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Abstract
This review article presents select recent studies that form the basis for the development of esmethadone into a potential new 
drug. Esmethadone is a promising member of the pharmacological class of uncompetitive N-methyl-D-aspartate receptor 
(NMDAR) antagonists that have shown efficacy for major depressive disorder (MDD) and other diseases and disorders, 
such as Alzheimer’s dementia and pseudobulbar affect. The other drugs in the novel class of NMDAR antagonists with 
therapeutic uses that are discussed for comparative purposes in this review are esketamine, ketamine, dextromethorphan, 
and memantine. We present in silico, in vitro, in vivo, and clinical data for esmethadone and other uncompetitive NMDAR 
antagonists that may advance our understanding of the role of these receptors in neural plasticity in health and disease. The 
efficacy of NMDAR antagonists as rapid antidepressants may advance our understanding of the neurobiology of MDD and 
other neuropsychiatric diseases and disorders.
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Introduction

The contemporary understanding of major depressive disor-
der (MDD) neurobiology is progressively disengaging from 
the classic serotonergic hypothesis [1]. Accordingly, the 
risk–benefit ratio of available antidepressants, which mostly 
target monoaminergic neurotransmissions, has been increas-
ingly questioned [2]. More recent hypotheses implicate 
impairments of neural plasticity in the pathogenesis of MDD 
[3–5] through the dysregulation of glutamatergic signaling 
via N-methyl-D-aspartate receptors (NMDARs) [6, 7]. Indi-
viduals with MDD suffer not only from depressed mood but 
also from cognitive deficits, and animal models of depres-
sive-like behavior display learning deficits that have also 
been related to the impairment of neural plasticity [8, 9]. In 
the prefrontal cortex and hippocampus, impairment in neu-
ral plasticity has been associated with chronic inescapable 

stress and other models of depressive-like behavior [10, 11]. 
Interestingly, patients with MDD have also been shown to 
have reduced hippocampal volume [12, 13]. While MDD is 
still primarily considered a mood disorder, the impairment 
of cognition and motivation may be primary for understand-
ing the neurobiology of this disorder. Furthermore, cognitive 
deficits in MDD are central in determining the prominent 
functional loss and disability seen in patients.

In experimental models of depressive-like behavior, 
reduced synaptic spine volume and impaired spinogenesis 
are reversed by NMDAR antagonists [14–16]. Specifically, 
Fogaça et al. [16] demonstrated that a single dose of esmeth-
adone increased levels of the synaptic proteins PSD95, Syn-
apsin 1, and GluA1 in the medial prefrontal cortex (mPFC) 
but not in the hippocampus. In addition, Li et  al. [14] 
reported that ketamine produces a rapid (2-h) and sustained 
(72-h) increase in synaptic protein levels in the mPFC and 
increases levels of Synapsin 1 in whole rat hippocampus. 
The reversal of depressive-like behavior by uncompetitive 
NMDAR antagonists in experimental animal models appears 
to be due to the restoration of synaptic proteins through a 
brain-derived neurotrophic factor (BDNF)-dependent mech-
anism [14–16].

