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Abstract: Background: Chest computed tomography (CT) is the gold standard for the evaluation of
systemic sclerosis-related interstitial lung disease (SSc-ILD). Lung ultrasound (LUS) is a radiation-free
tool that identifies the B-lines as a main feature of ILD. We aimed to investigate the role of LUS in the
evaluation of the extent of SSc-ILD. Methods: Adult SSc patients underwent pulmonary function
tests (PFTs), LUS and CT. The CT images were qualitatively, semi-quantitatively (the Wells score on
five levels and the categorical Goh et al. staging) and quantitatively (histogram-based densitometry)
analysed for ILD. LUS quantified B-lines in 21 intercostal spaces on both the anterior and posterior
chest wall. Results: Out of the 77 SSc patients eligible for the study, 35 presented with ILD on CT
(21 limited, 14 extensive). Total B-lines significantly differentiated ILD vs. no ILD (median 24 vs. 8,
p < 0.001). Posterior and total B-lines significantly differentiated limited from absent ILD, while
anterior B-lines distinguished extensive from limited ILD. Total B-lines correlated with the Wells
score (r = 0.446, p < 0.001) and MLA (r = −0.571, p < 0.001); similar results were confirmed when
anterior and posterior B-lines were analysed separately. Conclusions: LUS is a useful tool to identify
SSc-ILD and to correlate with different evaluations of ILD extent and severity.

Keywords: systemic sclerosis; interstitial lung disease; computed tomography; ultrasound; radiomics

1. Introduction

Systemic sclerosis-related interstitial lung disease (SSc-ILD) results in significant mor-
bidity and mortality [1,2]. Screening for the presence of SSc-ILD leads to its early identi-
fication [3], which is the first step towards the initiation of an effective treatment to slow
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its progression and preserve patients’ quality of life [4,5]. The development of ILD re-
sembles other organ involvements in SSc from a pathogenetic point of view: following
vascular damage and chemotactic stimuli, inflammatory cells and pro-fibrotic mediators ex-
travasate in the perivascular tissue, consequently stimulating fibroblasts to differentiate into
myo-fibroblasts and producing abnormous amounts of extra-cellular matrix components,
including collagen [6].

Chest computed tomography (CT) represents the gold standard for ILD diagnosis [4],
which can detect both inflammatory and fibrotic changes in the lung. Different visual meth-
ods have been proposed to quantify the extent of parenchyma affected by ILD, although
these are impaired to a certain extent by inter-observer variability. Among them, the Wells
score on five levels is the most frequently applied [7], particularly since it was used by
Goh et al. to create a staging system classifying ILD into a limited and an extensive category,
respectively [8]. In comparison to other ILD extent scores or the evaluation of the presence
of certain specific ILD patterns [9], the Goh et al. staging system has a significant impact on
the survival of SSc-ILD patients, with extensive ILD determining a three-times-higher risk
of mortality over time, compared to limited ILD extent [8].

The use of automated software to extract data from images has progressively increased
in recent decades, partially resolving the need for radiology expertise and operator vari-
ability in images interpretation [10]. Among the currently available methodologies, the
histogram-based radiomic evaluation is a quantitative, operator-independent technique
that relies on density distribution. The main histogram parameters that can be derived
from CT images are the mean lung attenuation (MLA, representing the average global
attenuation value of lung parenchyma); the skewness (SKEW, representing the degree of
histogram asymmetry); and the kurtosis (KURT, indicating the degree of histogram peak).
Different radiomic densitometry studies have been conducted in SSc-ILD in the last decade,
showing that quantitative densitometry parameters are able to separate SSc patients with
and without ILD, as well as limited versus extensive ILD according to the Goh et al. staging
system [11,12]. In addition, quantitative densitometry parameters are also shown to carry
prognostic implications in SSc-ILD patients, in line with mortality risk categories identified
through other clinical prognostic models [13].

Given the exposure to ionizing radiation that CT entails, other techniques are cur-
rently used in clinical practice for the assessment of ILD and its follow-up. Primarily, this
includes pulmonary function tests (PFTs) to detect the presence of a restrictive respiratory
pattern [14] and the progression of fibrotic disease over time [15]. The use of lung ultra-
sound (LUS) has progressively become popular over the last decade, given its radiation-free
nature and the possibility of bedside application [16]. LUS identifies the B-lines as a key
feature of ILD, and they are defined as vertical and hyperechogenic lines arising from the
pleural line [16]. B-lines appear as a consequence of the ultrasounds being reflected by
the inter-lobular septa localized in the sub-pleural region, which are thickened as a conse-
quence of collagen deposition. The latter alters the interface between air and lung tissue
and generates the appearance of the B-lines in the LUS machine [17]. LUS has emerged as a
radiation-free screening tool for SSc-ILD according to different methodological schemes
of scanning sites identification and B-lines counting [18]. In addition, an LUS count of
B-lines was also shown as an independent predictor of ILD onset in patients without ILD
at baseline, as well as a predictor of functional worsening in SSc-ILD cases [19].

