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A B S T R A C T   

A SPME-Arrow GC-MS approach, coupled with chemometrics, was used to thoroughly investigate the impact of 
different types of yeast (sourdough, bear’s yeast and a mixture of both) and their respective leaving time (one, 
three and five hours) on VOCs of commercial bread samples. This aspect is of paramount importance for the 
baking industry to adjust recipe modifications and production parameters, as well as to meet consumer needs in 
formulating new products. 

A deep learning approach, PARADISe (PARAFAC2-based deconvolution and identification system), was used 
to analyse the obtained chromatograms in an untargeted manner. In particular, PARADISe, was able to perform a 
fast deconvolution of the chromatographic peaks directly from raw chromatographic data to allow a putatively 
identification of 66 volatile organic compounds, including alcohols, esters, carboxylic acids, ketones, aldehydes. 
Finally, Principal Component Analysis, applied on the areas of the resolved compounds, showed that bread 
samples differentiate according to their recipe and highlighted the most relevant volatile compounds responsible 
for the observed differences.   

1. Introduction 

Aroma is one of the most salient characteristics of bread linked to the 
type of yeast and leavening process. In an industrial context, high- 
quality production requires that final products maintain the same 
quality and flavour expected by consumers. This issue is particularly 
important when production is handled in different countries and plants, 
using various raw materials. However, the assessment of bread quality is 
a complex process, and the industry usually relies on evaluating bulk 
parameters such as colour, taste, smell (through sensory analysis), vol-
ume and texture. Aroma is among the most important parameters 
influencing consumer choice and loyalty, and its assessment, in the case 
of commercial bread, is carried out through a panel test. Therefore, a 
deep chemical characterization of Volatile Organic Compounds (VOCs) 
in bread is of utmost importance for evaluating its quality and sup-
porting sensory evaluation. To characterize the food flavour pattern, 
numerous analytical methods have been developed, including essential 
oil extraction with solvents and the collection of the released volatile 

molecules using several analytical tools [1,2]. 
In the field of solid phase microextraction, a new device, namely 

SPME-Arrow, has recently been proposed as an extraction technology 
for the analysis of volatiles in food materials [3]. This device is based on 
a novel SPME geometry that can efficiently “hunt” target molecules in 
complex matrices. The Arrow-SPME configuration overcomes limita-
tions of conventional devices (e.g. mechanical robustness, fused silica’s 
physical durability and small extraction phase volume). Previous studies 
have demonstrated its potential for characterizing VOCs in various food 
products like fish [4], vinegar [5], milk [6], grape skins [7] and distil-
lates [8]. 

Furthermore, several researchers have focused on developing 
analytical techniques to characterize bread’s volatilome [9–16] as well. 
This involves optimizing VOCs sampling/extraction conditions, 
acquiring the respective chromatograms, identifying peaks and quanti-
fying using appropriate standards. 

The aroma profile of bread contains over 300 analytes from different 
chemical classes (carboxylic acids, aldehydes, ketones, alcohols, esters, 
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etc.) [16]. Their presence and intensity result from the used raw mate-
rials and the bread production process, which involves three main steps: 
ingredient mixing and dough preparation, fermentation, and baking. 
Among the raw materials used in bread production, the type of yeast 
employed during dough fermentation, such as yeast beer and/or lactic 
acid bacteria (LAB), plays a crucial role, along with enzymatic activities 
and thermal reactions that take place during the bread baking process 
[17,18]. Yeasts are important in the synthesis of volatile compounds, 
such as ethanol, CO2, alcohols, aldehydes, acids, esters and ketones [19]. 
This plethora of compounds can be obtained from different fermentation 
processes and pathways, such as Embden-Meyerhof-Parnas pathway, 
glyoxylate cycle, the tricarboxylic acid cycle (TCA), the Ehrlich and the 
shikimate pathway [15]. The overall aroma profile also encompasses 
pyrazines, pyrrolines, hydrocarbons, furans and lactones produced from 
lipid oxidation and heat-induced Maillard reaction [19]. 

In this study, the performance of two SPME devices, namely SPME- 
Arrow and conventional-SPME fiber, was systematically compared in 
sampling bread aroma. The comparison began with the optimization of 
the three main parameters, namely exposure time, exposure tempera-
ture and sample incubation time, which influence the VOCs sampling 
performance [8,20,21], using an experimental design technique. Addi-
tionally, the difference in terms of fiber blanks, repeatability, and 
sensitivity between the two devices was assessed. An untargeted 
approach was used, where the monitored chemical profile, i.e., the TIC 
(total ion count) chromatogram was used as a fingerprint of the inves-
tigated bread samples. In particular, the adsorption/absorption phase of 
analytes, during sampling, is influenced by competitive phenomena due 
to several factors, including the concentrations of the analytes in the 
headspace, their chemical characteristics (i.e. polarity), affinity with the 
fiber and so on [22,23]. Variations in extraction times and temperatures 
may influence the kinetic and thermodynamic mechanisms present 
during the sampling, leading to different chromatographic profiles. 
Therefore, the use of the TIC signals (untargeted approach) as response 
to optimize, instead of the total peak area, allowed to also focus on 
eventual analytes present only in particular sampling conditions. 
Simultaneously, the aim was to also maximize the intensity of analyte 
signals as much as possible. While this approach does not involve an a 
priori assumption of the analytes to be monitored, it requires the use of 
chemometric data processing techniques to extract useful information 
from the obtained signals. In the GC-MS technique or in hyphenate 
techniques in general, each sample is represented by a two-dimensional 
map (2D signal or landscape), with the chromatographic profile in one 
dimension and the mass spectrum in the other. The processing of these 
signals requires high computational capabilities and efficient methods of 
dimensionality reduction. Therefore, in this work, the multi-way data 
analysis approach, PARADISe (PARAFAC2-based deconvolution and 
identification system [24]) was used to make a deconvolution of the 
chromatographic peaks directly from raw chromatographic data and to 
simultaneously perform the integration of the areas of the deconvoluted 
peaks for all samples. 