Uncompetitive NMDAR antagonists are a relatively 
recently described class of molecules with potential clinical 
applications as rapid antidepressants. One hypothesis for the 
mechanism of action of uncompetitive NMDAR antagonists 
in the treatment of depression is shown in Fig. 1 [17]. The 
“disinhibition hypothesis” is an alternative hypothesis that 
suggests that ketamine preferentially blocks NMDARs on 
GABAergic inhibitory interneurons, leading to a decrease 
of overall inhibition. This, in turn, disinhibits excitatory 
neurons and enhances excitatory synaptic transmission in 
the mPFC [18]. Other hypotheses are centered around dif-
ferent receptor systems, including the opioid receptor sys-
tem and the sigma-1 receptor [19, 20]. While the mecha-
nism of action of uncompetitive NMDAR antagonists for 
the treatment of depression needs to be further clarified and 
may differ among different drugs, several uncompetitive 
NMDAR antagonists have shown promise as antidepressant 
agents. The rapid antidepressant effects of ketamine have 
been replicated with esketamine, which has been approved 
for treatment-resistant depression [21]. The dextromethor-
phan–bupropion combination has shown efficacy for MDD 
in phase 2 and phase 3 trials [22, 23] and has been recently 
approved for the treatment of MDD. NMDAR antagonists 
have been FDA-approved for the treatment of other diseases 
and disorders. Memantine is approved for Alzheimer’s dis-
ease, and the combination drug dextromethorphan–quini-
dine is approved for the treatment of pseudobulbar affect. 
Esmethadone increased circulating BDNF levels in healthy 
subjects of a phase 1 clinical study [24] and improved sub-
jective cognitive symptoms in patients with MDD in a phase 
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2 clinical study [25, 26]. Esmethadone (REL-1017) showed 
rapid, robust, and sustained antidepressant effects in a phase 
2 trial conducted in patients with inadequate response to 
standard antidepressants [25]. Phase 3 studies are underway.

Esmethadone (REL‑1017)

Esmethadone (d-methadone; dextromethadone; REL-1017) 
is the opioid inactive (S)-enantiomer of racemic methadone 
and is a novel uncompetitive NMDAR antagonist [27, 28]. 
Esmethadone is a promising, once-daily, oral, rapid anti-
depressant candidate [25]. If phase 3 results reproduce the 
robust and sustained efficacy seen in phase 2, esmethadone 
could potentially become the first-in-class agent among 
emerging second-generation (post-ketamine), oral, uncom-
petitive NMDAR antagonists with rapid antidepressant 
effects. This work reviews the current knowledge on the 
pharmacology of esmethadone and its ongoing development 
for the treatment of MDD.

Interactions of esmethadone with the NMDAR 
in silico and in vitro

The interactions of esmethadone with the NMDAR have 
been recently characterized in silico (Fig. 2) [28]. The 
in vitro activity of esmethadone has been compared with 
other uncompetitive NMDAR antagonists (Tables 1, 2 and 
3) [28]. Furthermore, the known influence of physiological 
magnesium on NMDAR subtype preference by uncompeti-
tive NMDAR antagonists [29] has also been characterized 
for esmethadone (Table 4) [28].

The pharmacological interactions of esmethadone with 
human heterodimeric NMDARs described by Bettini and 
colleagues highlighted low NMDAR receptor affinity, NR1-
2D subtype preference, ketamine-like trapping in the chan-
nel pore, and a propensity for undocking from the NMDAR 
in the open conformation. Importantly, the unique charac-
teristics of esmethadone’s interaction with NMDARs, along 
with its lower potency compared to ketamine [28], may 
explain the lack of dissociative effects seen in clinical tri-
als [25, 30]. Similarly, the ketamine enantiomer arketamine 
may be effective as an antidepressant with fewer dissocia-
tive effects because of its lower NMDAR affinity as com-
pared to the ketamine enantiomer esketamine [31]. Other 
NMDAR antagonists, such as memantine and lanicemine, 
may lack consistent antidepressant effects in patients with 
MDD because of their low trapping [32] as compared to the 
higher trapping shown by ketamine and esmethadone. Addi-
tional in vitro experiments showed that esmethadone reduces 
Ca2+ influx induced by L-glutamate at very low concentra-
tions, as well as Ca2+ influx due to quinolinic acid (QA) and 
gentamicin stimulation. Therefore, esmethadone may protect 

cells from the excessive calcium entry via NMDARs that are 
hyperactivated by very low concentrations of glutamate and 
by endogenous (e.g., QA) and exogenous (e.g., gentamicin) 
molecules [33].

