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Partners have to build a shared understanding of their environment in everyday
collaborative tasks by aligning their perceptions and establishing a common ground.
This is one of the aims of shared perception: revealing characteristics of the individual
perception to others with whom we share the same environment. In this regard, social
cognitive processes, such as joint attention and perspective-taking, form a shared
perception. From a Human-Robot Interaction (HRI) perspective, robots would benefit
from the ability to establish shared perception with humans and a common understanding
of the environment with their partners. In this work, we wanted to assess whether a robot,
considering the differences in perception between itself and its partner, could be more
effective in its helping role and to what extent this improves task completion and the
interaction experience. For this purpose, we designed a mathematical model for a
collaborative shared perception that aims to maximise the collaborators’ knowledge of
the environment when there are asymmetries in perception. Moreover, we instantiated and
tested our model via a real HRI scenario. The experiment consisted of a cooperative game
in which participants had to build towers of Lego bricks, while the robot took the role of a
suggester. In particular, we conducted experiments using two different robot behaviours.
In one condition, based on shared perception, the robot gave suggestions by considering
the partners’ point of view and using its inference about their common ground to select the
most informative hint. In the other condition, the robot just indicated the brick that would
have yielded a higher score from its individual perspective. The adoption of shared
perception in the selection of suggestions led to better performances in all the
instances of the game where the visual information was not a priori common to both
agents. However, the subjective evaluation of the robot’s behaviour did not change
between conditions.
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1 INTRODUCTION

The ability to cooperate and communicate is inherent in human
nature. People can easily share information with others to achieve
common objectives. However, human interactions require a
common ground to succeed in reaching a shared goal
(Thomaz et al., 2019). The lack of this common ground could
cause misunderstanding and mistakes even in simple
collaborative tasks, e.g., when two agents perceive the same
objects differently (Chai et al., 2014). Indeed, between
collaborating agents, even a slight misalignment on the
common ground may be due to different perceptions of the
shared environment. Each agent can have a peculiar perception of
such an environment because of differences in perspective,
sensory capabilities (e.g., colour-blindness) or prior knowledge
(Mazzola et al., 2020).

Despite the different perceptions of a shared environment,
people can naturally interact with each other. Two collaborators
can align on a common ground of beliefs, intentions and
perceptions, ideally maximising both performances and the
shared knowledge. Establishing shared perception aims to
build a common understanding of the environment by
bridging the different individual perceptions. For instance, this
implies revealing what is hidden in the eyes of a collaborator,
annulling perceptual asymmetries. Even when this is not entirely
possible, e.g., the hidden item cannot be uncovered, a partner can
leverage the shared knowledge to reveal something about covered
items to help the collaborator make informed actions. Moreover,
suppose the two partners have a good understanding of the
other’s goals and intentions. In that case, they will also know
how to maximise the shared knowledge, selecting when it is
crucial to reveal the differences in individual information and
when it is more effective to focus only on the shared space.

A crucial aspect of shared perception is perspective-taking
(Wolgast et al., 2020). By taking the point of view of a partner, an
agent can understand the differences between their perception
and that of their collaborators. Furthermore, the ability to
understand partners’ actions as guided by intentional
behaviours and to ascribe to them mental states is called
Theory of Mind (ToM) (Görür et al., 2017). Shared perception
is a pivotal part of ToM because, by combining it with
perspective-taking, an agent can more easily infer the rationale
behind one’s actions and - more importantly - understand that a
collaborator’s unreasonable action could be due to a mismatch
between their perceptions.

From the robotic point of view, shared perception can help
robots infer their partner’s intentions and, taking their point of
view, reason over them and consequently select the most effective
collaborative action. By providing help in establishing a common
understanding of the shared environment between the two
partners, shared perception is particularly beneficial when
human and robotic perceptions are not identical. This might
happen in scenarios where the robot can perceive advantageous
characteristics of the environment that the human collaborator
can not. In particular, considering a one-to-one Human-Robot
Interaction (HRI) scenario, both the human and robot could
benefit from building a ToM of the other and establishing a

shared perception. Considering ToM, the human needs to
translate the robot’s actions in terms of objectives, beliefs and
intentions (Scassellati, 2002), while the robot needs to infer its
collaborator’s mental states (Devin and Alami, 2016) to anticipate
the unfolding of the following actions better. Shared perception is
then fundamental to allow each of the two partners to be aware of
what the other can perceive and which action should be
performed to maximise the potential of achieving such objectives.

Let us imagine a person assembling an Ikea piece of furniture
with their domestic robot. This task needs some tools (e.g.,
screwdrivers, screws, bolts) to assemble the different parts
(e.g., shelves). Each tool has different characteristics that make
it useful or useless to assemble a particular part of the piece of
furniture. The assembling task, per se, can make the environment
very chaotic, given all the building material. This brings possible
obstacles in the person’s perceptual space and could result in
asymmetries in the perception between the two agents. In this
setting, the robot can exploit shared perception by trying to
resolve such asymmetries, verbally communicating the
characteristics of potentially valuable objects, or handing over
the object which is the best according to what it sees and what it
infers about what the human partner is seeing.

The field of HRI has dedicated wide attention to the social
phenomena that constitute the backbone of shared perception,
such as joint attention (Nagai et al., 2003), perspective-taking
(Fischer and Demiris, 2016), common knowledge (Kiesler, 2005),
communication (Mavridis, 2015) and ToM (Bianco and
Ognibene, 2019). In this work, we wanted to investigate how
these mechanisms work in synergy to lead to shared perception
between a human and a robot and what impact shared perception
has on HRI.

Hence, we present a mathematical model for shared
perception, through which a collaborative robot aims at
maximising both performances and the collaborator’s
knowledge about the environment. To test the model, we
asked participants to play a cooperative game with the iCub
robot in a real HRI scenario in which they had to build a tower

FIGURE 1 | A participant and the robot iCub performing the task.
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with LEGO bricks (Figure 1). During the task, the robot could
either leverage shared perception principles (SP) or just aim at
maximising the overall task performance (NSP).We designed our
experiments to create specific critical moments—the
conflicts—characterised by a mismatch between participants’
and robot’s perceptions.

The following sections are organised as follows: Section 2
presents an overview of related works; Section 3 describes the
mathematical model, the experiment and the software
architecture; Section 4 concerns the experimental results. The
last two sections are dedicated to discussion and conclusion.

2 BACKGROUND AND RELATED WORKS

Shared perception is a complex mechanism, that entails a range of
social skills. A robot, to establish shared perception, would need
the awareness that the collaborator could have a different
perception and should also be aware of which are those
differences, e.g., what parts of their perceivable environment
are hidden to its partner. Furthermore, it would need to know
the other’s goal and its relation to the objects in the environment.
Last, the robot should estimate how the partner understands its
own behaviour to provide communications that the collaborator
can effectively understand and enact.

