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Abstract

Nowadays, in vitro three-dimensional (3D) neuronal networks are becoming a consolidated

experimental model to overcome most of the intrinsic limitations of bi-dimensional (2D)

assemblies. In the 3D environment, experimental evidence revealed a wider repertoire of

activity patterns, characterized by a modulation of the bursting features, than the one

observed in 2D cultures. However, it is not totally clear and understood what pushes the

neuronal networks towards different dynamical regimes. One possible explanation could be

the underlying connectivity, which could involve a larger number of neurons in a 3D rather

than a 2D space and could organize following well-defined topological schemes. Driven by

experimental findings, achieved by recording 3D cortical networks organized in multi-lay-

ered structures coupled to Micro-Electrode Arrays (MEAs), in the present work we devel-

oped a large-scale computational network model made up of leaky integrate-and-fire (LIF)

neurons to investigate possible structural configurations able to sustain the emerging pat-

terns of electrophysiological activity. In particular, we investigated the role of the number of

layers defining a 3D assembly and the spatial distribution of the connections within and

among the layers. These configurations give rise to different patterns of activity that could

be compared to the ones emerging from real in vitro 3D neuronal populations. Our results

suggest that the introduction of three-dimensionality induced a global reduction in both firing

and bursting rates with respect to 2D models. In addition, we found that there is a minimum

number of layers necessary to obtain a change in the dynamics of the network. However,

the effects produced by a 3D organization of the cells is somewhat mitigated if a scale-free

connectivity is implemented in either one or all the layers of the network. Finally, the best

matching of the experimental data is achieved supposing a 3D connectivity organized in

structured bundles of links located in different areas of the 2D network.
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Author summary

The brain is the most complex organ of the human body, of which we still have limited

knowledge despite the number of extensive studies on this topic. That is because the brain

is unique in its structural and functional organization: neurons from different brain areas

arranged in a well-defined 3D topology exhibit unique behaviors. To untangle this system,

scientists have turned to a multitude of in vitro models on chip, which differ in the degree

of complexity of the network organization. One of the main aspects that sets apart differ-

ent models is the introduction of three-dimensionality, which affects greatly the activity of

the neuronal population. However, little is known about the organization of these 3D in
vitro networks due to intrinsic experimental limitations. In the present work, we devel-

oped a computational model that is able to reproduce the experimental findings achieved

with an in vitro model. By matching the activity of our simulated network, whose parame-

ters can be finely controlled, to the activity of in vitro 3D cultures, our goal was to infer

which kind of 3D connectivity sustains the emerging patterns of electrophysiological

activity, therefore matching the experimental findings to the hard-to-observe topological

properties.

Introduction

Nowadays, the use of dissociated neuronal cultures coupled to Micro-Electrode Arrays

(MEAs) is a well-established in vitro experimental model to explore basic principles of brain

functions [1], to investigate their computational properties [2] and to appreciate their

electrophysiological modulation when stimulated by electrical [3] or chemical [4] stimuli.

Over the years, several attempts have been made to engineer neuronal networks and make

them as similar as possible to the micro-structured circuits that characterize the topological

organization of the in vivo brain ([5] and references therein).

However, it was only in 2008 that a strong limitation of the in vitro experimental models

based on dissociated cultures was overcome: the brain is intrinsically three-dimensional (3D),

and a reduced bi-dimensional (2D) configuration cannot exhibit most of the morphological

and electrophysiological key features of the in vivo systems [6]. In 2008, Pautot and co-workers

developed a protocol to allow a 3D growth of dissociated hippocampal neurons by exploiting a

self-assembled scaffold realized with glass microbeads [7]. Some years later, Frega and col-

leagues combined this protocol with the use of MEAs: the recorded patterns of electrophysio-

logical activity were deeply different from those observed in 2D cultures in terms of both

spiking and bursting features [8, 9]. These works paved the way for the use of 3D cultures to

better mimic the properties of the in vivo brain. Several works dealt with new approaches to

increase the cell density in order to be comparable with that found in vivo, as well as to

improve the mechanical properties (like porosity and stiffness) of the scaffolds to better mimic

the extracellular matrix. [10]. 3D electrospun polymers or hydrogels are possible solutions to

reach such a goal. Hydrogels ensure low cytotoxicity and favor exchange of gases and nutrients

between cells and the surrounding environment. Collagen is another natural soft material that

was used as a scaffold to develop 3D neuronal assemblies. In 2015, a model of 3D brain-like tis-

sue was realized by means of silk-collagen proteins [11], where neurons plated in a donut-

shaped porous silk sponge were able to develop robust projections within the central region

full of collagen, generating dense 3D neuronal networks. The principal drawback of many

hydrogel-based materials is their relatively fast mechanical degradation. To overcome this

weakness, in 2015, Bosi and colleagues developed a synthetic biocompatible PDMS scaffold
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that can be tuned in its micro and nanomechanical properties [12]. Unfortunately, this type of

structure hinders the recording of electrophysiological activity. The use of planar MEAs would

be, in fact, useless considering that most of the electrodes would be covered by the PDMS.

Unfortunately, this is not the only drawback when 3D neuronal networks are coupled to

MEAs. Most of the works suffer the intrinsic technological limits of planar devices: only the

electrophysiological activity of a very small subset of neurons (localized in the bottom layer

and directly coupled to the active area of the MEA) is recorded [8, 9, 13–15]. Only in the last

years, new technological efforts were made to develop 3D devices able to map the electrophysi-

ological activity of 3D networks in the 3D space. In 2020, Soscia and co-workers designed an

in vitro platform to simultaneously measure the electrophysiological activity of three indepen-

dent 3D cultures [16]. In 2021, Shin and colleagues developed a device able to record the

electrophysiological activity of in vitro 3D assemblies up to a height of 300 μm [17] and pro-

vided a first set of information about the functional connectivity of 3D neuronal assemblies.

The authors inferred the 3D functional connectivity by counting the number of links per each

electrode and mapping their spatial organization in terms of length of connections. Despite

the power of these technological devices that could potentially overcome many of the experi-

mental limitations, topological properties (like clusterization, degree distribution, emerging of

small-world properties and modular communities, presence of highly connected neurons

(hubs)) of the 3D networks were still not extracted and therefore effective information about

the 3D topology is still missing. However, MEAs are not the only technological devices to

record the electrophysiological activity of 3D neuronal networks: optical methods are a valid

alternative solution to overcome such limitations: in contrast to MEA, optical-imaging-based

techniques using dyes or genetically encoded reporter constructs guarantee a higher spatial

resolution and recordings at single cell resolution. Among these, calcium-imaging also allows

to simplify the analysis of emerging functional activity, avoiding the use of spike sorting algo-

rithms to discern the activity of dense clusters of 3D neurons recorded by planar or 3D elec-

trodes. In addition, the use of optical instruments provides simultaneously information about

the interplay between structural connectivity and the emerging activity. This last feature is of

extreme interest when we deal with high density (2D and 3D) neuronal assemblies. In 2017,

Marom and colleagues developed an optical-accessible in vitro model of 3D networks by

injecting a genetically encoded calcium indicator [18] to probe the variations of the emerging

electrophysiological activity under their natural development. Many works in the literature

dealing with in vitro cultures exploit functional connectivity hints to infer structural properties

[19]. Indeed, functional connectivity is strongly influenced by how it is measured (correlation-

vs information-theory based algorithms for example), and some caveats are required to trans-

late functional features into structural ones. First, functional measures are subject to fluctua-

tions if achieved from short periods of recordings. Theoretical studies demonstrated the

requirement of at least 10 minutes of recordings to avoid unstable results [20]. In addition, the

achieved functional properties of a network can be considered predictors of the structural

ones, only at small-scale, i.e., considering small ensembles of neurons [21]. Finally, it is worth

mentioning the state-dependency of the functional connectivity: in other words, the same

structural connectivity can originate different functional networks which exhibit different

topological features. Thus, taking into consideration the weak points of the approach, the cor-

relation between structural and functional connectivity can be considered a good indication

on topological properties. In this work, we exploited such interdependency and the structural

connectivity rules implemented in the computational model of the 3D cortical networks were

inspired by the functional insights.