Two clinical studies designed to assess the human abuse 
potential and performed in recreational drug users showed no 
meaningful abuse potential for esmethadone in this patient 
population [34, 35]. In these studies, dextromethadone was 
compared to oxycodone, ketamine, and dextromethorphan. 
Dextromethorphan is an over-the-counter antitussive drug 
and NMDAR uncompetitive antagonist with affinity for the 
NMDAR that is approximately threefold higher than esmeth-
adone [28]. The primary metabolite of dextromethorphan, 
dextrorphan, also has NMDAR affinity [36], in contrast with 
2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), 
the primary metabolite of esmethadone, which is inactive. 
These differences in potency and metabolism may explain 
the higher drug liking score of 300 mg oral dextromethor-
phan compared to 150 mg oral esmethadone in recreational 
drug users, as reported by Shram and colleagues [34].

Notably, cortical neurons of rats exposed to high doses 
of esmethadone did not show evidence of Olney’s lesions 
or other neuropathological changes [37], in contrast with 
other uncompetitive NMDAR antagonists known to produce 
Olney’s lesions [38–41]. This lack of evidence for potential 
neurotoxicity may be related to the relatively lower affin-
ity of esmethadone binding at NMDARs, as demonstrated 
in radioligand binding assays, fluorometric imaging plate 
reader assays, and automated and manual patch assays [27, 
28].

Lack of opioid activity by esmethadone: in vitro, 
animal, and human evidence

Since the introduction of methadone in the US in 1946 [42] 
and because of the structural similarity with levomethadone 
(the opioid-active mu agonist levo-enantiomer), many stud-
ies have examined the interactions of the dextro-enantiomer 
esmethadone with opioid receptors and its potential for elic-
iting opioid agonist effects in animal models and humans. 
Receptor affinity studies using esmethadone in rat models 
show 20-fold lower affinity for mu opiate receptors com-
pared to the opioid-active enantiomer, levomethadone [43]. 
We performed two radioligand binding assays at human 
opioid receptors using esmethadone, levomethadone, and 
EDDP (Relmada studies performed by Eurofins: TW04-
0009163 and TW04-0009695, submitted to FDA under 
IND 133345). In these studies, esmethadone exhibited a 
27- to 40-fold lower affinity for human mu opioid receptors 
as compared to levomethadone (IC50 610/410 nM and IC50 
14.6/14.7 nM for esmethadone and levomethadone, respec-
tively). The major metabolite of esmethadone, EDDP, had 
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no meaningful opioid affinity (Relmada studies submitted to 
FDA under IND 133345).

Animal studies show a lack of meaningful opioid effects 
and lack signs of withdrawal after abrupt discontinuation 
of esmethadone [44–46]. Furthermore, the results of these 
earlier preclinical studies were replicated in recent studies 
that showed esmethadone does not cause reinforcing effects, 
physical dependence, or withdrawal in rats [47]. These pre-
clinical studies are corroborated by early human studies indi-
cating no meaningful abuse potential from esmethadone [42, 
48, 49] and by more recent clinical studies employing state-
of-the-art methodology [34, 35, 47]. Taken together, preclin-
ical and clinical studies confirm this 2019 Drug Enforcement 
Administration statement: “The d-isomer lacks significant 
respiratory depressant action and addiction liability, but pos-
sesses antitussive activity” [50]. The lack of opioid activity 
of esmethadone, in contrast with the opioid activity of lev-
omethadone, is in line with the known stereoselectivity of 
opioid agonist activity for opioid enantiomers: esmethadone, 
dextromethorphan, and dextro-morphine are all inactive at 
opioid receptors, in contrast with the opioid agonist drugs 
levomethadone, levomethorphan, and levo-morphine [42, 
43, 45, 51, 52]. Finally, the successful substitution of race-
mic methadone with half the dose of levomethadone in over 
1500 patients with opioid use disorder indirectly supports 
the lack of opioid activity of esmethadone [53].

While the scientific evidence for esmethadone’s lack of 
meaningful opioid agonist activity is conclusive, the lay-
man’s assumption may still be one of similarity of opioid 
effects to racemic methadone and levomethadone. This erro-
neous assumption may need additional educational efforts 
from the scientific community and from treating physicians 
to dispel addiction concerns that are unsupported by scien-
tific data and that may interfere with its potential use as an 
antidepressant.

