
itself or is contained inside auxiliary C structs pointed by the
major DS.

Only 10 of the Volatility plugins require the parsing of
more complex data structures, like hash tables, radix trees, and
tries. Furthermore, these data structures are used in prevalence
to access data that can be also extracted by traversing other
DSs, such as the radix tree that Linux uses to connect the
process PIDs.

Based on this preliminary study, we decided to focus our
techniques on the recovery of single and doubly-linked lists,
arrays, and trees. Other DSs could be added in the future,
but we believe they can only provide a marginal amount of
information during a forensics analysis.

III. TERMS AND DEFINITIONS

Before we describe our technique for DS reconstruction we
need to define some terms that we will use over the rest of the

paper.

A. Atomic Structures

Atomic structures represent the fundamental blocks to store
composite information as in-memory ordered collections of
fields of different types and sizes. In languages of the C-
family, atomic structs are directly mapped to the struct
data type. In memory, atomic structs are contiguous chunks of

data,' which contain fields defined in the structure itself along
with possible padding inserted by the compiler to optimize
the structure size according to the CPU architecture and
optimization requirements. Despite having a clear size and a
strict separation among its fields at the source code level, in
memory an atomic struct appears as a block of bytes without
any field separator nor any delimiter to separate the structure
itself from other adjacent data.

While an atomic struct can contain other atomic structs
embedded in it, in memory there is no distinction between
the fields of the embedded atomic struct and the fields of the
embedding one. These ambiguities have important effects on
the ability to reconstruct an atomic struct layout starting only
from its content in memory.

B. Data Structures (DSs)

The OSs use atomic structs and atomic types (such as
int, float, and struct X =) as basic blocks to store
information by organizing them in in data structures.

Linked lists are sequences of atomic structs (the nodes of the
list) connected by pointers. Starting from an element it
is possible to reach the next one by following a pointer
(here generically called next ) contained in the element
itself. It is important to note that the next pointer can
point either to the first address of the next element of the
linked list or at a fixed offset inside it. Generally the last
next pointer is a NULL pointer or an autopointer (a pointer
pointing to itself, see Section III-C) if the linked list is
linear. The linked list may also be circular; in that case,
the last element of the list points back to the first. Like
other structures connected by pointers, the atomic structs
of linked lists are not necessarily allocated in contiguous
memory locations.

Doubly-linked lists are similar to linked lists. However, ele-
ments are linked by two pointers: next and previous (not
necessarily located at adjacent offsets), with the latter
pointing to the previous element of the list. A doubly-
linked list can be seen also as a combination of two

UIf the system uses virtual memory the atomic struct is a contiguous chunk
of data only in the virtual address space, but can be fragmented in physical
memory.



linked lists: a linked list composed of the element joined
by next pointers and a second list containing the same
elements but linked in reverse order through the previous
pointers. As for linked lists, doubly-linked lists can be
linear or circular. It is important to note that the presence
of two pointers linking every element of the list introduces
additional information (in the form of a constraint) that
helps to recognize doubly-linked lists in memory.

Trees are DSs that may exist in different forms (balanced or
unbalanced, RB-trees, etc.). For our purposes, they can be
generalized by a generic n-ary tree model. In this model,
a tree is composed of a root atomic struct linked to a
predefined maximum of n subtrees, each composed, in
turn, by a collection of the same type of atomic structs.
At the end of each branch is possible to find leaves that
could have a different type of atomic struct.

Arrays are DSs in which atomic types or atomic structs are
located in adjacent memory locations. This type of DS
can be very difficult to detect if the atomic type is not
a pointer or if the atomic structs contains only non-
pointer types because the sequence of elements becomes
indistinguishable from an unstructured binary data blob.

Composite data structures provide a way to combine mul-
tiple simpler DSs to form more complex ones, such as
hash tables and tries.

C. Pointers

A pointer variable is characterized by two memory ad-
dresses: the address of the pointer itself and the address
referenced by the pointer. For our goal, we can classify pointers
into four categories:

Structural pointers. These pointers represent links between
atomic structs that compose a DS or links among different
data structures.

Data pointers. These pointers, contained in atomic structs,
reference variables, auxiliary atomic structs which are
not part of a DS but contain information related to
it (e.g. struct pid *thread_pid in the Linux
task_struct which references a structure containing
the kernel’s internal notion of a process identifier), or re-
lations among atomic structs composing the data structure
but which do not define its topology (e.g. the struct
task_struct =*parent in Linux task_struct).

Autopointers. These pointers have the peculiarity to point to
themselves (xptr == &ptr). This property allows to
easily identify them inside a memory dump and to signal
the presence of a field in the atomic struct which, with
high probability, has been deputed to point to linked list-
like DSs.

NULL pointers. NULL pointers could be used to signal the
end of a linear DS (as a linked list) or part of a ramified
one (a tree). We assume that the OSs and CPU architec-
tures use all-zeros CPU-native words to represent NULL
pointers. This fact makes the NULL pointer virtually
indistinguishable from a zero integer variable.

D. Oracle Function ) and T, graphs

To identify atomic structs which compose larger DSs it is
necessary to retrieve all pointers used by the kernel to maintain
relations among single elements. Without any information

about the OS and its internals the only way to extract all the
pointers from a memory dump is through carving.

In particular, starting from the CPU architecture it is
possible to derive the size v of a pointer’ (e.g. 4 bytes for
32-bit architectures and 8 bytes for 64-bit ones). We suppose
the analyst is able to provide a boolean oracle function (2
(see Section V for the implementation we adopted in our
evaluation), which takes as input an offset in the dump,
the pointer size, and other OS-independent/machine-dependent
parameters and returns whether that offset contains or not a
possible valid pointer:

True
False

if offset is a valid pointer
otherwise

Q(offset; o, ...) = {
ey

The €2 function allows us to scan the entire memory dump
and identify all valid pointers by iterating through overlapping
groups of « bytes: the offset in the memory dump (properly in-
terpreted in relation to the physical-to-virtual address mapping)
represents the address of the pointer variable while the content
of the a bytes located at that offset represent the address
of the pointed data. This technique allows to identify both
pointers stored at an aligned address (aligned pointers) as well
as unaligned ones. It is important to note that we do not specify
the concrete implementation of the {2 function: for our tech-
nique it is only a prerequisite necessary to extract the pointers,
i.e., the analyst has to provide such OS-agnostic function or
a function that best approximates its behavior. Furthermore,
once the pointers have been extracted, our technique no longer
requires information about the hardware configuration of the
machine thus also resulting CPU-agnostic.

All pointers that are identified in a memory dump compose
a directed graph I'. In this graph, a pointer (pointer =
&variable) is represented as an edge connecting the nodes
representing the address of the pointer (spointer) to the
address pointed by it (¢§variable).

Finally, we define the set of offset graphs
(L2} ee[Xpmin.. Xmas] @s the set of graphs obtained by
adding a fixed offset of x bytes (positive or negative) to all
the destinations of the carved pointers (pointer + x). For
example, I' = I'y, and I'g4 is the graph in which each pointer
destination is increased by 64 bytes.

E. Seeds

We define a seed as a chunk of data that is either known
a priori by the analyst or that can be easily recognized as a
valid piece of information by inspecting the memory. Seeds
can be extracted directly from the memory dump by using
OS-agnostic rule-based carving techniques. Examples of seeds
are: the name of a process the analyst knows was running
when the dump was acquired, a path in the filesystem, the
name of a kernel module, an IP address assigned to a network
interface, etc. Strings, for instance, can be easily extracted from
kernel memory by looking for sequences of ASCII or UTF8/16
characters. The same technique can be used also to extract
other information with an immutable and OS-independent
structure and encoding such as network packets.

2q for modern CPUs is also, in general, the “natural” word size and
alignment used in memory access.
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Fig. 2: OS-agnostic DSs reconstruction phases. Grey cells are
pointers of a valid DS while barred ones contain data.