To the best of our knowledge, only one computational study relative to 3D cultures was per-

formed in 2015 by Bosi and co-workers. The authors developed a large-scale 3D neuronal
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network model made up of adaptive exponential integrate-and-fire neurons to elucidate the

hidden properties of a 3D in vitro network grown on a synthetic polymer-based scaffold with

embedded multi walled carbon nanotubes [12]. Due to the mechanical properties of their scaf-

fold, neurons were randomly and uniformly confined in a virtual box to reflect the same cellu-

lar distribution of the experiments and connected by means of a Gaussian radial basis

function. The authors postulated and tested different variations of the Gaussian connectivity

rules for both 2D and 3D configurations. After matching the inter-burst interval values origi-

nated by the simulations of the 2D and 3D networks to the ones derived from calcium imaging

techniques, the authors characterized the results of their simulations in terms of the topological

features [22] of the network. They found a simultaneous increase of the clustering coefficient

and no significant variations in the mean path length of the 3D networks, although the average

geometrical length of the links increased [12].

Following a reverse engineering approach, we reproduced the dynamics exhibited by 3D

cortical networks coupled to MEAs by means of a computational model made up of synapti-

cally connected leaky integrate-and-fire (LIF) neurons. The model is essentially inspired by the

Pautot method, where 3D cultures are created with different layers of glass cell-enriched

microbeads. It aims at reproducing in silico this technique by stacking several layers of neurons

and at investigating different possible connectivity motifs among them. In the Pautot and in

following works that exploited the same protocol, there were no quantitative measures about

how neurons were synaptically connected, and which topological characteristics emerged,

both from a structural and a functional point of view. To design the in silico model of 3D net-

works, in the present work we took inspirations from the 2D topological organization (i.e., the

one relative to the layer directed coupled to the active area of the MEA), inferred with func-

tional connectivity investigations in dissociated 2D networks [19, 20, 23]. The results achieved

with the simulations of the developed network model demonstrated that a 3D environment

influences the electrophysiological activity of the network. In particular, we observed that the

introduction of a 3D environment (made up of at least four layers, about 200 μm) induced a

reduction in both firing and bursting rates.

Considering the experimental evidence of a scale-free functional connectivity observed in

in vitro cultures, we explored the possibility of a structural implementation of this feature. We

investigated the effect brought by the modification of the topological organization with a scale-

free structural connectivity, finding that such a topology limits the overall impact of the third

dimension on the network. Eventually, the results were compared with those obtained from

3D in vitro cortical cultures, highlighting the relevance and the power of our in silico model.

Eventually, the results were compared with those obtained from in vitro cortical cultures,

highlighting the relevance and the power of our in silico model.

Results

In this section, results from the variation of the different constitutive parameters of the 3D

neuronal model are presented and compared in order to unravel the contribution of each in

the genesis of the spontaneous electrophysiological activity. Generally, the model consists of

a spiking network of Leaky-Integrate and Fire (LIF) excitatory and inhibitory neurons

arranged in layers with a density comparable to 2D in vitro cultures (cf. Materials and Meth-

ods). These layers constitute the core element of the model, and they were piled up to create

a 3D structure. To create a functional network, different connectivity patterns were imple-

mented, guided by experimental evidence. The reference connectivity both within and

between the layers follows a gaussian probability (Fig 1, G2D, G3D) over distance with a limi-

tation over the maximum number of established connections (cf. Materials and Methods).
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Firstly, we examined the intrinsic dynamics of this reference model and tested the effect of

the 3D configuration on the activity of the network by comparing it to 2D structures whose

connectivity is ruled by a Gaussian connectivity (G2D) as well. Then, we investigated the

effect of the number of layers defining the 3D networks to assess which configuration starts

producing a significant change in the electrophysiological activity moving from a 2D to a

3D configuration. In this way, we were able to determine the height (i.e., number of layers)

at which the model could be functionally considered a 3D structure. Next, the influence of

the implemented structural connectivity within each layer was explored, to test whether the

functional characteristics observed in MEA recordings underlie a connectivity also in the

3D configuration. In particular, the functional scale-free (SF) connectivity inferred in in
vitro studies was translated in a structural connectivity fashion either in only the bottom

layer (that as of now is the only one that has been observed in vitro, Fig 1, SF3D
L0

) or in all the

layers of the model (Fig 1, SF3D
all ). A similar investigation was devised for the inter-layer con-

nections with the rationale of inferring the in vitro connectivity from the activity patterns

recorded only at the readout (bottom) layer. In this case, different positions of the source

neurons were conceived, with inter-layer connections generating either in clusters (Fig 1,

G3D
C and G3D

5C) or from random areas (Fig 1, G3D
rnd). Eventually, the data of the last different

configurations were compared to in vitro data of 3D cultures recorded by means of MEAs.

At the beginning of each section, the conditions of the simulations are summarized for the

sake of clarity. Unless otherwise stated, in all the following analyses, the presented data are

relative to the activity of the bottom layer (readout layer), to emulate the experimental con-

dition achieved by using planar MEAs.

Fig 1. Representation of the dataset. All the configurations analyzed in the paper are reported here with their abbreviation and a brief description. For all the

3D, the connectivity among the layers (inter-layer connections) follows a Gaussian distribution scaled over distance as reported in Sect 3D connectivity.

https://doi.org/10.1371/journal.pcbi.1010825.g001
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Three-dimensionality slows down spiking and bursting activity of cortical

networks

Firstly, we tuned the parameters and characterized a 2D network that aimed at mimicking the

2D layout of a 2D in vitro cortical culture. This 2D fundamental unit is made up of both excit-

atory and inhibitory neurons, connected following a Gaussian probability over distance (that

is the reference connectivity rule of the present work and was named G2D hereafter) as better

described in the Materials and Methods section.

The 3D network of our model was built using the 2D fundamental unit as constitutive ele-

ment. We tried to mimic the experimental construction of a 3D network with glass microbeads

as scaffold. Briefly, as in Pautot’s and Tedesco’s works [7, 9], the neuronal 3D cultures were

created by plating the cells on the glass microbeads, then the cells and beads suspension was

transferred to the MEAs, where they self-assemble in stacked layers (details in Sect In vitro
model). In the computational model, this process was reproduced by piling up different 2D

units (details and parameters can be found in the Materials and Methods).

As dataset for the 3D configurations, we considered all the data obtained from simulations

where a structural 3D network was created (2 up to 6 layers) with the reference connectivity

rules (Fig 1, G3D). That means that the connections both within and among the layers are

established following a Gaussian probability over distance. The 3D data was compared against

2D networks with the same Gaussian connectivity rule within the layer (Fig 1, G2D).