Antidepressant‑like activity of esmethadone: 
preclinical studies

Esmethadone has rapid antidepressant-like activity in the rat 
forced swim test [54], an established model of depressive-
like behavior predictive of antidepressant effects in humans. 
Aside from reversing depressive-like behavior in preclinical 
paradigms of depression, esmethadone, similarly to keta-
mine, may also reverse neuronal dysfunctions associated 
with depressive-like behavior by increasing synaptic spine 
volume and restoring spinogenesis [14, 16]. Remarkably, 
the reversal of depressive-like behavior by esmethadone and 
other NMDAR antagonists appears to rely on the restoration 
of synaptic proteins via a BDNF-dependent mechanism [14, 
15, 55]. Figure 1 shows a current molecular hypothesis for 
the rapid relief of depressive behaviors and associated symp-
toms by esmethadone and other uncompetitive NMDAR 
antagonists [17]. While NMDAR antagonism is thought 
to be the mechanism of action of the antidepressant effects 
of uncompetitive NMDAR channel blockers, activity at 
other receptor systems, including opioid receptors [19] and 
sigma receptors [20], is also hypothesized. Esmethadone, 
aside from its uncompetitive NMDAR antagonist activity, 
shows affinity for other receptors (Table 5), which may also 
be implicated in its potential therapeutic effects.

Clinical studies assessing safety, tolerability, 
and efficacy of esmethadone in MDD

The safety, tolerability, and efficacy of esmethadone was 
assessed in two phase 1 trials and one phase 2 trial (Table 6). 
A single ascending dose (SAD) clinical trial demonstrated 
safety and tolerability of esmethadone in single doses of 
up to 150 mg. The 150 mg dose was deemed the maximum 
tolerated dose (MTD) based on the insurgence of nausea 
and vomiting. No patient experienced opioid-like eupho-
ria or ketamine-like dissociative symptoms [30]. The lack 
of esmethadone-induced opioid-like euphoria and lack of 
ketamine-like dissociation at MTD was also confirmed in 
two studies designed to assess human abuse potential [34, 
35]. The safety and tolerability of esmethadone administered 
daily at doses of 25 mg, 50 mg, and 75 mg for 10 days were 
then tested in a multiple ascending dose (MAD) trial [30]. 
In these subjects, there was no evidence of withdrawal after 
abrupt discontinuation of the 10-day course of esmethadone.

In these SAD and MAD studies [30], esmethadone exhib-
ited linear pharmacokinetics with dose proportionality for 
most single-dose and multiple-dose parameters. Single doses 
up to 150 mg and daily doses up to 75 mg for 10 days were 
well tolerated with mostly mild treatment-emergent adverse 
events and no severe or serious adverse events. There was 
no evidence of respiratory depression, dissociative and 

Fig. 1   Proposed mechanism of kinase involvement in uncompetitive 
NMDAR antagonist-mediated rapid antidepressant effects. A In the 
normal phenotype, physiological NR1-2D homeostatic tonic Ca2+ 
influx appropriately regulates calmodulin-dependent protein kinase 
III (CaMKIII) phosphorylation of eukaryotic elongation factor 2 
(eEF2), which results in adequate homeostatic maintenance and avail-
ability of synaptic proteins required for action potential (AP)-medi-
ated neural plasticity. B In the depressive phenotype, increased Ca2+ 
influx through NR1-2D channels upregulates CaMKIII-eEF2 activ-
ity, leading to the halting of synaptic protein production and avail-
ability, impairing AP-mediated neural plasticity. C Resolution of the 
depressive phenotype is possible through the action of uncompetitive 
NMDAR antagonists, such as REL-1017, which block excessive tonic 
Ca2+ currents. This blockade may restore homeostatic maintenance 
and availability of synaptic proteins, re-enabling physiological AP-
mediated synaptic plasticity

◂
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psychotomimetic effects, or withdrawal signs and symp-
toms upon abrupt discontinuation. In regard to the effects of 
esmethadone on the QTc interval, an overall dose–response 
effect was observed, with higher doses resulting in larger 
QTcF (QT interval corrected using the Fridericia formula) 

changes from baseline. Importantly, none of the changes was 
considered clinically significant. Similar effects of the QTcF 
were observed in the phase 2 study [25]. No detectable con-
version of esmethadone to levomethadone occurred in vivo.

