
Crossing-free paths in the square grid

POST-PRINT
Article published on

Computers & Graphics, Volume 114, August 2023, Pages 296-305

https://www.sciencedirect.com/science/article/pii/S0097849323001115?via%3Dihub

Lidija Comic,
Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

comic@uns.ac.rs

Paola Magillo
DIBRIS, University of Genova, Genova, Italy

magillo@dibris.unige.it

Abstract

We consider paths in the 2D square grid, composed
of grid edges, given as a sequence of moves in the
four cardinal compass directions, without U-turns,
but possibly passing several times through the same
vertex or the same edge (if the path is open, it cannot
pass twice through its starting vertex). We propose
an algorithm which reports a self-crossing if there
is one, or otherwise draws the path without self-
crossings. The algorithm follows the intuitive idea
naturally applied by humans to draw a curve: at each
vertex that has already been visited, it tries to insert
two new segments in such a way that they do not
cross the existing ones. If this is not possible, a self-
crossing is reported. This procedure is supported by
a data structure combining a doubly-linked circular
list and a skip list. The time and space complexity is
linear in the length of the path.

1 Introduction

We consider the plane as covered by the infinite
square grid with cell edge of unit length. In the in-

finite grid graph, composed of the vertices and edges
in the square grid, a digital path of length n (with
n ≥ 1) is a sequence π = e1, e2, ..., en of edges such
that two consecutive edges are distinct and mutually
adjacent. The same path could also be expressed as a
sequence of vertices P0, P1, . . . Pn such that Pi is the
common endpoint of ei and ei+1 for 1 ≤ i ≤ n − 1,
P0 is the endpoint of e1 different from P1, and Pn is
the endpoint of en different from Pn−1.

The path may be open or closed (i.e., the last ver-
tex Pn may or may not be coincident with the first
one P0) and it may present repetitions of both ver-
tices and of edges. Note that two consecutive edges
ei, ei+1 of the path are adjacent in the grid graph:
since an edge is not adjacent to itself, then ei ̸= ei+1

and Pi−1 ̸= Pi+1. For closed paths, we also require
that en ̸= e1 (or, equivalently, that P1 ̸= Pn−1).

We encode a digital path π as a starting vertex P0

and a word w = w1...wn of (finite) length n ≥ 1 over
the alphabet Σ = {N,E,W,S}, i.e., wi ∈ Σ, 1 ≤ i ≤ n.
Each letter wi in the word w corresponds to the edge
ei in the path π considered as directed from Pi−1

to Pi. The letters (directions, or moves) denote the
four cardinal directions of a compass. For a letter

1

d in Σ, we denote the opposite direction as −d in
the obvious manner, e.g. if d =E then −d =W. The
considered words do not contain consecutive pairs of
opposite moves, i.e., EW, WE, NS or SN (a.k.a. U-
turns). In other words, wi+1 ̸= −wi, 1 ≤ i ≤ n − 1.
Additionally, for closed paths, wn ̸= −w1.
We say that a digital path π is crossing-free if the

edges incident with each vertex P in π can be ar-
ranged in a radial sequence so that for any two in-
dexes 1 ≤ i, j ≤ n− 1, the edges ei, ei+1, ej , ej+1 do
not appear in the alternating order ei, ej , ei+1, ej+1

in the sequence. For example, the path in Figure 1
(a) is crossing-free, while the one in Figure 1 (b) is
self-crossing at the vertex P1 = P5.
We address two related questions:

1. Is the path π self-crossing?

2. If not, how can we draw π without crossings?

We propose an algorithm to answer these questions
by tracing a (directed) curve C, which draws the path
π edge by edge, inserting each current edge ei at its
correct place in the cycle of the edges incident with
its endpoint Pi and, if possible, inserting the next
edge ei+1 of π at its correct place in the same cycle,
or reporting a self-crossing otherwise.
An open crossing-free path is homeomorphic to a

segment, and a closed one is homeomorphic to a cir-
cle. Therefore our method to check this property
can help in curve classification. Moreover, thanks to
the incremental nature of our algorithm, it could be
used during interactive drawing, to ensure crossing-
free digital curves. By extending it to other types of
grids, provided that they have a finite and discrete
number of possible moves from each vertex, it can
find application to path planning and navigation on
a polygonal mesh.

2 Related work

A word on the alphabet of the four cardinal compass
directions describes a digital path, composed of edges
in the square grid. When the path is the boundary of
a digital object, i.e., simple and closed, such encoding
is known as the Freeman code [9, 10, 11].

Freeman codes have been used to represent paths
in robot path planning [15], in image retrieval and
registration [12, 13], and for text recognition in
manuscripts or images [3, 8, 5].

Brlek et al. [6] considered the problem of test-
ing whether a path, represented by its Freeman code,
passes several times through the same vertex. This
question can be answered in O(n log n) time by using
sorting or an AVL tree, but the authors provide an
efficient solution working in linear time, based on a
quad-tree combined with a radix tree. This is a re-
lated but different problem with respect to the one we
address, since we admit several passages through the
same vertex, provided that the path does not cross
itself at that vertex.

Brlek et al. [7] described how to detect a self-
crossing in the specific case of digital paths that are
closed and pass through the same vertex at most
twice. Such paths are intended as the boundary of
a non-connected object (i.e., a set of pixels) in the
square grid, where tunnels (sequences of edges tra-
versed two times in opposite directions) are used to
bound different connected components of the object
with a unique contour. Here, we address a more gen-
eral problem, admitting multiple passages through
the same vertex, and open paths as well.

