
Citation: Bratta, A.; Focchi, M.;

Rathod, N.; Semini, C.

Optimization-Based Reference

Generator for Nonlinear Model

Predictive Control of Legged Robots.

Robotics 2023, 12, 6. https://doi.org/

10.3390/robotics12010006

Academic Editor: Chengxu Zhou

Received: 23 November 2022

Revised: 15 December 2022

Accepted: 20 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Optimization-Based Reference Generator for Nonlinear Model
Predictive Control of Legged Robots
Angelo Bratta 1,2,*, Michele Focchi 1,3,* , Niraj Rathod 1,4 and Claudio Semini 1

1 Dynamic Legged Systems Lab, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
2 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS),

Università di Genova, 16126 Genova, Italy
3 Dipartimento di Ingegneria e Scienza dell’Informazione (DISI), Università di Trento, 38123 Trento, Italy
4 IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
* Correspondence: angelo.bratta@iit.it (A.B.); michele.focchi@unitn.it (M.F.)

Abstract: Model predictive control (MPC) approaches are widely used in robotics, because they
guarantee feasibility and allow the computation of updated trajectories while the robot is moving.
They generally require heuristic references for the tracking terms and proper tuning of the parameters
of the cost function in order to obtain good performance. For instance, when a legged robot has to
react to disturbances from the environment (e.g., to recover after a push) or track a specific goal with
statically unstable gaits, the effectiveness of the algorithm can degrade. In this work, we propose
a novel optimization-based reference generator which exploits a linear inverted pendulum (LIP)
model to compute reference trajectories for the center of mass while taking into account the possible
underactuation of a gait (e.g., in a trot). The obtained trajectories are used as references for the cost
function of the nonlinear MPC presented in our previous work. We also present a formulation that
ensures guarantees on the response time to reach a goal without the need to tune the weights of
the cost terms. In addition, footholds are corrected by using the optimized reference to drive the
robot toward the goal. We demonstrate the effectiveness of our approach both in simulations and
experiments in different scenarios with the Aliengo robot.

Keywords: legged robots; reference generator; model predictive controller; motion and path planning;
optimization and optimal control

1. Introduction
1.1. Related Work

Legged robots are becoming popular nowadays, thanks to their ability to operate on
irregular and complex terrains. The challenge is represented by the design of a proper
control strategy that allows the robots to execute their tasks. The methods developed
earliest involve the use of heuristic approaches, e.g., [1]. They demonstrated good perfor-
mance and succeeded in hardware experiments, but are tailored to specific motions and
scenarios. More recently, trajectory optimization (TO) techniques [2–4] were introduced,
because constraints and cost functions can ensure dynamic feasibility and desired perfor-
mance. In particular, Model Predictive Control (MPC) approaches can compensate for
uncertainties and changes in the environment, by computing a new trajectory online, while
the robot moves. In our previous work [5], we presented an Nonlinear Model Predictive
Control (NMPC) formulation, which runs at 25 Hz and allows the Hydraulically actuated
Quadruped (HyQ) robot [6] to perform omnidirectional motions, detect a pallet, and step
on it with improved leg mobility. Minniti et al. [7] integrated control Lyapunov functions
into their MPC to guarantee stability when the robot has to interact with unknown objects.
Hong et al. [8] presented an NMPC implementation with a set of different gaits, and Am-
atucci et al. [9] also exploited a Monte Carlo tree search to optimize for the contact schedule.
The last two works, however, have only been tested in simulation.

Robotics 2023, 12, 6. https://doi.org/10.3390/robotics12010006 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12010006
https://doi.org/10.3390/robotics12010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-4888-5595
https://orcid.org/0000-0002-3034-4686
https://doi.org/10.3390/robotics12010006
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12010006?type=check_update&version=2

Robotics 2023, 12, 6 2 of 18

The importance of the MPC approaches is well evident in the case of disturbances,
because they allow the robot to comply with external pushes (e.g., in [10]) thanks to high-
frequency replanning. One of the shortcomings of a standard MPC implementation is
related to the fact that the robot becomes “transparent” to external pushes, i.e., at each
sample, the new trajectory starts from the actual position. Therefore an additional effort
is required to track a specific reference Cartesian position or to return, after a push, to
the original one. A common practice is to have user-defined values as a reference for the
MPC [11], but in these approaches the user would have to manually change the reference
velocity in order to compensate for the deviation caused by the push.

Another possible solution would be to add in parallel to the MPC a simple Cartesian
Proportional-Derivative (PD) control action to attract the Center of Mass (CoM) to the
reference position [12]. However, this control strategy has some notable limitations, in
particular: (1) the added wrench does not consider the wrench produced by the MPC layer
(hence, the two controllers will fight against each other with the risk of violating feasibility);
(2) the PD is not aware of the hybrid dynamics of the legged robot, i.e., the intermittent
contacts and the (possible) underactuation. Moreover, footholds play an important role in
the robot agility, because their coherence with the CoM can improve the stability when the
robot has to “react" to an external disturbance; and (3) PD approaches cannot change feet
trajectories, which is crucial to deal with lateral pushes. For example, Barasuol et al. [13]
presented a push recovery module that modifies the footholds to counteract the disturbance
and track the position with the PD. As explained, the drawback of this approach is that the
computed feet locations do no guarantee that the resulting wrench can be generated by
the robot.

Another possibility to track a fixed goal is adding it in the cost function. This would
solve the issue number 1 of the PD controller, because the constant position is embedded in
the cost function of the MPC; hence, the “conflict” is dealt with at the cost level resulting
in feasible contact forces. However, this solution suffers from the fact that it is only able
to apply a limited resistive force before the legs lose their control authority (e.g., when
the CoM/Zero Moment Point (ZMP) goes out of the support polygon), and therefore is
of restricted applicability. Moreover, in this case, footholds are not generally designed to
be consistent with the resulting CoM trajectory, because they are computed with simple
heuristics. Cebe et al. [14] optimize for CoM and foothold positions, but they can replan
only at the touchdown moments, due to the high computational time required.

In addition, the MPCs usually employ references for contact forces that come from
crude heuristic computations (i.e., dividing the gravity weight along the legs based on
static conditions). These values (i.e., purely vertical forces) are often not feasible for the
motion of the base. Undoubtedly, accurately tuning the weights for the different cost terms
is a tedious task [15] and having more physically meaningful references has been shown to
be a preferable solution [16]. To address this problem, Bjelonic et al. [17] use the result of
an offline TO as cost terms for their MPC.