Furthermore, this research also concerned the study of the influence 
of three types of yeasts, sampled at different leavening times on the final 
flavour profile of obtained bread samples. A precise understanding of 
aroma and the factors influencing its variation is crucial for the baking 
industry. It enables effective adjustments to recipes and production 
parameters while also meeting consumer demands for developing 
innovative products. The application of Principal Component Analysis 
(PCA) on the peak areas (resolved by PARADISe) data set allowed 
obtaining a preliminary information on the variability of VOCs present 
in the studied bread samples. 

2. Materials and methods 

2.1. Samples 

For the aims of this study, different industrial soft bread samples, 

produced in the same pilot plant, were analysed. The same type ‘0’ soft 
wheat flour was used to produce all the analysed samples. The yeast type 
and the leavening time used in the production of bread samples are 
reported in Table 1. The bread samples were stored at − 20 ◦C until 
volatile organic compounds were determined. The samples were drawn 
from the middle of bread slices (Fig. A1, Appendix A, Supplementary 
Materials). All the samples were analysed in duplicate, taking two pieces 
of the middle bread from two separate slices. 

The variability of the experimental procedure was evaluated using a 
saltines sample purchased from a local store as control sample. This 
choice was made due to its greater stability, compared to bread, during 
storage time, i.e. the time necessary to undertake all experimentation. 
The control sample was analysed several times, at least once for each 
experimental session, according to the same analytical procedure used 
for the investigated samples. 

Finally, a sliced soft bread sample, made of wheat flour, was used in 
the Design of Experiment procedure for the optimization of both 
investigated fibers. It was purchased from a large-scale retail store, and 
it was kept in its original package at room temperature. The choice of a 
commercial sample is due to ensure that there will be enough to un-
dertake all the experiments required by the design, so to keep constant 
the sample and focus on the effect of the controlled factors. 

Before the analysis, all samples were minced by hand with a cutter to 
obtain as most homogeneous pieces as possible and a ground sample of 
around 1.0 g was transferred into a 10 mL glass vial with an aluminium 
top-closure and silicone/PTFE septum (Chromacol). 

2.2. Instrumental analysis 

As conventional-SPME a Divinylbenzene/Carboxen/Poly-
dimethylsiloxane (DVB/CAR/PDMS) (50/30 μm × 10 mm) fiber with a 
diameter of 80 μm was chosen. SPME-Arrow fiber was also a DVB/CAR/ 
PDMS (120 μm × 20 mm) but with a diameter of 1.1 mm (Restek Cor-
poration, Bellafonte, USA). Both the fibers were attached to an SPME 
fiber holder (Supelco) for extraction procedure. Prior to the experi-
mental analysis, both the fibers were preconditioned in the injector port 
of the GC system, according to temperature/time conditions recom-
mended by the manufacturers. 

The VOCs extraction procedure of conventional-SPME and Arrow- 
SPME fibers was optimised as described in Section 2.3. The final best 
conditions (as described in Section 3) resulted to be the same for both the 
fibers, namely: the weighted sample (around 1 g) was incubated at 50 ◦C 
for 10 min and then the SPME fiber was exposed for 30 min. 

The fiber was manually transferred to the split/splitless injector of 
the GC (6890 gas chromatograph, Agilent Technologies, Santa Clara, 
CA, USA). The desorption step was performed in splitless mode (3 min) 
and by setting the injector temperature at 260 ◦C. After 3 min from the 
injection, a split mode was activated with a split flow of 25 mL/min. 
Desorption was done for 5 and 13 min for conventional-SPME and 
Arrow-SPME fibers, respectively. For the latter, a higher desorption time 
was necessary to overcome the carry-over phenomena, mainly due to the 
presence of ethanol, which was used in the recipe of the analysed breads 
to ensure a better storage. A chromatographic RxiTM -1 ms column (54 
m × 0.25 mm ID, 1 μm) by Restek Corporation was used, and helium as 
carrier gas at a constant flow rate of 1 mL/min. The GC oven tempera-
ture was programmed at 40 ◦C for 1 min, ramped 4 ◦C/min to 150 ◦C, 

Table 1 
Analysed bread samples description in terms of used yeast in the receipt and 
leavening time.  

Sample label Yeast type Leavening time 

STD_1 Beer yeast 1 h 
C_1 Sourdough 5 h 
C_2 Beer yeast & sourdough 1 h 
C_3 Beer yeast 3 h  
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then at 8 ◦C/min to 250 ◦C held for 19 min. The GC was interfaced with 
an Agilent 5973 N mass spectrometer. The detection was performed 
under electron impact (EI) ionisation at 70 eV by operating in the full- 
scan acquisition mode in the 25–400 m/z range. The transfer line was 
heated to 270 ◦C. 

In each measurement’s session, one run of the SPME fiber, without 
any analyte’s extraction, i.e. a fiber blank, was performed, in order to 
monitor the performance of the fiber as well as any carry-over 
phenomena. 

2.3. Experimental design 

One of the first steps in the optimization of an analytical method is 
the choice of the factors to be investigated and their range of variability. 
On the basis of literature [8,20,21,25], three main factors, namely 
exposure temperature, Texp, incubation time, tinc, and exposure time, 
texp, were selected and investigated for both the fibers. These factors act 
on different aspects of the VOCs extraction process. In particular, the 
exposure temperature mainly influences the thermodynamics phenom-
ena of SPME adsorption/absorption mechanisms; the incubation time 
has to ensure, especially for solid matrix, the equilibrium of analytes 
between sample and headspace; finally, the exposure time relates to the 
kinetic of the absorption/adsorption procedure [26]. The three factors 
were studied at three levels, low (− ), high (+) and central (0), following 
a Face-Centered Central Composite Design (FC-CCD) [27,28]. The 
FC-CCD design, comprise the experiments of a full Factorial Design at 
two level to which six-star points are added (one for each face of the 
cubic domain), and allows estimation of the main and quadratic terms 
for each factor and their interactions. Thus, seventeen experiments were 
planned, which consisted of 8 corner experiments, 6 axial experiments 
and three replicates of the central point. Finally, the different planned 
chromatographic runs were randomly performed. The values of the two 
levels (for each factor) and the design matrix (the same for both fibers) 
are shown in Table 2 and Table 3, respectively. 