Abbott et al. [1] classify paths into self-crossing,
non-touching, and self-touching. The last ones corre-
spond to our idea of passing multiple times through a
vertex or edge, but without moving to the other side.
Self-touching paths can be unfolded to non-touching
ones by moving their vertices continuously. Banerjee
and Chandrasekaran [4] employ non-touching paths
for motion planning. Some interest for non-touching
paths also exists in manufacturing, where a linear
piece of wire must be deformed to achieve a desired
configuration, if possible without crossing [2].

3 Algorithm for testing
whether a path is self-
crossing

In our algorithm, we apply the same approach that
a human would naturally use to draw a digital path.

2

(a) ESENWN

P0

P3

P4

P6

P1=P5

P2

P0

P3

P4

P6

P2

P1

P5

e1

e3

e2 e4

e5

e6

(b) EESWNN

P0

P3

P6

P1

P5P0

P3

P6

P1=P5
P2

P4 P4

P2

e1

e6

e2

e3

e4

e5

Figure 1: The first column shows the words encoding two paths, where (a) the first can be drawn without
crossings, and (b) the second is self-crossing. The second column shows the traversed vertices, and, without
letters, this drawing is ambiguous. The third column draws the path ESENWN without crossings, and the
last one shows the output of our demo.

Given the word w, we follow the digital path from
the starting vertex P0 and, for each move wi, we
try to draw a unit segment exiting from the cur-
rent vertex in the direction wi. If one such seg-
ment has been drawn already, we draw the new seg-
ment above/below (for wi =E or W) or left/right (for
wi =N or S) to the old one, with a small offset, in
such a way to avoid crossing. If it is not possible, we
report self-crossing.

We assume that the path passes only once through
its starting vertex P0 (in case of a closed path, P0 ≡
Pn is allowed). In Section 7.3, we will discuss the
rationale of this requirement and possible ways to
relax it partially.

We define a half segment as an oriented segment
exiting from a source point. In general, a half seg-
ment has a length and a direction. Here, the source
point is a vertex of the grid, directions are in Σ, and
all half segments have length equal to one. Every half
segment has an opposite half segment, corresponding
to the same segment with the opposite orientation
and the other endpoint as source.

Starting from the vertex P0, the path will traverse

a sequence of vertices P0, P1, . . . , Pn. These vertices
are not necessarily distinct (see Figure 1). Every pair
of consecutive moves wiwi+1 in the input word defines
a passage through the vertex Pi. Three half segments
are involved (see Figure 2):

1. the half segment exiting from Pi−1 in the direc-
tion wi,

2. its opposite half segment, having the source Pi

and the direction −wi; we call it the entering
half segment for Pi,

3. the half segment exiting from Pi in the direction
wi+1; we call it the exiting half segment for Pi.

We say that the entering and the exiting half seg-
ments of Pi are mates of each other. Note that the
two mate half segments are directed consistently with
the fact that their source is Pi. So if wi =E and
wi+1 =S, then the entering half segment has direc-
tion W= −E. Since U-turns are not allowed, the two
mate half segments must have distinct directions.

The path may pass several times through the same
vertex P , i.e., P = Pi ≡ Pj ≡ Pk . . . for i ̸= j ̸=

3

S

W

E

PP

P

ii−1

i+1

Figure 2: The step from Pi−1 to Pi through the
move wi =E and from Pi to Pi+1 through the move
wi+1 =S. The three involved half segments are shown
with their directions. Two half segments with source
Pi (linked with an arc) are mates of each other and
define a passage through Pi.

s1

W(0)

N(0)

E(1)

E(0)

S(−1) S(0)

s2
s3

s4

s6

s5 iP

Figure 3: The radial list s1, s2, s3, s4, s5, s6 of half
segments at a traversed vertex Pi. For each half seg-
ment, we show the direction and the offset. Half seg-
ments drawn in the same color, and linked by an arc,
are mates.

k We store all half segments generated by all
passages through P in a list, radially sorted around
P in counterclockwise order.

Half segments referring to different passages
through P may have the same direction. In order
to disambiguate the counterclockwise order in such
case, each half segment has an offset: a small quan-
tity to be added to the x coordinate of the segment
(if the segment is vertical) or to the y coordinate (if it
is horizontal). When two (consecutive) half segments
have equal direction, they have different offset. If the
direction is E or S then the lower offset precedes the
higher one; if the direction is W or N then the higher
offset precedes the lower one.

An example of the radial list around a vertex Pi is
shown in Figure 3. Pi has three passages, i.e., three
pairs of mate half segments (each shown in the same
color and connected by an arc). The direction and
the offset of each half segment is also shown. The
sorted list is s1, s2, s3, s4, s5, s6 (as the list is circular,
the first element is arbitrarily chosen).

It is important to notice that offset values are sym-
bolic, and not related with the edge length of the grid.
We use numbers, but we could use character strings,
or any other type that supports a total order and
such that an intermediate element always exists be-
tween any two given elements. In Figure 3, the values
1 and -1 are used to distinguish the relative order of
half segments with equal direction. These values will
be replaced by appropriate ones when drawing the
curve (as we will explain in details in Section 5).

3.1 Processing the first vertex

The first vertex P0 has just an exiting half segment
sout in direction w1, so this half segment would have
no mate (it can be conventionally set as the mate of
itself).