The use of LUS for the quantification of the extent of ILD has been partially explored
in previous studies [20]. This was the case in the visual ILD extent scoring method of
Warrick et al., with significant correlations between the increasing number of B-lines and
the increasing extent/score [21,22]. Similar data were produced comparing LUS evaluation
with the CT extent quantification score proposed by the Scleroderma Lung Study I and
the abovementioned Wells score, although using a B-lines counting scheme with a high
number of scanning sites may be time-consuming [18].
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The aim of our study was to assess the role of LUS with a reduced number of scanning
sites in the evaluation of the extent of SSc-ILD, compared to both CT visual scoring and CT
radiomic analyses.

2. Materials and Methods

We retrospectively enrolled patients fulfilling the 2013 ACR/EULAR SSc classification
criteria, attending the Rheumatology Unit of the Careggi University Hospital, who under-
went PFTs, LUS and CT for clinical indication within 60 days. Difficulties in LUS evaluation
(e.g., non-cooperating patients, a reduced lung window) or CT images un-suitable for
visual or radiomic evaluation represented exclusion criteria. The local ethical committee
approved the study (CEAVC 12300_oss), and patients signed informed consent. The study
was conducted in agreement with the Declaration of Helsinki.

The following information was collected: demographic (age, sex, disease duration,
exposure to smoking); clinical (cutaneous subset, modified Rodnan skin score, history of
Raynaud’s phenomenon or digital ulcers); laboratory (positivity for the main SSc antibodies,
namely anti-centromere, anti-topoisomerase I and anti-RNA polymerase III); PFT param-
eters (forced vital capacity, FVC%; total lung capacity, TLC%; diffusion capacity of the
lung for carbon monoxide and its ratio to the alveolar volume, DLCO% and DLCO/VA%,
respectively); and CT scans. The CT date constituted the reference date for data collection,
with the most recent clinical evaluation being used for the demographic, clinical and labo-
ratory data, while PFTs and LUS were eligible if performed within 60 days before or after
the CT scan.

Chest CT images were eligible if acquired through a volumetric, 120 kV scan and
sharp-to-very-sharp reconstruction kernel, with care dose mAs modulation and slice
thickness ≤2 mm. The absence of artefacts due to movement or metal bodies represented
inclusion criteria for the radiomic assessment. The images were independently assessed
by two experienced thoracic radiologists (NL, NR, reviewing in consensus in case of dis-
agreement) to verify eligibility, identify the presence of ILD (qualitative assessment) and to
semi-quantify the extent of ILD (semi-quantitative assessment) using two different methods:

1. The visual Wells score at 5 levels (performed at the origin of large vessels; main
carina; pulmonary venous confluence; halfway between the third and fifth section;
immediately above the right hemi-diaphragm) evaluates ILD extent as an average of
the 5 levels (rounded to the nearest 5% at each level) as a continuous variable ranging
from 0 to 100 [7].

2. The Goh et al. staging system is based on the Wells score on CT, identifies ILD extent
as a dichotomous variable (limited versus extensive) according to an average extent
below or >20%. In case of indeterminate 20% clustering, FVC% <70% was used as an
indicator of extensive ILD [8].

A single author (CB) performed the quantitative assessment using the free-source
software Horos, as previously proposed [12]. The procedure was characterized by import-
ing the DICOM images of the CT set into the software, setting the window view between
−950 HU and −440 HU, followed by selecting the lung parenchyma in the whole images
set. Finally, a dedicated plug-in was used to extract the MLA derived from each slice and
to compute the total MLA, KURT and SKEW from the whole set of images.

The B-lines were separately quantified with LUS by two assessors (LG, GL), who
examined 21 intercostal spaces from the posterior (13 spaces) and anterior (8 spaces) chest
wall. Examples of the assessment of LUS space are presented in Figure 1. The sum of
anterior and posterior B-lines determined the total B-lines number.