One of the main parameters that influenced the organization of the network activity in

terms of random spiking, density of network burst and synchronization of the activity itself

was the inhibitory/excitatory ratio. Qualitatively, S1 Fig shows 60 seconds of simulated activity

in different 2D neuronal populations that differed only in the percentage of inhibitory cells in

the network, starting from 10% up to 50%, built as described in the Materials and Methods sec-

tion. The inhibitory network by itself was not able to generate a sustained activity, exhibiting

only few random spikes, with very low values of Mean Firing Rate (MFR) that, as per our defi-

nition, did not quantify as active network. S1A Fig shows an example of a network with 50% of

inhibitory neurons, which displayed a very low scattered spiking activity with a MFR value of

0.08 sp/s (<0.1 sp/s), and the complete lack of bursts. The activity intensified as the inhibitory/

excitatory ratio decreased, reaching a MFR> 0.1 sp/s (active node) only when the percentage of

inhibitory neurons dropped to 40% S1B Fig). However, the activity started to organize into bursts

and network bursts only at 30% inhibitory cells (S1C Fig) and only at 20% (S1E Fig), it showed a

MFR comparable to the one found in vitro [19, 24], as well as the temporal organization of the

network bursts [25]. With lower percentages of inhibitory cells (S1D Fig), the network lost its bal-

ance and the firing rate shot at unphysiological values higher than 190 sp/s. Therefore, within the

fundamental 2D unit, it was kept the balance of the inhibitory/excitatory neurons at 20%, in line

with physiological observations found on dissociated cortical cultures [26].

The result of the chosen combined parameters of these networks (Table 1) gave rise to a

sustained spiking and bursting activity also in the 3D configuration, with network bursts that

involved almost the entire network, as shown by the 60-s raster plots of a 4-layer network in

Fig 2A–2D (and the respective close-ups of a single event in the lower row). Considering the

population events, we considered their propagation among the layers. Qualitatively, the IFR

traces reported in Fig 2 (lower row) highlight the time stamp of the peak associated with one

of the network bursts. From these values, we inferred the delay in the propagation of the event

between the layers. In particular, this representative event started from the second layer, prop-

agated to the third and the first ones and only then arrived in the fourth layer, that is the most

active. In general, we observed a high variability in the generation and propagation of the net-

work events (as demonstrated by the similarity maps of S2A–S2C Fig, obtained with the
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Victor-Purpora statistics [27] described in the S1 File), possibly brought by the intricate con-

nections established in the 3D space. Moreover, we observed that the number of involved neu-

rons during these events significantly decreases if compared to 2D networks (S2D Fig). This

fact suggests that the stereotyped activity of the network is on some level severed by the intro-

duction of the third dimension, as a lower percentage of cells is involved in the network event.

Table 1. List of the parameters of the 2D model.

2D model parameters Values

Area 736’164 μm2

Distance between cells 26 μm

Percentage of inhibitory cells 20%

Threshold potential - 50 mV

Reset potential - 70 mV

Refractory period 5 ms

Maximum probability (pMAX) 0.2

Resting potential (EL) - 70 mV

Membrane time constant (τm) 10 ms

Leakage conductance (gL) 10 nS

Sub-threshold input (Inoise) gl � {random integer in [0, 5]} � 6.4 mV

https://doi.org/10.1371/journal.pcbi.1010825.t001

Fig 2. Raster plots and relative IFR traces of the layers of a single population with Gaussian connectivity (G3D) that guarantees in vitro-like patterns of

electrophysiological activity where bursting and spiking activity coexist. (First row) 60-s simulated spontaneous electrophysiological activity of the layers of

a representative 4-layer 3D network (each panel A-D refers to a single layer of the population, with A being the bottom/readout layer). This configuration

allows to reproduce values of firing and bursting rates comparable with the experimental recordings of mature cortical cultures as well as the presence of

population events (network bursts) involving most of the neurons of the network. (Second row) Close-up of a single population event with super-imposed IFR

traces (green) and temporal stamps of the relative maxima (red).

https://doi.org/10.1371/journal.pcbi.1010825.g002
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However, considering the higher level of complexity in the evaluation of the whole network

and the lack of an in vitro experimental counterpart (data from planar MEAs), the focus of our

analysis was on the examination of the metrics obtained only from the bottom (or readout)

layer of 3D networks and from 2D ones to try inferring some differences based solely on this

reduced observation point of view.

The fundamental 2D unit (Fig 3, black) displayed in vitro-like values of firing (4.1 ±1.1 sp/s,

Fig 3A), and bursting rate (5.21 ± 0.31 bursts/min, Fig 3B), with bursts lasting 960.0 ±117.4 ms

(Fig 3C). At the network level, the 2D simulated networks exhibited on average 6 network

bursts per minute, with an average duration of 4.0 ± 0.3 s (Fig 3D, black line).
The addition of layers (Fig 3, green) brought to a general decrease in the spiking and burst-

ing activity of the network. The MFR and mean bursting rate (MBR) values decreased to

3.3 ± 0.7 sp/s (p = 3.8 � 10−4, Fig 3A), and to 4.8 ± 0.4 bursts/min (p = 6.7 �10−5, Fig 3B), respec-

tively. A similar trend was found also for the burst duration (BD) dropped to 871.1 ± 71.9 ms

when the 3D configuration was considered (p = 0.004, Fig 3C). Generally, the changes of the

Fig 3. Electrophysiological features of 2D (black, G2D) and readout layer of 3D (green, G3D) networks. (A) Mean firing rate, (B) mean bursting rate, (C)

burst duration, (D) network burst duration. (E) Average Spike Times Histogram (STH) of a 2D and a 3D exemplary configuration (bin = 1 ms). ton and toff

indicate the temporal instant when the plateau phase of the network burst starts and ends, respectively. (F) Temporal time constants of the (left) rise and

(right) decay phases of the network bursts. In these statistics, we have considered all the simulated structural 3D networks. (� refers to 0.01<p<0.05, ��

0.001<p<0.01, ��� p<0.001, Kruskal-Wallis non-parametric test).

https://doi.org/10.1371/journal.pcbi.1010825.g003
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average behavior of the single neurons were reflected also in the collective activity of the entire

assembly (network bursts, Fig 3E). We observed a decrease in the network burst duration

(NBD) to 3.6 ± 0.3 s, (p = 0.003, Fig 3D). No significant variations were observed in the rise

(Fig 3F, left) and in the decay (Fig 3F, right) phases of the network burst, suggesting that the

addition of the third dimension itself is not a sufficient condition to modify the recruitment

and deactivation time of the collective behavior of the neuronal network, it affects just its

duration.

Influence of the number of layers of the 3D network in spiking and

bursting features

From an experimental point of view, a crucial question was to understand how many layers

are necessary in order to start producing different patterns of activity with respect to the 2D

networks: by means of the model, we evaluated the configuration (in terms of number of

stacked layers) that could be functionally and physiologically considered an effective 3D

model. Thus, following the experimental procedures related in [8] (3D cultures created with

glass microbeads that self-assemble in layers), we incrementally added one layer at a time from

2 up to 6 layers to try to find the threshold for a 3D-like behavior.