IV. APPROACH

The goal of our work is to extract forensics-relevant
information about the state of the system from a memory dump
without any prior knowledge about the OS.

An overview of the process is shown in Figure 2. In the
first step, we use the provided €2 function to collect the kernel
pointers present in the dump. We then locate the seeds by using
OS-agnostic data carving and we (optionally) perform a static
analysis on the executable pages of the kernel. This analysis
extracts cross-references to data structures allocated by the
kernel at runtime, which helps our system to prioritize the
extracted information and reduce the number of false positives.

After that, we reconstruct relations among pointers (Step
2 in Figure 2) by using topological properties of the DSs
that we are interested to recognize (discussed in detail in
Section IV-A). In this phase we reconstruct only the structural
skeleton of the DSs: relations among structural pointers do not
provide information about the shape (size and limits) of the
atomic structs which contain data-pointers and embed forensic-
relevant data.

After the skeleton of the DS is recognized, we perform a
statistical analysis of the in-memory raw data that surrounds
each structural pointer (Step 3) estimating how many bytes
the original atomic DS extends around them. This allows us
to identify also relations among reconstructed data structures
and seeds.

Finally, we present to the analyst the identified DSs with
the possibility to filter them by looking for specific known
seeds or by using cross-references extracted during the static
analysis phase (Step 4).

A. Data Structures Skeleton Recognition

Once pointers are recognized (Step 1 in Figure 2), we
tackle the task of recognizing the skeleton of DSs. While our
approach can be useful to recognize also more complex data

structures, as explained in Section II our current implementa-
tion focuses on the most common DSs that are traversed by
memory forensics frameworks.

1) Relation between Lists, Trees and Offset Graphs:
Consider the case of lists (both single- and doubly-linked) and
trees. These DSs are composed of sequences of atomic structs
of the same type linked by structural pointers. Unfortunately, it
is quite common to see structural pointers whose destination is
not the beginning of the next atomic structure, but rather some
point in the middle—e.g., the next pointers used in doubly-
linked lists in the Linux kernel point to the next pointer of the
successor’s struct [12]. In other cases, e.g., the prev pointer in
Linux’s doubly-linked lists, the destination is at a fixed offset
with respect to the same pointer in the adjacent struct (i.e., the
prev pointers point to the address of next pointers of the
previous struct).

To generalize, atomic structs part of the same DS are
reached by dereferencing a structural pointer, adding a (posi-
tive or negative) offset 3 to the destination, and by repeating
the process while keeping the offset 8 constant. With reference
to Linux’s doubly-linked lists: 8 = 0 for the next pointers
and 8 = +a« for prev ones. This process is shown in Figure 3
along with the paths it produces in the I'g graphs. Hereinafter,
we call these paths chains.

A chain may correspond to the collection of all the
structural pointers of a linked list or parts of other DSs,
such as “half” of a doubly-linked list or the branch of a tree
obtained by always following a given child link (e.g., all left or
right children). However, this procedure generates also false
positives, as shown in Figure 3. In fact, following a pointer
and adding an arbitrary offset x to it could, by chance, lead
to another pointer and so on. This produces a valid path on a
I'; graph that does not correspond to any valid DS.

A first step to reduce false positives is to note that in I'g
the atomic structs that belong to true-positives DSs should be
at least § bytes large (because otherwise by adding the offset
3 we would “fall outside” of the data structure). Moreover,
atomic structs should also be larger than the pointer size a.
Hence, pointers in a valid chain should all be at least at
distance max(83,« 4+ 1) from each other. Chains of atomic
structs that do not satisfy this requirement can be discarded,
as the path from auxy4 to prevy in I'y, graph in Figure 3.

In practice, we compute the offset graphs for a suitable
symmetric interval of plausible offsets [—W¥,¥]. ¥ is an
important parameter that affects the maximum size of atomic
structs identifiable by our technique. In fact, in the worse case
in which a structural pointer is located at the bottom (last field)
of an atomic structure and references the top (first element)
of the next element, then the maximum size of the atomic
structure that can be retrieved by our approach is W.

It is worth noting that each offset graph has a topological
peculiarity: since each memory location contains at most one
pointer, the maximum out-degree in the graph is one. In other
words, there is at most one outgoing edge from each vertex. On
the other hand, several pointers may have the same destination.
This implies that paths in an offset graph may converge;
however, there is at most a single outgoing path from any
node of the graph. In light of this, chains may contain tail
links back to the head forming a cycle, which corresponds to
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circular lists, but also a “P-shape”, where the end of the chain
links back to a point in the middle of it. We “cut” chains like
these into two separate chains—one circular and one linear (up
to the beginning of the cycle).

2) Doubly-Linked Lists: A doubly-linked list consists of a
set of atomic structs with previous and next structural pointers
and, like singly-linked lists, may be circular. We allow the
destinations of the previous and next links to be at different
offsets: for example, next pointers can point to the following
next pointer without the need to apply an offset, and previous
pointers can point to the preceding next pointer.

We identify doubly-linked lists by recognizing chains that
are at a fixed distance and in opposite directions: consider
the example of a doubly-linked list containing atomic structs
A, B, and C; one chain follows the path A — B — C,
while the other takes the reverse direction C — B — A.
Unfortunately, the generalization of this approach to find
doubly-linked lists whose chains point at different offsets in the
struct introduces several computational challenges. To solve
the issue we proposed a new algorithm, based on bi-directional
hashes, explained in detail in the Appendix section.

3) Trees: Our algorithm recognizes trees by following a
bottom-up approach (here for simplicity we illustrate the case
of binary trees, however, our approach naturally generalizes to
n-ary trees with n > 2). We first look for complete trees of
depth two by checking the intersection of chains that have a
length of two: in this case, they would intersect at a point r,
the candidate root, that appears in two different offset graphs,
T';, and I',., where we say that offset [ reaches the left child and
offset r reaches the right one. Then, we perform two checks to
verify whether we should discard the candidate tree with root
in 7: first, we discard all cases in which there is no pointer at
offset r from the left child or at offset [ from the right child;
second, we verify that structs in the candidate tree are distant
enough from each other to create a coherent tree (i.e., where
the distance respects a lower bound for the size of the struct
representing the tree node). We know that this lower bound ¢
should respect the following conditions: (i) ¢ > 2a, because

the struct needs to contain the pointers to the two children
and some payload data; (ii) ¢t >= max(|r —1|,|!|, |r]), because
the destination of the pointers plus the left and right pointers
should all fall within the node struct. Hence, we discard all
candidate trees for which any two nodes are at a distance that
doesn’t satisfy this constraint.

Fully balanced trees of arbitrary depth are then constructed
recursively by recognizing height-2 trees whose root’s children
are trees of height £ — 1 and whose nodes are still at least
as distance ¢ from each other as described above. Non-fully
balanced trees can be simply obtained by following the [ and
r links of the trees that we have discovered.

4) Arrays: As already explained in Section III-B, this type
of DS can be undetectable if the atomic type is not a pointer
and without any knowledge of the array shape or its content. In
light of this, we decided to carve only for arrays of pointers,
by looking for sequences of in-memory adjacent not NULL
pointers.

B. Atomic Structs Size Estimation

The techniques described above allow the reconstruction
of relations among structural pointers which maintain links
among atomic structs and determine the topology of the DS.
However, to extract forensics-relevant information from atomic
structs we first have to infer their boundaries, i.e., the offset at
which each atomic structure starts in relation to its structural
pointers and its total size. Since we have no information on
the OS internals, we can rely only on statistical properties
derived from the set of all the atomic structs which compose
the DS. The idea is that fields located at the same offset in the
struct contain data of the same type.®> This phase is important
because an under-estimation of the atomic struct size could
exclude fields that refer to seeds easily recognizable by the

3We are ignoring C-style unions which are very difficult to detect without
any knowledge of their definition and represent only a small part of the type
of atomic struct in kernels (for example in Linux unions represents only
4% of the total number of the types of atomic structures definitions).



analyst, while an over-estimation could return an avalanche of
false positives seeds complicating the analyst’s work.