One of the fundamental mechanisms of the understanding
that others might perceive the world differently is Perspective-
Taking (PT). PT is “a multifaceted skill set, involving the
disposition, motivation, and contextual attempts to consider
and understand other individuals” (Wolgast et al., 2020). As
well as humans, a robot can infer humans’ perception through
mechanisms of PT: it has been proved that PT also improves
action recognition performances (Johnson and Demiris, 2005;
Johnson and Demiris, 2007). Therefore, algorithms for PT in HRI
have been proposed to disambiguate whether an object is visible
to people facing the robot, using just their head pose (Fischer and
Demiris, 2016). Moreover, several PT-based architectures have
been proposed to estimate where a person will execute a future
task (Pandey et al., 2013), to then produce proactive and
collaborative behaviours. Other contexts in which PT has been
investigated are the military field (Kennedy et al., 2007), where
the robot used those mechanisms to understand if it was visible to
an enemy or in human-robot teaching scenarios (Berlin et al.,
2006; Breazeal et al., 2006). Several works showed that PT is
beneficial to disambiguate both things and circumstances (Ros
et al., 2010), such as tools and commands (Trafton et al., 2005a;
Trafton et al., 2005b). Hence, we can use PT mechanisms to “put
ourselves in one’s shoes” so that we can understand their point of
view and build a common ground on which to base an efficient
collaboration (Brown-Schmidt and Heller, 2018). In this study,
we focus on visual PT, which is the ability to see the world from
another person’s perspective, taking into account what they see
and how they see it (Flavell, 1977).

To better align the perspectives of two or more collaborating
agents, we need that all of them build a reliable Theory of Mind
(ToM) of the others (Marchetti et al., 2018). This means that, in
addition to perception, partners have to base their interaction also

on shared knowledge: at least, they need to know what the other
agents already know so that they can easily anticipate others’
actions (Winfield, 2018). Several works in robotics and HRI took
inspiration from other fields such as psychology and philosophy
tomodel ToMs for robots. For example, Scassellati, (2002) discuss
the theories presented in (Baron-Cohen, 1997) and (Leslie et al.,
1994) on developmental ToM in children to build robots with
similar capabilities. Rather, more recent works implement ToMs
through a Bayesian model (Lee et al., 2019) to best solve human-
robot nonverbal communication issues. In HRI, it has been
shown that people appreciate robots that show ToM-like
abilities as teammates for their ability to identify the most
likely cause of others’ behaviour (Hiatt et al., 2011). This is
also because people perceive such robots as more capable of
aligning themselves to persons by fully recognising their
environment (Benninghoff et al., 2013). Moreover,
developmental human-inspired ToMs have been presented to
enhance the quality of the HRI itself: e.g., in (Vinanzi et al., 2019),
the authors modelled the trustworthiness of the robot’s human
collaborator using a probabilistic ToM and a trust model
supported by an episodic memory system.

The gaze plays a pivotal role in facilitating the understanding
of others’ goals and enabling intuitive collaboration. Gaze
movements have been proved to be very helpful in
collaborative scenarios (Fischer et al., 2015). Pierno et al.
(2006) observed the same neural response in people observing
someone cueing an object and in people observing someone
reaching an object to grasp it: gaze cues are a powerful
indicator of people’s intentions. People are sensitive also to
robot gazing when this signal is directed at an object in the
environment. It has already been proved that people predict
which objects to select using referential gaze cues from robots,
even if they are not consciously aware of those cues (Mutlu et al.,
2009). Indeed, through gaze cues, a robot could highlight parts of
the environment, thus providing information about its
perception (Fussell et al., 2003). Several studies proved that
people are very good at identifying the target of partners’
referential gaze to use this information to predict their future
actions (Staudte and Crocker, 2011; Boucher et al., 2012). When
people refer to objects around them, they look at those objects
before manipulating them (Griffin and Bock, 2000; Hanna and
Brennan, 2007; Yu et al., 2012) and when partners refer to objects,
people use their gaze to predict their following intentions to
quickly respond to the partner’s reference (Boucher et al., 2012).
In fact, with little information about the partner’s gaze, people are
slower at responding to their partner’s communication (Boucher
et al., 2012). Moreover, objects that are not related to a task are
rarely fixated (Hayhoe and Ballard, 2005). In sum, beyond
implicitly revealing an agent’s future intentions, gaze
movements can be an effective form of nonverbal
communication (Rea et al., 2016; Admoni and Scassellati,
2017; Wallkotter et al., 2021).

So far, the used approach in PT studies focused on the
disambiguation of tools and commands to help the artificial
agents build a common ground with their collaborators. With
the current work, we want to move forward in using such
mechanisms by considering robots capable of sharing
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information gathered from their own perspective but
communicated by taking into consideration both the
perspective of their human partners and the shared
knowledge. Through shared perception mechanisms, we aim
to go further in this approach by building a model that can
enable robots to autonomously resolve situations characterised by
asymmetries between their perception and one of their
collaborators.

In the current work, contrary to what is already present in the
literature about asymmetries in perception in HRI (Chai et al.,
2014), we underline how the issue of creating a common ground
also applies to interactions not mediated by language. Even in
scenarios where the action possibilities are constrained, and the
goal of the task is clear, the mismatch in perception requires a
communicative effort to establish a shared understanding. We
show that this can also be achieved with non-verbal signals.

For this purpose, in this paper, we provide a mathematical
model that supports shared perception-based decisions for a
robot helper in a collaborative task. We assess task
performance and interaction experience when this model
guides the robot hints. We compare them with interactions in
which robot behaviour is driven just by the goal of maximising
the task score.

3 MATERIALS AND METHODS

3.1 The Mathematical Model
The mathematical model for collaborative Shared Perception
(SP) adopts a formulation taken from the theory of sets and
probability. The elements that characterise the model are
presented in a general and abstract way so that they can be
instantiated depending on the circumstances. In particular, the
model manipulates concepts such as objects, environment,
personal/common perception and awareness. Here, we do not
provide examples of instantiating those concepts, but later in this
section, we discuss how we did it for our experiment.

The model considers only one-to-one interaction; thus, we
always have an agent (a1) aiming to share their perception with
another agent (a2). In this work, we consider a1 as a robot and a2
as a person. The model’s core is a sort of common knowledge
between the two agents that we call “common awareness”. In
particular, a1 exploits elements belonging to this common
knowledge to give insights about elements in its individual
perception. Hence, the model’s objective is to enable robots to
exploit SP mechanisms. For this purpose, it aims to maximise
partners’ awareness of objects they can not perceive by using
elements belonging to the common ground already established.
In particular, the model tries to share its individual perception
with the partner, choosing the elements of common awareness
that it could most appropriately exploit. In this sense, our model
is about decision-making and not just communication.

To present our model, we need first to define its elements. We
define the environment X = {x: xis an object} as a finite set of
objects. Thus, we adopt a closed world formulation: everything we
consider belongs to the environment.

Moreover, we define an object x ∈ X as a finite set of
characteristics, as follows: x = {c1, . . . , cn: ciis a
characteristic∀i = 1, . . . , n} where, for characteristics, we
mean features such as colour, shape, etc. An object’s
characteristic have to be instantiated, i.e. if c1 refers to the
object’s colour, we could have x = {c1 = blue, . . . }.