Interestingly, the bursting activity was strongly affected by the adding of layers, at both the

single neuron and the network level. In fact, both the MBR (4.7 ± 0.3 bursts/min, p = 0.02,

Fig 4B) and the NBD (3.6 ± 0.2 s, p = 0.008, Fig 4D) showed a first significant difference with

respect to the 2D configuration already when the third layer was added. Instead, a fourth layer

Fig 4. Effect of the number of layers (swept from 2 to 6) of the 3D model (green boxes) on the electrophysiological activity compared to the 2D networks

(black boxes). (A) Mean firing rate, (B) mean bursting rate, (C) burst duration, (D) network burst duration. The temporal time constants of the rise and decay

phases of the network bursts are reported in (E) and (F), respectively. (� refers to 0.01<p<0.05, �� 0.001<p<0.01, ��� p<0.001, Kruskal-Wallis non-parametric

test).

https://doi.org/10.1371/journal.pcbi.1010825.g004
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was necessary to get a significant effect on the MFR (3.09 ± 0.4 sp/s, p = 0.001, Fig 4A) and on

the burst duration (868.0 ± 79.2 ms, p = 0.03, Fig 4C). Overall, combining the information

coming from the spiking and bursting activity, we observed that 4 layers are necessary to

change the dynamical state of the network from the 2D configuration. The addition of further

layers (in the model up to 6), did not induce significant differences in the network activity

with respect to the first significant variation. As mentioned in the previous section, three-

dimensionality itself was not able to produce a change in the rising and decaying phases of the

network burst activity. It had a significant role only on the duration of the events themselves,

not on the recruitment time (Fig 4E) or in their decay phase (Fig 4F), except in the case with 4

layers, where τdecay dropped to 4544.3 ± 2948.0 ms (p = 0.02). This observation stood for all the

number of layers, which reached a cumulative height of 300 μm along the z-axis.

Effect of the different connectivity rules at the single layer level

From a functional point of view, different types of connectivity features were observed in 2D

in vitro models [19, 28–30]. Among them, a scale-free (SF) distribution of the functional con-

nectivity was observed both in hippocampal [31] and cortical [20] circuits, indicating the pres-

ence of hubs which are suggested to coordinate the activity of the entire circuitry under

examination [19, 31]. As a maintenance of the topological features between functional and

structural networks can be kept [22], we reproduced the functional features of the SF network

in the 3D model (details on the implementation can be found as Rule 2: SF connectivity). In

particular, we established a SF connectivity first in each layer of the 3D network (Fig 1, SF3D
all ),

then only in the readout or bottom layer (Fig 1, SF3D
L0

). In this case, the connectivity within the

other layers was maintained as in the previous case (i.e., the reference connectivity rule where

the connections were established following a Gaussian probability, details are reported in Rule

1: Gaussian probability). The connections between the layers were not modified (i.e., the refer-

ence connectivity following Gaussian probability). The 2D reference for these 3D networks

was a 2D SF network (Fig 1, SF2D). The results of these configurations were compared against

the ones obtained before with the reference connectivity for both 2D and 3D (Figs 3 and 1

(G2D and G3D)).

Firstly, we evaluated the differences in the 2D fundamental units (Fig 5, black boxes). The

introduction of the SF connectivity in the readout (bottom) layer induced an increment in the

spiking and bursting rate. In particular, both the MFR and the MBR increased by + 38.30%

(p = 0.03, Fig 5A) and by + 7.87% (p = 0.02, Fig 5B), respectively. The introduction of the SF

topology (either in one or all the layers) in the 3D architecture (Fig 5, green boxes) produced a

significant increase in the network’s activity compared to the 3D reference (G3D). In particular,

neurons resulted to be more active (Fig 5A) by + 26.26% (p = 8.46 � 10−4) and by +51.91%

(p = 7.55 � 10−7), in the SF3D
L0

and SF3D
all , respectively, with more frequent (SF3D

L0
: +10.42%,

p = 3.14 � 10−8 and SF3D
all : +12.74%, p = 7.88 � 10−4, Fig 5B) and longer (SF3D

L0
: +5.11%, p = 0.02

and SF3D
all : +13.60%, p = 1.25 7.88 � 10−4, Fig 5C) bursts. In the SF3D

all configuration, even the net-

work burst duration was affected, and displayed a significant increase of +6.37% (p = 0.006,

Fig 5D). On the other hand, the SF3D
L0

connectivity seemed to produce some effects on the τrise,
that displayed an increase of about + 20% (p = 0.02, Fig 5E).

Moving on to the direct comparison of all the activity features in the 2D and the 3D layouts,

we found that only the SF3D
L0

connectivity produced some changes in shape of the population

events (τrise, Fig 5E) and in the NBD (Fig 5D). It is worth noting that the alteration on the

recruitment of the neurons (τrise) was not observed in vitro [13]. Apart from these values in the

sole SF3D
L0

, no other statistical difference, present between the 2D and the 3D architectures in

the previous conditions, were highlighted. These results suggest that the SF topology has a
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prevalent effect on the dynamics of the network, and it mitigates the impact of the 3D

architecture.

Effect of the different implemented 3D connectivity rules

In this Section, we reported the results obtained in trying to tackle the issue of understanding

the distribution of physical links along the z-direction in in vitro cultures when the only

electrophysiological information available is from a planar readout. With a reverse engineering

approach, we created different types of 3D connectivity (Sect 3D connectivity models in Mate-

rials and Methods), in particular by changing the position of the source neurons that generated

the inter-layer connections. The selected configurations are: a Random (Fig 1, G3D
rnd) one, where

a random subset of neurons in each layer was selected to project to other layers; a Central

(Fig 1, G3D
C ) one, where only a circular central cluster of neurons could connect with the other

layers; and a Multiple Centers (Fig 1, G3D
5C) one, where five different smaller projecting clusters

were identified. We investigated such aspects of the 3D connectivity driven by the qualitative

imaging characterization of in vitro 3D cultures where different possible scenarios of inter-

layer connectivity emerged (S3 Fig, [8, 13]). The results were compared against the unre-

stricted reference approach that was employed in the previous analyses (Fig 1, G3D), where

each neuron projected afferences to the other layers and the control over the establishment of

the connections themselves was a probabilistic one scaled over distance.

Fig 5. Effect of the implemented single layer connectivity on the electrophysiological activity of 3D networks. The 3D constructs (green boxes) with a SF

connectivity either only in the readout layer (SF3D
L0 ) or in every layer (SF3D

all ) were compared to the Gaussian (G3D) reference topology. Similarly, the 2D

controls (black) implemented a SF (SF2D) and a Gaussian (G2D) connectivity, respectively. (A) Mean firing rate, (B) mean bursting rate, (C) burst duration,

(D) network burst duration, temporal time constants of the (E) rise and (F) decay phases of the network bursts. Black and green boxes stand for 2D and 3D

networks, respectively. The asterisks are color coded to indicate the statistical differences between 2D and 3D networks (red), 2D networks with different

connectivity (black), and 3D networks with different connectivity (green). (� refers to 0.01<p<0.05, �� 0.001<p<0.01, ��� p<0.001, Kruskal-Wallis non-

parametric test).

https://doi.org/10.1371/journal.pcbi.1010825.g005
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We found that all the considered 3D connectivity rules produced only a mild increase (no

statistical differences) in the firing rate with respect to the reference configuration (G3D): the

only appreciable difference was relative to a higher spread with respect to the control condition

(Fig 6A). Concerning the bursting activity, we observed again a general increase of the bursting

rate, that in the case of the random (G3D
rnd) and with multiple centers source position (G3D

5C)

became significant: the MBR (Fig 6B) increased by +17.73% in the G3D
rnd configuration

(p = 0.005, grey boxes) and by +13.91% in the G3D
5C one (p = 0.03, pink boxes). Eventually, the

bursting events were slightly shorter in all the simulated configurations, however this decrease

was not statistically significant (Fig 6C).

To try to find an answer to the main question of understanding what type of connectivity

was more plausible established in a network leaning only on the planar readout, these results

were compared against the data of 3D cortical in vitro cultures. Fig 6A and 6B show the 25–75

percentiles (dashed lines) of MFR and MBR values computed for in vitro cortical recordings.