V. IMPLEMENTATION

In this section, we explain how we implemented the DSs
recognition techniques in our proof-of-concept tool, Fossil,
how we reduced the number of false positives by introducing
OS-agnostic heuristics, and the dataset used for experiments.

A. Q Function

The role of the €2 function is to identify values that can
be valid kernel pointers in the memory dump. Unfortunately,
without any additional information about the OS, this is a
very difficult task, as potentially any number could be a valid
kernel address. Luckily, the system architecture (which we
assume to be known) can provide useful information. For
instance, on micro-controllers with a 32-bit memory address
range, MMIO, and no virtual memory (e.g. PIC32, or Renesas
RX) it is possible to drastically reduce the values of valid
memory addresses and build a very precise () function. On
CPU architectures with a memory protection unit (MPU), such
as ARM Cortex-M, it is possible to infer which regions of the
RAM are writable and could contain valid pointers.

Oliveri and Balzarotti [15] developed an OS-agnostic tech-
nique based on the functioning of MMUs, which is able to
automatically retrieve the kernel virtual address space from
the memory dump for Intel x86/AMD64, ARM/AArch64 and
RISC-V 32/64-bits CPU.* This allows us to define an approx-
imated oracle function that marks all valid virtual addresses
of the kernel address space as potential pointers by scanning
the kernel pages contained in the memory dump looking
for sequences of a bytes which can be interpreted as valid
virtual memory address belonging to the virtual address space
of the kernel. This, however, does not guarantee that the
discovered sequences of « bytes correspond to real pointers:
a group of continuous « bytes that, accidentally, can be
interpreted as a valid kernel virtual address, produces a false
positive. However, this approach has no false negatives because
structural pointers belonging to kernel DSs must reside in the
kernel virtual address space to be reachable and accessible
by the kernel itself. It is also possible to use other metadata
available in the kernel radix-tree’s page tables entries to further
restrict and refine the €2 function. For instance, we limit our
analysis to those memory regions exclusively accessible by the
kernel and denied to userspace programs because fundamental
DSs maintained by the kernel must be protected from the
possible corruption of a malicious user-space process. While
the extraction of the kernel address space depends on the
architecture [15], our technique does not and it is completely
CPU-independent.

B. Dataset

To test the accuracy and performance of our OS-agnostic
DS recognition technique we assembled a dataset of mem-
ory dumps taken from virtual machines (VMs) running 14
different OSs. The majority of these systems are running

4Authors also show that, for some CPU architectures, a full OS-agnostic
reconstruction of the kernel virtual address space is not possible (PowerPC)
or requires a manual effort from the analyst (MIPS).

on x86/AMD64 (due to the abundance of the available OSs
for this architecture) but we also included two OSs running
on AArch64: a Linux machine and an iPhone running iOS.
We specifically included the Linux Debian machine for both
AMD64 and AArch64 architectures to compare the results
and check whether our technique introduces some bias, and
iOS as an example of a real and complex OS target that is
not supported by other forensic tools. The experiments are
conducted on virtual machines to easily collect atomic snap-
shots of the physical memory and avoid inconsistencies [17].
Excepting for the iOS VM, which requires 6 GB to run, each
VM was configured with 4GB of RAM because the x86 32-
bit architecture cannot address more memory and, at the same
time, this is the typical memory size of many IoT devices.

The fourteen OSs, shown in Table I, include general-
purpose, embedded, mobile and amateur projects and adopt
different designs and architectures (including hybrids, mono-
lithic, real-time, and micro-kernels). For our tests, we decide to
focus on OSs written in C or C++ due to their overwhelming
prevalence and to the 1-to-1 mapping of atomic DSs to the
struct construct present in these languages. There have been
some attempts to write prototype OSs in other languages, such
as Rust or Haskell. However, these languages envelope atomic
DS into more complex constructs for either security (Rust) or
abstraction (Haskell), requiring a preliminary understanding of
the language constructs to perform atomic DS mappings.

C. Static Code Analysis

To extract global references to kernel DSs, we perform a
static analysis of the executable pages located in the kernel
virtual address space. Using the tool developed by Oliveri and
Balzarotti [15] we reconstruct the kernel address space and
virtual pages’ permissions from the memory dump and save
them as an ELF core file. Then we analyze the ELF with a
Ghidra [13] plugin, which disassembles the instructions and
performs a simple static analysis to identify the address of all
the global variables referenced in the code.

D. False Positives Reduction

As discussed in Section IV-Al, chains on I' graphs are
directly related to the skeleton of different DSs. However, as
shown in Figure 3, a large number of links are in fact false
positives and therefore we employ some heuristics to clean the
extracted data.

To begin with, we define a hierarchy among DSs in relation
to how much strict their topological constraints are since it is
less probable that false positives are generated if topological
constraints are strict. Doubly-linked lists have the strictest
constraints requiring a fixed distance between the structural
pointer which composes the next and prev chains as already
explained in Section IV-A2 and in the Appendix. Binary trees
have looser constraints in comparison with doubly-linked lists
as they only require that each node has two valid (and not both
NULL) pointers at a fixed distance from the address pointed by
the parent node. Looser constraints are required for arrays, for
which we only require more than two consecutive pointers. At
the lower end of the scale we have linked lists, for which there
is only the requirement to represent paths in I" subgraphs, and
sets of auxiliary atomic structs which are obtained by following



data pointers at a fixed offset of already discovered DSs. With
this hierarchy in mind, we assume that structural pointers that
our technique associates with a DS with tighter constraints
cannot be a structural pointer of looser constrained DS (in
other words, we assign each structural pointer to only one, the
most constrained, DS).

We then proceed to filter each type of DS individually. The
heuristics we use are often based on the locality of data and
fields (e.g., the fact that right and left pointers in a tree are
logically placed closer to each other in the struct definition)
and use thresholds that can be configured and fine-tuned by
the analysts.

1) Doubly-linked lists: As explained in Section IV-A2 lin-
ear and circular doubly-linked lists can be seen as a couple of
chains belonging, in general, to two different I" offsets graphs.
Supposing that the implementation of the doubly-linked list
used by the kernel is unique we consider as valid linear and
circular doubly-linked lists those composed of chains with the
most abundant pair of offsets among the doubly-linked lists
reconstructed by our tool, filtering out possible false positives
DSs based on chains that accidentally match.

2) Trees: We assume that the left, right and (option-
ally) the parent pointers are close inside the node structure.
Thus, our tool looks for binary trees made of chains obtained
from structural pointers extracted from I' graphs with offsets in
[—8a, 8ar] and composed of at least 2 levels (7 nodes, including
the root one).

3) Arrays: We consider an array to be valid only if it con-
tains at least three non-NULL consecutive elements, not already
used for previous DSs. Moreover, as arrays are abundant as
part of other structures, we only report those that are directly
referenced by the kernel code (e.g., through global variables)
as identified by our static analysis.

4) Linked Lists and Sets of Auxiliary Atomic Structs: These
two classes of DSs are the most prone to generating false
positives. In fact, every pointer can be a valid starting point of
a linked list and every field containing pointers of an already
discovered DS can be the root of a set of auxiliary structs.
Therefore, for linked lists we apply the same heuristic we
used for arrays, limiting the report to those structures that
are referenced in kernel code. Furthermore, assuming that the
implementation of doubly-linked lists are based on the single
linked lists one, we consider only linked lists generated starting
from I' graphs with offsets belonging to the most abundant
couple of offsets used to generate doubly-linked lists, and of
length greater than 2. For sets of auxiliary atomic structs, we
consider only fields of atomic struct of higher level which
contains at least 90% of not NULL.