The obtained TIC profiles collected across the DoE experiments were 
preprocessed as detailed in Section 2.4.2and firstly analysed by PCA [29] 
in order to highlight the similarity/differences among the experimental 
runs and how they link to the chromatographic profile. Inspection of the 
scores and loadings plots, showed that the first principal component 
(PC1) could hold information about the overall extracted volatile sub-
stances. Hence PC1, was used as response (the higher the PC1 scores 
value the higher the fraction of extracted compounds). Thus, a multi-
linear regression (MLR) model was built considering as independent 
variables, X-block, the design matrix augmented by the interaction and 
quadratic terms, and as a response, y, the PC1-scores. The MLR model 
was then exploited to study the response surface and finding the optimal 
operative conditions. 

2.4. Data analysis 

Notation 
Scalars are indicated by italic letters; bold lowercase and uppercase 

letters are used for vectors and matrices, respectively. For sake of clarity, 
Table 4 provides all the information about the notations, mathematical 
operations and abbreviations used in this manuscript. 

2.4.1. Data preprocessing 
A proper preprocessing of chromatographic signals is of utmost of 

importance to achieve reliable results; therefore, in this study, the 
following preprocessing strategy was implemented. 

In the first part of the data analysis, i.e. signals from experimental 
design approaches, the raw chromatograms (made up of 20212 data 
points each) were imported in Matlab (release 2020a, The Mathworks 
Inc., Natick, MA, U.S.A.); the first 3630 and the last 6916 data points for 
both fibers, corresponding to the retention time (Rt) intervals 7 min and 
37 min respectively, were cut since these are due to peaks originating 
from atmospheric absorbed gas (Rt < 7 min) and to chemical species 
released by the fiber itself (Rt > 37 min). 

The signals corresponding to each fiber were analysed disjointly and 
each data set was aligned along the Rt dimension, using the iCoshift al-
gorithm [30] taking as reference the average TIC signal. The first 
alignment of the whole signal was followed by an interval-based align-
ment. The intervals were manually defined (on the TIC signals), in such a 
way to hold a single or few peaks each, as reported in Fig. A2, Appendix 
A, Supplementary materials. The alignment step is needed to compensate 
for the retention time shift, which a peak may exhibit among different 
chromatographic runs, that could introduce variability among samples 
not imputable to real differences. 

Since some of the observed peaks were due to constituents released 
by the fiber (see Section 3.1), a first correction was carried out by sub-
tracting the average of the registered blanks chromatograms from each 

Table 2 
Factors and levels used in FC-CCD.  

Factor Abbreviations Lower level 
(− 1) 

Middle 
level (0) 

Higher level 
(+1) 

Exposure 
temperature (◦C) 

Texp 30 40 50 

Exposure time 
(min) 

texp 1 15.5 30 

Incubation time 
(min) 

tinc 10 15 20  

Table 3 
Design matrix of the FC-CCD used for the optimization of VOCs extraction.  

Sample labela Texp texp tinc Responseb/106 

Arrow Conventional 

S1 − 1 − 1 − 1 − 5.56 − 3.12 
S2 1 − 1 − 1 − 3.40 − 2.41 
S3 − 1 1 − 1 1.51 1.32 
S4 1 1 − 1 5.09 3.08 
S5 − 1 − 1 1 − 5.91 − 2.41 
S6 1 − 1 1 − 3.13 − 2.93 
S7 − 1 1 1 0.72 1.72 
S8 1 1 1 3.84 3.12 
S9 − 1 0 0 − 1.13 0.58 
S10 1 0 0 1.67 1.29 
S11 0 − 1 0 − 4.11 − 2.36 
S12 0 1 0 3.09 1.52 
S13 0 0 − 1 1.27 0.19 
S14 0 0 1 2.14 0.77 
C1 0 0 0 1.14 0.39 
C2 0 0 0 1.29 1.18 
C3 0 0 0 1.44 0.89  

a In the text each experiment referring to Arrow-SPME is labelled by its 
number preceded by ‘S’, while the suffix ‘T’ will be used when referring to run 
conducted with the conventional-SPME. 

b Scores value on the first PC calculated on pre-treated TIC profiles. 

Table 4 
Nomenclature used in the manuscript.  

A, B, D, 
E, H, 
X 

Two-way data and 
parameter matrices 

MLR Multilinear regression 

F, I, J, K Dimensions of matrices PCA Principal component 
analysis 

f, i, j, k Indexes of the dimensions 
of the matrices 

PARAFAC2 PARAllel FACtor analysis 
2 

y Texp 

tinc 

Vectors DoE Design of experiment 

GC-MS Gas chromatography 
coupled with mass 
spectrometry 

PARADISe PARAFAC2-based 
deconvolution and 
identification system 

SPME Solid phase micro- 
extraction 

(Bk)T Transpose of matrix Bk  
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sample chromatogram. Furthermore, Automatic Whittaker Filter (AWF) 
[31] was applied on the aligned chromatograms in order to remove 
baseline offset. In particular, it allows baseline subtraction using the 
Eilers method based on a Whittaker filter [31]. This algorithm is fast and 
handles more structured baselines correction, however since it could 
introduce peak shape artefacts the resulting corrected chromatograms 
were carefully inspected. 

Prior to PCA the pretreated chromatograms, were mean centered. 
As regards the second part of data analysis, chromatographic signals 

coming from bread samples, the same initial Rt interval cut was operated 
while the iCoshift alignment was applied inside PARADISe software 
(being implemented there). In this case the correction for the blank 
signal was not applied since, as explained in Section 2.4.2, the area of the 
resolved peaks was used in the subsequent PCA instead of the whole 
chromatogram, thus the peaks due to the fiber were skipped afterwards. 

2.4.2. PARAFAC2 
PARADISe is based on PARAFAC2 algorithm [32,33] which allows to 

recover, by unique decomposition, the mass spectra of the pure com-
ponents present in the investigated sample and the corresponding con-
centration profile In this way, it is possible to integrate the areas of the 
chromatographic peaks corresponding to these deconvoluted compo-
nents for all samples [24]. PARAFAC2 operates similarly to PARAFAC 
[34] but can cope with departure from trilinearity due e.g., to shift in 
one of the mode, such as retention time shifting in the case of GC-MS 
data. The PARAFAC2 decomposition model can be expressed accord-
ing to Eq. (1):  

Xk = A⋅Dk⋅(Bk)T + Ek; k = 1, …, K                                            (Equ.1) 

where Xk (I x J) represents the VOCs chromatographic signal related to 
the kth sample. I and J are the m/z and time dimensions, respectively. 
The element xij contains the mass over charge intensity measured at 
mass i at elution time point j, over all I m/z values and J time points. A (I 
x F) holds the loadings of the first mode (mass spectra, I), which are 
common to all K samples, for each of the F factors. These can be the 
resolved mass spectra of single analyte present in the sample, as well as 
trends due to baseline, gradient, etc. Dk (F x F) is a diagonal matrix 
holding the weights to apply to the matrix Bk (J x F), which contains the 
estimated elution profile corresponding to each factor for each kth 
sample. It is worth noting that weights are equal to the peak areas when 
PARAFAC2 is applied to GC-MS data. Finally, Ek is the residual matrix. 