Fig. 2   This rendering shows the interactions of uncompetitive 
NMDAR antagonists with the NR1-2D subtype in silico [28]. The 
structure of NR1-2D was obtained by electron microscopy (panel A, 
Protein Data Bank [PDB] code 6WHT). The black box highlights the 
drug-binding site. Structures of the complexes between esmethadone 

(light blue), arketamine (magenta), and esketamine (purple) with 
NR1-2D in the open conformation model (PDB code 6WHT) and the 
closed conformation model (PDB code 6WHS) can be seen in panels 
(B–D) and (E–G) [28]
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Two randomized, double-blind, active- and placebo-
controlled crossover studies were designed to evaluate the 
abuse potential of esmethadone compared with oxycodone 
(oxycodone study) or ketamine (ketamine study) in healthy 

recreational drug users. Three doses of esmethadone were 
evaluated in each study: 25 mg (the proposed therapeutic 
daily dose for MDD treatment), 75 mg (loading dose), and 
150 mg (MTD). Positive controls were 40 mg oral oxyco-
done in the oxycodone study and 0.5 mg/kg intravenous 
ketamine infused over 40 min in the ketamine study. The 
ketamine study included 300 mg oral dextromethorphan 
as an exploratory comparator. The primary endpoint was 
the maximum effect (Emax) for drug liking, assessed using a 
bipolar 100-point visual analog scale (VAS). In the oxyco-
done study and the ketamine study, 47 and 51 participants 
completed all treatment arms, respectively. In both studies, 
esmethadone doses ranging from therapeutic (25 mg) to six 
times therapeutic (150 mg) had a statistically significant and 
clinically meaningful (p < 0.001) lower drug liking VAS 
Emax compared with positive controls. Results were consist-
ent for all secondary endpoints, including measurements of 
overall drug liking and willingness to take the drug again, 
in both studies. Moreover, in the ketamine study, drug lik-
ing VAS Emax scores for esmethadone at all tested doses 
were significantly lower versus dextromethorphan (p < 0.05) 
(exploratory endpoint). In conclusion, these studies indi-
cated no meaningful abuse potential for esmethadone.

Table 2   IC50 values of esmethadone and reference NMDAR blockers

IC50 values of five selected NMDAR channel blockers were obtained via fluorometric imaging plate reader (FLIPR) assay [28]. Fitting values 
were obtained for every heterodimeric NMDAR via logistic equation in GraphPad Prism v8.0. Slope is also reported in the table, as well as 
the minimal % Ca2+ influx measured in the presence of 100 µM blocker, the highest tested concentration. For example, 100 µM esmethadone 
reduced Ca2+ influx elicited by 10 µM L-glutamate by 15% in the 2C-containing cell line

NR1-2A NR1-2B NR1-2C NR1-2D

IC50 (µM) Slope Min. (%) IC50 (µM) Slope Min. (%) IC50 (µM) Slope Min. (%) IC50 (µM) Slope Min. (%)

Esmethadone 43  − 1.0 30 25  − 1.1 14 23  − 0.84 15 68  − 0.68 47
(±)-Ketamine 30  − 0.76 23 6.3  − 0.78 8 3.4  − 0.83 8 11  − 1.1 12
Memantine 34  − 0.82 29 10  − 0.86 11 3.6  − 0.82 13 7.3  − 0.88 18
Dextromethorphan 51  − 0.80 35 15  − 0.89 14 5.2  − 1.0 14 28  − 1.2 43
MK-801 0.29  − 0.69 4 0.07  − 0.94 4 0.58  − 1.0 7 0.76  − 1.2 11

Table 3   KB and affinity ratio 
values of esmethadone and 
reference NMDAR blockers