Moreover, an agent couples all these characteristics with a
probability distribution describing the agent’s degree of certainty
on each characteristic’s instance. Thus, from the agent a’s point of
view, the object x is a set of pairs where, to each object’s
characteristic, it is associated with a probability distribution
over the set of all its possible instances:
x � {(c1,Prxa), . . . , (cn,Prxa)}. The probability distribution
functions associated with the objects’ characteristics can be
derived from the task rules if the collaborative task is
constrained. For example, the agent a associates to the
characteristic “colour,” let us say c1, of the object x a
probability distribution Prxa over the set of all the possible
instances, let us say blue, red and black. Assuming that x is
blue, if a knows that x is blue, then we would have
Prxa(c1 � blue) � 1; on the other hand, if a has no information
about the colour of x, then we would have Prxa(c1 � blue) � 0.33,
Prxa(c1 � red) � 0.33, and Prxa(c1 � black) � 0.33. The implicit
assumption is that the objects belonging to the environment do
not change over time.

With the elements described above, we can define the
Personal Perception of the agent a, Pa = {x ∈ X: the
agentacan perceivex} as the finite set of the objects belonging
to a’s perception. From the definition of Pa follows that Pa ⊆ X for
each agent a. The definition of personal perception depends on
the agent’s capability: i.e., if the agent a is a robot equipped with
only a camera, then Pa refers to the object the robot can see
through its camera.

Similarly, we define the Awareness Space of the agent a,Wa =
{x ∈ X: ais aware thatx ∈ X} as the finite set containing the objects
of which a is aware. We characterise the setWa as follows: ∀x ∈ X,
if x ∈ Pa0x ∈Wa for each agent a. Thus, it follows that Pa ⊆Wa ⊆
X for each agent a.

We say that the agents a1 and a2 both perceive the object x if ∃x
∈ X: x ∈ Pa1 and x ∈ Pa2. As well, we say that the agents a1 and a2
are both aware of the object x if ∃x ∈ X: x ∈ Wa1 and x ∈ Wa2.
Thus, we define the Common Perception between the agents a1
and a2 as follows: Pc

a1 ,a2
� Pa1 ∩ Pa2. Similarly, we define the

Common Awareness between a1 and a2 as follows:
Wc

a1 ,a2
� Wa1 ∩ Wa2. Hence, from the characterisation of W,

we have that if x ∈ Pc
a1 ,a2

0x ∈ Wc
a1,a2

.
A SP communication from the agent a1 to the agent a2

(a1 ������→ SPa2) aims to maximise the knowledge of a2 of the
objects belonging to the personal perception of a1, Pa, that do not
belong to the awareness space of a2, Wa2. To achieve this
objective, SP exploits the common characteristics between
objects belonging to a1’s personal perception and those
belonging to a1 and a2’s common awareness. Thus, we say
that the SP is possible if the following condition occurs:

∃x1 ∈ Pa1 so thatx1 � {c, cm, . . . , cn}
∃x2 ∈ Wc

a1 ,a2
so thatx2 � {c, cl, . . . , ct}{
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(where m, n, l, t ∈ N). In other words, if the object x1,
belonging to the personal perception of a1, shares at least one
characteristic with the object x2, belonging to the common
awareness of the two agents, then it is possible to
communicate such common characteristics to give insights
about x1. If this precondition is respected, we have that
∃f: Wa1 ↦ Wa2 and ∃x̂1 ∈ Wa2 so that f(x1) � x̂1: c ∈ x̂1. It
means that x1 is approximated by a2 with the object x̂1 that
contains the characteristic c that a1 shared through its
communication. The goals of the task influence the target of
the communication. In the current model, we assume that such
objectives are common between the two agents because of their
collaboration.

The objective of the SP is to maximise
Prxa2(c � actual_c_value), thus to minimise a2’s degree of
uncertainty about such a characteristic. In the best case, when
this uncertainty becomes zero because of a1’s communication, a2
can be sure of the value of c: it means that
Prxa(c � actual_c_value) � 1. This way a1 makes x̂1 less and
less approximated and, once a1 can communicate all x1’s
characteristics, or once a2 can infer all of them, we have
x̂1 � x10x1 ∈ Wa20x1 ∈ Wc

a1 ,a2
. However, it is not always

possible to make x̂ collapse on x because it depends on both
the agent’s communication capabilities and context. In general,
the objective of the shared perception a1 ������→ SPa2 on the
object x is:

∀ci ∈ x, max Prxa2(ci � actual_ci_value).
In most cases, it is not necessary to cancel the uncertainty or

communicate all the object’s features. Most importantly, we need
to communicate the essential characteristics for the goal and
improve the probability of having the right information so that
the partner can make the right decision. From our formulation,
follows that if ex ∈ Wc

a1,a2
0 it is not possible to do shared

perception.
We point out that one of the main preconditions for a good

functioning of the model is that both the robot and human are
capable of using recursive ToM (Woodruff and Premack, 1978;
Arslan et al., 2012). In short, recursive (or second-order) ToM is
the ability to reason over the others’ estimation of our ownmental
states. People are good at using recursive ToM with their peers
(e.g., in strategic games (Goodie et al., 2012)) and recently de
Weerd et al. (2017) proved that they spontaneously use recursive
ToM also with artificial agents when these latter are capable of
second-order ToM as well. Without recursive ToM, the robot
could not assume that the human is aware of its own knowledge
about the partner’s difference in perception. At the same time, the
human could not make sense of a robot’s suggestion, without the
awareness that the robot has a model of what that person
perceives. Hence, the proposed model would not be effective
without recursive ToM, as the selection of the most informative
characteristic, and of how to communicate it, rests on the
assumption that both agents entertain such understanding of
each other. More in general, without recursive ToM a robot could
not exploit at its best the everyday awareness it builds with its
human collaborator. Moreover, both the robot and human would
be weakly aligned (or, even worse, not aligned at all) on beliefs,
desires and intentions.

3.2 The Experiment
We asked participants to build a tower with a maximum of five
LEGO bricks by picking them among the ones available on the
table in front of them. The bricks had different colours: we
associated a score with each colour (Table 1). Participants
could put a brick on the tower’s top on each round, but only
if its value was less or equal to the brick previously on top. The
game ended when the tower was complete; i.e., either after five
rounds or when all the available bricks had a higher value than the
one on the top. The goal of the game was to maximise the score of
the tower. The experimenter explained the rules before task
initiation, underlining the importance of maximising the score
of the tower.

Figure 1 shows the experimental setup. Both the participants
and iCub sat at a table, facing each other during the experiment.
On the table, there was a sheet of paper reporting the values of the
colours (Table 1), eight coloured bricks and four obstacles. The
obstacles were little constructions that could hide a brick. Because
of these, the iCub could not perceive two bricks, while the
participants could not perceive the other two. Then, there
were other four bricks that both iCub and the participants
could see.

The task was presented as a collaborative game with the robot.
The participants were the builders: they have to physically take
one brick at a time from the table and insert it on the top of the
tower. Instead, the robot was the suggester: it could suggest which
brick to take.

Each round of the game was structured in three distinct
phases: i) the inspection, ii) the communication and iii) the
action. The inspection phase i) had a fixed duration of
15 seconds. During this period, the participants should inspect
the table to choose a candidate brick to put on the tower during
the action phase. In the communication phase ii), the robot
provided its suggestion by looking at the brick it wanted to
propose to the partner. We told participants that, during the
second phase, they would expect a suggestion from the robot,
which was collaborating with them. Three seconds after the
robot’s gaze motion, an acoustic signal informed the
participants of the beginning of the action phase iii). In this
latter phase, the participant chose, picked up a brick and
positioned it on the tower. At the beginning of this phase,
iCub stared at the tower under construction. Once the
participants placed the brick on the tower, the robot inspected
the table with its gaze. We limited the communication between

TABLE 1 | The list of colours, and their values, that participants could consult
during the experiments.