In this work, we propose a novel optimization-based reference generator layer that
supplies a NMPC with references for CoM and Ground Reaction Forces (GRFs) that are
suitable to the task of the robot. The novelty of our approach is that the reference trajectories
are computed online (as opposed to the method used in [17]), solving a simplified opti-
mization problem that takes into account the future robot behaviour, and the intermittent
contact schedule to generate the references. It is worth highlighting the difference of our
approach with the reference governors [18–20]. In fact, a governor filters the set-points
(i.e., it takes a reference signal vector and changes it to another reference signal of the same
type) just to enforce state and input constraints. In the proposed approach, instead, we
are interested in considering the intrinsic underactuation of a trot (chosen as a template
gait) when only two feet are in contact with the ground. Moreover, we impose additional
features, such as a desired interval in which the robot has to reach a fixed goal or recover
its position automatically from big pushes. Another advantage of our algorithm is that it is

Robotics 2023, 12, 6 3 of 18

able to affect CoM trajectories and footholds at the same time, even though the latter are
not directly included among the optimization variables.

A possible drawback of such a cascade optimization setting is represented by the
computational effort, which can result in a reduction of the NMPC frequency. Aiming to
find a compromise between accuracy and computational efficiency, we employ models
of different complexity by using the simplest Linear Inverted Pendulum (LIP) [21] in the
reference generator and a more complex one (the Single Rigid Body Dynamics (SRBD) [22])
for the NMPC. The latter, in fact, computes the state trajectories and GRFs that are then
sent to the robot, so it requires more accuracy. Thanks to the optimal references, we can
avoid using a full dynamics model as in [23].

1.2. Proposed Approach and Contribution

In this work we introduce our optimization-based reference generator which endows
the cost function of an NMPC [5] with physically informed reference trajectories to be
tracked. We integrated this module with our previous works (see Figure 1).

Aliengo Robot

Figure 1. Overview of the locomotion framework. The reference generator presented in this work
is integrated with the NMPC presented in our previous work [5]. The controller introduced in [24]
allows the robot to track the trajectories computed by the NMPC. We used the quadruped robot
Aliengo for the simulations and experiments.

To summarize, the contributions of the paper are:

• the presentation of a novel reference generator that drives the robot to accomplish a
task (optionally in a user-defined time interval), taking into account the underactuation
of statically unstable gaits, like the trot. Footholds are heuristically computed to be
coherent with the CoM motion, and optimized GRFs are obtained in order to follow
those trajectories. The formulation is lightweight enough to maintain the replanning
frequency of 25 Hz of the NMPC;

• simulations and experiments to demonstrate the effectiveness of the proposed ap-
proach in three different scenarios: (a) straight motion, (b) fixed lateral goal, and
(c) recovery after a push. We also compared in simulation our algorithm with a
state-of-the-art approach (NMPC + PD action) for the scenario (c); and

• as an additional minor contribution, we demonstrate the generality of the approach,
showing it was able to deal with different dynamic gaits, i.e., trot and pace.

1.3. Outline

The paper is organized as follows: Section 2 gives an overview of our planning
framework, highlighting the main features of the reference generator. Section 3 describes
the optimization problem with the LIP model and how it is used to compute CoM position
velocity and GRFs references. Simulations and experiments with our Aliengo [25] robot are
presented in Section 4. Finally, we draw the conclusions in Section 5.

Robotics 2023, 12, 6 4 of 18

2. Locomotion Framework Description

Figure 2 gives an overview of our entire locomotion framework. The user decides the
leg sequence and the values of both linear vusr

c ∈ R2 CoM reference velocity and heading
ωusr

z ∈ R reference velocity, i.e., the velocities that the robot should follow. The velocities
can be changed during the motion and the NMPC will immediately react accordingly.
In this work, we use two modules already presented in [5]: the gait scheduler and the
robocentric stepping (also used in [26]).

Velocity
 Input

Leg
Sequence

Gait
Scheduler

Heuristic
References

LIP Model
Optimization
Section 3.1

State Estimator

NMPC

Whole-Body
Controller

+
PD Joint

ControllerYES

NO

Reference Generator

QP
Mapping

Section 3.3

Robocentric
Stepping

Gravity
Compensation

Figure 2. Block diagram of the proposed locomotion framework. Given the leg sequence, the user-
defined velocities, and the actual state of the robot xact

c , the reference generator computes the gait
status δ, the footholds pf, the reference states xref

c , and GRFs uref for the NMPC [5] at each control
loop. If the norm of the error e between the goal and the average CoM position during the last gait
cycle p̄c is smaller than the threshold, simple heuristic techniques are used (see [5]). In the other
case, the reference generator is in the optimize status. CoM position and velocity to accomplish the
task are computed with a LIP model; a QP mapping is used to obtain the GRFs corresponding to
the ZMP computed by the LIP optimization. In addition, the CoM velocity is used to improve the
footholds. Finally, the NMPC computes the optimal trajectories for CoM quantities xdes

c and GRFs
udes. A whole-body controller and a PD-joint controller compute the optimal torques τdes that are
sent to the robot. All Rights Reserved.

Given the user-defined leg sequence, the gait scheduler returns the gait status (either
swing or stance) δi,k ∈ R of each leg i and for each time instant k in the reference horizon
Ng, reconciliating it with the real condition of the robot, e.g., early or late touchdown.
The reference horizon Ng corresponds to the maximum response time Tf of the reference
generator. Note that Ng can be different from the horizon N used in the NMPC, with
Ng ≥ N. We use the symbol δ ∈ R4×Ng to refer to the entire sequence of gait status. The
robocentric stepping module, on the other hand, has the important task of computing
footholds for each leg over the entire horizon. We use the symbol pf ∈ R12×Ng to denote
these quantities for the whole horizon.

The key idea of robocentric stepping is that the touchdown points are computed with
respect to the hip position and they are offset, with respect to that, depending on the
CoM reference velocity. Applying the robocentric stepping with the optimized reference
velocities allows us to obtain the coherence between CoM and footholds. Variables pf and
δ are also used as parameters in the SRBD model of the NMPC. If the error between the
goal and average CoM position is lower than a threshold (see Section 2.1), the reference
generator does not perform optimizations and user-defined velocities (heuristic references)
are used as references also for the NMPC. We refer to this condition as the heuristic
reference generator.

Instead, when the reference generator is in the optimize state, the sequences pf
and δ are the input parameters to a first-stage optimization that employs the LIP model
(Section 3.1). Here we compute the optimal X-Y CoM trajectory pg

c , vg
c to reach the goal

Robotics 2023, 12, 6 5 of 18

pgoal
c , where dynamic stability is satisfied (i.e., ZMP always inside the support polygon).

However, because the footholds are computed the first time with the simple heuristic
approach, we need to recompute them by using the optimized velocity. This will result in
a new set of footholds that will be used as inputs for a second optimization. We iterate
this until a stop condition is reached, e.g., the maximum number of iterations or difference
between two consecutive solutions below the defined threshold. As a safety check, if,
instead, the solver is not able to converge to a feasible solution, the reference generator is
set back to the heuristic status and vusr

c /gravity compensation are used as references.
The CoM velocity trajectory vg

c computed by the LIP model optimization is then
used as velocity reference for the NMPC. As described in [5], reference CoM position, roll
and pitch are not tracked, and the reference for the yaw is obtained by integrating the
user-defined yaw rate ωusr

z . We use the variable Θref ∈ R3 to indicate the references for
roll, pitch, and yaw. A Quadratic Program (QP)-based mapping (Section 3.2) computes the
references for the GRFs uref ∈ R12×N .