This half segment is inserted in the radial list of
the first vertex P0 (now containing only it) with offset
equal to 0. For the paths in Figure 1 (a) and (b), the
radial list of P0 will contain the exiting half segment
sout, the first move of the path, in direction E.

3.2 Processing the next vertices

For i > 0, the entering half segment sin of Pi is the
opposite of the exiting half segment of Pi−1, which
has been processed in the previous step. The offset
of sin is the same as its opposite half segment, and
therefore it is known.

Based on the offset of sin, there is a unique position
for inserting it in the radial list of Pi. We insert sin in
the list at its position, and we try to find the position
for its mate, the exiting half segment sout in direction
wi+1. This may or may not be possible, depending
on the position of the existing half segments around
the vertex Pi. Let us first consider some examples.

Consider the crossing-free path ESENWN in Fig-
ure 1 (a). For vertices Pi, i = 1, 2, 3, 4, the radial

4

sout

s inW(0)

E(0)

S(0)

N(0)

5P

s in

sout

W(0)

E(0)

S(0)

N(?)

5P

(a) (b)

Figure 4: Processing the vertex P5 in the paths of
Figure 1 (a) and (b), respectively. In (a) we can add
sout without crossings. In (b) we find a self-crossing
when trying to add sout.

list will contain just the entering and the exiting half
segments, both with offset equal to 0. When process-
ing P5 ≡ P1 (see Figure 4(a)), the radial list contains
one half segment in direction W and one in direction
S. The entering half segment sin, having direction
E, is inserted between the one in direction S and the
one in direction W. The exiting half segment sout has
direction N, and it is inserted just after its mate sin.

Consider the self-crossing path EESWNN in Figure
1 (b). The vertices Pi, i = 1, 2, 3, 4 are processed
in the same way as in the previous example. When
processing P5 ≡ P1 (see Figure 4(b)), the radial list
contains one half segment in direction W and one
in direction E. The entering half segment sin, having
direction S, is inserted between the one in directionW
and the one in direction E. The exiting half segment
sout has direction N. It cannot be inserted because
sin and sout lie in the two opposite sectors defined by
the existing pair of mate half segments.
In the previous examples, for no vertex there are

two different half segments with the same direction,
therefore all half segments have offset equal to 0. A
more complex example is shown in Figure 5.
Up to P8, each traversed vertex has just two half

segments. At P9, the vertex has two mate half seg-
ments in directions S and E. The new passage inserts
two more half segments in directions W and N. All
half segments have offset 0.
When processing P10 ≡ P6, the radial sequence

contains two half segments in directions W, E (see
Figure 6(a)). The entering half segment sin has di-
rection S and offset 0. It is inserted between the two
existing half segments. The exiting half segment sout
in direction E is inserted between sin and the exist-
ing half segment in direction E, and its offset is set
to a value lower than 0, for example −1. Similarly,
the exiting half segments at P11 and P12 are inserted
with offsets different from 0.

When arriving at P13 ≡ P9 ≡ P3, the radial list
contains four half segments in directions S,E,N,W,
where the pairs in directions S,E and N,W are mates,
and all offsets are equal to 0 (see Figure 6(b)). The
new entering half segment sin in direction E with off-
set 1 is inserted after the existing half segment in
direction E. Its mate exiting half segment sout in di-
rection S is inserted before the other one in direction
S, and its offset is set to −1.

When processing P14 ≡ P2, the radial list contains
the half segments of one passage, with directions W
and N and offsets 0 (see Figure 6(c)). The entering
half segment sin in direction N with offset −1 (it is
the opposite half segment of the one exiting P13) is
inserted between the two half segments in directions
N and W. The exiting half segment sout in direction
E cannot be inserted, because it and its mate lie in
opposite sectors defined by the previous passage at
P14.

4 Implementation details

4.1 Managing the radial lists

Every traversed vertex Pi has an associated list of
half segments, radially sorted around Pi in counter-
clockwise order. The radial order takes offsets into
account, when two consecutive half segments have
the same direction: for directions N and W, higher
offset precedes lower offset, for direction S and E,
lower offset precedes higher offset.

Such list is implemented as a standard doubly-
linked (circular) list, i.e., a chain of nodes, each point-
ing to the next node and to the previous node. In ad-
dition, each node, containing a half-segment s, has a
pointer to the node containing the mate half-segment

5

EENENWWSENESWSE

P1

P2

P3 P4

P5P6P7

P8
P9

P10 P11

P12P13

P14 P15P0 P1

P7

P8

P15

P3=P9=P13

P6=P10

P4=P12

P5=P11

P2=P14

P0

Figure 5: A path, the raw way to draw it, and a drawing highlighting the passages of the curve through the
vertices. The path can be drawn without self-crossings until the last segment P14P15.

s in

sout

W(0)

S(0)

E(0)

E(−1)

P10

ins

sout

W(0)

N(0)

E(1)

E(0)

S(0)S(−1)

P13 ins

soutW(0)
E(?)

N(0)
N(−1)

P14

(a) (b) (c)

Figure 6: Processing the vertices P10 ≡ P6, P13 ≡ P9 ≡ P3, and P14 ≡ P2 in the path of Figure 5. A
self-crossing is detected when processing P14.