Colour Value

Pink 3
Orange 4
Blue 4
Yellow 6
Black 6
Green 8
White 10
Red 10
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the participants and the robot to keep the interaction as
minimalist as possible: indeed, we allowed them to use only gaze.

We choose the bricks’ configurations to force critical moments
(conflicts), where the selection of the best brick was different
considering the personal views of the two agents. We ran a series
of task simulations to find the configurations that maximised
such differences. Once found, we selected two; then, we created
the other two configurations by replacing some bricks with ones
of a different colour but equal value. Thus, the participants had
the feeling of playing with four different configurations; however,
they played with only two configurations. This way, each
participant could perform the task with both robot’s modes
(SP and NSP—see description below) in both bricks’
configurations. This simple expedient allowed us to present
the same conflicts, for each condition, to all participants. In
particular, we performed a within-subject user study so that
each participant could face both the experimental conditions.
Figure 2 shows the configurations we used: the configuration in
Figure 2A was equivalent to the one shown in Figure 2B; the
same applies to Figure 2C and Figure 2D.

Participants did not know a priori which sets of brick colours
were present in each session. In addition, Table 1 also shows pink
as a possible brick colour, corresponding to the lowest value of all,
but none of the configurations had pink bricks. We added such a
colour to avoid settings where participants could know a priori
that the bricks visible to them corresponded to an overall
minimum value.

Before each session, we told the participants that they would
interact with a robot powered by a new program, so it would be
like interacting with a different robot. In both conditions, the
robot had the same knowledge of the environment—the position
of the bricks it could see (i.e., not occluded to it) and their

colour—and it used the exact internal representation of the task.
Regardless of the robot mode, iCub always suggested one of the
most valuable bricks to maximise the tower’s value.

The difference between SP and NSP behaviours was in the
order of the suggestions in case of multiple best options from the
robot’s perspective (e.g., during the conflicts). The SP-iCub,
following the shared perception model, hinted at the bricks
which would maximise the information about the relevant
properties of the bricks hidden to participants. On the other
hand, the NSP-robot suggested the bricks following its internal
representation of the task (see Section 3.2.1.1), without taking
into account the perspective of its partner. In the current
experiment, such internal representation actually led the robot
to behave in the conflicts in opposite ways in the SP and NSP
settings. This way, we ensured the maximum difference between
the two robotic behaviours.

All the participants had to perform four trials, one for each
configuration of the bricks: during one session of two consecutive
trials, they had to interact with the SP-robot and, during the other
two consecutive trials, with the NSP-robot. We counterbalanced
the order of the presented setups and the robot mode.

Before and after each experiment, we asked participants how
many bricks they thought the robot could see, how many they
could see, and how many bricks they thought were on the table.
All participants answered that there were eight bricks on the table
(during the instruction, we told them that there was a brick
behind each obstacle), that they could see six of them, and that
also iCub could see just six bricks. Thus, at both the beginning
and the end of the experiments, participants understood that
iCub could not see certain bricks. In our setup, we assumed that
participants would accept the robot’s suggestions as the best
options from its point of view. As we ensured after the

FIGURE 2 | The four bricks’ setups used in the experiments. Setups (A,B) and (C,D) are equivalent, respectively, meaning that, even if it seems that they are
different, they include bricks with the same value in the same position (red and white bricks, and black and yellow ones have the same value).
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experiments, all participants perceived the robot’s gazing as
suggestions to take those bricks; they also reported to us that
they assumed it behaved like that based on the colour of the
bricks.

Familiar situations that reflect the mechanisms of our task are
competitive team card games. In a card game, each player has
both private individual perception (the cards in their hand) and a
common perception with the others (the cards on the board). In
team-based games, people in the same team aim tomaximise both
the chances of victory and partners’ knowledge of the cards in
their hands. We want to take as an example the game of
“Briscola”1: a famous Italian competitive turn-based card game
involving two teams, each consisting of two players. Here, players
have to discard one card per turn, and both value and seed of the
cards determine which team scores points. During the game, the
partners try to inform each other of their private cards by
strategically selecting which cards to discard. The game rules
forbid players to inform the partner about the cards in their hand
directly; thus, they have to play aiming at maximising both the
probability of winning and the possibility for the partner to infer
their cards. In our experiment, the SP-robot acted with this
double aim, while the NSP-robot played only with the first
objective.

3.2.1 The Experimental Software Architecture
To perform our experiment, we developed a software architecture
composed of three main modules: the knowledge module, the
communication module, and the reasoner.

3.2.1.1 The Knowledge Module
The knowledge module aimed to manage the knowledge base;
also, it provided information to the reasoner. The knowledge base
was defined once at the beginning of the experiment and updated
online after each move. It maintained a graph to represent the
task and a stack to represent the available bricks. The stack stored
the bricks in decreasing value order to consider them in such
decreasing order: it maintained only the bricks that the robot
could perceive. In the stack, the bricks with the same value
respected their positioning order on the table. Moreover,
through the graph, the robot could track the task’s progress
and the next possible moves. The graph’s vertices represented
the bricks on the table, while the arrows represented the possible
moves: the vertex i had an arrow towards the vertex j if and only if
it could stack the brick j after the brick i. According to
participants’ choices, both the graph and the stack were
updated during the task.

3.2.1.2 The Communication Module
The communication module mainly aimed at sending commands
to a control module that accounted for both robot’s neck and eyes
kinematics: the iKinGazeCtrl module (Roncone et al., 2016). It
combines those independent controls to ensure the convergence
of the robot’s fixation point on its target. The iKinGazeCtrl
module allowed the robot to have biologically inspired

movements: this makes the robot’s movements more natural.
We used a combined approach because eye-based estimation of
the observed location has been proven to be much more
informative than head-based one, at least for human
observations (Palinko et al., 2016).

3.2.1.3 The Reasoner
The Reasoner aimed to guide robot behaviour by collecting
information from the Knowledge Module, reasoning over
them and then deciding the robot’s actions. In particular, it
gathered from the Knowledge Module information about the
possible next moves, the available bricks on the table, and what
bricks were visible from its own perspective. We provided a priori
this information to the robot. By exploiting this information, the
reasoner knew what brick the robot should indicate to
participants at each moment of the task.

In particular, in NSP mode, the reasoner used the following
heuristic: it indicated the brick currently on the top of the
knowledge base’s stack (according to the task’s rules). Such a
brick was always one of the bricks with the higher value among
those the robot could perceive (compared to the one currently on
the top of the tower, since we designed the reasoner so that it
would follow the game rules). Thus, in NSP mode, the robot
considered only its perspective and task rules.

On the other hand, in SP mode, the reasoner had a more
complex approach, also considering the collaborator’s
perspective. Instead of considering only the brick on the
top of the knowledge base’s stack—the candidate brick—it
also reasoned on the bricks perceivable by both the robot and
participants. If the second brick on the stack had the same
value as the one on the top, then a conflict may have
occurred: thus, the reasoner asked for information from
the knowledge base to understand that. If it was not the
case, the reasoner decided to behave as in NSP mode. In the
former case, the reasoner picked the brick to indicate based
on the SP model described in Section 3.1, aiming at
minimising participants’ uncertainty about the relevant
properties of the hidden brick.