Estimated KB values for five NMDAR channel blockers were obtained via FLIPR assay by L-glutamate 
concentration–response curves. An operational equation for allosteric modulators was used to estimate KB 
and % affinity ratio for all tested molecules [28]

NR1-2A NR1-2B NR1-2C NR1-2D

KB (µM) Affinity 
ratio (%)

KB (µM) Affinity 
ratio (%)

KB (µM) Affinity 
ratio (%)

KB (µM) Affinity 
ratio (%)

Esmethadone 8.9 51 6.1 74 4.5 100 7.8 58
(±)-Ketamine 4.3 11 1.1 42 0.46 100 1.4 33
Memantine 3.6 8 0.58 48 0.28 100 0.59 47
Dextromethorphan 9.6 13 1.9 63 1.2 100 6.7 18
MK-801 0.11 44 0.048 100 0.14 34 0.15 32

Table 4   IC50 values of esmethadone in presence of Mg2+

Experiments were conducted in whole-cell patch-clamp electro-
physiology at a holding potential of – 60 mV. Esmethadone concen-
tration–response curves were obtained via whole-cell manual patch-
clamp recordings in the presence of sub-saturating 1 µM L-glutamate, 
10 µM glycine, and 1 mM MgCl2. Every clamped cell was assessed 
with a single concentration of esmethadone, and the cell number 
range indicates the minimum and the maximum number of clamped 
cells per concentration for each NMDAR subunit-expressing cell 
type. Esmethadone was found to be approximately fivefold more 
potent in blocking NR1-2D subtypes compared to NR1-2A subtypes. 
Fittings parameters for esmethadone were obtained from data shown 
in [28] and analyzed with GraphPad Prism v8.0

Esmethadone IC50 in 
1 mM MgCl2

Hill slope Cell number

NR1-2A 63.1 1.06 2–8
NR1-2B 41.7 1.17 2–7
NR1-2C 28.4 1.49 2–8
NR1-2D 13.5 1.42 3–7
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The safety, tolerability, and efficacy of esmethadone were 
tested in a phase 2 study [25]. This study aimed to examine 
the effects of esmethadone in patients with MDD with inade-
quate response to standard antidepressants during the course 
of a major depressive episode. This was a randomized, dou-
ble-blind, placebo-controlled trial, comprising three arms, 
designed to assess the safety, tolerability, pharmacokinet-
ics, and efficacy of two dosages of esmethadone (25 mg 
or 50 mg orally once a day) administered for 7 days and 
conducted in ten centers across the United States. Patients 
were randomly assigned in a 1:1:1 ratio to placebo (N = 22), 
25 mg/day esmethadone (N = 19), or 50 mg/day esmetha-
done (N = 21). All patients were maintained on their stable 
dose of standard antidepressant. Safety scales included the 
four-item Positive Symptom Rating Scale for psychotomi-
metic symptoms, the Clinician-Administered Dissociative 
States Scale for dissociative symptoms, the Clinical Opiate 
Withdrawal Scale for withdrawal signs and symptoms, and 
the Columbia Suicide Severity Rating Scale for suicidal-
ity. Efficacy was evaluated based on changes in the Mont-
gomery–Åsberg Depression Rating Scale (MADRS) score. 
All 62 randomly assigned patients were included in the full 
analysis set population. Patients experienced only mild to 
moderate transient adverse events, and there was no evi-
dence of dissociative, psychotomimetic, or opioid effects or 
withdrawal signs and symptoms, confirming the safety and 
tolerability results of phase 1 studies [30]. Clinically mean-
ingful and statistically significant improvement in MADRS 
score started on day 4 with both esmethadone doses and 
was sustained through day 7 (last dose) and day 14 (7 days 
after the last dose), with effect sizes from 0.7 to 1.0. This 
trial confirmed the very favorable safety, tolerability, and 
pharmacokinetic profiles of esmethadone and indicated 

that esmethadone had rapid and sustained antidepressant 
effects compared with placebo in patients with inadequate 
responses to antidepressant treatments.

Table  7 lists publications from phase 1 and phase 2 
sub-analyses.