Finally, the output of the NMPC are the CoM trajectories (position, orientation, linear
and angular velocities) xdes

c ∈ R12×(N+1) (as explained in [5] we parameterized the orienta-
tion with Euler angles, hence, the state dimension is 12) and GRFs udes ∈ R12×N that will
be sent to the controller block. The controller is composed of a 250 Hz Whole-Body Control
(WBC) [24] and a 1 kHz PD-joint controller. They generate the torque references τdes for
the low-level joint controller of the robot. The state estimator module [27] provides the
actual values xact

c of the robot at a frequency of 500 Hz.

2.1. Goal Setting and Status of the Reference Generator

As already explained in Section 1, the robot cannot follow a user-defined velocity in
the presence of non idealities or external disturbances, the case of a fixed goal corresponds
to a scenario in which vusr

c,y = 0) due to the MPC transparency. For this reason, we define

the goal pgoal
c as the position the robot would have reached if it had followed the user-

commanded velocities vusr
c ∈ R2. The goal is updated at each iteration of the NMPC. It

is initialized with pgoal = pact
c,x,y + Ngvusr

c Ts at the beginning of an experiment and at each
iteration it is incremented by vusr

c Ts. Variable Ts is the sampling time of the reference
generator and it is equal to 1/ fs where fs is the planning loop frequency. For the sake of
simplicity, we assume that the sampling time Ts of the NMPC and the reference generator
are the same. As an alternative, the user can decide a fixed goal, either for one coordinate
or both. A SLAM algorithm [28,29] goes beyond the scope of this paper, so we assume that
there are no obstacles and the goal can be reached.

In order to change the status of the reference generator from heuristic to optimize in
a meaningful way (e.g., no transition with the normal sway of the robot) we consider the
average p̄c of the X-Y CoM position during the last gait cycle. To the average position,
we add the offset due to the desired motion in the horizon Ng and compare it with the

goal. We compute the error as: e = pgoal
c −

(
p̄c + Ngvusr

c Ts
)

and when its norm ‖e‖ goes
beyond a threshold when the reference generator status is set to optimize. Using Euclidean
distance is a standard approach, but any other options, e.g., L1 or L∞ could have been valid
alternatives.

Algorithm 1 illustrates the pseudocode of the different computation phases of the
reference generator.

Robotics 2023, 12, 6 6 of 18

Algorithm 1 Reference generator

1: Reference Generator status← HEURISTIC
2: e← pgoal

c − p̄c −
(∫ NgTs

0 vusr
c dt

)
3: if ‖e‖ > tol then
4: Reference Generator status← OPTIMIZE
5: end if
6: pf, δ← Heuristic References
7: if OPTIMIZE Reference Generator then
8: while stop condition is not reached do
9: vg ← LIP Model Optimization(pgoal

c , xact
c)

10: pf ← Robocentric Stepping(vg
c)

11: end while
12: if LIP Model Optimization found feasible solutions then
13: vref ← vg

14: uref ← QP Mapping(pg
c , wg, pf)

15: else
16: vref ← vusr

17: uref ← Gravity Compensation
18: end if
19: else
20: vref ← vusr

21: uref ← Gravity Compensation
22: end if
23: pgoal

c ← pgoal
c + vusr

c Ts
24: solve the NMPC [5]

2.2. Formal Guarantees on Response Time

In an optimization problem, if we set the tracking of the goal as either a running cost
or a terminal cost, the response will depend on the tuning of the weights of the cost itself.
In addition, with this approach, we cannot impose a predefined time Tf in which the robot
reaches the goal (response interval). For these two reasons a hard constraint to impose that
the CoM position matches the goal can be added to guarantee a response interval equal to
Tf, starting from the first time instant when the reference generator is set to the optimize
status. Note that the size of the horizon Ng will be linked to the response time Tf; therefore
there will be a maximum value of Tf that can be achieved by the reference generator, related
to the real-time constraint posed by the re-planning frequency fs. This will depend on
the computational power of the machine where the optimization is run. We also need to
impose the same hard constraint on all the samples after M = Tf/Ts. Indeed, at every
iteration of the NMPC, the interval without constraint should shrink because otherwise the
target would never be reached (see Figure 3). For this reason, we enforce hard constraints
on the goal, with the number of samples M that gradually reduces to zero. In this way, we
ensure reaching the goal in a time that does not depend on the tuning of the weights. In
practice, using hard constraints might lead the optimization to be trapped in an infeasible
solution [30]. Therefore, an implementation with slack variables in the constraints, which
allows us to relax them, is preferable. By penalizing their value in the cost function of
problem (2), we have the guarantee that the robot reaches the target in a predefined time
interval, and if this is not possible, the solver will find the best feasible solution.

Robotics 2023, 12, 6 7 of 18

Figure 3. Pictorial representation of the goal constraints enforced to achieve a certain response time
Tf. Pink blocks correspond to the nodes of the LIP optimization in which the constraint (2f) is active.
At every iteration the variable M is decreased such that the time to reach the target matches the
predefined time Tf.

3. Optimized Reference Generator

As already mentioned, the task of the reference generator is to compute along a horizon
Ng the linear (i.e., longitudinal and lateral) CoM velocity reference trajectories vg

c to reach a
desired goal/recover from an external disturbance in a predefined time Tf and the trajectory
of GRFs uref to follow it.

3.1. LIP Model Optimization

One of the features of the proposed reference generator is to take into account the
intrinsic underactuated nature of a robot when only two feet are on the ground [31].
Therefore, we employ the simplest model that is able to capture this underactuation: the
LIP model [21]. Indeed, this allows us to compute the optimal trajectory for the CoM,
while imposing a desired behavior for the ZMP. The ZMP is defined as “a point on the
ground at which the tangential component of the moment generated by the ground reaction
force/moment becomes zero” [32], and its position determines the direction and magnitude
of the CoM acceleration. Guaranteeing that the GRFs are such that the resulting ZMP is
inside the support polygon ensures that they also satisfy the unilateral constraints [33] (the
legs can only push and not pull the ground); therefore, they can be effectively realized by
a real robot. Because the support polygon boils down to a line connecting the stance feet
during a two-leg-stance phase, the ZMP will be able to move only on that segment. Even
though the ZMP-based models have been efficiently used in MPC approaches, e.g., [34], we
are aware that the LIP model presents some assumptions (vertical and angular dynamics
are neglected). As already mentioned, our NMPC uses the SRBD model that will consider
these dynamics in the lower optimization stage.