3.2.2 Conflicts
We designed our experiments to elicit two critical moments for
each task: the conflicts. During the conflicts, there was a mismatch
between participants’ perception and the robot’s since the best
brick was hidden from the robot’s view or the participants’. This
mismatch could lead to different brick choices because some
important information was unavailable to one of the two agents
involved. We designed three types of conflict: the Main Conflict,
the First Brick Conflict, and the Mid-Game Conflict.

3.2.2.1 The Main Conflict
The main conflict occurred in both the setups toward the end of
the task: participants faced this type of conflict during each
session, for a total amount of four main conflicts per
participant. Figure 3 (right) shows an example of the bricks
configuration during this conflict. Since this conflict was
practically identical in both of the setups, here we present only
the configuration of the first one.1https://en.wikipedia.org/wiki/Briscola.
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The main conflict presented a situation where the robot could
not see the best choice (the yellow bricks, G and E), which were
instead visible to participants. At the same time, only the robot
could see what lay behind the occlusion (C, the blue brick). This
represented the second-best choice for the participant but one of
the best choices in the robot’s view (together with the other blue
brick D, visible to the participant as well).

This conflict yielded two different hints for the SP-based robot
and the NSP-based one. At that step of the game, participants had
a high degree of uncertainty about the colour of the covered blue
brick (C). Based on the participants’ point of view, it could have
been green, black, yellow, blue or orange because, at this point of
the task, the last brick taken was green. The robot did not suggest
that covered brick yet; thus, it could be the same colour as the last
brick taken (or one of the colours with a lower value than green).
Thus, to the brick C, which is the x̂ of this conflict, the
participants associated a uniform probability distribution over
the colours listed above.

The shared perception model aims at minimising the
participants’ uncertainty about the covered object’s
characteristics. Following the model, the SP-robot indicated

the blue brick visible to both agents (D). Indeed, the robot
revealed that it could not perceive anything better than a blue
brick: the covered brick C had necessarily a lower or equal value
than the brick D: it could only be blue or orange. Pursuing the
same uncertainty minimisation goal, if participants took D, iCub
indicated the other blue brick (C) in the next move. Otherwise, if
they took one of the yellow bricks (E-G), it indicated the visible
blue (D) again. On the other hand, during NSP sessions, the robot
decided only on its own knowledge and data structures,
indicating at first the blue brick (C), which was hidden from
the participants’ view. If participants took it, iCub then indicated
the other blue brick (D); otherwise, if they took one of the yellow
bricks (E-G) or the visible blue one (D), it then indicated the
hidden brick (C) again.

3.2.2.2 The First Brick Conflict
This conflict occurred at the beginning of sessions based on the
first setup; this means that each participant faced twice this type
of conflict. The bricks’ configuration related to this conflict is
shown in Figure 4 (right). As we can see from the figure, the core
of the conflict was the red brick covered to the participants but

FIGURE 3 | Average and standard error of the Main Conflict’s covered brick taking percentage. In this case, the covered bricks were the E and G ones.

FIGURE 4 | Participants’ score in both SP and NSP conditions during the conflicts. (A) is referred to the Main Conflict, (B) to the Mid-Game Conflict, and (C) to the
First Brick Conflict. We applied a Gaussian random noise (μ = 0, σ = 0.05 on both the x and y axis) to make all of them visible. It is also shown the average score with
standard error.
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visible to the robot (F). The red colour corresponds to the highest
value on the scale, representing one of the best choices to start a
tower. At the beginning of the task, the brick F could be of any
colour with the same probability. Thus, if we assume that the
brick F was the x̂ of this conflict, the participants associated a
uniform probability distribution over all the colours reported on
the list.

In the SP condition, the robot followed the model and selected
the hint aimed at minimising the participants’ uncertainty about
the covered object’s characteristics by leveraging on the
characteristics of the objects visible to both the participant and
itself. Hence iCub indicated it (F) at first to reveal that the covered
brick F could not be worse than the visible red brick (A), which
means that it could be only either red or white (corresponding to
the same value). If participants took that brick in the first round,
iCub then indicated the visible red brick (A); otherwise, if
participants took at first the visible red brick (A), it then
indicated the hidden brick (F) again. Instead, during the NSP
sessions, the robot indicated the red brick visible to both (A)
firstly and afterwards it indicated the hidden red brick (F).

3.2.2.3 The Mid-game Conflict
This conflict occurred in themiddle of game sessions based on the
second setup; this means that each participant faced twice this
type of conflict. An example of the bricks configuration during
this conflict is shown in Figure 5 (right side). The core of the
conflict was the green brick (M), hidden to the participant but
visible to the robot. The colour green was associated with the
highest value available on the table in that portion of the game. At
this point of the game, participants had a high uncertainty about
the colour of the covered green brick M: from the participants’
perspective, it could be red, white, green, black, yellow, blue or
orange.

The robot, guided by the SP model, aimed to inform
participants that there was something interesting that they
could not see. Hence, iCub indicated at first the green brick
(M) hidden to the partner. This way, the robot revealed that the
covered brick M was equal to or better than the visible ones,
which means that it could be either red, white or green. The robot
minimised the participants’ uncertainty about the covered

object’s characteristics through its communication signal. If
participants took it, iCub then indicated the other green brick
(N) visible to both; otherwise, if they took the visible green block
(N) in the first round, iCub then indicated the hidden one (M)
again. On the other hand, during NSP sessions, the robot
indicated what looked best from its viewpoint, irrespective of
the human point of view. In particular, it first indicated the green
brick visible to both (N) and then the hidden green brick (M).

3.2.2.4 Step-by-step Task Simulation
For clarity, we provide here a simulation step by step of a session
with the robot in both conditions. For simplicity, in these
simulations, we consider that the participants always follow the
robot’s suggestions. We start from the SP-robot and the bricks setup
1 (Figure 2). First, we encounter the configuration of the First Brick
Conflict. Thus, the robot would suggest the brick F. Due to the
presence of the brick A in the robot and the participant’s shared
perception; such a suggestion shows that the brick F (with a value of
10) is better (or no worse) than the brick A (with value 10) because
otherwise, the robot would have suggested this latter. Then, the robot
would suggest brick A, which is the best choice from its perspective.
Then, it would suggest the bricks B and H (both with value 8) for the
same reason. Finally, the configuration of the bricks becomes that of
theMain Conflict. In this case, the robot would suggest the brick D:
such a suggestion shows that the brick D (with a value of 4) is better
(or noworse) than the brick C (with a value of 4), which is covered to
the participant. This concludes the session. Now, we move to the
NSP behaviour using the same setup. First, the robot would suggest
brick A (with a value of 10), which is one of its best choice and the
first brick according to its internal representation. Then, it would
suggest the bricks F (with a value of 10 but covered to the
participant), B, and H (both with a value of 8) in this order for
the same reason. Lastly, the robot would suggest the brick C (with
value 4), which is one of the best choices from its perspective and the
first one according to its internal representation of the task but
covered to the participant.