Thus, PARAFAC2 can be able to separate mixture data into concen-
trations, elution profiles and mass spectra of the underlying analytes 
[32]. Differently from PARAFAC, PARAFAC2 calculates an individual 
elution profile for each sample, and thus it can handle issues related to 
retention time shifting, peak overlap, baseline drift and so on. Moreover, 
an important constraint in PARAFAC2 is that the cross-product matrix H 
(Equ. 2) must be constant across all k samples [32] to maintain 
uniqueness of the solution.  

H––(Bk)T⋅Bk                                                                             (Equ.2) 

The most relevant implication of this cross-product is that only the 
elution may differ due to shifting while each analyte has a mass spec-
trum that is consistent across all samples. 

2.4.3. PARADISe approach 
The VOCs chromatographic signals of all bread samples were ar-

ranged as a three-dimensional array having the following three di-
mensions (Scheme 1): the recorded mass fragment (i.e, mass spectra as 
first mode), elution profiles (second mode), and bread samples (third 
mode). 

Given to the complexity of data array, the PARADISe method was 
applied to obtain an efficient and rapid extraction of useful information, 
i.e., areas of deconvoluted peaks and their putative identification. For 
computational reasons, applying PARAFAC2 on the whole GC-MS signal 
is not efficient. Thus, the first step in PARADISe is the definition of 
retention time intervals to split the signals and applying distinct PAR-
AFAC2 model to each defined interval. In this study, the intervals were 
manually selected through an interactive TIC graph by using as guide-
line criterion to have in a single interval a chromatogram portion where, 
when possible, only one observable peak is present, or at least as few as 
possible (Fig. A3, Appendix A, Supplementary Materials). Anyhow, 
PARADISe allows the definition of overlapping intervals and if a peak is 
resolved in more than one interval it will be possible to select the one 
where it is best resolved. An example is provided in Fig A4, Appendix, 
Supplementary Materials After defining each interval, separated PAR-
AFAC2 models are automatically calculated for each interval consid-
ering models including from one to seven factors. The best 
dimensionality was chosen according to the explained variance by the 
model, the entity of residuals, the model’s fit (%), the core consistency 
[35] and the number of peaks identified by each model [36]. 

The putative identification step is done by PARADISe by checking the 
similarity between the resolved mass spectrum (corresponding to each 
of the selected peaks) and the mass spectrum in a database (NIST MS 
Search). Thus, the final PARADISe output shows aside the semi-
quantitative report with the areas of the peaks, the Match Factor (MF) of 
the putative identified analytes, ranging from 0 to 100, which refer to 
the match with the corresponding mass spectrum in the library. 

Only areas of compounds with MF > 80 were considered in this study 
and the obtained data were organized in a two-dimensional matrix 
(samples x areas) which was autoscaled and then analysed by PCA. 

2.4.4. Software 
PCA was carried out by using PLS_Toolbox 8.9.2 software (Eigen-

vector Research Inc., Manson, WA, USA) for MATLAB®. Designs of ex-
periments were planned with MODDE 9.1 (Umetrics AB, Umeå, 
Sweden). PARADISe approach was performed by PARADISe software 
version 3.3. (http://www.models.life.ku.dk/paradise). MLR was carried 
out using in-house written routines in MATALAB. 

Scheme 1. Graphical representation of the initial three-dimensional array having as dimensions: recorded mass fragment (i.e, mass spectra as first mode), elution 
profiles (second mode) and bread samples (third mode). 
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3. Results and discussion 

3.1. Evaluation of Arrow-SPME and conventional-SPME fiber blanks 

As an example, the first acquired blank signal of Arrow-SPME and 
conventional-SPME fibers, after conditioning step, is reported in Fig. 1A 
and B, respectively. In both cases, it is quite evident the presence of a 
high intensity peak in the beginning of the chromatograms (Retention 
time, Rt:3.70 min), this peak is most likely due to the absorption of at-
mospheric gas. In addition, some peaks of lower intensity are present 
along all the signal, most probably originating from the release of 
compounds belonging to fiber itself. However, Fig. 1A also shows that 
Arrow-SPME fiber blank is much richer in peaks (Rt: 18–40 min) than 
the conventional-SPME one, with peaks of higher intensity at Rt: 18 min; 
Rt: 27 min and Rt: 40 min. In the further analysis the first 7 min of each 
chromatogram were eliminated because are no informative for the aim 
of the present study. 

Due to the complexity of the Arrow-SPME blank, it was decided to 
carry out one fiber blank after three sample acquisitions and to compare 
all the obtained TIC. All the acquired TIC blanks were preprocessed as 
described in Section 2.4.2 and were analysed by PCA. 

Two components explained 85% of the total variance. The scores plot 
of the first principal component (PC1), Fig. 1C, shows that blank n◦ 8 is 
an evident anomaly, for higher intensity of the whole chromatographic 
profile (Fig. A5, Appendix A, Supplementary Materials). This blank was 
obtained after a downtime period of acquisition of about two weeks, 
indicating that the fiber accumulated a series of impurities that could be 
released during the analysis. The trend of PC2 scores (Fig. 1D) highlights 
a greater variability between the first blanks (from n ◦ 1 to n◦ 10) ac-
quired with the Arrow-SPME and a stabilisation (similar scores values) 
of the fiber release from the blank signal n◦ 11 afterwards, thus when the 
number of experimental runs increases. Therefore, considering the ob-
tained results, it is of paramount importance to clean the fiber before 
each experimental session and to perform a blank correction before 

Fig. 1. The first fiber blank acquired after the conditioning of Arrow-SPME (a) and conventional-SPME fiber (b). PC1 (c) and PC2 (d) score plots of PCA performed on 
ARROW-SPME blank signals. 
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multivariate analysis of the obtained chromatograms. 