We define the state of the reference generator xg
c = {xg

c,0, . . . xg
c,Ng} ∈ R4×(Ng+1), with

xg
c,k =

[
pg

c,k, vg
c,k

]T
∈ R4, the stack of X-Y CoM position, and velocity at time k. The control

inputs are wg ∈ R2×Ng = {wg
0 , . . . wg

Ng−1}, with wg
k ∈ R2 X-Y position of the ZMP at time

k. Footholds pf,k and gait status δk for all the feet at each sample k are the parameters
used to compute the support polygon at each node of the reference horizon Ng. Additional
parameters are initial Z CoM position pact

c,z and g ∈ R = 9.81m/s2. To obtain xg
c and wg, we

cast the following optimization problem:

min
xg,wg

Ng

∑
k=0
‖ pg

c,k − pgoal
c ‖2

Qp
+ ‖ vg

c,k ‖
2
Qv

+ (1a)

Ng−1

∑
k=0
‖ wg

k −wref
k ‖

2
Qw

(1b)

s.t. xg
c,0 = xact

c,x,y (1c)

xg
c,k+1 = xg

c,k +


vg

c,kTs +
T2

s g
2pact

c,z

(
pg

c,k −wg
k

)
g

pact
c,z

(
pg

c,k −wg
k

)
Ts

 (1d)

wg
k ∈ S(pf,k, δk) k ∈ INg−1

0 . (1e)

Robotics 2023, 12, 6 8 of 18

The terms (1a) and (1b) of the cost function aim to minimize the distance between CoM
position and the goal, the norm of the velocities and the distance of the ZMP from the center
of the support polygon wref

k (for robustness purposes). In addition, the minimization of
velocity term (1a) prevents having large velocities that could determine footholds outside
of the workspace of the leg due to the robocentric stepping. Matrices Qv ∈ R2×2 and
Qw ∈ R2×2 are positive definite weighting matrices. The initial condition (1c) is expressed
by setting xg

c,0 equal to the corresponding values xact
c received from the state estimator.

Equation (1d) corresponds to the discrete CoM dynamics for the LIP model. Equation (1e)

imposes that the ZMP always lies inside the support polygon S(pf,k, δk). The symbol INg−1
0

indicates the set of integer numbers in the closed interval [0, Ng − 1].
The optimization problem (1) does not have any guarantee on the response time. As

already discussed in Section 2.2, a formulation with a slack variable can be used to impose
a predefined instant in which the robot has to reach the target:

min
xg,wg,s

Ng

∑
k=0
‖ vg

c,k ‖
2
Qv

+
Ng−1

∑
k=0
‖ wg

k −wref
k ‖

2
Qw

+ (2a)

Ng

∑
k=0

(
‖ sk ‖2

Qs,q
+Qs,lsk

)
(2b)

s.t. xg
c,0 = xact

c,x,y (2c)

xg
c,k+1 = xg

c,k +


vg

c,kTs +
T2

s g
2pact

c,z

(
pg

c,k −wg
k

)
g

pact
c,z

(
pg

c,k −wg
k

)
Ts

 (2d)

wg
k ∈ S(pf,k, δk) k ∈ INg−1

0 (2e)[
sk,x
sk,y

]
≥
[
|pg

c,x,k − pgoal
c,x |

|pg
c,y,k − pgoal

c,y |

]
k ∈ INg

M (2f)

sk,x, sk,y ≥ 0 k ∈ INg
0 . (2g)

The slack variable sk ∈ R2×1 is added in the cost term (2b) and thanks to Equations
(2f), and (2g) it allows us to impose that the robot CoM coincides with the goal after M
samples. In contrast to the optimization problem (1), the cost function does not explicitly
include a position term, because it is enforced with slacks into Equation (2b). Matrices
Qs,q ∈ R2×2 and Qs,l ∈ R1×2 are the additional weights for the quadratic and linear term
for the slack variables. Equations (2c)–(2e) are the same as Equation (1c)–(1e) respectively.

3.2. QP Mapping

The reference generator computes CoM trajectories which the NMPC must follow, but
the latter also requires reference GRFs uref ∈ R12×N . Because the output of the optimization
problem (1) or (2) is a trajectory for the ZMP wg, we need to map this into a set of consistent
GRFs, thus moving from a bidimensional to the higher dimensional space of contact forces.
For this reason, we define the set of indices of the legs in contact with the ground by C. A
parametric QP is solved to find the vector of GRFs uqp ∈ R3|C|, which corresponds to the
ZMP location wg. If a foot is in the swing phase, its GRFs are set to 0 by default,

uref
i =

{
uqp

i i ∈ C
03×1 i /∈ C,

(3)

where i is the leg index. Note that we need to solve a QP for each sample k in the horizon
N, therefore to avoid overloading the notation, we do not specify the subscript k in the

Robotics 2023, 12, 6 9 of 18

following quantities. The parameters of the model are the footholds pf, the X-Y components
of the CoM position pg

c , the ZMP trajectory wg, the initial Z CoM position pact
c,z , and the

mass of the robot m ∈ R. Thus, for every k we solve

min
uqp

‖ uqp
x,y ‖2

Qu
+

∥∥∥∥∥∑
i∈C

[
pf,i − [pg

c , pact
cz]T

]
xuqp

i

∥∥∥∥∥
2

Qk

(4a)

s.t. wg
x,y =

∑i∈C pfi,x,yuqp
i,z

∑i∈C uqp
i,z

(4b)

∑
i∈C

uqp
i,z = mg (4c)

g
pact

cz

(pg
c −wg) =

∑i∈C uqp
i,x,y

m
. (4d)

The first term of Equation (4a) is the regularization term on the X-Y components of
the GRFs, with Qu ∈ R2×2 as weighting matrix, whereas the second one minimizes the
angular momentum rate, and it is weighted by Qk ∈ R3×3. Variable

[
·
]

x represents the
skew-symmetric matrix associated with the cross-product. Equation (4b) is the definition
of ZMP, Equation (4c) represents the gravity compensation. Equation (4d) guarantees that
the X-Y CoM acceleration computed with the LIP model in the reference generator (left
term) coincides with the one of the SRBD used in NMPC. It is worth highlighting that
when the robot is on two legs, the ZMP lies on a line, and so it can only move in a 1D
manifold. During that phase, imposing the Equation (4b) for the X component is enough to
guarantee that the Y coordinate of the ZMP also respects the same constraint. Along the
horizon Ng, each problem is independent from the others, so they can be solved in parallel.
In this way the computation effort remains low (a couple of ms to solve a QP problem with
linear constraints) and therefore the new reference generator can be integrated into our
high-frequency NMPC scheme.

4. Simulation and Experimental Results

The optimization-based reference generator endows the NMPC planner with the
capability of recovering from disturbances and avoiding drifting in the face of nonidealities.
To show its effectiveness, we tailored three template scenarios: (a) motion along a straight
line, (b) reaching a fixed goal, and (c) recover from external pushes. We performed the
simulations and experiments on the 22 kg quadruped robot AlienGo of Unitree.

We consider the trot as a template gait for our experiments because of its inherently
unstable nature. Indeed, any asymmetry in the real robot can make it drift when setting a
pure forward velocity. The quadruped is thus not able to follow a straight line.