6

of s. In other words, the pair of mate half-segments,
representing the same passage through the vertex Pi,
are mutually connected with pointers. Our imple-
mentation will use such mate pointers, to skip entire
radial sectors during a search.
The idea of using additional pointers leading else-

where in a linked list, to exclude portions of the list
from a search, comes from skip lists. A skip list [14] is
a linked list storing a sorted sequence of values, where
each node has an additional pointer, leading to an-
other node located K > 1 positions forward, with
K randomly chosen. Such skip pointers are used to
speed up the search for a given value x in the sorted
list. The algorithm starts from the first node and
loops while the current node N contains an element
y < x. If the skip pointer of N brings to a node M
containing z < x, then the search goes directly to M ,
skipping the part in between. As skip pointers in a
skip list, our mate pointers can bypass portions of a
list, that are not relevant. In particular, we use them
during the search for locating the correct position of
the half-segment corresponding to a new move from
Pi (see details later).
Referring to the radially sorted list of half segments

associated with a vertex P , we define the following
predicates (we recall that the offset of a half segment
may be undefined, and this happens temporarily for
the exiting half segment to be inserted in the list):

• s strict between(s1, s2) holds if s is between
s1 and s2 in the radial order. If the direction of
s is the same as that of s1 and/or s2, the value
of the predicate depends on the offset of s and,
if the offset of s is still undefined, it is false.

• s loose between(s1, s2) is equal to the previ-
ous predicate in all cases except when the di-
rection of s is the same as that of s1 and/or
s2 and the offset of s is undefined. In that
case, loose between(s1, s2) returns true, and
the offset of s will be set in such a way that
strict between(s1, s2) will hold.

The insertion of the entering half segment sin in
the list is done by the function add entering seg,
whose pseudocode is shown in Figure 7. If the radial
list is empty, we simply add sin. Otherwise, we loop

add_entering_segment(s_in)

if list is empty

add s_in as first element

return

curr = first element

while true

if s_in strict_between(curr.prev, curr)

add s_in before curr

return true

curr = curr.next

Figure 7: Pseudocode of the function which adds the
entering half segment sin to the skip list associated
with the traversed vertex.

until we find two consecutive half segments such that
sin lies strictly between them.

Function add exiting seg, whose pseudocode is
shown in Figure 8, searches for a correct position to
insert the exiting segment sout (mate of sin, in di-
rection of the move wi+1), starting from the position
of sin. This is not always possible, and the function
return true (false) in case of success (failure). In case
of success, the function also sets the offset of sout
(initially undefined).

If the radial list contains just sin (i.e, this is first
passage through Pi), we insert sout in any position
and set its offset to zero.

Otherwise, the radial list contains at least three
segments (sin and a pair of mates from a previous
passage). We search for a pair of consecutive half
segments sprev, scurr, such that sout can be inserted
between them, by setting its offset as necessary. At
the beginning, sprev = sin and scurr is the next half
segment of sin, so we try to put sout just after its
mate.

If the direction of sout lies strictly in the radial sec-
tor between sprev and scurr, or it is equal to the direc-
tion of one of them, then we insert sout between sprev
and scurr, and set its offset: zero if sout is strictly in
the radial sector, or non-zero if its direction coincides
with that of sprev and/or scurr.

Otherwise, we consider the mate segment smate

of scurr. If sout has a direction strictly between
scurr and smate, then sout cannot be inserted (a self-

7

add_exiting_seg(s_out)

if list has one element

// it is the mate of s_out

s_out.offset = 0

add s_out to list

return true

s_curr = s_out.mate.next

while true

if s_out loose_between(s_curr.prev, s_curr)

update_offset(s_out, s_curr.prev, s_curr)

add s_out before s_curr

return true // added

// if s_curr is mate,

// we tested the last possible position

if s_curr == s_out.mate

return false // not added

// otherwise,

// the mate of s_curr is in the list

if s_out strict_between(s_curr, s_curr.mate)

return false // cannot add

// skip the sector between s_curr

// and its mate

s_curr = s_curr.mate.next

Figure 8: Pseudocode of the function which adds the
exiting half segment sout to the skip list associated
with the traversed vertex, when the mate half seg-
ment sin of sout has already been added. This op-
eration may not be possible. The function returns
true if the half segment has been inserted and false
otherwise.

crossing has been detected). Otherwise, we skip the
whole radial sector from scurr to smate: for the next
iteration sprev will be smate and scurr will be the half
segment following it.
If we have completed a turn around the vertex

(scurr is now sin), this means that all possible po-
sitions have been tested, and thus sout cannot be in-
serted (a self-crossing has been detected).

4.2 Retrieving already visited vertices

When, following the path, we arrive at the next ver-
tex Pi, we have to determine whether this is a new
vertex (first passage through Pi, its radial list does
not exist and it must be created), or an already vis-

ited one (its radial list exists, is not empty, and must
be retrieved).

Our implementation relies on dictionaries. The
dictionary is a data type consisting of a set of as-
sociations key −→ value. Here the key consists of
the pair of coordinates of a vertex and the associated
value is the radial list of half segments. Dictionaries
can retrieve the value associated with a given key in
expected constant time, if implemented with hash ta-
bles. Some alternative implementations are discussed
in Section 6.2.

4.3 The main procedure

The pseudocode of the overall process is given in Fig-
ure 9. The return value is true if the path is self-
crossing and false if it is crossing-free.

Beside the already mentioned functions
add entering seg and add exiting seg, the
functions add and add first pair add one or two
half segments in any order, respectively, into an
empty skip list. Function update offset, whose
pseudocode is given in Figure 10, sets the offset
of a half segment s, inserted between two half
segments sprev and ssucc, in such a way that s
strict between(sprev, ssucc) holds.