For both parameters, the simulated data overlapped with the recorded electrophysiological

activity, especially in the G3D
rnd (grey) and G3D

5C (pink) configurations. The central distribution

(G3D
C , purple) lost some similarity when considering the MBR values. Instead, the G3D (green)

connectivity did not fit well with the biological data, suggesting that the afferences to the other

layers tend to follow a more structured connectivity rule, both on the number and on the posi-

tion of the source cells.

Discussion

In the present work, we examined the modulation of the electrophysiological activity of corti-

cal networks brought by three-dimensional (3D) connectivity changes by means of an in silico
model, taking as reference in vitro recordings of mature 3D assemblies coupled to Micro-Elec-

trode Arrays (MEAs). Nowadays, 3D networks are the new frontier of in vitro models, allowing

to overcome the intrinsic limitations of planar models in terms of altered morphology (e.g.,

Fig 6. Effect of the inter-layer connectivity on the exhibited dynamical features of the 3D networks. Four 3D topologies have been tested, namely

unrestricted (G3D), random (G3D
rnd), and organized connectivity where source neurons are located in one single central area of the network (G3D

C ), or in

multiple ones (G3D
5C ). The spatial organization of these configurations is depicted in Fig 7F–7H. (A) Mean firing rate, (B) mean-bursting rate, and (C) burst

duration of the different configurations. The box indicates the 25–75 percentile of the simulated data. The dashed black lines in the panel (A) and (B) indicate

the 25–75 percentiles of the experimental data distributions. The colored shadow inside the box plots underlines the intersection between experiments and

simulations. (� refers to 0.01<p<0.05, �� 0.001<p<0.01, Kruskal-Wallis non-parametric test).

https://doi.org/10.1371/journal.pcbi.1010825.g006
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flatten shape of the cell bodies [6]), microenvironment where neurons grow [32], as well as of

stereotyped patterns of electrophysiological activity [8].

Connectivity rules in simulated 3D networks: working hypotheses

With the proposed model, based on a network of synaptically connected leaky integrate-and-

fire (LIF) neurons, we investigated the relevance (and organization) of the connectivity estab-

lished first among the neurons belonging to the same layer and then between the layers.

Indeed, connectivity is a property that is well recognized to trigger the dynamical states (spik-

ing and bursting activity in the case under study) of the network in complex systems like the

brain [33]. However, if from a phenomenological point of view the effect of a 3D connectivity

in the emerging patterns of electrophysiological activity is clear, no quantitative speculations

about the organization of the network have been made yet, with the sole exception of an exper-

imental-computational paper by Bosi and coworkers. In that work, the authors reproduced

calcium-imaging recordings in a 3D network of dissociated hippocampal neurons with a 3D in
silico model characterized by long connections with higher values of clustering coefficient than

the corresponding 2D controls [12].

In the present work, following a reverse engineering approach, we replicated some of the

experimental features of 3D cortical recordings by designing different topological configura-

tions inspired by functional and (partially) morphological findings. Indeed, by exploiting the

rich repertoire of algorithms devised over the years for inferring functional connectivity

[20, 34–38], it was assessed how 2D dissociated neuronal networks present features typical of

complex networks. It has been claimed that hippocampal circuits show a preferential scale-free

(SF) functional connectivity demonstrating the existence of hubs coordinating the activity of

the entire assembly [31]. The network burst activation observed in dissociated cortical cultures

is likely to be sustained by a SF organization of the connectivity of the network [39]. Always

remaining in the functional domain, more complex topological configurations were found,

like the arising of a modular connectivity [40] or rich-club topologies [29]. However, all these

issues are limited to a 2D connectivity. In the present work, we implemented a neuronal net-

work exploiting part of these functional experimental findings for the modelling of the bottom

layer (the one coupled to the active area of MEAs in in vitro experiments) of our 3D neuronal

population. Our results showed that the presence of a planar SF connectivity reduces the

effects of the z-axis connections (Fig 5), suggesting that the presence of highly connected hub

neurons is more relevant than the distribution of the cells in the 3D environment.

Quantification of 3D

Another open question in the field of in vitro models is relative to what we can define “3D” or,

in other words, at what height (and consequently at what degree of complexity of the experi-

mental model) the switch from 2D to 3D can be appreciated. Our simulations foresee that at

least 4 layers (about 200 μm) are necessary to observe a significant variation of the spiking and

bursting statistics, and that the addition of further layers does not change the network dynam-

ics (Fig 4). This result can be seen as a useful indication for the realization of experimental pro-

tocols. The Pautot method [7], based on the deposition of self-assembled layers of neurons and

glass microbeads in a theoretically hexagonal structure, suffers the lack of homogeneity when

the scaffold is too high (structural drawback). In perspective, our results suggest that fewer lay-

ers of the scaffolds than the ones previously used in the literature [8, 13] could be sufficient to

generate diverse patterns of activity. If that were the case, a side but ethically important advan-

tage would be the savings in terms of materials and cells to be used for each experimental

session.
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Moreover, although the dynamics of the network is modified by the more complex 3D

organization, the recruitment and deactivation time of the collective behavior of the neuronal

network are not affected (Fig 3). These results are in line with the considerations reported in

[13], where it was proposed that the key parameter in the modulation of the network burst

dynamics is the alteration of the E/I balance in the 3D connectivity due to different interacting

populations (cortical and hippocampal in that study).

The last significant contribution of the model is relative to the organization of the connec-

tions in the 3D micro-environment. If insights came from functional investigations for the pla-

nar connectivity, the reconstruction of the 3D topology is completely blind. Still nowadays, the

experimental investigations have not yet hypothesized possible connectivity patterns along the

z-axis. In the present work, we simulated four kinds of 3D connectivity (Fig 6). A clear picture

of a strong preferential connectivity rule did not emerge, as both the random and the more

structured (central or multiple centers) topologies replicated the experimental spiking activity

(Fig 6A) with a mild inclination towards the multiple centers when the bursting dynamics was

considered (Fig 6B).

Model limitations

Our model was tailored to the peculiar experimental configuration of 3D network organized

in ordered and engineered layers obtained thanks to glass microbeads. These experimental

constraints made the design of the model easier as it neglected the irregular 3D positioning of

neurons assumed when they grow in amorphous scaffolds like hydrogels [41]. To simulate

these 3D environments, more complex connectivity rules should be taken into account: the

working hypothesis of an isotropic connectivity fails and as consequence, the topographic dis-

placement of the neurons in the 3D space and of their connections requires the implementa-

tion of an anisotropic connectivity induced by the irregularity of the scaffold.

In addition, it is worth noting that the rationale behind the genesis of the computational

model is based on a reductionist approach: we chose to describe the dynamics of the single

neuron by means of a mono-compartment model whose electrophysiological properties are

described by means of LIF equations. The choice to neglect a multi-compartment approach

with complex morphology, as well as biophysical models of the ionic channels, is driven by the

lack of experimental evidence relative to the in vitro biological substrate. As already stated, 3D

networks from dissociated cultures establish a dense connectivity and we are not able to solve

with sufficient precision where synapses are placed (i.e., in which segments) or how the den-

dritic arborization develops among the layers. Finally, during the dissociation procedure (cf.

Sect, In vitro model), we do not have total control on where the neurons are extracted from

(i.e., from which cortical layers) and this limits the choice of the neuronal morphology. Thus,

although it could theoretically be possible to implement a 3D model with complex neuronal

structures, the setting of its numerous parameters makes its applicability prohibitive for the

goal of this work.