The variable Ts is set to 40 ms and the horizons of both reference generator (Ng) and
NMPC (N) are 50 nodes, corresponding to an interval of 2 s. We keep, thus, the same
planning loop frequency of 25 Hz as our previous work. The trot parameters are cycle time
Tc = 1 s, duty factor D = duration of stance phase/Tc = 0.65. The values of the weighting
matrices are reported in Table 1. Their value has been tuned with a trial and error procedure.
We refer to Table 2 of [5] for the values of the weights of the NMPC and the WBC + PD
Joint Controller. Without any lack of generalization, slack variables are considered only for
the Y component.

Robotics 2023, 12, 6 10 of 18

Table 1. Weights used in the governor.

Cost Weight Value

Velocities LIP Qv diag(200, 300)

ZMP Qw diag(100, 350)

Slack Qs,q diag(0, 1000)
Qs,l [0, 1000]

Forces QP mapping Qu diag(100, 100)

Angular Momentum Rate Qk diag(1, 1, 1)

We used the HPIPM [35] solver integrated into acados [36] library to find the solutions
of the problem (2). The problem (4), instead, is solved by using eiquadprog [37], because it
offers a more straightforward interface for the QPs. Both reference generator and NMPC
run on an Intel Core i7-10750H CPU @ 2.60 GHz. The LIP model optimization takes 2–4 ms
with the prediction horizon of 2 s and thus N equal to 50, whereas the time required by
each QP (Equation (4a–4d)) is negligible, approximately 0.01 ms.

In this section, we will call the output of the reference generator as reference, the output
of the NMPC as desired, and the real values measured by the state estimator as actual.

4.1. Simulations

The four-legged-stance phase in a walking trot is the only moment of the gait during
which the robot has full control authority and is able to track the reference velocities.
Neglecting this fact would lead to failure or unpredictably longer response times. In our
algorithm, the reference generator already takes into account the underactuation, enabling
us to deal with this issue successfully. The simulations of the scenario (a) are only reported
in the accompanying video [38].

Figure 4 refers to the simulation of the scenario (b) in which the robot has to go to a
lateral target (−0.2 m on the Y coordinate) in a predefined time (Tf = 4.8 s) and then keep
it while walking. Because X-Y directions are decoupled in the LIP model, the X component
of the goal pgoal

c,x is updated at each iteration of the NMPC according to Algorithm 1 and
continuously tracked. The top plot demonstrates that the reference generator is able to
compute reference CoM trajectories (yellow line) that allow the actual CoM values (red
line) to accomplish the task. Because the reference quantities satisfy the underactuation of
the gait, reference velocities are nicely tracked by the NMPC (respectively, yellow and blue
line, bottom part of Figure 4) and consequently by the actual ones.

Figure 5, instead, shows the reference wg and actual X-Y components of the ZMP
locations for the same simulation (computed by Equation (4b)). As can be seen, the robot is
able to track the reference values for the entire cycle, for both X-Y coordinates, i.e., they
have the same trend. In this simulation, we decided to keep the reference generator always
in the optimize status to show how the algorithm is able to track (once the target has been
reached) a zero user-defined lateral velocity vusr

c,y .
Figure 6 reports scenario (b) with the same goal (−0.2 m) but different response

interval (Tf = 3 s). Due to the smaller interval, the response is more aggressive and presents
an overshoot which is then recovered within the 3 s interval. The task is achieved by simply
modifying the response interval Tf; no tuning of the weights of the cost function is required.
Shaded areas highlight the response interval. Figure 7 shows the tracking error between the
actual and desired Y CoM position. It confirms that the error is negligible and the desired
values are tracked by the robot.

Robotics 2023, 12, 6 11 of 18

-0.2

-0.1

0

0 5 10 15
-0.2

0

0.2

Figure 4. Simulation, scenario (b): CoM Y position and velocity in a scenario in which the robot
has to reach a target of −0.2 m, with a response interval of 4.8 s (120 iterations of the NMPC, pink
blocks). Yellow lines are the output of the reference generator, which is used as reference for the
NMPC. Blue lines correspond to the desired trajectories, tracked by the WBC. The red lines report the
actual values.

0

1

2

0 5 10 15
-0.4

-0.2

0

Figure 5. Simulation, scenario (b): X-Y ZMP location in a scenario in which the robot has to reach a
target of −0.2 m along the Y direction with a response time Tf = 4.8 s (120 iterations of the NMPC).
The yellow line corresponds to the output of the reference generator, whereas the red has been
computed by using Equation (4b).

Robotics 2023, 12, 6 12 of 18

-0.2

-0.1

0

0 3 6 9 12
-0.4

-0.2

0

Figure 6. Simulation, scenario (b): CoM Y position and velocity when the robot has to reach a target
of −0.2 m with a response interval of Tf = 3 s. As in Figure 4, yellow, blue, and red lines correspond,
respectively, to reference, desired, and actual quantities.

0 3 6 9 12
-15

-10

-5

0

5
10 -3

Figure 7. Simulation, scenario (b): tracking error between actual and desired Y CoM position
(pact

c,y − pdes
c,y).

Next, we want to validate our approach by comparing it with a simple Cartesian PD
approach in the scenario (c). This is typically implemented computing a feed-forward
force fff,y ∈ R which depends on the error between the actual state and the goal, i.e.,

fff,y = Kp

(
pgoal

c,y − pact
c,y

)
+ Kd

(
vusr

c,y − vact
c,y

)
.

In this scenario, for the first 5 seconds of the motion the robot is pushed with a force of
15 N in the Y direction. The user velocity vusr

c,y is zero, so the task is to come back to the initial
Y position. In Figure 8 we report the actual Y CoM position pact

c,y in three different cases.
The green line represents the case in which the system is modeled as a second order

with critically damped response.
From the control theory, we know that the settling time is equal to Tf =

4
ζωn

, with ζ
equal to damping ratio and ωn natural frequency. To have a critically damped response we
aim at ζ = 1.

Rewriting the second order equation of the mass/spring/damper as a function of ζ
and ωn we have Kp = mω2

n and Kd = 2ζ
√

mKp.

Merging the two expressions results Tf = 4
√

m
Kp

with ζ = 1. Considering Tf = 4.8 s and

a total robot mass m = 22 kg, we obtained Kp = 15 N/m and consequently Kd = 36 Ns/m.
It is evident that the CoM is far from reaching the goal in the predefined time.
The purple line, instead, represents the case in which the values of proportional and

derivative gain are manually tuned such that the robot reaches the goal faster. The result
is Kp = 170 N/m and Kd = 122 Ns/m. As can be seen in the plot, once the disturbance

Robotics 2023, 12, 6 13 of 18

is removed, the robot moves toward the goal, but it is not able to follow it once it has
been reached. In fact, the robot keeps drifting, moving away from the initial position. We
can conclude thus that the approach with a feed-forward force results in a slow response,
with a steady-state error with respect to the goal. The common practice of setting the PD
parameters considering the system behaving as a second order system (i.e., spring/mass
/damper) is not valid due to the underactuation, showing the limitation of the approach. In
addition, even hand-tuning of the parameters does not allow the user to obtain the desired
behaviour, e.g., the values of Kp and Kd which have good performance in recovering
from the push (purple line) are not suitable for the straightforward motion. The result
of our approach, instead, is reported with a light blue line. Once the disturbance has
been removed, the reference generator computes a velocity trajectory that brings the robot
toward the goal in the desired time Tf (shaded area) and without steady state error.