3.2. Optimization of SPME extraction conditions through design of 
experiment 

For the optimization of the extraction procedure, all the GC-MS ex-
periments were carried out on the same bread sample, according to the 
experimental design reported in Table 2. 

The optimization and multivariate analysis were separately per-
formed for each fiber. PCA was employed on the chromatographic data 
to gain valuable insights into the relationships among DoE experimental 
runs and the analytical responses. The dataset consisted of 17 rows 
(representing the number of DoE experiments) and 9667 columns 
(representing TIC chromatographic signals). The chromatograms were 
pre-processed as explained in Section 2.4.2. For the sake of brevity, all 
the results concerning the Arrow-SPME procedure optimization have 
been reported in the text, referring the reader to Appendix B, Supple-
mentary Materials for the results concerning the conventional-SPME. 

The PCA Arrow-SPME model, 2 PCs explaining 78% of total variance, 
is shown in Fig. 2. Fig. 2B and C reports the loadings plot. 

As can be seen from Fig. 2A (PC1 vs. PC2 scores), the three replicates 
central point runs (C1, C2 and C3) are well grouped and close to the 
origin of the axes. However, a more detailed discussion about the 
reproducibility and the performance of the fiber is reported in Section 
3.3. 

Concerning the experiments run in different conditions (DoE 

experiments S1–S14), it is possible to highlight a clear distinction among 
some of them. Indeed, PC1 mainly differentiates S8 and S4 (highest 
positive PC1-scores), at high level of exposure temperature (Texp) and 
exposure time (see Table 3), from S1 and S5 (highest negative PC1- 
scores). Furthermore, it is possible to note similarity among samples 
with different incubation times (S1 and S5, S2 and S6, S3 and S7). 
Finally, PC2 scores differentiate S3, S7 and S9, at low level of Texp 
(highest positive PC2-scores), and almost all the runs with medium 
value for Texp (positive PC2-scores) from all the other experiments. 

Inspection of PC1 loadings (Fig. 2A), which accounts for more than 
60% of the original variance, evidenced how the contributions of almost 
all peaks are positive. Notably, these loadings indicate that the scores 
along the corresponding principal component could be interpreted as an 
index of the overall recovery of eluted volatile substances [37]. As far as 
the few negative loadings’ values are concerned, they are probably 
caused by non-perfect Rt alignment. However, in order to better inves-
tigate their influence on the interpretability of PC1, the variance 
accounted for each individual variable on PC1 was investigated (Fig. A6 
Appendix A, Supplementary materials). Notwithstanding the chromato-
graphic areas with negative loadings have very low intensity (absolute 
values lower than 0.01), they also present the lowest explained variance 
with respect to the other chromatographic regions, indicating that PC1 
mainly describes the increase in peak area and not the peak shift. 
Finally, the differences among PC2 seem to be mainly due to 1-butanol, 
3 – methyl (Rt: 13.05 min) with positive loading values and to nonanal 
(Rt: 29.29 min) and phenylethyl alcohol (Rt: 29.62 min) with negative 

Fig. 2. PC1 vs. PC2 scores plot of PCA performed on Arrow-DoE experimental results (A). The experiments with different exposure temperature (Texp) conditions are 
represented with different symbols. Each DoE-experiment is labelled by its number preceded by ‘S’, central point replicates by ‘C’. PC1 (B) and PC2 (C) loading plot 
obtained from PCA performed on Arrow-SPME DoE results data. 
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loading values (Fig. 2B). 
Since, the difference observed along PC1 in the scores plot can be 

attributable to the intensity of the entire chromatographic profile 
(almost all loadings are positive), the experimental settings corre-
sponding to S4 and S8 runs (Table 2b) seem to give better performance 
with respect to the other runs setting. Considering the results shown in 
Fig. 2B, the first principal component well represents the entire chro-
matographic profile and thus the PC1 scores values were used as a 
response to be optimised. This approach made it possible to simplify the 
complexity of the analysis, since PC1 summarises the main variance of 
the data [37]. 

After this preliminary exploratory analysis, a multilinear regression 
model (MLR) was built to obtain a complete and exhaustive treatment of 
the data and to develop a predictive model for the chosen response. The 
applied experimental design allowed the estimation of the coefficients 
(b) of the following postulated model:  

y = b0 + bTTexp + bt.exptexp + bt.inctinc + bT
2T2

exp + bt.inc
2 t2

inc + bt.exp
2 t2

exp +

bTexp_tincTexptinc + bTexptexpTexptexp + btexptinctexptinc                       (Equ.3) 

Where y is the PC1 scores vector and Texp, texp and tinc are the values 
of exposure temperature and time, and incubation time, respectively. 
The obtained results are summarised in Table A1 Appendix A, where the 
values of the significant regression coefficients, bi, were reported. Sig-
nificance of each term was computed at a significance level of 5%. As far 
as the main terms are concerned, both exposure time and temperature 
are significant and positive, and they indicate that the best VOCs sam-
pling condition is obtained when high values of these factors are 
considered. All the other coefficients have no significant effect except for 
the squared term (texp)2, which implies that the relation between the 

factor and the response is not linear. Its negative term could have a 
physical explanation due to the sampling limited volume of the sta-
tionary phase able to adsorb/absorb analytes, beyond which no gains in 
terms of sampled analytes can be achieved. 

Considering the non-linearity of the relation between the texp factor 
and the response, texp and Texp values, corresponding to the optimal 
separation conditions has been investigated by means of a contour plot 
(Fig. A7, Appendix A, Supplementary Materials), where it was possible to 
note that the maximum of the response is achieved assuming both these 
factors at their high values. 

In summary, the analysis of DoE results indicates as the best opera-
tive conditions for the extraction and sampling of VOCs by the Arrow- 
SPME fiber: high level for Texp (50 ◦C) and texp (30 min). The tinc since 
had no significant effect on the final response, was kept low (10 min) to 
reduce analysis time. 

The same optimal experimental conditions were obtained for 
extraction with the conventional- SPME fiber, as reported in Appendix B, 
Supplementary Materials. 