Uncompetitive NMDAR antagonists: 
pharmacokinetics, tolerability, and safety 
considerations

Among the upcoming pharmacological class of NMDAR 
antagonists that may work as rapid antidepressants in 
patients, esmethadone stands out because of its very favora-
ble tolerability and safety profile. The efficacy and safety of 
esmethadone may be determined by its selectivity for toni-
cally hyperactive NR1-2D subtypes at doses therapeutic for 
MDD [28]. In addition, esmethadone has an ideal pharma-
cokinetic profile that allows once-daily oral administration 
[25, 30]. Ketamine and its enantiomers can only be admin-
istered intravenously or intranasally due to variable oral 
absorption. In addition, the safety window for ketamine and 
esketamine may be too narrow: at dosages in current use for 
the treatment of depression, approximately 70% of patients 
experience dissociative symptoms [56]. The combination 
drug dextromethorphan–bupropion is better tolerated than 
ketamine and esketamine [22] but carries the combined side 
effects of two different drugs with the burdens of polyphar-
macy, which may be especially relevant when this combina-
tion drug is under consideration for patients who are already 
taking other drugs.

Furthermore, ketamine and dextromethorphan have 
been reported to cause Olney’s lesions in rats. While the 

Table 5   Esmethadone affinities 
for NMDARs and additional 
binding sites

The activity of esmethadone was determined in radioligand binding assays through Eurofins Discovery 
Services (Relmada data on file). Results are presented as the percent inhibition of specific binding activity. 
Values listed above met criteria for significance (≥ 50% inhibition or stimulation)

Target Concentration % Inhibition Species

Calcium channel L-type, benzothiazepine 10 µM 81 Rat
Calcium channel L-type, phenylalkylamine 10 µM 81 Rat
Glutamate, NMDA, phencyclidine 10 µM 73 Rat
Histamine H1 10 µM 72 Human
Muscarinic M5 10 µM 72 Human
Muscarinic, oxotremorine-M 10 µM 52 Rat
µ-Opioid receptor (PO3, MOP) 10 µM 90 Human
Serotonin (5-hydroxytryptamine) 5-HT2C 10 µM 89 Human
Serotonin (5-hydroxytryptamine) 5-HT5A 10 µM 70 Human
Serotonin (5-hydroxytryptamine) 5-HT7 10 µM 66 Human
Sigma σ1 10 µM 85 Human
Sodium channel, site 2 10 µM 69 Rat
Serotonin transporter (5-hydroxytryptamine) 10 µM 73 Human (SERT)
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significance of this neuropathological animal finding is 
unknown, it cannot be discounted. Up to recently, the thera-
peutic uses of ketamine (for anesthesia) and dextromethor-
phan (for cough suppression) have been intermittent. Their 
current use for the treatment of MDD is likely to be chronic. 
The safety of the chronic uses of ketamine and dextrometho-
rphan will need to be confirmed in post-marketing analyses. 
In contrast, esmethadone does not cause Olney’s lesions in 
rats [33], suggesting that its long-term use may be safer com-
pared to NMDAR antagonists that have been found to cause 
these lesions. The safety of esmethadone is also indirectly 
supported by over 70 years of chronic racemic methadone 
use in millions of patients with pain and opioid use disorder. 
Most of these patients are exposed to esmethadone serum 
levels greater than those seen in patients treated with the 
dose proposed for MDD. The average methadone dose for 
opioid use disorder is approximately 75 mg daily, and 50% 
of this dose is esmethadone. The esmethadone exposure in 
these patients with opioid use disorder and pain is, therefore, 
higher than the exposure of patients with MDD treated with 
25 mg esmethadone. No long-term detrimental neurological 
consequences have been described in patients treated chroni-
cally with racemic methadone.

In conclusion, due to the favorable pharmacological fea-
tures described above, if ongoing phase 3 studies confirm 
the promising phase 2 results, esmethadone may potentially 
become the best-in-class agent for safety, tolerability, and 
efficacy among uncompetitive NMDAR antagonists with 
rapid antidepressant effects.
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