If the direction of s is distinct from that of sprev
and ssucc, the offset will be 0; if it is equal to the direc-
tion of sprev (ssucc), then the offset is set to the one of
sprev (of ssucc) plus or minus an offset depending on
the direction; if the directions of the three segments
are equal, the offset is set to the mean between the
offsets of the other two segments.

5 Drawing

The usual way to draw a path w starts from P0, ap-
plies the first move w1 to compute the next vertex
P1, draws the segment P0P1, then it repeats the pro-
cess for Pi and wi+1, for i = 1 . . . n−1. This drawing
is ambiguous if the same vertex is traversed multiple
times (compare Figures 1 (a) and (b)).

Our drawing without intersections works in the fol-
lowing way. When drawing a passage through a ver-
tex Pi, Pi becomes two consecutive points, one as

8

self_crossing(P0, path)

// create first segment

first = new HalfSegment(P0, path[0])

first.offset = 0

// insert it into the radial list of P0

listP0 = setListForPoint(P0,new SkipList())

listP0.add(first)

//the cycle will create all other half segments

last = first

for i=1 to n-1

// compute next vertex

P = move_vertex(last.start, last.dir)

// create s_in, the entering half

//segment of P, opposite of last

s_in = new HalfSegment(P, -last.dir)

s_in.offset = last.offset

// create s_out, the exiting half

// segment of P, mate of s_in,

// with undefined offset

s_out = new HalfSegment(P, path[i])

make_mates(s_in,s_out)

// insert the two mate half segments

// into the radial list of P

listP = retrieveListForPoint(P)

if listP does not exist:

// first passage through P

listP=setListForPoint(P,new SkipList())

listP.add_first_pair(s_in,s_out)

else // a subsequent passage through P

listP.add_entering_seg(s_in)

success=list[P].add_exiting_seg(s_out)

if not success // self-intersection

return true

// prepare for next iteration

last = s_out

return false // end of cycle, no intersection

Figure 9: Pseudocode of the self-crossing test. The
function returns true if the path is self-crossing and
false if it is crossing-free. The elements of the word
w, encoding the input path, are stored in an array
path where indexes start from 0 and path[i] con-
tains wi+1, for 0 ≤ i ≤ n− 1.

endpoint of the entering half segment, and one as
endpoint of the exiting half segment. The positions
of the two points depend on the direction and off-

update_offset(s, s_prec, s_succ)

// two Booleans indicate whether the

// adjacent half segments give a

// constraint for the offset of s

noprec= (s_prec==null || s_prec.dir!=s.dir)

nosucc= (s_succ==null || s_succ.dir!=s.dir)

if noprec and nosucc // no constraint

s.offset = 0

return

// incr gives the sign of the in offset

if (s.dir==E) or (s.dir==S): incr = 1

else incr = -1 // W or N

if noprec

s.offset = s_succ.offset-incr

else if nosucc

s.offset = s_prec.offset+incr

else

s.offset =

0.5*(s_prec.offset+s_succ.offset)

Figure 10: Pseudocode of the procedure which sets
the offset of a new exiting half segment sout, based
on the ones preceding and following it in the radial
order.

set of the entering / exiting half segments. The two
points lie on a virtual square centered at Pi = (xi, yi)
with edge = 2∆, where 0 < ∆ < 1

2 , assuming that
the grid edge is 1. The coordinates (x, y) of the point
that replaces Pi as endpoint of each half segment are:

• for half segment oriented E, x = xi +∆

• for half segment oriented W, x = xi −∆

• for half segment oriented N, y = yi +∆

• for half segment oriented S, y = yi −∆

The other coordinate depends on the offset and
will be yi + ε offset if the half segment is horizontal
(direction E or W) and xi+ε offset if the half segment
is vertical (direction N or S). The values of ∆ and ε
must be chosen in such a way that ∆ < 1/2 and
ε < ∆/max offset, where max offset is the maximum
absolute value among all offsets. By connecting such
points, we draw a curve representing the given path
without intersections. Three examples are shown in
Figure 11.

9

Choosing ε < ∆/max offset guarantees that, what-
ever the number of passages through a given grid edge
PQ, the segments, drawn to represent them, remain
distinct and their endpoints lie within the squares
centered at P and Q with edge length = 2∆. They
are distinct because the offsets of such segments are
all distinct and so are the quantities ε offset added
to the coordinates of P and Q. They lie within the
square because |ε offset| < εmax offset< ∆. Let us
consider the example in Figure 11 (c) and the grid
edge PQ. This edge is traversed four times, and
the offsets of the four segments are 0, 1, 1.5, 2, re-
spectively (from left to right). The segments to be
drawn have x = xP , xP + ε, xP + 3

2ε, xP + 2ε (here,
max offset= 2).

If the offset difference of two consecutive segments
traversing the same edge is too small, the coordi-
nates assigned to them, even if distinct in the con-
tinuum, may fall on the same pixel when dicretized
on screen. For example, let us consider a path of
the form E(NNNESWSESW)k where the expo-
nent denotes a subpath repeating k times. Refer-
ring to Figure 12, edge PQ is traversed 2k times.
For k = 1, the two segments have offsets = 0, 1. For
k = 2 (see Figure 12(a)), the two new segments are lo-
cated between the segments of the previous traversal,
with offsets = 0.5, 0.75 (the distance between them is
0.25). For k = 3 (see Figure 12(b)), the offsets of
the two new segments, located between the previous
pair, are = 0.625, 0.7 (with distance 0.075). The seg-
ments at PQ, although not many, become too close,
and cannot be drawn distinctly on the screen.