3.3. Comparison of arrow and conventional SPME performance 

To test the reproducibility of both fibers, the chromatographic sig-
nals coming from the analysis of the control sample were considered. As 
mentioned in Session 2.1, the control sample was a store-bought saltines 
sample and was independently analysed five times with both fibers 
under their respective optimised conditions. The corresponding signals 
were analysed by means of the PARADISe approach (as better explained 
in Sections 2.4.3 and 3.2); sixteen compounds were identified with a MF 
> 80 and areas and RSD values corresponding to the individuated peak 

Fig. 3. Analysis of VOCs of bread samples sampled with Arrow-SPME. PC1 vs PC2 scores plot obtained by PCA applied on selected areas from PARADISe analysis (A). 
Analysis of VOCs of bread samples sampled with Arrow-SPME. PC1 vs PC2 loadings plot obtained by PCA applied on selected areas from PARADISe analysis (B). 
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extracted from Arrow-SPME and conventional-SPME fibers are reported 
in Table 5. 

From the obtained data is possible to assess that significantly higher 
sensitivity, compared to conventional-SPME fiber, is achieved by the 
SPME-Arrow, even reaching differences of up to one order of magnitude. 
This enhanced sensitivity can be surely attributed to the Arrow-SPME’s 
larger sorptive phase and expanded surface area, enabling superior 
sample capturing capabilities. Despite some cases, where the relative 
standard deviation (RSD) exceeded 10%, the Arrow-SPME consistently 
produced more reproducible results as well. 

3.4. VOCs compounds determination and identification by PARADISe 

Each bread sample was twice measured, and all TIC chromatograms 
were pretreated as described in Section 2.4.2 and arranged in a three- 
dimensional array of 396 × 9617 x 8 dimensions. 

The defined intervals were 130, selected in order to enclose, when 
possible, only a single peak. In PARADISe the number of explored fac-
tors, in the PARAFAC2 modelling, ranged from 1 to 7 and the maximum 
number of iterations to reach convergence was set equal to 3000 (default 
parameter). The mass spectra libraries quested were NIST 08 and Wiley 
275. 

The obtained model, for each interval, showed resolved chromato-
graphic profiles, as well as baseline effects, some interfering effects, and 
low signal-to-noise peaks. Given the complexity of the product, the 
choice of the right number of components could be a critical aspects, 
however, in PARADISe, it is supported by a graphical interface, showing 
the results obtained by a deep learning routine trained to recognize “a 
peak” from “not a peak” [33,38]. In this way the user is guided in the 
selection of the components corresponding to the chemical information 
(peaks). For the sake of clarity, in Fig. A8, Appendix A, Supplementary 
Materials, it is reported an example of the graphical interface which 
summarised the information used for modelling one of the selected in-
tervals (Rt from 16.5 min to 17.2 min) considered in this study. 

The individuated analytes were refined by eliminating a series of 
aliphatic and aromatic hydrocarbons which, as reported in the litera-
ture, do not contribute significantly to the aroma [11], obtaining 66 
final compounds (see Table A2 in Appendix A, Supplementary materials). 

3.5. PCA investigation 

The obtained areas were organised in a two-dimensional matrix (8 
bread samples x 66 areas); the data were autoscaled and analysed by 
PCA analysis, three principal components (explaining 90% of total 
variance) are discussed. 

From the scores plot of the first two components (Fig. 3A), it is 
possible to highlight differences between samples as a function of their 
different recipes. In particular, the first principal component clearly 
distinguishes C1 (bread obtained with sourdough) samples from others. 
Instead, according to PC2, C3 (bread with brewer’s yeast at 3 h of 
fermentation time) was on the positive side, while C2 (bread with a 
mixture of yeast at 1 h of fermentation time) and STD (bread with 
brewer’s yeast at 1 h of fermentation time) on the negative one. The 
highlighted distribution of investigated bread samples in the score’s 
domain, indicate that variation of VOCs profile of bread is surely 
dependent by used yeast as well as by the leavening time. Indeed, from 
Fig. 3B, C1 samples, located on the positive side of PC1, seem to be 
richer in aldehydes, carboxylic acids and esters, namely acetic acid, 2- 
methyl-butanal, 3-methyl-butanal, hexanal, 2-pentyl-furan, 2-fur-
ancarboxaldehyde (furfural), 2-octenal, 2-hydroxy-propanoic acid ethyl 
ester (lactic acid ethyl ester), (trans, trans)-2,4-heptadienal. There are 
also some ketones (2,3-octanedione, 6-methyl-5-hepten-2-one) and 
others compounds such as 2-decen-1-ol and 2,6-dimethyl-2,6-octadiene 
that differentiate C1 from the other bread samples. This chemical 
composition was also observed in other studies [11,17], in fact, acetic 
acid is one of the most important products derived from bacteria present 
in sourdough and its content is fundamental in the characterization of 
the aroma of bread [39]. Among the different individuated compounds, 
2-methyl-butanal is another fermentation compound that probably 
comes from the so-called "Ehrlich pathway" in yeast cells by leucine and 
iso-leucine [12] while 3-methyl-butanal is part of the so-called 
"Strecker’s aldehydes" which result from the conversion of amino 
acids in yeast metabolism. As regards 3-methyl-butanal, it could be 
derived from the conversion of isoleucine [14] and this compound could 
also give bread a strong malty aroma. For the sake of clarity, in Table A2 
(Appendix A, Supplementary materials), the characteristic aroma and 
Odour Threshold value (OTV) in water for each individuated compound, 
found in literatures [19,40,41], were reported, when possible. Hexanal 
and 2-pentylfuran are the main products of the oxidation of lipids con-
tained in flour that occurs during the metabolism of yeasts. Hexanal is 
typical of the aroma of breadcrumbs, and it is reported as an "unpleasant 
odour", along with other compounds that always result from lipid 
oxidation, such as nonanal. Consequently, a high concentration of this 
compound may result in a less approval from sensory analysis [12,19] As 
concerns 2-pentylfuran, since the type of flour used for the samples 
analysed in this study is the same in all samples, its presence could be 
strictly related to the used high fermentation time of the dough used for 
the production of C1 bread (5 h). Finally, in this sample is also present 
furfural compound, obtained by caramelization and non-enzymatic 
Maillard reactions [16], which mainly characterises the aroma of 
bread giving the typical smell of bread crust [19] and the (trans, 
trans)-2,4-heptadienal which is reported to be one of the major con-
tributors to the rancid smell of used olive oil [42]. 