0 5 10 15

-0.05

0

0.05

0.1

0.15

0.2

Figure 8. Simulation, scenario (c): comparison of the actual Y CoM positions between the PD force
approach (green and purple lines) and our reference generator (light blue line). The goal is to come
back to the initial position after a 15 N lateral push of 5 s. For the green line, the values are chosen to
impose a response time of 4.8 s considering a second−order system response. For the purple line,
instead, Kp and Kd are computed such that the system should have a critically damped response. In
both cases, the robot is not able to converge to the goal. With our reference generator (light blue line)
the robot recovers its initial position after the push, without any steady−state error.

4.2. Experiments

In this section, we present preliminary experiments for the scenarios (a), (b), and (c)
carried out with the real robot platform. In these experiments, we employed the problem (1)
without ensuring guarantees on the response time. As a first experiment, we performed
scenario (a) on the robot, as illustrated in Figure 9.

The figure demonstrates that the NMPC with only a heuristic reference generator (dashed
lines) does not succeed in moving on a straight line for a statically unstable gait as trot.

Indeed, the robot suffers lateral and backward (less visible) drifts for two reasons:
(1) the trot being an unstable gait, the CoM always diverges between two four-legged-stance
events in opposite directions. Any little asymmetry in the robot results in a cumulative drift
in one direction; and (2) because Aliengo has c-shaped legs, they create nonzero moments
about the pitch axis during a swing.

Enabling the optimal reference generator, instead, the robot is able to reach the goal
and prevent the trajectory from drifting (see the continuous line in Figure 9).

Robotics 2023, 12, 6 14 of 18

0 5 10 15 20 25
-0.2

-0.15

-0.1

-0.05

0

0.05

Figure 9. Experiment, scenario (a): Aliengo moving forward with zero lateral velocity set by the
user. The dashed line represents the actual Y CoM position when the reference generator is forced
to be always in heuristic status. The robot diverges from the goal of pact

c,y = 0 and there is no part in
the controller that brings it back. The continuous line shows the actual Y CoM position when the
reference generator automatically changes its state according to the error e. Thanks to the corrections
of the optimize reference generator, Aliengo is able to stay close to the goal.

Figure 10 shows the change in the reference lateral velocity (yellow line) done by the
reference generator. When the average Y position (p̄y, red line) exceeds the bounds (p̄bound

y ,
dashed lines), the status is changed to optimize and the reference generator brings back
the CoM close to the goal. A threshold of 1 cm around the constant goal has been chosen
for the activation. Once the goal has been reached, the reference generator automatically
resets to heuristic, and the reference velocity becomes equal to the user one (zero). The
continuous changing of the status of the reference generator demonstrates the need to have
an external module which corrects the reference trajectories during a trot.

0 5 10 15 20 25

-0.1

-0.05

0

0.05

0.1

Figure 10. Experiment, scenario (a): Aliengo moving forward with zero user lateral velocity. The
peaks in the reference velocity (yellow line) represent the moment in which the average Y position (red
line) has passed the threshold (dashed lines) around the initial position and the reference generator is
set to optimize status.

Figure 11 shows the Y position of the robot in the scenario (b) with a fixed goal of
−0.15 m. As in simulation, the robot is able to track the reference value, due to the fact that
the velocity takes into account the underactuation of the trot gait. In this case, we decided
to keep the reference generator always set to optimize to demonstrate that it is able to work
properly also when the target has been reached, compensating drifts as in scenario (a).

Robotics 2023, 12, 6 15 of 18

0 2 4 6 8 10
-0.15

-0.1

-0.05

0

Figure 11. Experiment, scenario (b): Aliengo robot reaches the target position of −0.15 m and then
keeps moving following the user-defined velocity.

In the last experiment, we show how we can use our reference generator to react to
external disturbances (see Figure 12). As we have already mentioned in the Introduction,
the task is not to reject the disturbance, but to cope with it and later recover from its
effect. An analysis of techniques to reject disturbances goes beyond the scope of this work.
Figure 13 shows the Y position of the CoM in a real hardware experiment in scenario (c)
when the robot receives two manually applied pushes. The threshold on the error is set to
1 cm (dashed purple line). During the push, the robot tries to resist to the disturbance and,
thanks to the high-frequency re-planning of the NMPC, it is able to keep the stability and
avoid falling. Once the pushing force is removed, the reference generator drives the robot
back toward the initial position. As in the previous cases, the reference generator is set to
optimize when the robot is diverging from the goal.

The readers are encouraged to check the experiments corresponding to the mentioned
results in the accompanying video.

Figure 12. Experiments, scenario (c), sequence of screenshots. The robot moves forward (picture 1),
and is suddenly pushed with a stick (picture 2). Once the push is removed (picture 3), the optimized
reference generator automatically drives the robot back to its initial position. Finally, the robot follows
the user-defined velocity (picture 4).

Robotics 2023, 12, 6 16 of 18

0 5 10 15 20 25
-0.1

-0.05

0

Figure 13. Experiment, scenario (c): CoM Y position of the robot. During the motion, the robot has
been pushed twice and it automatically comes back to the initial position when the push is removed.

5. Conclusions

In this work, we presented a novel optimization-based reference generator for quadruped
locomotion, which deals with the underactuation of statically unstable gaits and with external
disturbances. It exploits the LIP model to compute feasible reference trajectories that allow
the robot to accomplish a tracking task. A QP mapping is used to determine the GRFs
which correspond to the ZMP location computed by the LIP model. Velocities and GRFs are
used as informative tracking references by a 25 Hz lower-stage NMPC planner introduced
in [5]. This results in the absence of conflicting tasks in the cost function, which simplifies
the tuning of the weights inside the costs of the NMPC. We validated our approach by
performing simulations and experiments with the 22 kg quadruped robot Aliengo in three
different scenarios: (a) straight motion, (b) fixed lateral goal, and (c) recovery after a push.
For the last scenario, we demonstrated that the simple solution of adding a Cartesian PD in
parallel to the NMPC is not enough to return in a predefined time to the required position.
In addition, we presented and validated in simulations a formulation with slack variables
that are guaranteed to reach the goal in a specified time, without the need to further tune
any parameters.

Future work involves extending the optimize reference generator also to the heading
(i.e., yaw) orientation, and to perform additional experiments with the real platform with
the formulation that respects a specified response time.