E. Size of Atomic Structs

To estimate the boundaries of each atomic DS we analyze
the area of memory surrounding the pointers identified in
the previous steps. First of all, we assume that an atomic
struct can contain a maximum of 1024 fields of size «. This
results in DSs with a maximum size ¥ of 4KB for a 32-bit
architecture and 8KB for 64-bit. This parameter is necessary
because otherwise the entire memory could be considered as
a single atomic struct.

We then estimate the size of the atomic struct which
belongs to the same DS as:

Ve = min(¥, mode(|p—q|))Vp, ¢ € {structural pointers}

In other words, we consider the minimum between the chosen
maximum V¥ value and the typical distance among the struc-
tural pointers. This estimation is based on the assumption that
allocations of atomic DSs are not isolated events and/or the
kernel uses an optimized memory allocator (as SLAB system
in Linux kernel). If this is true, at least two atomic structs
of the same DS are allocated contiguously in memory, so the
distance among their structural pointers is an upper limit for the
size of the atomic struct itself. However, instead of considering
the minimum distance among all the structural pointers as an
estimation of the size, we consider the more conservative limit
given by the typical distance among them. This allows for
cases in which one of the atomic structs has a smaller size (as
is the case for the first element of various doubly-linked lists
in the Linux kernel).

After the size of the atomic struct has been estimated,
we have to determine its alignment. In fact, we have an
estimation for the atomic struct size but we don’t know yet
what is the offset of structural pointers inside the atomic struct
or, in other words, where the atomic struct begins. Before
proceeding to the alignment estimation we have to determine
which offsets (aligned or not) contain valid pointers in the
range of [— W, Ue] around structural pointers (the intervals
contain all possible positions of the ¥, window). We consider
an offset as containing pointers if at least the 90% of the atomic
structs of the DS contain a valid pointer or a NULL element at
that offset. We use a threshold because, as already said, some
atomic structs can have a different shape due to their functions
(the head of a list or a root of a tree), and because the €
function can introduce false positives (data bytes interpreted
as pointers).

To estimate the correct alignment we rely on two heuris-
tics. The first one is based on the presence of data point-
ers that maintain auxiliary links among structs. An example
of it is the struct task_struct xparent in Linux
task_struct, which points to the start of the atomic struct
of the parent process. Checking if at a fixed offset at least
90% of the pointers refer to addresses which distance the
same quantity from one of the structural pointers allows to
identify them. If all these pointers reference the first byte
of another atomic struct of the same DS we can determine
the exact alignment of the structure in the ¥, window. The
second heuristic is used if the first fails and it considers
the minimum and the maximum offset which contain valid
not-NULL pointers, for at least 90% of the atomic structs
compatibly with the atomic struct size already estimated.

VI. DATA STRUCTURE RECOVERY

Table I reports, for each OS, statistics about the pointers
recovered by the {2 function used in our experiments, highlight-
ing noteworthy values. The number of pointers discovered by
the ) function largely depends on the size of the pointer type
(o) and the main language used to write the OS. Columns
6 and 7 of Table I show that for 32-bit OSs, our approach
returns the highest number (both absolute and relative to the
size of the kernel address space) of pointers. This abundance



TABLE I: OSs dataset and recovered pointers.
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Embox R @ C 4 3.9 x 10° 0.15 < 0.1
FreeBSD M@ C 38 2.2 x 10° <01 <0.1
HaikuOS H @ C++ 4 | 1.76 x 107 8.99 < 0.1
HelenOS me@ C 38 44 x10°  <0.1 6.2
iOS (AArch64) He C 38 1.5 x 108 < 0.1 0.8
Linux M@ C 38 5.6 x 10° 0.12 20.99
Linux (AArch64) M @ C 8 5.5 x 10° 0.25 21.39
NetBSD M@ C 4 5.1 x 10° 5.33 < 0.1
ReactOS m @ C 4 3.5 x 10° 1.47 0.3
ToaruOS He C 38 6.7 x 10° <0.1 0
vxWorks R O C 8 2.1 x 10° <0.1 0.8
Windows XP HO C 8 9.9 x 10° 0.27 16.89
Windows 10 HO C 8 1.9 x 108 0.15 6.3

'H: hybrid-, m: micro-, M: monolithic-, R: real-time kernel

is due to the high number of data bytes whose value falls into
the kernel address space and thus can be confused with real
pointers. On the other hand, the Intel 64-bit architecture (as
well as AArch64) requires kernel addresses to have the higher
bits set to 1, which introduces a strong constraint on which
8-ple of bytes could represent valid addresses.

Furthermore, the programming language also affects the
number of pointers present in the kernel address space. As
shown in Table I and highlighted in grey, the OS with the
highest number of recovered pointers is HaikuOS 32-bit —
which is written mainly in C++. The C++ memory layout is
known [20] for introducing overhead due to virtual dispatch-
ing, virtual inheritance, and dynamic typing, resulting in a large
number of pointers.

We note also that some OSs make extensive use of au-
topointers (which are almost false positive free due to their
definition) while others do not use them at all. A mere glance
at the percentage of autopointers in the recovered pointers can
tell something about the kernel internals: usually, autopointers
are used to represent (doubly) linked lists with zero elements
or signal their ends. This is confirmed by Table I: OSs like
Linux and Windows which are known to use autopointers for
zero-length linked lists show an abundance of them. From the
point of view of an OS-agnostic memory forensics approach,
the presence of a large number of autopointers is an important
piece of information. For instance, it allows the analyst to
infer that fields at the same offset in atomic structs which
contain autopointers are “roots” of auxiliary linked lists and,
in general, it allows to recover information on how the linked
lists are implemented in the OS without analyzing the kernel
code delegated to their management.

Finally, as expected for the same kernel running on dif-
ferent CPU architectures, we note that the chosen 2 function
extracts the same number of pointers for AMD64 and AArch64
Linux with, approximately, the same ratio of autopointers.

TABLE II: Data structures (DSs) recovered.
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Darwin 11 385 127 1214 1801 35
Embox 0 22 35 1131 795 6
FreeBSD 8 0 993 1008 895 41
HaikuOS 4117 64 0 305 232 1184
HelenOS 25 1173 127 41 45 1
i0S 20 256 192 5234 229 36
Linux 120 3632 1034 693 5947 46
Linux (Aarch64) 110 3362 936 229 4985 43
NetBSD 41 18 1218 1482 406 45
ReactOS 7 200 49 492 325 12
ToaruOS 101 0 14 62 229 15
vxWorks 51 14 199 349 416 13
Windows XP 38 889 228 463 206 20
Windows 10 145 6639 36 0 282 0

Table II summarizes the number of DSs identified by our
tool for each OS. In general, arrays of pointers (to strings or
other structs) are the more abundant. In a few cases, our system
was not able to find any results for some particular type of DSs.
This can be due to a real absence of that DS (for example,
because all doubly-linked lists for a given OS are circular
and the tool was able to reconstruct them without producing
false positive linear ones) or can be a consequence of a more
complex implementation that is not currently recognized by
our tool (for example, trees in HaikuOS). As for pointers, the
number of DSs extracted for AMD64 and AArch64 Linux
is approximately the same, confirming the CPU architecture
independence of our technique which does not introduce
biases.