3.2.3 Pilot Experiments
Before running the experiments with the robot, we performed a
pilot study with eight colleagues in a human-human

FIGURE 5 | Average and standard error of the First Brick Conflict’s covered brick taking percentage. In this case, the covered brick was the F one.
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configuration. One participant took the role of suggester, while
the other took the builder’s role. The pilot aimed to study the
nature of the signals used by people in exploiting SP mechanisms.
Before starting the task, we asked participants to use only
nonverbal communication.

Through videos, we noted that all participants used gaze cues
to indicate the objects: sometimes, a movement with the eyebrows
followed the gazing. The suggesters tried to attract the other
participant’s attention by establishing eye contact; then, they
gazed at the candidate brick. At the end of this gazing
exchange, the builders followed the suggesters’ hints.
Sometimes, especially in the first trials, the builders asked for
a confirmation by pointing or gazing at the object they wanted to
take. The suggesters attempted tomake the builders aware of their
hidden bricks in every trial.

3.3 Participants
We had 22 participants (9 males and 13 females) with an average
age of 26.5 years (SD: 7.8). Two participants failed to understand
the experiment instructions (i.e., did not choose the highest
valued brick as the first element of a tower) and were
therefore discarded from the analysis. All participants gave
written informed consent before participating and received a
fixed refund of £15. The experimental protocol was approved by
Regione Liguria’s regional ethic committee.

3.4 Measures
During the experiment, we collected some behavioural measures
such as the participants’ score, the number of times participants
followed the robot’s hints, the time needed to take a brick
(calculated as the time between the beginning of the action
phase and the grip of the brick), and what bricks the robot
indicated. In particular, we focused on the conflicts where the
mechanism of shared perception could have had an impact.

3.4.1 Questionnaires
We submitted questionnaires to participants before the beginning
of the experiment and after each interactive session with the
robot. Before the experiment, we asked participants to reply to the
Seventeen-Item Scale for Robotic Needs (SISRN) questionnaire
(Manzi et al., 2021). We chose the SISRN questionnaire to know
what participants thought about generic robots’ capabilities.
Furthermore, both before the experiment and after each
experimental session, we submitted to participants the
Godspeed (Bartneck et al., 2009) and the Inclusion of Other in
the Self (IOS) questionnaires (Aron et al., 1992). The
questionnaire web page contained a video of the iCub robot2:
we showed it to participants to provide them with enough
information about the robot before a real interaction with it.
The Godspeed questionnaire was chosen to collect participants’
impressions about robot’s anthropomorphism, animacy,
likeability, and perceived intelligence before and after the
interactive sessions. The IOS questionnaire was used to

understand if participants felt closer to the robot in some of
the two experimental conditions.

4 RESULTS

The collaborative game with the iCub robot was characterised by
perceptual asymmetries between the human-builder and the
robot-suggester. This asymmetry was particularly critical in
certain choices during the game (the conflicts, see Section 3),
where the best brick to take could differ between the two agents’
perspectives. We focus our analysis on these specific moments in
the game: the Main Conflict (Section 3.2.2.1), the First Brick
Conflict (Section 3.2.2.2) and the Mid-Game Conflict (Section
3.2.2.3), to assess the impact of the robot’s suggestions to the
partner, when they are based on a shared perception mechanism
(SP) or not (NSP). The former considers the brick visibility to the
human in selecting which brick to suggest, whereas the NSP-
robot just relies on its internal representation of the task.

First, we checked whether the configuration of the bricks
affected participants’ performances. For this purpose, we split
the total scores obtained in each bricks’ configuration for each
robot mode. We conducted paired t-tests and we found no
significant differences between the scores obtained with the
two setups, with the robot in SP mode (paired t-test t (19) =
−0.567, p = 0.578); and in NSP mode (paired t-test t (19) = 0.837,
p = 0.413)).

4.1 The Main Conflict
Figure 3 (left) shows the average percentage of time participants
picked one of the yellow bricks (either E or G)—covered to the
robot’s sight. These corresponded to the best choice for the
participant, as these bricks had the highest value. During the
SP sessions, more than 80% of the participants took a yellow
brick; conversely, only 40% of the participants took one of the
current best bricks during NSP sessions (μsp = 84.21, SEsp = 5.99;
μnsp = 38.09, SEnsp = 7.58). Instead, they took the brick iCub was
indicating them: the blue brick C. The difference between the two
conditions is significant (two-tailed z-test, z = 2.21, p = 0.02).

There was no difference in the time employed to pick the brick
in the two conditions. The timing was computed only for
participants who picked the covered block, hence on the
percentages of participants reported in Figure 3. Figure 4A
shows the scores of participants collected during the Main
Conflict in both the experimental conditions. As we can see
from the plot, around 40% of the participant scored more during
SP sessions than during the NSP ones.

4.2 The First Brick Conflict
Figure 5 (left side) shows the percentage of times in which
participants picked the brick covered to them (F). As we can
see from the figure, during the SP sessions, participants resolved
the conflict properly almost all the time: more than 30% of the
time took the brick F as their first move (μsp = 31.57, SEsp = 5.4),
and around 65% of the time took it as their second move (μsp =
63.15, SEsp = 5.6). The remaining 5% of the time, participants did
not take the brick F; instead, they preferred to take a green brick.2https://www.youtube.com/watch?v=3N1oCMwtz8w.
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All the participants who did not take the brick F firstly during the
SP sessions took the brick A as their first move. On the other
hand, during the NSP sessions, nearly 50% of the time,
participants could take the brick F (μnsp = 47.61, SEnsp = 5.7)
While the remaining have opted to take a green one. All
participants took the brick A as their first move during the
NSP sessions. The difference between the two conditions is
significant (two-tailed z-test, z = 3.81, p < 0.001), while the
difference between the percentage referred to the covered brick
taken at move two was not.

Also, there were no significant differences in the time
employed to pick the hidden brick between conditions for this
conflict. Figure 4C shows the scores participants collected during
the First Brick Conflict in both the experimental conditions. As
we can see from the plot, around 50% of the participant scored
more during SP sessions than during the NSP ones.

4.3 The Mid-game Conflict
Figure 6 shows the percentage of times in which participants
took the covered green brick M. Participants behaved quite the
same as during the previous conflict: during the SP sessions,
60% of the time, participants took the brick M as their first move
(μsp = 60, SEsp = 5.4), and the remaining 40% of the time they
took it in the next move (μsp = 40, SEsp = 5.6). Thus, all
participants could resolve the Mid-Game Conflict properly
during the SP sessions. On the other hand, during the NSP
sessions, only 60% of the time, participants could take the brick
M (μnsp = 61.9, SEnsp = 5.7), while the remaining 40% opted to
take a yellow one. As happened in the previous conflict, all
participants took the brick N as their first move during the NSP
sessions. The difference between the two conditions is
significant (two-tailed z-test, z = 4.03, p < 0.001), while the
difference between the percentage referred to the covered brick
taken at move two was not significant.

Also in this case, the time employed to pick the hidden brick
did not differ between conditions. Figure 4B shows the scores
participants collected during the Mid-Game Conflict in both the
experimental conditions. As we can see from the plot, around
40% of the participant scored more during SP sessions than
during the NSP ones.