Author Contributions: The authors contributed to the paper in the following ways: Conceptual-
ization, A.B. and M.F.; Formal analysis, A.B. and M.F.; Software A.B. and N.R.; Methodology A.B.;
Investigation A.B. and M.F.; Visualization A.B.; Writing–original draft A.B.; Supervision M.F. and
C.S.; Writing–review & editing M.F., N.R. and C.S.; Data Curation N.R.; Funding acquisition C.S.;
Project administration C.S.; Resources C.S. All authors have read and agreed to the published version
of the manuscript.

Funding: The publication was created with the co-financing of the European Union FSE-REACT-EU,
PON Research and Innovation 2014-2020 DM1062/2021.

Acknowledgments: We thank Mario Zanon and Alberto Bemporad of IMT School for Advanced
Studies Lucca for their precious advice and support.

Conflicts of Interest: The authors declare no conflict of interest.

Notation
Most commonly used symbols in this article.

N ∈ R NMPC horizon.
Ng ∈ R Reference horizon.
δ ∈ R4×Ng Sequence of gait status.
pf ∈ R12×Ng Footholds sequence.

Robotics 2023, 12, 6 17 of 18

xg
c ∈ R4×(Ng+1) State of the optimized reference generator.

pg
c,k ∈ R2 X-Y COM reference position at time k.

vg
c,k ∈ R2 X-Y COM reference velocity at time k.

wg
k ∈ R2 ZMP position at time k.

sk ∈ R2×1 slack variables at time k.
uqp ∈ R3|C| GRFs computed by the QP Mapping.
udes ∈ Rnu×N Predicted GRFs by the NMPC.
xdes

c ∈ R12×(N+1) Predicted states by the NMPC.
xact

c ∈ R12 Actual robot state.
p̄c ∈ R2 Average X-Y COM position.

References
1. Raibert, M.H.; Tello, E.R. Legged Robots That Balance. IEEE Expert 1986, 1, 89. [CrossRef]
2. Winkler, A.W.; Bellicoso, C.D.; Hutter, M.; Buchli, J. Gait and Trajectory Optimization for Legged Systems Through Phase-Based

End-Effector Parameterization. IEEE Robot. Autom. Lett. (RA-L) 2018, 3, 1560–1567. [CrossRef]
3. Bratta, A.; Orsolino, R.; Focchi, M.; Barasuol, V.; Muscolo, G.G.; Semini, C. On the Hardware Feasibility of Nonlinear Trajectory

Optimization for Legged Locomotion based on a Simplified Dynamics. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Paris, France, 31 May–1 August 2020; pp. 1417–1423. [CrossRef]

4. Li, H.; Wensing, P.M. Hybrid Systems Differential Dynamic Programming for Whole-Body Motion Planning of Legged Robots.
IEEE Robot. Autom. Lett. (RA-L) 2020, 5. [CrossRef]

5. Rathod, N.; Bratta, A.; Focchi, M.; Zanon, M.; Villarreal, O.; Semini, C.; Bemporad, A. Model Predictive Control with Environment
Adaptation for Legged Locomotion. IEEE Access 2021, 9, 145710–145727. [CrossRef]

6. Semini, C.; Tsagarakis, N.G.; Guglielmino, E.; Focchi, M.; Cannella, F.; Caldwell, D.G. Design of HyQ—A Hydraulically and
Electrically Actuated Quadruped Robot. IMechE Part I J. Syst. Control. Eng. 2011, 225, 831–849. [CrossRef]

7. Minniti, M.V.; Grandia, R.; Farshidian, F.; Hutter, M. Adaptive CLF-MPC With Application to Quadrupedal Robots. IEEE Robot.
Autom. Lett. (RA-L) 2022, 7, 565–572. [CrossRef]

8. Hong, S.; Kim, J.H.; Park, H.W. Real-Time Constrained Nonlinear Model Predictive Control on SO(3) for Dynamic Legged
Locomotion. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA,
25–29 October 2020; pp. 3982–3989. [CrossRef]

9. Amatucci, L.; Kim, J.H.; Hwangbo, J.; Park, H.W. Monte Carlo Tree Search Gait Planner for Non-Gaited Legged System Control.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May
2022; pp. 4701–4707. [CrossRef]

10. Meduri, A.; Shah, P.; Viereck, J.; Khadiv, M.; Havoutis, I.; Righetti, L. BiConMP: A Nonlinear Model Predictive Control Framework
for Whole Body Motion Planning. IEEE Trans. Robot. (T-RO) 2022. [CrossRef]

11. Di Carlo, J.; Wensing, P.M.; Katz, B.; Bledt, G.; Kim, S. Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-
Predictive Control. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 1–5 October 2018; pp. 1–9. [CrossRef]

12. Grimminger, F.; Meduri, A.; Khadiv, M.; Viereck, J.; Wuthrich, M.; Naveau, M.; Berenz, V.; Heim, S.; Widmaier, F.; Flayols, T.; et al.
An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research. Robot. Autom. Lett. (RA-L) 2020,
5, 3650–3657. [CrossRef]

13. Barasuol, V.; Buchli, J.; Semini, C.; Frigerio, M.; De Pieri, E.R.; Caldwell, D.G. A reactive controller framework for quadrupedal
locomotion on challenging terrain. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, 6–10 May 2013; pp. 2554–2561. [CrossRef]

14. Cebe, O.; Tiseo, C.; Xin, G.; Lin, H.C.; Smith, J.; Mistry, M.N. Online Dynamic Trajectory Optimization and Control for a
Quadruped Robot. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China,
30 May–5 June 2021; pp. 12773–12779. [CrossRef]

15. Bouyarmane, K.; Kheddar, A. On Weight-Prioritized Multitask Control of Humanoid Robots. IEEE Trans. Autom. Control 2018,
63, 1632–1647. [CrossRef]

16. Bledt, G.; Kim, S. Implementing Regularized Predictive Control for Simultaneous Real-Time Footstep and Ground Reaction Force
Optimization. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8
November 2019; pp. 6316–6323. [CrossRef]

17. Bjelonic, M.; Grandia, R.; Geilinger, M.; Harley, O.; Medeiros, V.S.; Pajovic, V.; Jelavic, E.; Coros, S.; Hutter, M. Offline motion
libraries and online MPC for advanced mobility skills. Int. J. Robot. Res. 2022, 41, 903–924. [CrossRef]