In Figure 4a we have plotted the cumulative distribution
function of the length of circular doubly-linked lists for the
three different OSs in which they are more abundant. Dashed
lines are power-law fits obtained by using the technique
developed by Clauset et al. in [3] and tested against an
exponential distribution using the loglikelihood ratio (P<0.05).
While all the three OSs have circular doubly-linked lists of
different magnitude of orders in length, it is possible to note
some differences among the distributions. For example, 80%
of circular doubly-linked lists in Windows 10 contain less than
11 elements. To reach the same percentage in Linux, lists
contain instead up to 200 elements. This fact can suggest to an
analyst that the OS under analysis, such as Linux in this case,
could make extensive use of this type of data structure also
to store small pieces of information. A similar analysis can
be made by looking at Figure 4b, which shows the cumulative
distribution function of the size of arrays of pointers to strings.
In this case, instead, all the OSs prefer to use small arrays
of pointers to strings instead of a longer one, which often
contains debug strings inserted during the kernel compilation,
as in the case of the three OSs considered. The power-law
trend of cumulative distributions in cycles and arrays suggests
also that is impossible to define simple heuristics to filter out
false positives based on a cut-off on the length of cycles/arrays
derived from their distribution in the dump. We have also
analyzed the distribution of the depth of recovered trees in
three OSs (NetBSD, Linux and FreeBSD) chosen with the
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Fig. 4: Circles: cumulative distribution function of the length of circular doubly-linked lists (a) and arrays of pointers to strings
(b) for the three OSs in which they are more abundant. Dashed lines: power-law fit of the distributions.

TABLE III: False positives vs seeds.

oS Process List
Structure Two One

type! seeds seed

YP all/referenced  all/referenced
Darwin LDL 6/6 9/9
Embox AS 5/4 8/5
FreeBSD L 4/4 34/23
HaikuOS LDL 3/3 114/114
HelenOS CDL 2/- 5/-
i0S LDL 3/3 9/7
Linux CDL 3/1 76/3
Linux (AArch64) CDL 171 300/2
NetBSD LDL 212 2/2
ReactOS CDL 5/4 5/4
ToaruOS Al 1/1 47/47
vxWorks LDL 2/- 14/-
Windows XP CDL 3/3 5/3
Windows 10 CDL 4/- 6/-

! AS: array of pointers to structs, Al: first level auxiliary structure, CDL:
circular doubly-linked list, LDL: linear doubly-linked list, L: linked list

same criteria as above, however, in this case, the distributions
do not show the power-law behavior and have a maximum
depth for recovered tree equal to 8 (equivalent to a maximum
of 256 nodes).

VII. SEED-BASED DATA STRUCTURE IDENTIFICATION

We start our analysis with the most common example of
memory forensics: process enumeration. The set of running
processes is fundamental to understand the system status at
dump time, because it allows the analyst to determine if there
were malicious or anomalous processes running on the system,
making this the first target, both in terms of priority and
relevance, of most memory analyses. To test our technique we
simulated the scenario, summarized in Table III, in which the
analyst knows either one or two processes’ names (the seeds)
and wants to retrieve the names of all the other processes
running in the system and the data structures that contain or
point to them. However, the analyst does not know anything

10

about the OS itself, nor the type of DS the OS uses to maintain
processes information. To identify possible seeds we carved
the kernel virtual address space for ASCII and UTF-16 strings
composed of more than 2 characters.

The second column of Table III reports the DS type of
the true process list as identified by the tool. It is important
to note that, in general, the type identified by the tool can
correspond only partially to the exact DS type of the process
list: the presence of false positive pointers, due to the use
of an approximated () function, can affect, for example, the
reconstruction of doubly-linked lists which will appear as two
separated linked lists as discussed in Section III-B. Most OSs
use either single or doubly linked lists to maintain the process
list, directly embedding the process name or a pointer to it
in the atomic structs. We found two exceptions to this rule.
The first is Embox which keeps track of processes through
an array of pointers to atomic structs, which in turn contain
the process metadata. The second is ToaruOS, which uses a
‘light’ linked list with atomic structs containing only a pointer
to an auxiliary atomic struct that actually contains the process
metadata and its name.

Our tool was always able to automatically identify the
correct DS and print all the processes’ names. However, the
tool often identified few candidates structures that pointed to
the seeds processes. If the two seeds were uncommon strings,
such as sctp_iterator for HaikuOS or the well-known
swapper/0 for Linux, the number of DSs identified by our
tool as a possible list of processes were always either one
or two at the most. If instead, the seeds were more common
strings that could appear also in other structures, the tool
emitted more possible options. To check this eventuality, in
the third column of Table III, we have reported the worst
case obtained by testing the reconstruction technique with the
two process name seeds that are the most referenced by DSs.
Each cell of the column contains two values: the first one is
the total number of DSs referring to the two seeds, while the
second one is the part of them that are referenced by the kernel
code as deduced by static analysis. For two OSs (HelenOS and



vxWorks) Ghidra was not able to extract a correct reference
to the true process list while for Windows 10 Ghidra was not
able to manage the high number of segments that compose the
kernel ELF core file and consequently extract references. The
table shows that for all the OSs our tool was able to identify
the process lists also in the worst-case scenario, outputting at
most six possible options for the analyst to check.

In the case in which the analysis knows only one process
name and wants to retrieve all the other ones, the fourth column
of Table III reports again the worst case scenario. For most
of the OSs the set of possible structures remained low, with
the exceptions of HaikuOS and ToaruOS, which generated
respectively 114 and 47 options. In the case of one seed, the
references extracted using static analysis can be more useful,
significantly reducing the number of options in the cases of
FreeBSD and Linux.

Finally, we investigated whether the extracted DSs could
also be used to retrieve others non-textual information rel-
ative to each process. For example, for all cases that use
single/doubly-linked lists it was possible to easily infer the
process ID (PID) of each process by querying for integer fields
in ascending order (since newer processes are always appended
at the end of the list). Also, the same technique can be used
to extract timestamps (e.g., related to the starting time of each
process).

A. Other Forensics-relevant Data Structures

During a forensics analysis of an unknown OS, there are
other DSs that can be useful as a starting point for more
advanced analysis of the system. For instance, the set of
loaded kernel modules, the set of the kernel memory pools,
and information about the mounted filesystems. These DSs can
help the analyst to understand the internals of the OS and to
extract information that even alone can suggest a compromise
of the system. The DS referencing kernel modules, for exam-
ple, contains information about modules loaded at dump time,
making it possible to better understand how the kernel interacts
with hardware and identify possible malicious modules loaded
by an attacker. The kernel memory pools, such as Windows
pool system or SLABs in Linux, are, instead, used by the
kernel to allocate memory dedicated to contain other kernel
objects divided by their type or size. The identification of pools
allows the analyst to deeply explore the memory space of the
kernel, understanding how it is managed and what it contains.
They are so fundamental that some forensics tools, such as
Volatility [23], base their complete analysis of Windows dump
on the ability to identify kernel pools. Finally, the kernel
manages real or virtual filesystems to organize data on second
storage memories or to expose features or statistics, such as the
/proc or /sys virtual filesystems in Linux. Understanding
which filesystem is active at dump time can facilitate disk
forensics and increase the knowledge about kernel interface
(through virtual filesystems) which may have been abused by
malicious userspace programs.

For each OS in our dataset, we have collected two kernel
module names, two kernel pool names and various strings
relative to filesystems (such as filesystem names or the device
name associated with hard drives by the kernel) and then used
our tool to automatically identify DSs containing them and all
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the other elements of the same type. Filled circles “@®” in Table
IV show for which OS our tool was able to successfully extract
this information, while those marked with the “{” superscript
(e.g., Linux kernel modules) means that the tool found two
different DSs that correctly referenced the two seeds. This is
very important because sometimes malicious software tampers
with kernel data structures to hide their presence but, if we
know more data structures are used to link the same atomic
structs, it is possible to detect differences among them that
might be a sign of infection. For some OSs (Embox, FreeBSD
and ToaruOS) it was not possible to detect any DS related to
kernel pools because these OSs do not have them. In other
cases, our technique fails to detect some of the DSs because
kernels use more complex ones which are not detectable by our
proof-of-concept tool or due to multiple levels of references
to auxiliary structures. An example of the first case is the
kernel modules “list” of ToaruOS which is implemented as
a hash table, detected by our tool only because, internally, it
is implemented using a linked list.