Despite the aforementioned limitations and tailored working hypotheses, the developed

model is able to fit and mimic different features (MFR, MBR, percentage of inhibitory neu-

rons) of 3D networks (and the relative differences). The lack of accuracy in the fitting of

other statistics like the duration of the bursts and network bursts that result to be longer

than the experimental ones, can partially be explained by the choice of the computational

strategy (model) that does not provide any intrinsic description of the bursting activity in

terms of ionic channels (e.g., persistent sodium channels) or by the absence of any form of

facilitation/depression mechanisms (short term plasticity) at the level of the synaptic

models.
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The use of functional connectivity to build in silico connectivity

From a connectivity point of view, the different structural configurations we implemented in

the model are inspired by their relative functional counterparts. Indeed, this working hypothe-

sis is based on the in vivo experimental findings that suggest the possibility to infer structural

connections from the functional ones [21, 22] at the level of small assemblies of neurons. We

are aware that this approach introduces some limits in the validity of our model. It is also

worth mentioning that functional topological features are influenced by the detection algo-

rithm, and the outcome is state-dependent. This last source of variability was clearly proved in

in vivo sensory-motor tasks, where it was observed that the functional connectivity changes

from resting state to task-induced conditions [42]. In in vitro assemblies, multiple modes of

functional connectivity are much more limited because of the stereotyped patterns of activity

that typically emerge from synaptic interactions [20] and the lack of external stimuli. A match

between experimental and in silico structural connectivity could be achieved by modifying the

experimental conditions of plating: a reduction of the cell density makes the identification of

the network organization easier using microscopy techniques, and consequently could help

the translation of the morphological observations to simulated connections.

Model perspectives

In the present work, we developed a computational model of a 3D neuronal network driven by

a peculiar experimental configuration achieved by stacking (ordered) layers of neurons [7]. As

we wrote in the Introduction, this is not the only method used to build in vitro 3D networks,

and more and more studies are exploiting the use of soft and amorphous materials as scaffold

to allow the 3D neuritic growth [5]. Indeed, a change in the biological organization of the net-

work requires variations in the in silico model too. However, the structure of the current

model allows a relatively easy modification of parameters like the cell density and neuron posi-

tion in the 3D space to accomplish the experimental requirements. On the other way round,

the design of new connectivity patterns could be not trivial. An anisotropic scheme of connec-

tivity will be necessary to map the inhomogeneity of the space where neurons live [43].

In perspective, the proposed in silico model could also be exploited to investigate other

open questions related to 3D ensembles and can be customized for peculiar experimental

setup. To prove such potentiality, we performed preliminary simulations of an experimental

condition where (at least) two 3D neuronal ensembles are interconnected by means of bundles

of links originating from the bottom layers (S4A Fig). In this way, in addition to the 3D con-

nectivity, also the modularity topological feature was considered [44]. This configuration (also

reproduced in in vitro experimental models) better mimics the large-scale network organiza-

tion of mammalian brain and allows to reproduce a wider repertoire of dynamics [45]. Prelim-

inary simulations show that from the similarity maps (S4B Fig), we can observe that whilst one

of the modules continues showing the highest similarity values within the module, the network

burst initiation events of the second module present lower inner similarity values than the

ones obtained with the first module suggesting that the propagation of the signal is greatly dis-

rupted by the addition of modularity.

Finally, the last ingredients that the model should take into account is relative to the hetero-

geneity of 3D interconnected neuronal networks. In 2020, Brofiga and co-workers developed

an experimental model where cortical and hippocampal neurons were chronically coupled to

MEAs defining interconnected 3D heterogeneous sub-populations [13]. To explain the contri-

bution of connectivity and neuronal heterogeneity, the authors speculated that hippocampal

neurons projected strong inhibitory links to the cortical ensemble and observed a significant

reduction in the duration of the network burst, but they were not able to untangle the role of

PLOS COMPUTATIONAL BIOLOGY Modeling the 3D connectivity of in vitro cortical ensembles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010825 February 13, 2023 15 / 25

https://doi.org/10.1371/journal.pcbi.1010825


each of the two components (three-dimensionality and heterogeneity). With the aim of devel-

oping brain-on-a-chip models where neurons extracted from different brain areas (e.g., corti-

cal-hippocampal assemblies) interact in a 3D fashion, our model could help to understand

how the connections between the neuronal populations are physically and functionally orga-

nized and which are their targets.

Materials and methods

Ethics statement

The experimental protocol for in vitro cultures was approved by the European Animal Care

Legislation (2010/63/EU), by the Italian Ministry of Health in accordance with the D.L. 116/

1992 and by the guidelines of the University of Genova (Prot. 75F11.N.6JI, 08/08/18).

Computational model

The model aims at generating patterns of electrophysiological activity that can be related and

compared to those emerging from in vitro 2D and 3D neuronal populations coupled to planar

MEAs and at maintaining a comparable spatial distribution. To implement these aspects, the

model was subdivided into the following problems: (i) creation of a fundamental 2D unit and

(ii) the implementation of the 3D layout.

Single neuron model and 2D network

The dynamics of each cell was modeled by means of leaky integrate-and-fire (LIF) neurons

(Eq (1)):

tm
dVm

dt
¼ EL � Vmð Þ þ

1

gL
Inoise þ Isyn
� �

ð1Þ

where Vm is the membrane potential, Inoise models the afferences to the neurons, Isyn is the syn-

aptic current (cf. Sect Synaptic Models), gL the leakage conductance, EL the resting potential,

and τm the time constant of the neuron. The numerical values of the parameters of the neuron

model are listed in Table 1.

The neurons were synaptically connected in order to investigate the effects produced by the

3D connectivity on the activity of the network. The relative simplicity of the neuronal model

allowed focusing only on the impact of the complex network organization. The fundamental

network (Fig 7A) was composed of 1’091 cells disposed on a square grid with area of approxi-

matively 0.7 mm2, giving a cell density of 1’480 cell/mm2, which is comparable to the value

obtained for in vitro cortical cells of about 1’500 cell/mm2 (cf. Sect In vitro model). Neurons

were formally divided into excitatory (Exc) and inhibitory (Inh) cells based on their post-syn-

aptic effect (cf. Sect Synaptic models). The percentage of inhibitory cells in the network was set

to 20% (S1 Fig) to mirror in vitro dynamics (cf. Results, [26]). Inhibitory cells were randomly

placed in the 2D grid (Fig 7A, blue dots) among the excitatory cells (Fig 7A, red dots).
The position of each neuron on the grid-like layout was slightly modified by adding some

noise on the x and y parameters, specific to each neuron, to mimic the random distribution of

cells in in vitro cultures. For the whole population, the axonal velocity and the refractory

period were set to 0.5 mm/ms and 5 ms, respectively [46, 47]. The physiological afferences

were modeled with a current Inoise, coupled with a leakage conductance gL. The noisy input val-

ues were varied to find the optimal configuration to trigger subthreshold fluctuations, neces-

sary to ensure the onset of action potentials and thus the spontaneous activity of the network.