18. Bemporad, A. Reference governor for constrained nonlinear systems. IEEE Trans. Autom. Control 1998, 43, 415–419. [CrossRef]
19. Kolmanovsky, I.; Garone, E.; Di Cairano, S. Reference and command governors: A tutorial on their theory and automotive

applications. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 226–241. [CrossRef]
20. Garone, E.; Di Cairano, S.; Kolmanovsky, I. Reference and command governors for systems with constraints: A survey on theory

and applications. Automatica 2017, 75, 306–328. [CrossRef]

http://doi.org/10.1109/MEX.1986.4307016
http://dx.doi.org/10.1109/LRA.2018.2798285
http://dx.doi.org/10.1109/ ICRA40945.2020.9196903
http://dx.doi.org/10.1109/LRA.2020.3007475
http://dx.doi.org/10.1109/ACCESS.2021.3118957
http://dx.doi.org/10.1177/0959651811402275
http://dx.doi.org/10.1109/LRA.2021.3128697
http://dx.doi.org/10.1109/IROS45743.2020.9341447
http://dx.doi.org/10.1109/ICRA46639.2022.9812421
http://dx.doi.org/10.48550/ARXIV.2201.07601.
http://dx.doi.org/10.1109/IROS.2018.8594448
http://dx.doi.org/10.1109/LRA.2020.2976639
http://dx.doi.org/10.1109/ICRA.2013.6630926
http://dx.doi.org/10.1109/ICRA48506.2021.9561592
http://dx.doi.org/10.1109/TAC.2017.2752085
http://dx.doi.org/10.1109/IROS40897.2019.8968031
http://dx.doi.org/10.1177/02783649221102473
http://dx.doi.org/10.1109/9.661611
http://dx.doi.org/10.1109/ACC.2014.6859176
http://dx.doi.org/10.1016/j.automatica.2016.08.013

Robotics 2023, 12, 6 18 of 18

21. Kajita, S.; Kanehiro, F.; Kaneko, K.; Yokoi, K.; Hirukawa, H. The 3D linear inverted pendulum mode: A simple modeling for a
biped walking pattern generation. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September–1 October 2021; pp. 239–246. [CrossRef]

22. Orin, D.E.; Goswami, A.; Lee, S.H. Centroidal dynamics of a humanoid robot. Auton. Robot. 2013, 35, 161–176. [CrossRef]
23. Mastalli, C.; Merkt, W.; Xin, G.; Shim, J.; Mistry, M.; Havoutis, I.; Vijayakumar, S. Agile Maneuvers in Legged Robots: A Predictive

Control Approach. arXiv 2022, arXiv:2203.07554.
24. Fahmi, S.; Mastalli, C.; Focchi, M.; Semini, C. Passive Whole-Body Control for Quadruped Robots: Experimental Validation Over

Challenging Terrain. IEEE Robot. Autom. Lett. (RA-L) 2019, 4, 2553–2560. [CrossRef]
25. Unitree Robotics. Available online: https://www.unitree.com/en/aliengo/ (accessed on 22 November 2022).
26. Focchi, M.; Orsolino, R.; Camurri, M.; Barasuol, V.; Mastalli, C.; Caldwell, D.G.; Semini, C. Heuristic Planning for Rough Terrain

Locomotion in Presence of External Disturbances and Variable Perception Quality. In Advances in Robotics Research: From Lab to
Market; Springer Tracts in Advanced Robotics Series; Springer: New York, NY, USA, 2020; pp. 165–209. [CrossRef]

27. Nobili, S.; Camurri, M.; Barasuol, V.; Focchi, M.; Caldwell, D.G.; Semini, C.; Fallon, M. Heterogeneous Sensor Fusion for Accurate
State Estimation of Dynamic Legged Robots. In Proceedings of the Robotics: Science and Systems, Cambridge, MA, USA, 12–16
July 2017. [CrossRef]

28. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110.
[CrossRef]

29. Nowicki, M.; Belter, D.; Kostusiak, A.; Cížek, P.; Faigl, J.; Skrzypczyński, P. An experimental study on feature-based SLAM for
multi-legged robots with RGB-D sensors. Ind. Robot. 2017, 44, 428–441. [CrossRef]

30. Hult, R.; Zanon, M.; Gros, S.; Falcone, P. Optimal Coordination of Automated Vehicles at Intersections: Theory and Experiments.
IEEE Trans. Control. Syst. Technol. 2019, 27, 2510–2525. [CrossRef]

31. Chignoli, M.; Wensing, P.M. Variational-Based Optimal Control of Underactuated Balancing for Dynamic Quadrupeds. IEEE
Access 2020, 8, 49785–49797. [CrossRef]

32. Harada, K.; Kajita, S.; Kaneko, K.; Hirukawa, H. ZMP analysis for arm/leg coordination. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 27 October–1 November 2003; pp. 75–81. [CrossRef]

33. Vukobratovic, M.; Borovac, B. Zero-Moment-Point—Thirty five years of its life. Int. J. Hum. Robot. 2004, 01, 157–173. [CrossRef]
34. Bellicoso, C.D.; Jenelten, F.; Gehring, C.; Hutter, M. Dynamic Locomotion Through Online Nonlinear Motion Optimization for

Quadrupedal Robots. IEEE Robot. Autom. Lett. (RA-L) 2018, 3, 2261–2268. [CrossRef]
35. Frison, G.; Diehl, M. HPIPM: A high-performance quadratic programming framework for model predictive control. IFAC-

PapersOnLine 2020, 53, 6563–6569. [CrossRef]
36. Verschueren, R.; Frison, G.; Kouzoupis, D.; van Duijkeren, N.; Zanelli, A.; Novoselnik, B.; Frey, J.; Albin, T.; Quirynen, R.; Diehl,

M. Acados—A modular open-source framework for fast embedded optimal control. Math. Prog. Comp. 2021. [CrossRef]
37. Guennebaud, G.; Furfaro, A.; Gaspero, L.D. Available online: https://github.com/fx74/uQuadProg (accessed on

22 November 2022).
38. Video of the Experiments. Available online: https://www.youtube.com/watch?v=Jp0D8_AKiIY (accessed on 22 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/IROS.2001.973365
http://dx.doi.org/10.1007/s10514-013-9341-4
http://dx.doi.org/10.1109/LRA.2019.2908502
https://www.unitree.com/en/aliengo/
http://dx.doi.org/10.1007/978-3-030-22327-4
http://dx.doi.org/10.15607/RSS.2017.XIII.007
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1108/IR-11-2016-0340
http://dx.doi.org/10.1109/TCST.2018.2871397
http://dx.doi.org/10.1109/ACCESS.2020.2980446
http://dx.doi.org/10.1109/IROS.2003.1250608
http://dx.doi.org/10.1142/S0219843604000083
http://dx.doi.org/10.1109/LRA.2018.2794620
http://dx.doi.org/10.1016/j.ifacol.2020.12.073
http://dx.doi.org/10.1007/s12532-021-00208-8
https://github.com/fx74/uQuadProg
https://www.youtube.com/watch?v=Jp0D8_AKiIY

	Introduction
	Related Work
	Proposed Approach and Contribution
	Outline

	Locomotion Framework Description
	Goal Setting and Status of the Reference Generator
	Formal Guarantees on Response Time

	Optimized Reference Generator
	LIP Model Optimization
	QP Mapping

	Simulation and Experimental Results
	Simulations
	Experiments

	Conclusions
	References