The differences attributable to C3 samples could be mainly due to a 
series of aldehydes and alcohols. Thereby from the literature, it is known 
that, octanal and the other aldehydes derive from the lipid oxidation of 
yeast [12,43] and the ethyl ester of heptanoic acid probably comes from 
enzymatic reactions that take place inside yeast cells [19]; 2-phenyl-
ethyl alcohol is derived from the catabolism of phenylalanine in the 
Erhlich pathway [14]. Furthermore, C3 samples seem to be also rich in 
esters and pyrazine derivative, namely heptanoic acid ethyl ester, ethyl 
pelargonate, ethyl octanoate, 4-methyl-2-pentyl acetate and 2, 
3-dimethyl-pirazine. 

C2 and STD samples are mainly characterised by the following 
analytes: phenylethyl acetate, 3-methyl-1-butanol, 2-methyl-1-butanol, 
pentanoic acid ethyl ester, (trans, trans)-2,4-decadienal, 2-methyl-1- 
propanol, 1-(2-furanyl) ethanone, 2-decenal (E). 3-Methyl-1-butanol 
can be produced after typical sourdough fermentation [15]. The pres-
ence of alcohols such as 2-methyl-1-propanol is attributable to the 
reduction process of low molecular weight aldehydes, such as acetal-
dehyde, by enzymes such as dehydrogenase [44]. 

Table 5 
VOCs area and relative standard deviation (RSD%) obtained from the analysis of 
control sample.  

Control sample analysis Arrow Conventional 

Area RSD (%) Area RSD (%) 

Acetic acid 2410230 9 461945 16 
Butanal, 3-methyl 365913 23 34635 36 
Butanal, 2-methyl 142184 22 11372 42 
Hexanal 1456642 10 304467 32 
Pyrazine, methyl 35258 24 20791 60 
Iso-amyl acetate 29500 13 11081 22 
Benzene, 1,4-dimethyl 37027 17 21276 32 
Heptanal 79576 5 56724 8 
2-Heptenal 21796 9 11594 27 
Benzaldehyde 75167 11 51002 16 
Furan, 2-pentyl 153384 6 95866 18 
N-octanal 52889 9 70849 13 
2-octenal 15956 12 12499 18 
Octanoic acid, ethyl ester 28454 25 21023 13 
Decanal 64840 13 65471 52 
Dodecane, 2,6,10-trimethyl- 15876 19 14471 17  
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PC3 explained 11% of data variability and mainly differentiate STD 
samples (negative score values) from C2 ones (positive scores value) 
mainly to the presence of some of carboxylic acids and their derivatives 
(positive PC3-scores) and some of the identified alcohol compounds 
(negative PC3-scores) (Fig. A9 and A10, Appendix A, Supplementary 
Materials). 

4. Conclusions 

In this study, the performance of SPME Arrow was compared with a 
conventional SPME fiber constituted by the same chemical stationary 
phase, but with different physical characteristics, i.e. higher amount of 
stationary phase and major diameter. In particular, the main parameters 
affecting the performance of the SPME Arrow and conventional fibers in 
sampling VOCs of bread samples were investigated and optimised by 
means an untargeted approach based on the synergistic use of Experi-
mental Design tool and multivariate data analysis. The same sample 
(saltines samples) was analysed different times with both the fibers and 
their performances were evaluated in terms of reproducibility and 
sensitivity. The use of the SPME Arrow fiber allowed to obtain the best 
results and these aspects were considered an important prerequisite able 
to better investigate the influence of the different type of yeasts and 
fermentation time on VOCs profile of the bread. 

Therefore, the optimised condition of SPME Arrow together with GC- 
MS measurements and a chemometrics approach were used for the 
chemical characterization of aroma profile of several industrial bread 
samples obtained with different receipt. In particular, the use of PAR-
AFAC2 automated in PARADISe allowed the determination and the 
identification of 66 compounds. The identified compounds mainly come 
from the fermentation reaction of bacteria, caramelization and non- 
enzymatic Maillard reactions, yeast metabolism and reaction and lipid 
oxidation of flour. Thanks to the use of this analytical method, it was 
possible to highlight differences in bread samples as function of indi-
viduated volatile organic compounds, which seemed to be more 
accentuated in samples obtained by sourdough at 5 h of fermentation. 
On the other hand, having used a mixture of sourdough and brewer’s 
yeast did not produce a higher difference in aroma profile with respect 
to bread samples obtained only with brewer’s yeast. This similarity was 
probably due to the use of the same leaving time (1 h) showing a great 
influence of the latter parameter on the development of final VOCs 
profile as well. Furthermore, among the different individuated com-
pounds, some of them were not surely correlated with a pleasant aroma 
associated with breads. It is worth to mention that this aspect is of 
utmost of importance, since the presence of analytes that, also in low 
concentration, are characterised by high odour intensities could make 
the difference between a "desired" or "undesired" aroma by the con-
sumer. In fact, considering all the results obtained in this study, on one 
side, it can be concluded that C1 samples, obtained with sourdough at 5 
h of leaving time had a more complex VOCs profile, but, on the other 
side, their differences are also due to the presence of minority com-
pounds that could negatively influence their aroma. Therefore, having 
an analysis tool that allows to highlight even these small differences can 
be of paramount importance in the characterization and evaluation of 
new food formulation. 
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Novelty statement 

The developed analytical method is based on the synergistic use of an 
Arrow fiber for sampling volatile organic compounds and a deep 
learning (PARADISe) approach for the extraction of useful information 
from signals obtained by the analysis through GC-MS method. The 
developed analytical method was used to study the flavour of four in-
dustrial bread samples and to deepen and to test the impact of different 
types of yeast and their respective leaving time on the VOCs produced in 
the final product. 

Since Arrow fiber is a fairly novel device, its performance was 
thoroughly investigated in terms of blanks, reproducibility and sensi-
tivity in comparison to a traditional SPME fiber. The inspection of SPME- 
Arrow blank is never discussed in previous studies and information 
about all the three investigated aspects is of utmost of relevance in the 
study of food aroma, since this device, based on a novel SPME geometry, 
can be used to “hunt” target molecules more efficiently in complex 
matrices. 