In the fifth column of Table IV we reported other data
structures our tool was able to correctly identify by using two
known seeds. It is interesting to note that it is possible to obtain
information about the interaction between the process and
the kernel (communications channels as sockets, pipes, locks
and semaphores), information about the hardware (the list of
network cards and devices detected), additional information on
the kernel itself (kernel parameters, kernel internal tasks) or
relative to the userspace programs (associated linked libraries
and environment variables). All this information is extremely
useful to an analyst which has to face an unknown OS to speed
up the forensics process.

These results show the main use of our tool: the analyst
extract strings or other known datatypes from memory, then
pick a few entries and use our tool to test whether any DS
exists that points to the two seeds. If so, the tool also output
all the other elements of the DS and prints the corresponding
elements that complement the seeds’ values.

VIII. COMPARISON WITH OTHER TOOLS

It would be interesting to measure how many DSs identified
by our system are ‘correct’, i.e., they correspond to real
structures created by the operating system, and how many
DSs we miss. However, this test requires access to ground-
truth information regarding the exact data structures present
in memory at dump time, also including those unreachable
and already de-allocated, since they can still be relevant for
forensics investigations. Unfortunately, we are not aware of
any tool or technique that can provide this information, even
in the case of open-source OSs. Thus, we propose to evaluate
the effectiveness of our solution by comparing the forensics-
relevant DS recovered by our approach with those extracted
by other state-of-the-art tools.

For instance, rule-based systems, such as Volatility, are
able to recover forensic-relevant DSs by using custom hand-
written rules, specifically tailored for a given version of an
operating system. Therefore, for each Volatility Linux plugin,
we manually extract the list of DSs used as starting points
to extract information from the memory dump. We then check
whether Fossil is able to find those same structures in the Linux
Debian x86 memory dump used in our experiments.



TABLE IV: Other forensics-relevant data structures.
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oS g 2 B Other structures
Darwin ® @ O e Listof network devices ® System locks e Ker-
nel/user pipes ® Kernel parameters
Embox [ ' O e List of commands
FreeBSD e ' o
HaikuOS ® O e Executable libraries e Kernel/user pipes
e Semaphores
HelenOS o o o
iOS O @ @ e Listof network devices ® System locks e Ker-
nel/user pipes ® Kernel parameters
Linux o' ® @ e Filesinsysfs e Network protocols
Linux o' ® @ e Filesinsysfs e Network protocols
(AArch64)
NetBSD ® O @ e Kemel tasks
ReactOS O @ O
ToaruOS ® -' @ e Devices list @ Processes’ environment
vxWorks O @ O e Devices’ list @ Open sockets
Windows XP ® O O
Windows 10 o o o

! Not supported by the OS.
Two different types of data structures correctly reference the same seed.

For this comparison, we analyzed 56 Volatility plugins —
which correspond to all available commands after removing
those that do not involve data structures or that operate on
userspace. Out of these, four relied on complex DSs that are
not supported by our prototype (i.e., bit-vectors, hashtables and
n-ry trees).

Of the final 51, Fossil was able to correctly recover all DSs
used by 69% of the Volatility plugins. Starting from those DSs
the plugins perform various types of analysis: some of them
directly extract the required information, while others access
connected auxiliary atomic structs. In all these cases, if the
information was in textual form, Fossil reported it by default
in its output. Other plugins start instead a graph exploration de-
referencing pointers at various offsets, no longer representing
coherent, and therefore identifiable DSs, but only paths in the
set of I' graphs. In this case, Fossil correctly identified the DSs
used as starting points but was not able to automatically extract
the final piece of information. Detailed results are reported in
Table VII in the Appendix.

For the remaining 31% of the plugins, the heuristics we use
to limit the time complexity of our prototype implementation
prevented our tool from recovering the required DSs. For
instance, in 10 cases Fossil failed because the DS did not
contain a sufficient number of pointers to string (3 plugins)
or because it was a list with less than 3 elements (7 plugins).

To our surprise, our OS-agnostic solution was in certain
cases able to outperform Volatility. For instance, (highlighted
cases in in Table VII in Appendix) Fossil was able to recover
the doubly-linked list of the kernel pools required by 7
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Volatility plugins, which however Volatility was not able to
identify. The reason, as explained in Section I, is that tools
that require OS-specific models (i.e., profiles in the Volatility
jargon) may fail when the kernel is configured with an option
not supported by the profile or the plugins system. At a closer
inspection, our Debian image used (by default) the SLUB
kernel pool system, while Volatility’s plugins only supported
the SLAB data structures.

These experiments highlight how tools that use a detailed
knowledge of the internals of the OS can extract information
precluded to our OS-agnostic approach. But it also shows
how small divergence in the shape of atomic structs can com-
pletely blind these tools and preclude them from performing
any analysis. This makes our OS-agnostic approach not only
useful for OSs not supported by rule-based systems, but also
as a complement to overcoming the limitations of existing
solutions.

In a second set of experiments, we compare our approach
with Virtuoso, which is an OS-agnostic forensics tool for
kernel-space memory proposed so far [5]. Virtuoso collects
execution traces of tailor-made test executables running on a
virtualized OS and uses those traces to dynamically generate
signatures to carve kernel DSs from memory dumps. The au-
thors manually created six test executables to extract forensics-
relevant information from the memory dumps of three OSs
which are also present in our dataset: Linux, Windows and
Haiku. By analyzing the execution traces of these test programs
Virtuoso was able to extract: (i) the PID of the process running
and the system time at dump time, (ii) the list of all processes
including their name and PIDs, and (iii) the list of kernel
modules and their names. Excepting the system time and
current PID, which are not represented as data structures and
therefore are out-of-scope for our technique, Fossil is able to
extract the same information from the same OSs.

We remark that our technique has several advantages over
Virtuoso. In fact, Virtuoso requires the analyst to run tailor-
made executables on the target OS, run the OS in a virtualized
environment and trace its entire execution multiple times.
Fossil works instead on a single memory dump that can be
acquired directly even from hardware devices such as phones,
IoT gadgets, printers or network equipment. It also does not
require any interaction with the live machine, nor special
permissions to execute code or the necessity to virtualize them.
Thus, we see Volatility, Virtuoso, and Fossil as complementary
solutions for different tasks. Volatility is the best option for
those limited targets it supports. Adding a new target is
however extremely time-consuming and requires to reverse
engineer the internals of the target OS. Virtuoso is the best
option to assist the development of forensics rules for new
OSs, if and only if the analyst has complete control over it
and can compile and deploy new applications and trace the
entire OS execution. Fossil provides instead a solution to study
raw memory acquired from any class of devices and/or OSs,
without the need to develop custom rules.

The median execution time to extract all DSs among the
14 OSs we analyzed in our experiments is 17 minutes (the
max is 118 minutes for HaikuOS, the OS with the largest
number of pointers) on an Intel Xeon 32-core CPU equipped
with 128GB of RAM. Table VI in the Appendix reports all
individual execution times. Moreover, it is important to note



that this operation only needs to be performed once and does
not need to be repeated each time the analyst wants to explore
recovered DSs. The DS analysis then takes only a few seconds.

Finally, we do not provide an evaluation of the accuracy
of the () function, as the function is an input to our approach
and not a contribution to this paper. In particular, as discussed
in Section V, for our tests we use the function provided by
Oliveri and Balzarotti [15] that, according to the authors, has
no false negatives, i.e., it finds all the existing pointers in kernel
memory. Our technique is then built to tolerate pointer false
positives, which introduce an additional overhead but no errors
in our results.