Diagnostics 2022, 12, 1696 4 of 10Diagnostics 2022, 12, x FOR PEER REVIEW 4 of 11 
 

 

 

Figure 1. Example of normal LUS (left panel), LUS with 1 B-line (central panel) and with multiple 

B-lines (right panel). 

All assessors were blinded to the results of the other two evaluations. 

Continuous variables were presented using mean ± standard deviation or median 

(interquartile range), categorical variables using absolute and relative frequencies. To 

evaluate the difference between continuous variables among two groups, the T-test, Sat-

terthwait’s test or Mann–Whitney test was used, according to the result of the Shapiro–

Wilk test for normality and the F-test for the equality of variances. To assess the difference 

between continuous variables among three groups, ANOVA, Welch ANOVA or the Krus-

kal–Wallis test was used according to the result of the Shapiro–Wilk test for normality and 

the Bartlett’s test for homoschedasticity. Multiple comparisons between groups were per-

formed using Tukey, Games–Howell or Dwass–Steel–Critchlow–Fligner tests, respec-

tively. We used Pearson’s correlation coefficient to evaluate the correlation between two 

continuous variables. The area under the receiver operating characteristics curve (AUC) 

was used to assess the predictive value of the independent variable (FVC, DLco, B-lines) 

for the outcome (presence of extensive ILD). The statistical significance level was set to 

5%. 

3. Results 

Out of the 94 SSc patients enrolled, 13 were excluded as CT images were not available 

at the time of the visual scoring evaluation, while 4 had limitations in LUS performance. 

The resulting study population included 77 subjects (65 females, age 48 ± 16 years; see 

Table 1 for further clinical characterization). 

Table 1. Characteristics of the study population. 

Parameters Distribution among the Whole Cohort (n = 77) 

Age, years, mean ± SD 48 ± 16 

Disease duration, years, median (IQR) 4 (1;6) 

Female sex, n (%) 65 (84) 

Diffuse cutaneous subset, n (%) 10 (13) 

Anti-centromere antibody positive, n (%) 32 (42) 

Anti-topoisomerase I antibody positive, n (%) 29 (38) 

Anti-RNA polymerase III antibody positive, n (%) 1 (1) 

Digital ulcers (ever), n (%) 29 (38) 

Raynaud’s phenomenon, n (%) 69 (90) 

NYHA functional class ≥2, n (%) 31 (43) 

Smoking exposure (ever), n (%) 35 (46) 

Interstitial lung disease on CT, n (%) 35 (46) 

Extensive ILD on CT according to Goh et al. [8], n (%) 14 (18) 

Wells score on 5 levels [7], median (IQR) 10 (5;30) 

Figure 1. Example of normal LUS (left panel), LUS with 1 B-line (central panel) and with multiple
B-lines (right panel).

All assessors were blinded to the results of the other two evaluations.
Continuous variables were presented using mean ± standard deviation or median (in-

terquartile range), categorical variables using absolute and relative frequencies. To evaluate
the difference between continuous variables among two groups, the T-test, Satterthwait’s
test or Mann–Whitney test was used, according to the result of the Shapiro–Wilk test for
normality and the F-test for the equality of variances. To assess the difference between
continuous variables among three groups, ANOVA, Welch ANOVA or the Kruskal–Wallis
test was used according to the result of the Shapiro–Wilk test for normality and the Bartlett’s
test for homoschedasticity. Multiple comparisons between groups were performed using
Tukey, Games–Howell or Dwass–Steel–Critchlow–Fligner tests, respectively. We used Pear-
son’s correlation coefficient to evaluate the correlation between two continuous variables.
The area under the receiver operating characteristics curve (AUC) was used to assess the
predictive value of the independent variable (FVC, DLco, B-lines) for the outcome (presence
of extensive ILD). The statistical significance level was set to 5%.

3. Results

Out of the 94 SSc patients enrolled, 13 were excluded as CT images were not available
at the time of the visual scoring evaluation, while 4 had limitations in LUS performance.
The resulting study population included 77 subjects (65 females, age 48 ± 16 years; see
Table 1 for further clinical characterization).

Table 1. Characteristics of the study population.

