
15/11/2023 03:56

Asynchronous spiking neural P systems / Cavaliere, M.; Ibarra, O. H.; Paun, G.; Egecioglu, O.; Ionescu, M.;
Woodworth, S.. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - 410:24-25(2009), pp. 2352-
2364. [10.1016/j.tcs.2009.02.031]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

note finali coverpage

Technical Report CoSBi 09/2007

Asynchronous Spiking Neural P Systems

Matteo Cavaliere

Microsoft Research-University of Trento
Centre for Computational and Systems Biology

Trento, Italy

cavaliere@cosbi.eu

Omer Egecioglu, Oscar H. Ibarra, Sara Woodworth

Department of Computer Science, University of California
Santa Barbara, USA

omer, ibarra, swood@cs.ucsb.edu

Mihai Ionescu

Research Group on Mathematical Linguistics, Universitat Rovira i Virgili
Tarragona, Spain

armandmihai.ionescu@urv.net

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
Bucharest, Romania, and

Department of Computer Science and AI, University of Sevilla
Sevilla, Spain

george.paun@imar.ro, gpaun@us.es

This is the preliminary version of a paper that will appear in
Theoretical Computer Science, 410, 24-25, 2009.

available at http://www.elsevier.com

Abstract

We consider here spiking neural P systems with a non-synchronized (i.e., asyn-
chronous) use of rules: in any step, a neuron can apply or not apply its rules which
are enabled by the number of spikes it contains (further spikes can come, thus chang-
ing the rules enabled in the next step). Because the time between two firings of the
output neuron is now irrelevant, the result of a computation is the number of spikes
sent out by the system, not the distance between certain spikes leaving the system.
The additional non-determinism introduced in the functioning of the system by the
non-synchronization is proved not to decrease the computing power in the case of us-
ing extended rules (several spikes can be produced by a rule). That is, we obtain again
the equivalence with Turing machines (interpreted as generators of sets of (vectors of)
numbers). However, this problem remains open for the case of restricted spiking neural
P systems, whose rules can only produce one spike. On the other hand we prove that
asynchronous systems, with extended rules, and where each neuron is either bounded
or unbounded, are not computationally complete.

For these systems, the configuration reachability, membership (in terms of gen-
erated vectors), emptiness, infiniteness, and disjointness problems are shown to be
decidable. However, containment and equivalence are undecidable.

1 Introduction

Spiking neural P systems (SN P systems, for short) were introduced in [11] with the aim
of incorporating specific ideas from spiking neurons into membrane computing. Currently,
neural computing based on spiking is a field that is being heavily investigated (see, e.g.,
[5], [13], [14]).

In short, an SN P system consists of a set of neurons placed in the nodes of a directed
graph and sending signals (spikes, denoted in what follows by the symbol a) along the arcs
of the graph (they are called synapses). Thus, the architecture is that of a tissue-like P
system, with only one kind of object present in the cells (the reader is referred to [18] for
an introduction to membrane computing and to [23] for the up-to-date information about
this research area). The objects evolve by means of standard spiking rules, which are of the
form E/ac → a; d, where E is a regular expression over {a} and c, d are natural numbers,
c ≥ 1, d ≥ 0. The meaning is that a neuron containing k spikes such that ak ∈ L(E), k ≥ c,
can consume c spikes and produce one spike, after a delay of d steps. This spike is sent to
all neurons connected by an outgoing synapse from the neuron where the rule was applied.
There also are forgetting rules, of the form as → λ, with the meaning that s ≥ 1 spikes
are removed, provided that the neuron contains exactly s spikes. Extended rules were
considered in [4], [17]: these rules are of the form E/ac → ap; d, with the meaning that
when using the rule, c spikes are consumed and p spikes are produced. Because p can be
0 or greater than 0, we obtain a generalization of both standard spiking and forgetting
rules.

In this paper we consider extended spiking rules with restrictions on the type of the
regular expressions used. In particular, we consider two types of rules. The first type
are called bounded rules and are of the form ai/ac → ap; d, where 1 ≤ c ≤ i, p ≥ 0,
and d ≥ 0. We also consider unbounded rules of the form ai(aj)∗/ac → ap; d, where
i ≥ 0, j ≥ 1, c ≥ 1, p ≥ 0, d ≥ 0. A neuron is called bounded if it has only bounded rules,
while it is unbounded if it has only unbounded rules. A neuron is then called general if
it has both bounded and unbounded rules. An SN P system is called bounded if it has
only bounded neurons, while it is called unbounded if each neuron is either bounded or

1

unbounded. A general SN P system is a system with general neurons. It was shown in
[10] that general SN P systems are universal.