The Inoise value was chosen randomly every millisecond for each neuron (Table 1).
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Synaptic model

The synaptic effect induced by excitatory and inhibitory synapses was modelled with two dif-

ferent exponentially decreasing currents IsynEX and IsynIN, whose dynamics are described by

Eqs (2A) and (2B), respectively:

dIsynEX
dt
¼ �

IsynEX
t

ð2AÞ

dIsynIN
dt
¼ �

IsynIN
t

ð2BÞ

where τ is the time constant of the synapses, set at 10 ms. When a pre-synaptic action potential

Fig 7. Topological properties of the simulated neuronal networks. (A) Neurons position in a 2D layer. Excitatory (red) and inhibitory (blue) neurons are

randomly arranged on a surface of 0.7 mm2, defining the fundamental unit of the network. (B) Dense and compact 3D networks obtained by piling up different

layers (only 4 in this sketch, for the sake of clarity) organized as in (A) on the 3D space. (C-D) Spatial distributions of the synaptic connections for excitatory

(red) and inhibitory (blue) links in each layer. Considering a source neuron labeled in green, it projects connections whose efficacy (size of the colored target

neurons) decreases as a function of the distance in according to Eq (3). (E) Degree distribution of the scale-free network showing a power-law with

characteristic exponent equal to -0.61, in accordance with [19]. The distribution was implemented either only in the readout layer, in all the layers or in none of

them. The connectivity among the layers was modeled according to different possible configurations depicted in the panels (F-H). In particular (F) shows a

random positioning of the source neurons that project synaptic connections to the other (up or down) layers (G3D
rnd). In (G-H), the source neurons for the inter-

layer connections are arranged in a single central area of the plane (G, G3D
C ) or distributed among five smaller confined areas (H, G3D

5C ). The number of links is

kept constant in the three configurations to allow significant comparisons.

https://doi.org/10.1371/journal.pcbi.1010825.g007
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reached the post-synaptic neuron, the post-synaptic current IsynEX (IsynIN) was incremented

(decremented) by a fixed value αEX (αIN) multiplied by a distance-dependent synaptic weight

w. The last was computed as in Eq (3):

w ¼ c �
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p � exp �

ðxpre � xpostÞ
2
þ ðypre � ypostÞ

2

2s2

 !

ð3Þ

where σ is the spatial standard deviation (set at 1000 μm) and c (set at 1000 mV
gL

) is a correcting

factor to adapt the amplitude and the unit of the weight to the current values. The values αEX

(αIN) were set at 12 and 16, respectively (S5 Fig). The response of the post-synaptic neuron to

an incoming action potential was delayed and weakened accordingly to the distance of the

source cell and the axonal velocity.

2D Connectivity models

Different connectivity rules (inspired by the experimental findings on functional connectivity)

were applied and studied within the fundamental 2D unit. In any of the following cases,

autapses were avoided as they are unlikely to form in dissociated neuronal cultures [48]. Only

excitatory to excitatory, excitatory to inhibitory, and inhibitory to excitatory connections were

implemented in the present work driven by experimental findings.

At the basis of all the connectivity implementations, a probabilistic connectivity rule was

created as in the following. The probability to establish a connection between two neurons was

modulated according to a Gaussian decay over distance:

p ¼ pMAX � exp �
ðxpre � xpostÞ

2
þ ðypre � ypostÞ

2

2s2

 !

ð4Þ

where pMAX is the maximum probability for each connection. We swept pMAX to find the opti-

mal value that gives rise to a good network activity that mirrors the one found in vitro
(Table 1).

Rule 1: Gaussian (G) connectivity

An additional condition was added to the previous rule that restricts the “physical” links between

neurons. The number of outgoing connections (Noutgoing) derived by Eq (4) was evaluated for

each neuron and compared to a threshold set at 8% of the total number of cells. If Noutgoing

exceeded the threshold by a value β, β connections were randomly deleted from the weight

matrix. The connections established from exemplary source excitatory and inhibitory nodes

(green dots) are depicted in Fig 7C and 7D, respectively. The size of the target neurons (red for

excitatory connections, blue for inhibitory ones) represents the connection weight (Eq (3)).

Rule 2: Scale-free (SF) connectivity

To implement a scale-free (SF) connectivity organization, the probabilistic rule of Eq (4) was

integrated with a control over the degree established for each neuron. A custom function was

created to fit the one of the typical degree distributions found in in vitro cortical cultures [19].

The function required the setting of four parameters: (i) the slope α of the fitting of the degree

distribution, set at -0.61; (ii) the upper and (iii) lower limits of the distribution, set at 50 and

200, respectively; and (iv) the number of degree values to extract, set at 100. The function

extracted the probabilities of each degree value and, from these, it computed the threshold of

outgoing connections, Nmax
outgoing , for each neuron (Fig 7E). This threshold was then compared to
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the number of established connections, which were randomly deleted from the weight matrix

if they exceed Nmax
outgoing . To reproduce what happens experimentally, the position of the high-

degree neurons (hub neurons) in the 2D layout was random [29].

3D connectivity models

The 3D configuration was generated by piling up several 2D units as described in the first Sec-

tion (Fig 7B), inspired by the experimental procedure of [7]. A z parameter was added to the

intrinsic parameters of the cells to set the height of each layer. The distance between different

layers was set to 50 μm to mimic in vitro scaffolds made up of glass microbeads [8, 13]. These

parameters yield to a final density of about 300000 cell
mm3. To evaluate the role of the total height

and the numbers of involved layers, networks with 2 up to 6 layers were simulated.

Generally, a connectivity like the one of the 2D fundamental unit (cf. Sect Connectivity

models) was implemented also in the 3D case. A probabilistic control over distance (which in

this case included the z-coordinate) was applied to evaluate the connection between two neu-

rons pertaining to different layers. The maximum probability of connections was in this case

set to 1

3
of the maximum probability of connection pMAX of the 2D fundamental unit. More-

over, much as in the 2D case, we inserted a restriction over the number of outgoing

connections.

Assuming these hypotheses, we evaluated different dispositions of the neurons that gener-

ated the 3D connections. The underlying issue for this change was that it is not yet experimen-

tally understood how the physical links are distributed in the z-direction in in vitro cultures.

Therefore, the first, and reference, approach was random and unrestricted (G3D). Then, we

explored the effect of limiting the number of neurons that generated the 3D links (G3D
rnd,

Fig 7F). Afterwards, we investigated whether the connections were originated in specific

regions of the network. Two different types of clusters were examined: in the first case

(Fig 7G), the inter-layer connections were originated from neurons positioned in a 278-μm

radius from the center of the culture itself (G3D
C ); in the second (Fig 7H), the source neurons

were located in 129-μm radius circles centered in 5 different locations of the culture (G3D
5C). In

all the new configurations, the number of source neurons for inter-layers connections results

to be around 360, that is 33% of the total population of each layer.

As for the experimental counterpart, we considered only the in silico data coming from the

bottom (or readout) layer for the analyses unless otherwise stated.

Dataset

The presented results come from a dataset made up of n = 20 2D networks with Rule 1 connec-

tivity (G2D), n = 28 2D networks with Rule 2 connectivity (SF2D), n = 25 3D networks (G3D)

equally divided among the considered number of layers (2 to 6), n = 22 3D networks with Rule

2 connectivity (SF3D
all ) in all the layers equally divided among the considered number of layers

(2 to 6), n = 12 3D networks with Rule 2 connectivity in the readout layer and Rule 1 in the

other layers (SF3D
L0

), and n = 12 four-layer 3D networks equally divided among random (G3D
rnd),

central (G3D
C ), and multiple centers (G3D

5C) connectivity. The in vitro recordings used to tailor

the model parameters came from n = 5 3D cortical cultures in their mature stage of develop-

ment (18 days in vitro).

Simulation environment

The neuronal network models were created using the Python programming language and

exploiting the Brian simulator package [49], a tool specifically designed for creating spiking
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neuronal networks. All ordinary differential equations were solved using the exponential Euler

method, with a time step of 0.1 ms. Spikes were recorded with sampling frequency of 10 kHz,

in accordance with the experimental recordings. All results presented were taken from simula-

tions producing 60 seconds of data, recorded after 10 seconds of simulation necessary for the

network to settle. The parameters used for the simulations were either extrapolated from the

literature or calibrated with empirical trials, where the values of the parameters were chosen in

order to guarantee a stable and physiological dynamics of the cells. A list of the swept parame-

ters can be found in the supplementary information (S5 Fig and S1 Table).