Parameters Distribution among the Whole Cohort (n = 77)

Age, years, mean ± SD 48 ± 16
Disease duration, years, median (IQR) 4 (1; 6)

Female sex, n (%) 65 (84)
Diffuse cutaneous subset, n (%) 10 (13)

Anti-centromere antibody positive, n (%) 32 (42)
Anti-topoisomerase I antibody positive, n (%) 29 (38)

Anti-RNA polymerase III antibody positive, n (%) 1 (1)
Digital ulcers (ever), n (%) 29 (38)

Raynaud’s phenomenon, n (%) 69 (90)
NYHA functional class ≥2, n (%) 31 (43)
Smoking exposure (ever), n (%) 35 (46)

Interstitial lung disease on CT, n (%) 35 (46)
Extensive ILD on CT according to Goh et al. [8], n (%) 14 (18)

Wells score on 5 levels [7], median (IQR) 10 (5; 30)

CT = chest computed tomography; ILD = interstitial lung disease; IQR = interquartile range; NYHA = New York
Heart Association; SD = standard deviation.

Signs of ILD on qualitative visual examination were detected in 35 (46%) patients, and
the Wells score ranged from 0 to 65% of total ILD extent in the whole group, with a median
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value in the ILD population of 10 (5–30%). ILD extent was categorized as limited extent in
21/35 (60%) cases and extensive in 14/35 (40%), according to the Goh et al. staging system.
When analysed with the Horos software, the CT images of 18 patients were excluded from
the analysis due to the presence of movement artefacts/metal bodies, which may lead to the
misrecognition of extra-pulmonary tissues as lung parenchyma. This led to the radiomic
analysis being restricted to 59 cases (77% of the study population).

In patients with SSc-ILD, significantly lower PFT parameters were detected when
compared to patients without ILD: FVC% (93 ± 28 vs. 105 ± 18, p = 0.006); TLC%
(86 ± 17 vs. 101 ± 15, p = 0.021); DLCO% (60 ± 21 vs. 83 ± 16, p < 0.001); and DLCO/VA%
(72± 17 vs. 84± 17, p < 0.001), as expected. Similarly, the number of anterior [14 (7; 22) vs. 4 (1; 6),
p < 0.001], posterior [12 (5; 24) vs. 2 (0; 9), p < 0.001] and total [24 (13; 46) vs. 8 (1; 15),
p < 0.001] B-lines significantly differentiated ILD vs. non-ILD patients. Similarly, the
radiomic parameters distinguished ILD versus non ILD-patients: this was statistically
significant for MLA [−807 (−776; −820) HU vs. −836 (−844; −820) HU; p < 0.001]; KUR
[7.6 (2.5; 15.6) vs. 14.6 (9.0; 22.7), p = 0.027]; and SKEW [ 2.5 (1.5; 3.4) vs. 3.4 (2.7; 4.2),
p = 0.028].

When ILD patients were clustered according to the Goh et al. staging system, PFT
parameters, in particular FVC% and TLC%, were different among the groups and signifi-
cantly differentiated extensive from absent ILD. In addition, both DLCO% and DLCO/VA%
significantly differentiated the limited from the extensive ILD groups, but not between the
absence of ILD and limited ILD extent and absence of ILD groups (Table 2).

Table 2. Distribution of pulmonary functional parameters, B-lines and radiomic parameters among
the study population and stratified according to lung involvement. Patient numbers in brackets refer
to the subgroup with available radiomic data.

Parameters
Distribution among
the Whole Cohort;

n = 77 (59)

No ILD
n = 42 (34)

Limited ILD
n = 21 (16)

Extensive ILD
n = 14 (9)

FVC%, mean ± SD 100 ± 18 105 ± 18 98 ± 15 85 ± 16 § *
TLC%, mean ± SD 98 ± 17 101 ± 15 98 ± 15 82 ± 17 § *

DLCO%, mean ± SD 76 ± 21 83 ± 16 76 ± 20 51 ± 16 § ˆ *
DLCO/VA%, mean ± SD 81 ± 18 84 ± 17 83 ± 18 67 ± 14 § ˆ *

Anterior B-lines,
median (IQR) 6 (2–16) 4 (1–6) 9 (2–16) 23 (15–38) § ˆ *

Posterior B-lines,
median (IQR) 7 (0; 15) 2 (0; 9) 11 (5; 20) 16 (5; 42) § * ◦

Total B-lines,
median (IQR) 14 (5; 29) 8 (1; 15) 19 (11; 32) 41 (21; 80) § * ◦

MLA, HU, median (IQR) −823 (−838; −807) −836 (−844; −820) −820 (−829; −801) −780 (−761; −810) § ˆ * ◦