IX. SEED-LESS DATA STRUCTURE IDENTIFICATION

We now investigate a second, more challenging scenario in
which the analyst is unable to identify any seed information.
In this case, the analysis is completely blind, but our tool can
still automatically identify and reconstruct DSs from the raw
dump. However, without seeds, the analyst has to manually
check the extracted information to locate interesting data about
the running system. To assist in this process, in a seed-less
scenario our system provides a set of OS-agnostic heuristics
to filter and prioritize the number of DSs that an analyst may
need to investigate.

First of all, we continue to hierarchically organize DSs
as discussed in Section V-D, which allows the analyst to
start the exploration from structures that are less likely to be
false positives. We also prioritize DSs that embed (or contain
references to) printable strings, as it is simpler for human
analysts to recognize information in this format and these
structures can serve as entry points to explore other atomic
structs linked to them. Furthermore, for each string or reference
to a string, we require that the number of unique strings is
greater than 50% of the number of referenced/pointed strings:
this process removes fields that contain too many repeated
strings, which are unlikely to be true positives. Then, we
sort the remaining data structures by the mean abundance of
different strings which they embed/point, with the assumption
that very frequent sequences of characters are more prone to
be false positives. Finally, when the system is able to extract
global pointers from the static analysis phase, it also provides
this information to the analyst.

In seed-less mode, the tool provides as output a ranked
list of structures and, for each structure, it shows the address
in memory of its elements and a set of strings that are either
contained or referenced by pointers in the element. Table V
shows examples of the forensics-relevant DSs that we are able
to identify in the different OSs in a seed-less configuration.
Each cell of the table reports the position in the ordered list of
DSs provided by our tool. For instance, the process list was the
2nd in the output of Darwin and the 5th for ReactOS. The “O”
symbol means the tool was unable to retrieve the information
in the seed-less scenario, but it succeeded when seeds were
available (as shown in Table III), while “-” indicates that we
were not able to retrieve it at all. We have been able to identify
all the process lists, the majority of kernel modules and pools
lists and some filesystem-relevant data structures.

It is interesting to note that over 50% of the recovered
structures appear in the top5 positions in the output of our
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TABLE V: Ranking position of various information in the
seed-less analysis results.

Z
=
T & ? =
B % %
0s g g £ 5
Darwin 2 10 11 7
Embox 17 O -
FreeBSD 24 31 - 26
HaikuOS 6 1 11 -
HelenOS 4 2 1 1
i0S 2 - 2 15
Linux 5 28 26 15
Linux (AArch64) 4 22 19 24
NetBSD 2 6 18 O
ReactOS 5 - 12 -
ToaruOS 3 2 3
vxWorks 4 - 2
Windows XP 5 1 2 -
Windows 10 41 @] O O

system, and by checking the top20 candidates an analyst would
be able to discover over 81% of them. This, combined with
the fact that it only takes a few seconds to verify one of the
output DSs, makes our OS-agnostic approach a viable solution
to investigate unknown memory dumps. In fact, with the help
of our tool, an analyst can quickly identify several classes
of relevant information in a completely automated fashion.
Of course, more time is then needed to manually inspect
the memory of those structures to identify auxiliary (non-
string) information, e.g., to discover which other structures are
connected to the process list, which metadata are recorded for
each process, to dump the memory of each process, etc.

It is important to note that in the case of seed-less analysis
any comparison of Fossil with other tools results impossible
because, as far as we know, it does not exist any forensics tool
able to work in so extreme conditions: any information on the
OS, impossibility to instrument/virtualize it and no multiple
dumps availability.

X. RELATED WORK

Other than Virtuoso [5] already discussed in Section VIII,
OS-agnostic data structure recovery, as a particular application
of the more general problem of data reconstruction, was
explored by various authors by using different techniques.

An approach based on multiple snapshots of the memory
of the same process in order to collect information about
the DSs used by the application is explored by Urbina et
al. [22]. SigGraph [10] reconstructs instead the graph of data
structures inside a memory dump of a generic OS, by using
signatures derived from its source code. DIMSUM [9] uses
probabilistic inference to identify instances of a specific DS
by starting from its definition. Lin et al. have also developed
REWARDS [11], which instruments user-space processes only
using Intel PIN, captures the timestamps of each memory
access and reveals their DSs in system-wide memory dumps.
Researchers have also investigated how to create signatures
from binary executables: ORIGEN [6] reconstructs offsets of
atomic data structures by using static analysis on the code
of a previous version of the same kernel, while Case et al [1]



reconstruct the offsets of important Linux structures by directly
analyzing code embedded in the dump itself. Finally, Song
et al in [19] have developed a tool able to generate abstract
representations for kernel objects by using a graph-based
deep learning approach, which requires, however, multiple
dumps of the same OS in order to be trained, undermining
its extensibility to unknown OSs. All previous approaches
always assume that the analyst knows something about the
internals of the OS (access to the source code, definition of
data structure to recover, multiple dumps of the same system in
different conditions etc.), use approximations tailored for the
OS for which they are designed or require to run the OS inside
a hypervisor affecting their applicability in an OS-agnostic
forensic analysis on real devices.

The work most closely related to our study is a technique
recently described in a parallel paper from Tran-Quoc et
al. [21]. The paper focuses mostly on page table reconstruction
for Intel X86, but the authors also describe a use case in which
they use the recovered pointers to identify the list of running
processes in Linux, BSD, and MS Windows given two initial
seeds. While the idea to identify and follow pointers is similar,
that work does not discuss data structure reconstruction, cannot
deal with trees, arrays, or cases in which the process name is
not part of the linked list structure itself, and do not consider
seed-less introspection.

XI.

In this paper, we discussed the problem of extracting data
structures from memory dumps without any knowledge of the
OS that has generated them, by extracting data structures using
only their topological properties. In particular, we have posed
the attention to how the presence of topological constraints
may facilitate the identification of certain types of structures
and, at the same time, allow to order them on the base of the
reliability in their reconstruction. We have discussed how to
limit the problem of false positives due to spurious chains in
the I' graphs. Furthermore, we have implemented heuristics to
estimate the atomic struct sizes, a fundamental step to identify
data embedded/pointed by a certain data structure.

CONCLUSIONS

We have tested our technique in both a seed-based and
a seed-less scenarios, on 14 different OSs. In the first case,
we have shown how, even with only one seed, it is possible
to extract the process list, the kernel module list, the set of
pools, and the information about filesystems used by each OS.
In the more challenging seed-less scenarios, an analyst was
still able to extract 81% of the main data structure considered
in the seed-based approach by exploring only the top 20 data
structures returned by our tool.
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APPENDIX
A. Fast Discovery of Doubly-Linked Lists

As discussed in Section IV-A2, to discover doubly-linked
lists we look for “parallel” chains running in inverse directions:
e.g., if we have a chain connecting structs A, B,C, D, E, we
are looking for another chain connecting the same structs in
the opposite direction: F, D,C, B, A. We do not have a way
to distinguish next from previous pointer, but for our purposes
the two chains are interchangeable—i.e., we care about finding
the skeleton of the doubly-linked list, not distinguishing the
two directions. Doubly-linked lists are fundamental in many
kernels, so we tackled the task of recognizing them with
attention, focusing particularly on minimizing the number of
false negative cases.

The first issue that complicates our task is that we will
not only want to recognize chains whose structural pointers
previous and next have the same destination, but also those
that have a fixed offset between them, suggesting that they
point to different offsets in the same struct.

A further problem we want to address is that, for a given
chain, it is possible that the first = elements do not belong
to the doubly-linked list: they may be non-structural pointers
from other atomic/data structures that ultimately lead to the
doubly-linked lists, we want to recognize while following
pointers at the same offset by coincidence as shown in Figure
3. Hence, for a given chain we also want to test all its suffixes,
i.e., all chains of size 3 or more obtained discarding any
number of its first elements.