To avoid this problem, we can reconfigure the off-
sets of the segments occurring at a given grid edge,
here PQ. This operation affects only the radial lists
of the two points P and Q (containing the two op-
posite half segments of such segments). In the radial
list, we count the half segments with each direction
(E,S,W,N). If the minimum offset difference is < 1,
we redistribute the offsets evenly between −⌈m

2 ⌉ and
⌊m

2 ⌋, where m is their number. Figure 12(c) shows
the path E(NNNESWSESW)3 drawn after recon-
figuration (the offsets of the six segments are now
−3,−2,−1, 0, 1, 2). Figure 12(d) shows the reconfig-
ured path E(NNNESWSESW)5.

P0 P

ESENWN

(a)

P0

P

ENNESWS

(b)

P0

P

Q

ENWNESSEENWWSENESWWNN

(c)

Figure 11: Examples of paths and drawings. In (a)
and (b), the blue vertex P is traversed by two pas-
sages. The virtual square centered at P is shown
dotted. The letters show the directions of the half
segments incident with P . In (b) the two segments
with direction S have offsets 0 and 1 (from left to
right). The path in (c) traverses four times the grid
edge connecting the marked vertices P and Q.

6 Computational complexity

The size of the input is the length n of the path. Let
Q be the set of traversed vertices and q = |Q|. Then
q ≤ n + 1, because the path may pass several times
through the same vertex.

6.1 Cost for managing the radial lists

Let δ(P) be the number of passages through a vertex
P ∈ Q. We have that

∑
P∈Q δ(P) = n + 1 and

δ(P) ≤ ⌈n/4⌉ for all P ∈ Q, because, as U-turns are
not allowed, the path needs at least four moves (e.g.,

10

E(NNNESWSESW)2

P0

P

Q

(a)

E(NNNESWSESW)3

P0

P

Q

(b)

E(NNNESWSESW)3

P0

P

Q

(c)

E(NNNESWSESW)5

P0

P

Q

(d)

Figure 12: Drawing the path E(NNNESWSES)k for (a) k = 2, (b,c) k = 3, (d) k = 5. In (c,d), the offsets
have been reconfigured.

ENWS) to return to the same vertex.
When a passage through P is processed, we have

to locate the position for the entering half segment
sin in the radial list around P , and then the position
for the exiting half segment sout. The first operation
costs at most δ(P) steps. The second one costs four
steps thanks to the use of skip pointers, as shown
below.
The half segments present in the radial list have at

most four different directions. The first checked posi-
tion is the one between sin and its next half segment
scurr. If sout cannot be placed there, we skip the
whole sector between scurr and its mate, which must
have a different direction from scurr (because they
belong to the same passage, and U-turns are not al-
lowed). So, each step changes the direction, and in at
most four steps we return to sin, if neither the cor-
rect place for inserting sout nor a crossing have been
detected in the meantime.

6.2 Cost for retrieving repeated ver-
tices

Many approaches can be used to support the retrieval
of the radial list of an already visited vertex.

• With a preliminary sorting of all vertices, we pay
an O(n log n) preprocessing time, allowing for an
O(1) query time during the main cycle. This ap-

proach needs to know all vertices in advance, so
it is not suitable for drawing paths in an inter-
active way.

• With an AVL tree based on the vertex coordi-
nates, we have an O(log n) cost at each iteration
of the cycle, leading to an overall O(n log n) time
complexity.

• With a dictionary based on the vertex coordi-
nates, we have an expected O(1) query time dur-
ing the main cycle, but the (very unlikely) worst-
case cost at a single vertex could be up to O(n).

• We could use the data structure proposed in [6]
to detect whether a digital path passes twice
through the same vertex. The structure can be
easily modified to support the retrieval of the
first visited instance of a vertex, in the follow-
ing way. In the original data structure, a node
is marked with a Boolean value: visited or not
visited. If a new vertex falls into a visited node,
then the algorithm stops and reports the exis-
tence of a multiple passage. We can mark each
node with an integer number: −1 for unvisited,
or the index (≥ 0) of the first found vertex falling
in that node otherwise. In case of another pas-
sage through the vertex, the corresponding node
will provide the index of the first encountered
copy of the same vertex. The radial lists can be

11

stored separately in an array. This alternative
will provide an O(n) time and space complexity,
as shown in [6].

6.3 Overall time complexity

The time complexity for retrieving already visited
vertices can be O(n) as described above. The time
complexity for managing all insertions in all radial
lists is expressed by

T (n) =

n∑
i=1

(δ(Pi) + 4) = 4n+

n∑
i=1

δ(Pi)

In the worst case, δ(Pi) = n/4 and thus T (n) =
O(n2). The worst case is a spiral-like path, e.g., move
E followed by an arbitrary numbers of loops ENWS.
The path E(NNNESWSESW)k, shown in Figure
12, is another one with quadratic time complexity.
All vertices different from P0 have degree 2k or k, and
n = 1 + 10k, i.e., the path length n and the number
k of repetitions have the same order of magnitude.
For realistic paths, δ(Pi) is likely to be bounded

by a constant, and thus the overall time complexity
is expected to be linear in the path length.
As an example, let us consider a fractal path gener-

ated by the recursive expansions of a single segment,
following the rules (shown in Figure 13):