SKEW, median (IQR) 2.8 (2.1; 4.0) 3.4 (2.7; 4.2) 2.6 (2.2; 3.5) 1.6 (0.4; 2.4) § *
KUR, median (IQR) 10.9 (4.6; 20.9) 14.6 (9.0; 22.7) 7.8 (5.9; 16.2) 3.7 (−0.62; 8.9) § *

§ significant difference between three groups, with p value < 0.05; ˆ significant difference between extensive and
limited ILD groups, with p value < 0.05; * significant difference between extensive and no-ILD groups, with
p value < 0.05; ◦ significant difference between limited and no-ILD groups, with p value < 0.05; DLCO = diffusion
lung capacity of carbon monoxide; DLCO/VA = diffusion lung capacity of carbon monoxide corrected for alveolar
volume; FVC = forced vital capacity; HU = Hounsfield unit; ILD = interstitial lung disease; IQR = interquartile
range; KUR = kurtosis; MLA = mean lung attenuation; SKEW = skewness; TLC = total lung capacity.

Conversely, the number of posterior and total B-lines significantly distinguished
limited from absent ILD, while the number of anterior B-lines differentiated extensive from
limited ILD. A trend towards statistical significance (p = 0.085) was also seen for the total
number of B-lines in distinguishing between extensive and limited ILD (Figure 2).
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Figure 2. Distribution of anterior, posterior and total B-lines among the patients with absent, limited
and extensive interstitial lung disease. ILD = interstitial lung disease. Statistical significance is set for
p < 0.05. ◦ represent mild outliers, while * represent extreme outliers, in relation the distribution of B
lines within the group.

When tested separately, the number of total B-lines (AUC 0.85, 95% CI 0.76–0.95,
p < 0.001, Figure 3A), FVC% (AUC 0.84, 95% CI 0.74–0.95, p < 0.001, Figure 3B) and DLCO
(AUC 0.88, 95% CI 0.78–0.98, p < 0.001, Figure 3C) significantly predicted the presence
of extensive ILD on HRCT, with a further increase in the AUC when the three tests were
combined at the same time (AUC 0.92, 95% CI 0.82–1.00, p < 0.001, Figure 3D). Although
numerically superior, no statistically significant difference was seen between using the
single test or the combination of the three assessments to predict the presence of extensive
ILD, given the small sample size.
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Figure 3. Receiver Operating Characteristics curves for the prediction of presence of extensive
interstitial lung disease on high-resolution computed tomography, including Total B-lines (Panel A),
FVC% (Panel B), DLco% (Panel C) and the combination of FVC%, DLco% and Total B-lines (Panel D).
DLco% = diffusion lung capacity of carbon monoxide; FVC% = forced vital capacity.
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In line with the visual scoring evaluation, MLA significantly differentiated the three
clusters of ILD cases (extensive, limited and absent), while KUR and SKEW only differenti-
ated extensive from absent ILD.

Weak-to-moderate correlations were found between the three B-lines assessments
(anterior, posterior and total) and all PFT parameters, the Wells visual scoring and the three
radiomic parameters. In detail, there was a statistically significant negative correlation
between anterior, posterior and total B-lines with all PFT parameters, SKEW and KUR,
while there was a positive statistically significant correlation with MLA and the Wells Score
(Table 3).

Table 3. Correlations between B-lines and pulmonary function tests, densitometry parameters and
the visual score.

Parameters Anterior B-Lines Posterior B-Lines Total B-Lines

FVC% r = −0.383
p = 0.005

r = −0.420
p = 0.004

r = −0.468
p < 0.001

TLC% r = −0.401
p = 0.006

r = −0.502
p < 0.001

r = −0.435
p < 0.001

DLCO% r = −0.483
p < 0.001

r = −0.483
p < 0.001

r = −0.511
p < 0.001

DLCO/VA% r = −0.341
p = 0.010

r = −0.286
p = 0.047

r = −0.303
p = 0.024

MLA r = 0.519
p < 0.001

r = 0.559
p < 0.001

r = 0.568
p < 0.001

SKEW r = −0.311
p = 0.015

r = −0.386
p = 0.001

r = −0.368
p = 0.004

KUR r = −0.252
p = 0.050

r = −0.285
p = 0.027

r = −0.283
p = 0.028

Wells score on five levels r = 0.443
p < 0.001

r = 0.386
p < 0.001

r = 0.436
p < 0.001

Statistical significance is set for p < 0.05. DLCO = diffusion lung capacity of carbon monoxide;
DLCO/VA = diffusion lung capacity of carbon monoxide corrected for alveolar volume; FVC = forced vital
capacity; KUR = kurtosis; MLA = mean lung attenuation; SKEW = skewness; TLC = total lung capacity.