The two issues described above make it challenging to
design a fast algorithm to recognize doubly-linked lists. We
solved it by focusing on an invariant that still applies in our
case: if we take the difference between consecutive pointer
locations in two chains composing a valid doubly-linked list,
they do not change depending on the offset they reach in an
atomic struct. In other words, if &x denote the address in
memory of a given atomic struct, taking the difference between
consecutive pointers in an A — B — C' chain will return the
[(¢B-&R), (&C—-&B)] values, irrespectively of the offset in the
struct at where the pointers are located.

Crucially, if two chains are indeed the two “halves” of a
doubly-linked list, taking the same operation of computing the
difference of consecutive pointers on the two halves would
return two lists that have a clear relationship: by inverting one
list and changing the sign of all values, we obtain the other. In
the A — B — C example, for the corresponding C — B —
A we would indeed obtain the [(&B—-&C), (&§A-&B)], which
corresponds to the result of inverting and changing all signs
of the [(&§B-&A), (&C—-&B)] list mentioned before.

Our algorithm is hence based on the above realization:
for each chain c¢ containing pointers pg,pi,-..,Pn, We will
compute two hashes:

hc,O = h([(pl _p0)7 (pQ - pl)a s (pn - pn—l)])a

which is the hash of sequence of the difference between
pointers in it, and

hc,l = h([(pn—l - pn)7 (pn—Z - pn—l)a cee (pO - pl)])7
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the hash of the same sequence after inverting it and changing
its sign. Since we are interested in the suffixes of ¢, we will
apply the same procedure to all the suffixes of ¢, i.e., the chains
containing the pointers p1,...,pn, P2,...,pn etc. Each pair
of chains ¢y and ¢; where h¢, o = he, 1 and he, 0 = hey,1 1S
a candidate doubly-linked list.

Using standard hashing functions to compute these hashes
is computationally expensive because computing all the hashes
for the suffixes of a chain of length n turns out to have
O(n?) computational complexity. In Appendix B we discuss
our design of a specialized strategy to do that with optimal
O(n) computational complexity.

Once the hashes are computed, we now process candidate
pairs. We group chains by matching couples of hashes and,
out of caution, we verify that we did not have hash collisions
(i.e., we verify that all chains have the same length and
are “parallel”: corresponding structs have a constant distance
between them).

We want to assign each chain and each pointer to at
most one doubly-linked list: any candidate chain that will be
processed having a pointer already assigned to another doubly-
linked list is immediately discarded. The longest matching
chains are those that have both the lowest probability of being
false positives and the most informative.

Once we have a candidate chain ¢ = [pg, p1, ... Pn—1], We
consider the smallest distance between its elements ordered by
their addresses. These pointers should be at the same offset of
different atomic structs, so the smallest value of the differences
t = minjey. n(c¢; — ¢;_) is a higher bound for the size of
the atomic structs pointed by c. Among the chains that are
candidate matches to ¢, we take the one at the smallest offset
o from it. If o + o < t, then we consider the two chains to be
a successful match and output them as a doubly-linked list.

B. Bi-Directional Hashes

In the first iteration of our implementation, we found that
the part of the hash computation was a severe bottleneck
because for each list of length » we had to compute 2
hashes for each of its suffixes, for a O(n?) computation
complexity for each chain of length n that turned out to be
untreatable because we often encountered long chains, leading
to expensive computations.

We can state our problem as that of computing, for a list
[ = [vo,...,vn_1] having n elements, all the values such hg ;
and h; ; such that

{ho,i = h([’l}i, Ui+1, e ,’Unfl])
hl,i = h([_vnfla —Unp—2,.-+, _U’i]
for all values of ¢ € {0,1,...,n — 1}, where h is a suitable
(non-cryptographic) hashing function.
We define our hash function to be
n—1
h([zo, ..., Tn_1]) = Z a'z; mod 2%, )
i=0

where a is a constant.’ This function is inspired by rolling
hash functions such as those used in the Rabin-Karp algo-

STn our implementation, a = 6364136223846793005 [8].



rithm [7]. The modulo 2% arithmetic is implemented simply
and efficiently by using unsigned 64-bit integers (and ignoring
overflows).

{

Hence, we can compute all these values simply by starting
with the known value of hg ,—1 and looping back to hg o using

Eq. (3).

For the h;, values, we need to find the multiplicative
inverse of a, that is a=* mod 2%, We can do that using the
extended Euclidean algorithm [8].° Similarly to Eq. (3), we
compute auxiliary values ¢; such that

The hg; values are computed simply by noting that

mod 264

mod 2% Vi€ {n—-2,...,0}.
3)

hon—1 =Un—1
ho,i =vi +a- hoit1

{tnl = —Un_1 mod 264
ti=—v;+a 't mod 2% Vie {n—-2,...,0}.
We finally compute
hii=a""""; mod2% Vie{0,...,n—1}.

It is not hard to verify that values computed in this way satisfy
Eq. (2).

In a further optimization, we recognize that chains can
be “confluent”, i.e., they have a common suffix. When this
happens, we do not recompute the hashes already computed
for suffixes already examined, and we reuse the values hg ;
and ¢; already computed for the common suffix of the chains.

C. Performance Evaluations

TABLE VI: Time required for the extraction of data structures

(o]} Minutes | OS Minutes
Darwin 12 Linux (AArch64) 64
Embox 3 NetBSD 110
FreeBSD 26 ReactOS 11
HaikuOS 118 ToaruOS 3
HelenOS 5 vxWorks 4
i0OS 22 Windows XP 12
Linux 51 Windows 10 24

In our implementation, ¢~ = 13877824140714322085.
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TABLE VII: Fossil’s ability to detect data structures used by
Volatility plugins

|72] |72]
3 - 3 -
= S = )
s £ s £
[ =3 o =3
=3 =3 =3 =3
< = = =
- =3 = =
2 2 2 2

Plugin 2. EZ | Plugin 2

apihooks list_raw®

arp] 1lsmod

aslr_shift2 lsof7

banner? malfind

bash? memmap

bash_env3 moddump

bash_hash3 mount

checkiafinfo] mounticachel’6

check_creds netfilter8

check_evt_arm4 netscan?

che(:k7f0p6 netstat

check_idt2 pidhashtable7

checkiinl'1ne71<ernel2 pkt_queues

checkgnodules1 plthook

check_syscall
check_syscall_arm

proc_maps

4 proc_maps_rb

(X N NN NON N N N NON N NON JoN NoN JoN X NONoX NoX N NONCNoNeoNoN N )
000 0000000000000 000000000000O0OOO0OO0O @
000000000000 00000 0000C0OCFOCF O000O0OCKOCFOCFOSNOSGIN 0
00000 000002000000 000000 00000000000

check_tty procdump
cpuinfo2 process_hollow3
de1’1try7ca1che6 psaux

dmesg5 psenv

dump_map pslist
dynamic_env3 pslist_cache6
elfs psscan2
enumerateifiles(7 pstree
find_file’ psxviewf’

getcwd recover_filesystem6
hidden_modules rout eicache(’
ifconfig® sk_buff_cache®
info_regs slabinfo

iomem’ string58
kerneliopenedifiles8 threads
keyl:)o:;\rd_notifiers8 tmpfs
ldrmodules truecrypt8
library_list vmaicache6
librarydump yarascan2

- Highlighted rows: Fossil can identify data structures that should be used by the plugin
but which are missed by Volatility, see Section VIII for more details.

- @: Fossil identifies only part of the needed data structures.

! Less than 90% of pointed/embedded strings in the data structure.

2 Plugin looks for unstructured data.

3 Data structure in user space.

4 Not applicable on x86.

3 Plugin not working/broken on the analyzed kernel version.

© Based on another plugin that uses data structures (not) identified by Fossil.

7 Use a more complex data structure/data representation not supported by Fossil.

8 Data structure too short to be identified/not present in the dump.