Data analysis

The simulated electrophysiological activity was analyzed using algorithms developed in Matlab

(The Mathworks, Natik, US). From the spike trains of both the excitatory and inhibitory popu-

lations of the readout layer, burst events were identified by means of the string method devised

in [50] by setting to 5 the minimum number of spikes needed to be classified as a burst and to

100 ms the maximum inter-spike interval into a burst. To quantitatively characterize the spik-

ing and bursting activity, the following parameters were computed: (i) the mean firing rate

(MFR) and (ii) mean bursting rate (MBR), that are the mean number of spikes/bursts per sec-

ond/minute averaged over the number of active neurons; (iii) the burst duration (BD), which

is the temporal length of a burst. A neuron was considered active if it generated at least one

spike in 10 s (MFR > 0.1
sp
s ) and at least four bursts in 1 min (MBR > 4 bursts

min ).

The choral activity of the whole population was evaluated by analyzing the network bursts,

identified with the algorithm described in [51]. The algorithm requires two thresholds for the

detection of these population events: (i) the maximum interval that occurs between two conse-

cutive events (set at 100 ms) and (ii) minimum number of involved nodes (set at 20% of the

total number of nodes). From the network burst train, we computed the network burst dura-

tion (NBD), i.e., the temporal duration of the population events. Information about the shape

of the network bursts was computed from the average spike time histograms (STH). The

instantaneous firing rate (IFR) of each network burst were aligned by evaluating the delay that

produces the maximum absolute value of cross-correlation between a randomly chosen IFR

trace and the remaining network bursts and temporally shifting the data accordingly. The

average STH was accepted when the correlation coefficient was higher than 0.4 [52]. Then, the

rising and decaying phases were individually fitted to evaluate the temporal evolution with the

following exponential functions, respectively:

rðtÞ ¼ a0e
ðb0 � 1Þt þ a1e

ðb1 � 1Þt þ a3 ð5Þ

sðtÞ ¼ c0e
d0t þ c1e

d1t ð6Þ

The smaller of the two exponents b0 and b1 of Eq (5) defines the neuron recruitment rate

[52], while the smaller between d0 and d1 of Eq (6) describes the network modulation during

the population events (modification of [26]).

Statistical analysis

Statistical analysis was performed using Origin (Origin Lab Northampton, Ma) with the non-

parametric Kruskal–Wallis test, as data do not follow a normal distribution (evaluated by the

Kolmogorov-Smirnov normality test). Significance levels were set at p< 0.05. The box plots

representation indicates the 25–75 percentile (box), the standard deviation (whiskers), the

mean (square), and the median (line) values. For the last section, to make the data comparable,
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different subsets of the 3D reference configurations with dimensions comparable to the other

data were tested, each resulting statistically different.

In vitro model

Cortical tissue was obtained from Sprague-Dawley rat embryos at gestational day 18 (E18).

Single cells were obtained by enzymatic dissociation followed by a mechanical one. The enzy-

matic solution consisted in Hank’s solution with 0.125% Trypsin and 0.05% DNAase and was

activated for 20 minutes at 37˚C. This process was quenched by adding culture medium sup-

plemented with 10% fetal bovine serum, followed by a mechanical trituration with fire-pol-

ished Pasteur pipette. The cells were plated on pre-coated planar MEAs to extracellularly

record the electrophysiological activity of the networks [19]. To create the 3D structure, glass

microbeads (40 μm in nominal diameter) were plated over the MEA as described in [9].

Briefly, the pre-coated beads were moved to a multiwell plates to form a uniform layer for cell

seeding. Microbeads self-assembled in a hexagonal geometrical structure, leaving only two

thirds of the surface of the beads exposed to the cells, which will not be as regularly arranged in

the plane as the beads. They were plated on the beads to obtain a final nominal density of 1’500

cell/mm2. After 6 hours, the beads and attached cells were moved onto the cell monolayer in

the MEAs, to form a four/five-layer final structure. Half of the medium was replaced every

week. Cell cultures were maintained in a humidified incubator at 37˚C supplied with 5% CO2

for about 3 weeks, until networks maturation.

Supporting information

S1 Fig. A physiological balance between excitation and inhibition guarantees in vitro-like

patterns of electrophysiological activity where bursting and spiking activity coexist. 60-s

simulated spontaneous electrophysiological activity of representative 2D networks as a func-

tion of the percentage of inhibitory neurons. (A) 50%, (B) 40%, (C) 30%, (D) 10%, and (E)

20% of inhibitory neurons. This last configuration allows to reproduce values of firing and

bursting rates comparable with the experimental recordings of mature 2D cortical cultures as

well as the presence of population events (network bursts) involving most of the neurons of

the network.

(TIF)

S2 Fig. Involvement of the network in population events. (A) Number of involved electrodes

in the network burst events in 2D (black) and 3D (green) networks (��� refers to p<0.001,

Kruskal-Wallis non-parametric test). (B-D) Color-coded normalized similarity maps, evalu-

ated with the Victor Purpura distance, within 3 exemplary of 4-layer 3D networks. The nor-

malization was done on the maximum similarity. From the maps, the three higher values of

similarity were extracted and classified based on the step distance between two layers, (e.g.,

two consecutive layers are considered as 1-step distant; layer 1 and layer 4 are considered

3-step apart). Three different propagation modes emerged, each represented with an exem-

plary normalized similarity map and a relative pie chart, which indicates the percentage of

times the higher similarity values occur between consecutive layers (d1), layers 2-step apart

(d2), and layers 3-step apart (d3). Each identified propagation mode was exhibited by n = 3

simulated 4-layer networks (G3D).

(TIF)

S3 Fig. 3D in vitro culture. Mature 3D culture (18 DIV) on glass microbeads, stained with

anti-NeuN antibody to label neuronal nuclear protein.

(TIF)
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S4 Fig. Similarity of modular cultures. (A) representation of the disposition of the neurons

in the network. Two different populations (green and yellow) were created as with the Gauss-

ian connectivity (G2D and G3D). The two modules were connected on the readout layer level to

mimic the experimental model devised in [13], where two different 3D populations were inter-

connected by microchannels. To imitate the physical constraints, the populations were 250 μm

apart and the gaussian function that regulates the synaptic weight w and the probability of con-

nection p was modified to introduce anisotropy. In particular, two different σ were imple-

mented, a transversal one that is a multiple of the distance between two channels (50 μm) and

a longitudinal one, that adds to that the distance between the two modules. (B) Color-coded

similarity maps, evaluated with the Victor Purpura distance (S1 File), within the two modules

(green on the left, yellow on the right). The arrow and value on the top indicate the similarity

value between the readout layers of the two modules.

(TIF)

S5 Fig. Connectivity parameters tuning. Effect of the mean synaptic inhibitory weights on

the (A) mean firing rate (MFR) and (B) mean bursting rate (MBR). The effect of the percent-

age of pruning synaptic connections was evaluated and its effect evaluated on the (C) MFR

and (D) MBR. Red, blue and black colors identify the results relative to the excitatory, inhibi-

tory, and the total neurons, respectively.

(TIF)

S1 Table. List of parameters swept for tuning.

(TIF)

S1 File. Evaluation of similarity method. Method for the extraction and evaluation of the

similarity maps.

(DOCX)
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