• N expands to NENWSWNEN

• S expands to SWSENESWS

• E expands to ESENWNESE

• W expands to WNWSESWNW

Three successive expansions of a segment directed S
are shown in Figure 14. In this path, δ(P) ≤ 2 for all
vertices, and therefore T (n) = O(n).
For simulating an average case, we generated ran-

dom paths with no U-turns of lengths n from 100
to 54000 (note that such random paths are generally
not crossing free). Figure 15 shows the maximum
vertex degree max{δ(Pi)} and the sum

∑n
i=1 δ(Pi) of

all vertex degrees in such paths, as a function of n.
Both quantities have large fluctuations, but the over-
all trend of the vertex degree is sublinear, and that

S −→ SWSENESWS E −→ ESENWNESE

(a) (b)

Figure 13: (a) Expansion of a segment directed S and
(b) expansion of a segment directed E. Expansions
of segments directed W or N are symmetric to these
ones, just exchanging the pairs of directions E,W and
S,N.

of the sum of vertex degrees (which gives the overall
time complexity) is linear in n.

7 Extensions and limitations

We posed two requirements for our algorithm: the in-
put path must not contain U-turns, and it must not
traverse the starting vertex P0 twice (it may only re-
turn at P0 as the last vertex, i.e., Pn = P0, in case of
a closed path). Both such conditions can be checked
in linear time over the word w = w1...wn encoding
the path. For U-turns, w must not contain subse-
quences EW, WE, NS or SN. For another vertex Pk,
with 0 < k < n, to have the same coordinates as P0,
the prefix w1...wk must have an equal number of E
and W, and an equal number of N and S. In the fol-
lowing, we discuss the reasons for such requirements
and whether they can be relaxed.

7.1 Paths with U-turns

Our algorithm relies on the fact that the position for
inserting sout in the radial order at a traversed vertex
P is uniquely determined by the known offset of sin
and the local situation at P . In the presence of U-
turns, this is no longer true.

12

(a)

(b) (a)

Figure 14: A fractal path: (a) first, (b) second, and (c) third expansion of a segment directed E.

13

0 1 2 3 4 5 6

10
4

0

20

40

60

80

100

120

0 1 2 3 4 5 6

10
4

0

1

2

3

4

5

6
10

5

(a)

(b)

Figure 15: (a) Maximum vertex degree and (b) max-
imum sum of vertex degrees, computed for random
paths of length n from 100 to 54000. For each length,
10 random paths were considered.

U-turns introduce an ambiguity which cannot be
solved locally, if it can be solved at all. At a U-
turn, the exiting segment sout has the same direction
(as seen from the current vertex Pi) as the entering
segment sin. Locally, we cannot decide where to put
sout in the radial list: it can be equivalently placed
just before or just after sin (with appropriate offset).
A solution could be taking one of the two possibilities,
and backtrack if it does not lead to a crossing-free
drawing. But this would give an exponential time
complexity in the number of U-turns.

7.2 A relaxed condition for the first
vertex

A second passage through the first vertex P0 may
cause an ambiguity similar to that arising with U-
turns. In the example of Figure 16, when arriving
at P5 ≡ P0, the drawing may continue either above
or below the existing segment exiting from P0 in the

P0 P0

(a) (b)

Figure 16: The possibility of drawing the path EN-
WSENN without self-crossings depends on whether
we pass (a) above or (b) below the first segment.

direction E.
This ambiguity may arise only when another time

we pass through P0, the new exiting half segment
sout has the same direction as the first move w1 of
the path. Since the first half-segment (corresponding
to the first move w1 from P0) has no mate, sout could
be placed either before or after it in the radial order,
and we cannot determine locally which of the two
choices (if any) will allow to draw the path with no
intersections.

Instead, there is no ambiguity when the segment
sout has a direction different from w1 or when the
entering half segment has direction equal to w1 (as
entering half segments have their offset already set).

Thus, the condition on the starting vertex can be
relaxed, as follows. The input path must not pass
through a vertex Pi, with 0 < i < n, such that
Pi ≡ P0 and wi+1 = w1. This condition can also
be checked in linear time in the length n of the word
encoding the path.

Let π be a closed path satisfying this relaxed con-
dition. If the word representing π has been processed
until the last move wn without finding a self-crossing,
we can conclude that π is crossing-free only if it is
possible to join the first and the last edge without
creating a self-crossing at the vertex P = Pn ≡ P0.
In other words, in the radial list of the vertex P =
P0 ≡ Pn, the entering half segment sin (opposite half
segment of the last move wn from Pn−1 to Pn) must
be feasible as the mate of the half segment s0 exiting
from P0 (created when processing the first move w1).

14

After adding sin to the radial list of P , we try to
insert a copy of s0 with undefined offset in the same
radial list (we mimic the re-insertion of the already
present half segment s0). If a feasible position for it
is found, and this position is immediately before or
immediately after s0, then the path is crossing-free.
Otherwise, the path is self crossing.