4.4 Questionnaires
Figure 7 shows the average and the standard error of their answers
to the IOS image. As we can see, there is a difference between the
answers given before the experiment and the ones given after the
interactive sessions, regardless of the robot mode. These difference
turned out to be statistically significant for both PRE-SP and PRE-
NSP groups (repeated measures ANOVA F (21) = 6.82, p = 0.01 and
F (21) = 6.6, p = 0.01, respectively). Nonetheless, we found no
significant differences between the answers given after the SP
sessions and those given after the NSP sessions.

Similarly, there were no significant differences in the Godspeed
questionnaire (Figure 8) scores among the different phases (PRE,
POST-SP, POST-NSP). We found no correlations between the
answers given to the SISRN and the other questionnaires or the
participants’ performance during the conflicts.

5 DISCUSSION

In this work, we assessed whether a robot attempting to establish
a shared perception with its human partners is better evaluated

FIGURE 6 | Average and standard error of the Mid-Game Conflict’s covered brick taking percentage. In this case, the covered brick was the M one.

FIGURE 7 | Average and standard error of participants’ answers to the
IOS image.
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and ensures a more effective collaboration. The results suggested
that shared perception leads to higher performances in the task. A
robot considerate of the partners’ viewpoints and goals can
facilitate selecting the best action.

The proposed mathematical model for shared perception,
which guided iCub selection of the hints to be provided to the
partner in the SP condition, seemed to be effective. The robot
indicated with its gaze the brick that minimised participants’
uncertainty about the properties of the objects hidden from their
view. This did not imply that the players picked the suggested
object right away. Instead, it successfully ensured that
participants took into account also the covered bricks in their
reasoning, thanks to the implicit knowledge shared by the robot.
As a result, in the SP conditions, the vast majority of the time,
participants did not miss any of the highest value elements while
building their Lego tower.

We hypothesised that participants would use a recursive (or
second-order) Theory of Mind (ToM) when reasoning about the
robot’s suggestions: e.g., participants knew that the robot knew
that they could not perceive the bricks covered to them (for
example, the brick F in Figure 2A). Indeed, several models have
been presented that make use of recursive ToM (Pynadath and
Marsella, 2005; Bosse et al., 2011; de Weerd et al., 2017). In
particular, Bosse et al. (2011) presented a model for multilevel
ToM based on BDI concepts that they tested in three different
case studies: social manipulation, predators’ behaviour, and
emergent soap stories. Instead, Pynadath and Marsella, (2005)
proposed PsychSim, a multi-agent simulation tool for modelling
interaction and influence that makes use of a recursive model of
other agents. Moreover, de Weerd et al. (2017) proved that agents
using second-order ToM lead to higher effectiveness than agents
capable of only first-order ToM. Moreover, more importantly for
us, they discovered that people spontaneously use recursive ToM
when their partner is capable of second-order ToM as well.

Instead, without shared perception, the robot hints were less
informative. It followed the rationale of indicating the highest

valued brick from its perspective. In particular, the robot relied
only on its internal representation of the task, which led it to
behave during conflicts in the opposite way to the SP setting.
Thus, we ensured the maximum difference between the SP and
NSP behaviours. This led to errors, in particular when the best
bricks were not visible to the robot (Main Conflict). However, also
in situations in which the asymmetry in perception was not so
critical (First-Brick and Mid-Game conflicts), as the best blocks
were hidden to participants but not to the robot, its hints were less
effective. A significantly lower percentage of players gathered all
the best bricks in the NSP condition than in the SP.

We speculate that during SP sessions, participants built a more
precise representation of the robot’s perspective than during NSP
sessions. In the former sessions, they better understood that when
the robot was indicating a brick visible to all, it was because it had
nothing better to suggest. Consequently, they could resolve the
conflict correctly and pick the best option, even when they could
not see it directly. In NSP sessions, the participants did not have
enough information to understand the reasons guiding the robot
suggestion and gauge their validity. As a result, they blindly
followed the robot’s hints in some cases. In particular, in 50% of
the cases in the First Brick conflict and 60% of those in the Mid-
Game conflict, participants’ second move followed iCub’s
indication toward the covered object even if there was very
limited information about what brick the robot was indicating
to them. In those conflicts, this choice was still valid, as the
suggested brick had a value as high as the visible ones. In theMain
conflict instead, the excessive trust led in about 60% of the cases to
a sub-optimal choice. In other cases, the lack of understanding of
the robot’s motives led participants to disregard the robots’
suggestions, missing out on valuable blocks hidden from
participants’ view. Indeed, about 40%–50% of the time,
participants in one of the conflicts went on picking visible
blocks, whereas the robot was pointing at the highest one
behind an occlusion. This means that the absence of a reliable
common ground makes people unable to fully exploit the
collaboration.

An interesting reflection about participants’ trust toward the
robot can be afforded by the First Brick task configuration. In this
conflict, participants’ choice could not be driven by the outcome
of previous moves, as it regarded the first move of a game.
Furthermore, the games previously played with the robot
should not have had any influence since, at the beginning of
each session, the experimenter instructed the participants that a
new program controlled the robot. In this case, for the game’s first
move, two bricks of the highest possible value are present on the
scene, one visible and one hidden from the participants’ view.
Since there were no bricks with higher value in the game, the most
rational first choice would have been picking the visible highest
value brick. Despite this, when the robot indicated the hidden
item (i.e., in the SP condition) in around 30% of cases,
participants opted to pick that instead. Overall, this result
suggests that for a good portion of participants, the robot
indication was sufficient to make them abandon a sure
optimal choice, to pick something unknown. We ascribe the
choice to participants’ proneness to trust (or better over-trust) the
robot, a phenomenon often observed in interactions with robots.

FIGURE 8 | Average and standard error of participants’ answers to the
Godspeed questionnaire.
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An alternative explanation is that this choice was driven by an
attempt to behave kindly toward the humanoid. Recent evidence
points out that also in HRI, mechanisms like reciprocity play a
role—with humans overtly following the robot’s advice despite
disagreeing with it, to ensure its future benevolence, as it happens
between humans (Zonca et al., 2021b).

It is also relevant to notice that in the experiment, there was
also an analogous configuration in which the iCub indicated first
the visible highest value brick and then the hidden highest value
brick (i.e., in the NSP condition). In this case, the proportion of
participants who followed the second indication and managed to
pick also the hidden high-value item reached about 60% of the
cases. Although higher, this implies that in about 40% of the
situations, seeing that the robot indications were meaningful in
the first move was not enough to induce participants to trust its
indications in the next move. In other words, the fact that iCub
indicated the best brick among those the participants could
perceive did not convince participants to select the item it
indicated when it was not visible. Such a lack of trust led
those participants to miss a relevant opportunity. Apparently,
the less trusting participants did not receive enough information
about what drove the robot’s suggestions to follow them. These
findings underline the importance of the robot selecting its hints
properly by revealing as much as possible to the partner its own
understanding of the environment. By doing so, the robot can
avoid, on the one hand, over-trust and the other excessive lack
of trust.

Despite the difference in overall performances between SP and
NSP sessions, we registered no differences between the answers to
the post-session questionnaires. This contradiction shows us SP
mechanisms’ essential and implicit nature: people exploited SP
mechanisms, but they were not fully aware of them. In fact,
participants reported no particular differences between the
robot’s behaviours according to the different experimental
behaviours.