Furthermore, PARADISe approach resulted to be of utmost impor-
tance since it has been found to be an extremely useful tool for the 
deconvolution of the chromatographic peaks directly from raw chro-
matographic data and simultaneous integration of the areas of the 
deconvoluted peaks for all samples. Finally, Principal Component 
Analysis was performed on the peak areas resolved by PARADISe to 
obtain preliminary information on the main VOCs present in the studied 
bread samples, taking also into consideration the interplay of yeast and 
leavening time. 

To the best of the author’s knowledge, the bread aroma has never 
been sampled and analysed using the proposed analytical approach. 
Furthermore, this method allows for achieving a more precise under-
standing of the aroma and the parameters that influence its variation. 
This aspect is of paramount importance for the baking industry to adjust 
recipe modifications and production parameters, as well as to meet 
consumer needs in formulating new products. 
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[43] J. Pico, J. Bernal, M. Gómez, Wheat bread aroma compounds in crumb and crust: a 
review, Food Res. Int. 75 (2015) 200–215, https://doi.org/10.1016/j. 
foodres.2015.05.051. 

[44] L.-A. Payet, M. Leroux, J.C. Willison, A. Kihara, L. Pelosi, F. Pierrel, Mechanistic 
details of early steps in coenzyme Q biosynthesis pathway in yeast, Cell Chem. Biol. 
23 (2016) 1241–1250, https://doi.org/10.1016/j.chembiol.2016.08.008. 

S. Pellacani et al.                                                                                                                                                                                                                               

https://doi.org/10.3390/separations8090157
https://doi.org/10.1016/j.foodchem.2022.133572
https://doi.org/10.1016/j.foodchem.2022.133572
https://doi.org/10.1016/j.talanta.2020.121446
https://doi.org/10.1080/10942912.2019.1634099
https://doi.org/10.3390/separations7040075
https://doi.org/10.3390/molecules26237409
https://doi.org/10.3390/molecules26237409
https://doi.org/10.1016/j.chroma.2019.460584
https://doi.org/10.1016/j.chroma.2019.460584
https://doi.org/10.1016/j.jcs.2022.103525
https://doi.org/10.3390/foods11152325
https://doi.org/10.3390/foods11152325
https://doi.org/10.1094/CCHEM.1998.75.6.847
https://doi.org/10.1094/CCHEM.1998.75.6.847
https://doi.org/10.1016/j.foodres.2013.03.011
https://doi.org/10.1016/j.foodres.2013.03.011
https://doi.org/10.1111/jfpp.12973
https://doi.org/10.1111/jfpp.12973
https://doi.org/10.1371/journal.pone.0165126
https://doi.org/10.1371/journal.pone.0165126
https://doi.org/10.1016/j.foodchem.2022.132125
https://doi.org/10.3390/app11031330
https://doi.org/10.1007/s10068-010-0081-3
https://doi.org/10.1016/j.tifs.2006.03.006
https://doi.org/10.1016/j.tifs.2006.03.006
https://doi.org/10.1094/CCHEM-06-13-0121-RW
https://doi.org/10.1094/CCHEM-06-13-0121-RW
https://doi.org/10.1007/s12161-020-01740-4
https://doi.org/10.1007/s12161-020-01740-4
https://doi.org/10.1016/j.foodchem.2020.127161
https://doi.org/10.1016/j.sampre.2022.100035
https://doi.org/10.1021/cr300148j
https://doi.org/10.1021/cr300148j
https://doi.org/10.1016/j.chroma.2017.04.052
https://doi.org/10.1007/s12161-020-01740-4
https://doi.org/10.1007/s12161-020-01740-4
https://doi.org/10.3390/separations7010012
https://doi.org/10.3390/separations7010012
https://doi.org/10.1016/j.aca.2009.06.015
https://doi.org/10.1016/S0169-7439(98)00065-3
https://doi.org/10.1016/B978-0-444-59528-7.00003-X
https://doi.org/10.1016/B978-0-444-59528-7.00003-X
https://doi.org/10.1016/j.chroma.2011.08.086
https://doi.org/10.1016/j.chroma.2011.08.086
http://refhub.elsevier.com/S0169-7439(23)00190-9/sref31
http://refhub.elsevier.com/S0169-7439(23)00190-9/sref31
https://doi.org/10.1016/j.trac.2008.05.011
https://doi.org/10.1016/j.trac.2008.05.011
https://doi.org/10.1016/j.trac.2021.116451
https://doi.org/10.1016/j.trac.2021.116451
https://doi.org/10.1016/S0169-7439(97)00032-4
https://doi.org/10.1002/cem.2497
https://doi.org/10.21203/rs.3.pex-2143/v1
https://doi.org/10.1016/j.talanta.2020.121955
https://doi.org/10.1016/j.talanta.2019.05.053
https://doi.org/10.1016/j.lwt.2021.112935
https://doi.org/10.1016/j.lwt.2021.112935
https://doi.org/10.1016/B978-0-08-100596-5.21623-5
https://doi.org/10.1016/B978-0-08-100596-5.21666-1
https://doi.org/10.1002/ffj.3264
https://doi.org/10.1002/ffj.3264
https://doi.org/10.1016/j.foodres.2015.05.051
https://doi.org/10.1016/j.foodres.2015.05.051
https://doi.org/10.1016/j.chembiol.2016.08.008

	Optimization of an analytical method based on SPME-Arrow and chemometrics for the characterization of the aroma profile of  ...
	1 Introduction
	2 Materials and methods
	2.1 Samples
	2.2 Instrumental analysis
	2.3 Experimental design
	2.4 Data analysis
	Notation
	2.4.1 Data preprocessing
	2.4.2 PARAFAC2
	2.4.3 PARADISe approach
	2.4.4 Software


	3 Results and discussion
	3.1 Evaluation of Arrow-SPME and conventional-SPME fiber blanks
	3.2 Optimization of SPME extraction conditions through design of experiment
	3.3 Comparison of arrow and conventional SPME performance
	3.4 VOCs compounds determination and identification by PARADISe
	3.5 PCA investigation

	4 Conclusions
	Consent for publication
	CRediT authorship contribution statement
	Novelty statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A Supplementary data
	References