7.3 Paths with arbitrary first vertex

Let the open path w = w1w2 . . . wn not satisfy the
relaxed condition of Section 7.2 on its first vertex
P0. If the reversed path, described by the word w′ =
−wn − wn−1 . . . − w1 and starting from Pn, satisfies
the same condition, then we can draw w′ instead of
w. However, digital paths exist for which this is not
possible.
For a closed path w, we can find a vertex of the

path that is traversed only once, and consider a cyclic
permutation of the path, such that that vertex is the
first one. However, closed digital paths exist which
traverse each vertex multiple times. Moreover, check-
ing how many times a vertex is traversed has a linear
cost in the path length n, and we may need to check
all vertices, which brings to a quadratic time com-
plexity.

8 Concluding remarks

We proposed an intuitive algorithm to detect self-
crossing digital paths in the 2D square grid, and
to draw without crossings a path that is not self-
crossing.
This extends the works of Brlek et al., who con-

sidered the problem of testing whether a digital path
passes twice through the same vertex [6] and whether
a closed digital path, that passes no more than twice
through a vertex, is self-crossing [7]. For our algo-
rithm, paths can be open or closed, and they may tra-
verse the same vertex an arbitrary number of times,
with the only limitation that they must not con-
tain U-turns, and, if open, they must pass only once
through one of their endpoints.
An interactive demo, implemented in Java, is avail-

able at

https://github.com/pmagillo/PathChecker. The
demo allows the user to draw a path without cross-
ings, or to detect that it is self-crossing. The drawings
in Figures 1, 11, 12 and 14 are produced with it.

The same approach can be extended to digital
paths in other grids (e.g., regular triangular or hexag-
onal grids) by just considering a different number of
possible directions for the half segments around a ver-
tex. It can also be extended to any situation where
a path has a predefined set of possible directions to
move, for example paths in a graph, or following the
edges of a polygonal surface. This opens to way to
applications in mesh navigation and path planning.

9 Acknowledgments

This research (paper) has been supported by the
Ministry of Science, Technological Development and
Innovation through project no. 451-03-47/2023-
01/200156 ”Innovative scientific and artistic research
from the FTS (activity) domain”.

References

[1] T. G. Abbott, E. D. Demaine, and B. Gassend.
A Generalized Carpenter’s Rule Theorem for
Self-Touching Linkages. CoRR, abs/0901.1322,
2009.

[2] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell.
An algorithmic study of manufacturing paper-
clips and other folded structures. Comput.
Geom., 25(1-2):117–138, 2003.

[3] A.N. Azmi, D. Nasien, and F.S. Omar. Biomet-
ric signature verification system based on free-
man chain code and k-nearest neighbor. Mul-
timedia tools and applications, 76(14):15341–
15355, 2017.

[4] B. Banerjee and B. Chandrasekaran. A frame-
work of Voronoi diagram for planning multiple
paths in free space. J. Exp. Theor. Artif. Intell.,
25(4):457–475, 2013.

15

[5] Abdelhak Boukharouba and Abdelhak Bennia.
Novel feature extraction technique for the recog-
nition of handwritten digits. Applied Computing
and Informatics, 13(1):19–26, 2017.

[6] S. Brlek, M. Koskas, and X. Provençal. A Linear
Time and Space Algorithm for Detecting Path
Intersection. InDiscrete Geometry for Computer
Imagery, 15th IAPR International Conference,
DGCI 2009, pages 397–408, 2009.

[7] S. Brlek, X. Provençal, and J.-M. Fedou. On the
tiling by translation problem. Discrete Applied
Mathematics, 157(3):464–475, 2009.

[8] Alexiei Dingli, Mark Bugeja, Dylan Seychell,
and Simon Mercieca. Recognition of hand-
written characters using google fonts and free-
man chain codes. In Andreas Holzinger, Peter
Kieseberg, A Min Tjoa, and Edgar Weippl, ed-
itors, Lecture Notes in Computer Science, vol-
ume 11015, pages 65–78. Switzerland: Springer
International Publishing AG, 2018.

[9] H. Freeman. On the Encoding of Arbitrary Ge-
ometric Configurations. IRE Trans. Electronic
Computers, 10(2):260–268, 1961.

[10] H. Freeman. Boundary encoding and processing.
In Picture Processing and Psychopictorics, pages
241–266. Academic Press, New York, 1970.

[11] H. Freeman. Computer Processing of Line-
Drawing Images. ACM Comput. Surv., 6(1):57–
97, 1974.

[12] R. Jana and C. Ray. Image registration using
object shape’s chain code. In 2nd International
Congress on Image and Signal Processing, pages
1–5. IEEE, 2009.

[13] Jongan Park, Khaled Mohammad Mohiuddin
Chisty, Jimin Lee, Youngeun An, and Youngil
Choi. Image retrieval technique using rearranged
freeman chain code. In 2011 First International
Conference on Informatics and Computational
Intelligence, pages 283–286. IEEE, 2011.

[14] W. Pugh. Skip lists: a probabilistic alternative
to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

[15] M. Zhao and H. Lu. Robot Path Planning
Based on Freeman Direction Chain Code. In
IEEE Symposium Series on Computational In-
telligence, SSCI, pages 1967–1973. IEEE, 2019.

16

	Introduction
	Related work
	Algorithm for testing whether a path is self-crossing
	Processing the first vertex
	Processing the next vertices

	Implementation details
	Managing the radial lists
	Retrieving already visited vertices
	The main procedure

	Drawing
	Computational complexity
	Cost for managing the radial lists
	Cost for retrieving repeated vertices
	Overall time complexity

	Extensions and limitations
	Paths with U-turns
	A relaxed condition for the first vertex
	Paths with arbitrary first vertex

	Concluding remarks
	Acknowledgments