In our experiments, we defined two robot behaviours that
resulted in being at the antipodes, with the NSP robot actually
being a anti-SP mode. A fairer NSP behaviour would provide
randomised choices from the robot. However, such a less
controlled design (e.g., with a robot selecting randomly in case
of conflict in the NSP condition) would have required a much
larger sample to enable reliable testing of all the possible
conditions. To explore this option, we ran a series of simulations.

More precisely, we conducted 1,000 simulations in which we
tested a fair NSP robot mode using the results of users’ behaviour
that we obtained in our experiments. In such simulations, in case
of multiple best options, we let the NSP robot choose randomly
between them. On the other hand, we defined the simulated users’
behaviour based on the experimental results. This means that, in
NSP-mode, when the hidden brick is suggested as a second move,
users resolve the conflict 50% of the time during the First-Brick
conflict, 60% during the Mid-Game conflict, and 40% during the
Main conflict. The same applies for the SP-mode: 100% during
the Mid-Game conflict, 95% during the First-Brick conflict and
83% during theMain conflict. Then, we analysed howmany times
the simulated users resolved the conflicts. Table 2 shows the
statistics about the resolution of such simulated conflicts. As we

can see, we obtained results comparable with those derived from
the real experiments.

In this work, we considered a simplified scenario capturing the
main elements of intriguing HRI collaborative situations:
asymmetries in perception and objects having properties that
make them more or less suitable to be used next. To focus on
these central aspects, we opted for simplifying the settings: objects
have a single relevant property (their colour); and the
communication is minimised: we allowed only gazing to
indicate the proposed object. However, in principle, the model
we propose could be generalised to more complex settings, as far
as the robot can 1) estimate the impact of its suggestions on the
uncertainty of the partner’s representation, 2) have a measure of
relative (to the task) importance to assign to each object’s
characteristic, and 3) have richer communication capabilities.
We refer the reader to Section 5.1, where we better discuss what a
more generalised approach could concern. In fact, we can easily
map our experimental task into the more complex assembly task
that we give as an example in Section 1. As long as the person and
the robot are aligned on the assembly step, the robot can use our
model to choose what to say or which object to pass in order to
maximise the flow of information. Let us imagine a scenario in
which two sets of screws are appropriate for the assembly, one
well visible to both the robot and the participant and one partially
occluded to the latter. Through our model, the robot can decide it
is worth suggesting or handing over the screws from the semi-
occluded set to maximise both performance and the person’s
knowledge about the available tools in the chaotic environment.
This way, the robot can lower the person’s uncertainty about
objects not included—or partially included—in their perception.

The scenario in which humans and robots have a misaligned
perception of the shared environment has been addressed by Chai
et al., 2014. Their work focused on allowing a robot to acquire
knowledge about common ground via collaborative dialogue with
its human partner: the more the communication proceeds, the
more the robot can improve its internal representation of the
shared environment. The main aim of their approach was to help
the robot in lowering its uncertainty about semi-occluded objects.
Our work addresses the task proposed by Chai et al., 2014 from
the opposite perspective by proposing the robot as a suggester,
helping the human in resolving asymmetries in the shared
environment. Moreover, we explored interactions that do not
involve the use of speech. We addressed the shared perception
problem using more primitive communicative ways, thus without
considering the language.

To conclude, it is essential to note that a direct prediction of
our model is that if two agents share nothing in their common

TABLE 2 | Results of the simulation of the experiment with the fair NSP robot
behaviour. The statistics are applied on the simulated data.

% of Resolution Two-tailed z-test

SP NSP z p

Main Conflict 80.2 64.3 8.97 <0.001
First-Brick Conflict 90.8 71.4 11.08 <0.001
Mid-Game Conflict 100 59 22.7 <0.001
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awareness spaces, then it is impossible to obtain shared
perception. Hence, we can claim that establishing common
ground is key to pursuing a collaborative HRI task. Thus, it
becomes crucial to building shared knowledge about both the
environment—which can present asymmetries in perception, as
in our experiments—and the collaborating agents’ mental states
in terms of objectives, beliefs and intentions.

5.1 Limitations
The first limitation of our work regards the simplifications we
made in our experimental setting. In particular, the interaction
was constrained during the experiments, and only nonverbal
communication was allowed. We allowed only a turn-based
speechless communication to maintain careful control of the
information exchange with the participants and to ensure that all
participants faced the “conflict” instances with the same amount
of information. This is obviously a simplification: communication
between partners is usually more complicated than this. However,
we believe that there are forms of real interactions which are not
too far from the settings we proposed, such as some turn-based
card games (e.g., “Briscola” we mentioned above) and assembling
tasks, where the context constrains the interaction.

Other limitations regard some assumptions of the model. In
particular, the model assumes that the objects’ features do not
change over time. This limitation can be overcome by introducing
memory-based and/or probabilistic measures of uncertainty
regarding the objects and their characteristics. In particular,
for what regards the object the robot is aware of but that not
perceive anymore, such a measure of uncertainty could model
how stronger the robot believes the object is still where it
remembers (e.g., a measure that could worsen over time). A
similar argument could be applied to mutable characteristics of
particular objects. A fluid measure of uncertainty can manage
how much the robot is sure about an object’s characteristics (e.g.,
the shape of a partially-occluded object could be challenging to
understand but easily guessable).

Furthermore, the robot already knew which bricks the
participants could perceive and which ones they could not. To
make the architecture more autonomous, we could use
perspective-taking to allow the robot to automatically infer the
objects belonging to the partner’s personal perception (Fischer
and Demiris, 2020). Also occlusions (the obstacles in our
experiment) could be detected through perspective-taking
algorithms.

Finally, we assumed that participants would accept the
suggestions the robot gave as the bests to achieve the goal of
the task. Before starting the experiment, we presented the robot as
a collaborator but, in general, we should take into account the
level of trust people have towards robots (Zonca et al., 2021a).

6 CONCLUSION

We investigated the role of Shared Perception (SP) in Human-
Robot Interaction (HRI). In particular, with the present work, we
aimed to 1) understand whether and how humans would exploit

SP mechanisms with a robot during a cooperative game
characterised by an asymmetry in the perception of the
environment and 2) propose a computational model for SP.
Indeed, we designed a mathematical model for cooperative SP.
We tested it via a user study in which the robot and participants
had to collaborate to build a tower with LEGO bricks. Some of
those were visible by both agents, others were covered to the
participants, and the remaining were covered to the robot. We
designed our experiment to elicit critical moments that we called
conflicts, and we investigated the differences between a robot with
SP (SP-iCub) and a robot unable to use SP mechanisms (NSP-
iCub) when the perceptions of the interacting agents differed.

Our results show that humans can potentially exploit SP
mechanisms with robots as they do with other humans. For all
conflicts, SP-iCub resulted to be more informative than NSP-
iCub. Indeed, with the former, people could correctly resolve
conflicts most of the time. Conversely, only a minority of the
participants could make the best move in such critical situations
with the latter. However, despite the clear difference between the
experimental conditions and the resulting strategies that we
registered, our participants did not report perceiving the
robot’s behaviours differently. This effect highlights the
implicit nature of SP: people exploit SP mechanisms but are
unaware of their decision process.
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