4. Discussion

Our study confirms the usefulness of LUS in differentiating between the presence and
absence of ILD and further supports its role in ILD extent assessment compared to CT
semi-quantitative and radiomic quantitative evaluations.

LUS is a radiation-free, non-invasive, bedside technique which has been studied in
different conditions, including SSc. The number of B-lines distinguished between the
presence and absence of SSc-ILD in previous publications, including early sub-clinical
cases [23,24]. In addition, some authors have shown the relationship between the quan-
tification of B-lines and the visual CT ILD extent scoring method by Warrick et al. using
the Scleroderma Lung Study I scoring system, with higher numbers of B-lines in patients
with higher ILD extent [18,21,22,25]. In comparison to previous reports, we confirm the
correlation with the CT Wells score and the number of ultrasound B-lines, although with
lower coefficients, possibly related to the use of a different number of scanning sites. In
comparison to the other CT visual quantitative scoring methods, the classification into
limited or extensive ILD according to the Goh et al. staging system carries prognostic
implications [8]. In our population, the number of anterior B-lines distinguished limited
and extensive ILD, with a trend towards statistical significance for the total B-lines count.
Similarly, posterior and total B-lines significantly differentiated the presence of limited ILD
from the complete absence of ILD. These results may be related to the natural history of
SSc-ILD, which initially affects posterior-basal peripheral areas and progressively expands
to anterior and proximal segments of the lung parenchyma, further supporting the ability
of LUS to also detect early sub-clinical interstitial involvement and indicating its role in
detecting a progression of ILD extent. In line with previous reports, PFT parameters (in
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particular DLCO% and DLCO/VA%) significantly distinguished extensive from limited
ILD, although they did not differ between limited and absent ILD. Conversely, FVC% and
TLC% can significantly separate extensive versus absent ILD only, confirming that they
may be associated with a delay in detecting milder forms of ILD [26]. Therefore, B-lines
may add information to the sole use of PFTs, in particular to support the differentiation
between absent, limited and extensive ILD, providing anatomical details in a functional
evaluation (Figure 4).
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Figure 4. Example of systemic sclerosis patients with extensive (first-line), limited (second-line) and
absent (third-line) interstitial lung disease. CT = computed tomography; DLco = diffusion lung
capacity of carbon monoxide; DLco/VA = diffusion lung capacity of carbon monoxide corrected
for alveolar volume; FVC = forced vital capacity; KUR = kurtosis; MLA = mean lung attenuation,
measured in Hounsfield unit; SKEW = skewness; TLC = total lung capacity.

The role of B-lines in evaluating the extent of SSc-ILD is corroborated by the correla-
tions with the CT radiomic quantitative indexes. Ariani et al. identified significantly higher
values of MLA and lower values of both SKEW and KUR in SSc-ILD patients, compared
to SSc cases without lung fibrosis [12]. Our data not only confirms the previously shown
ability of MLA to distinguish extensive from limited ILD [11,12], but also shows the ability
of the radiomic assessment to distinguish limited versus absent ILD. As for the Wells score,
a statistically significant correlation was also found between the three radiomic parameters
and the three B-lines counts, although this was moderate for MLA and weak for both SKEW
and KUR. In comparison to Ariani et al., our radiomic analysis included all the images in
each CT set. Although this resulted in weak correlations with other methods focusing on
specific lung areas (see the LUS scanning scheme, the Wells score and the Goh et al. staging
system), our radiomic analysis obtained values that were more representative of the whole
lung parenchyma and not only standardized levels.

Our study has some limitations: the small sample of patients did not allow for the
creation of prediction models combining PFTs and LUS. In addition, LUS can only evaluate
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the sub-pleural regions of the lung, thus potentially explaining the weak-to-moderate
correlations we found with both the CT Wells score, semi-quantitative assessment and the
radiomic assessment, which both also evaluate central lung portions. In addition, CTs were
performed with different scanners and protocols, potentially biasing both the radiomic
and visual analyses. Finally, the LUS assessment was performed by a single operator,
although it has been shown that this methodology carries very high values of both inter-
and intra-reader reliability [16,24].

In conclusion, our preliminary study proposes the synergic use of PFTs and LUS in the
assessment of SSc-ILD extent. This should be investigated further in prospective studies on
larger populations to support its application in clinical practice and reduce the radiological
burden of SSc-ILD assessment.
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