An SN P system (of any type) works in the following way. A global clock is assumed,
and in each time unit, each neuron which can use a rule should do it (the system is
synchronized), but the work of the system is sequential in each neuron: only (at most)
one rule is used in each neuron. One of the neurons is considered to be the output neuron,
and its spikes are also sent to the environment. The moments of time when (at least) a
spike is emitted by the output neuron are marked with 1, the other moments are marked
with 0. This binary sequence is called the spike train of the system – it is infinite if the
computation does not stop.

With a spike train we can associate various numbers, which can be considered as
computed (we also say generated) by an SN P system. For instance, in [11] only the
distance between the first two spikes of a spike train was considered, then in [20] several
extensions were examined: the distance between the first k spikes of a spike train, or the
distances between all consecutive spikes, taking into account all intervals or only intervals
that alternate, all computations or only halting computations, etc.

An SN P system can also work in the accepting mode: a neuron is designated as the
input neuron and two spikes are introduced in it, at an interval of n steps; the number n
is accepted if the computation halts.

Two main types of results were obtained (for general systems, with standard rules):
computational completeness in the case when no bound was imposed on the number of
spikes present in the system, and a characterization of semilinear sets of numbers in the
case when a bound was imposed. In [11] it is proved that synchronized SN P systems using
standard rules characterize NRE; improvements in the form of the regular expressions,
removing the delay, or the forgetting rules can be found in [10]. The result is true both
for the generative and the accepting case.

In the proof of these results, the synchronization plays a crucial role, but both from a
mathematical point of view and from a neuro-biological point of view it is rather natural
to consider non-synchronized systems, where the use of rules is not obligatory. Even
if a neuron has a rule enabled in a given time unit, this rule is not obligatorily used.
The neuron may choose to remain unfired, maybe receiving spikes from the neighboring
neurons. If the unused rule may be used later, it is used later, without any restriction on
the interval when it has remained unused. If the new spikes made the rule non-applicable,
then the computation continues in the new circumstances (maybe other rules are enabled
now).

This way of using the rules applies also to the output neuron, so the distance in
time between the spikes sent out by the system is no longer relevant. Hence, for non-
synchronized SN P systems, the result of the computation is the total number of spikes sent
out to the environment. This makes it necessary to consider only halting computations.
(The computations which do not halt are ignored and provide no output.)

We stress the fact that we count all spikes sent out. A possibility which we do not
consider is to only count the steps when at least one spike exits the system. Moreover, it
is also possible to consider systems with several output neurons. In this case one counts
the spikes emitted by the output neurons and collect them as vectors.

The synchronization is in general a powerful feature, useful in controlling the work of
a computing device. However, it turns out that the loss in power entailed by removing the
synchronization is compensated in the case of general SN P systems where extended rules

2

are used. In fact, we prove that such systems are still equivalent with Turing machines
(as generators of sets of (vectors of) natural numbers).

On the other hand, we also show that a restriction which looks, at first sight, rather
minor, has a crucial influence on the power of the systems and decreases their computing
power: specifically, we prove that unbounded SN P systems are not computationally
complete (as mentioned above, for bounded systems this result is already known from
[11]).

Moreover, for unbounded systems, the configuration reachability, membership (in
terms of generated vectors), emptiness, infiniteness, and disjointness problems can be
decided. However, containment and equivalence are undecidable. Note that, for general
SN P systems, even reachability and membership are undecidable, because these systems
are universal (in a constructive way).

However, universality remains open for non-synchronized SN P systems using standard
rules. We find this problem worth investigating (a non-universality result – as we expect
it will be the case – can show an interesting difference between synchronized and non-
synchronized devices, with the loss in power compensated by the additional “programming
capacity” of extended rules). The non-synchronized case remains to be considered also
for other issues specific to SN P systems, such as looking for small universal systems as in
[17], for normal forms as in [10], for generating languages or processing finite or infinite
sequences, [3], [4], [21], characterizations of multi-dimensional semilinear sets of numbers
as in [8], using the rules in the in exhaustive mode, as in [12], etc.

Another mode of computation of an SN P system that has been studied earlier [9] is
the sequential mode. In this mode, at every step of the computation, if there is at least
one neuron with at least one rule that is fireable, we only allow one such neuron and one
such rule (both chosen non-deterministically) to be fired. It was shown in [9] that certain
classes of sequential SN P systems are equivalent to partially blind counter machines, while
others are universal.

2 Prerequisites

We assume the reader to have some familiarity with (basic elements of) language and
automata theory, e.g., from [22], and introduce only a few notations and the definitions
related to SN P systems (with extended rules).

For an alphabet V , V ∗ is the free monoid generated by V with respect to the concate-
nation operation and the identity λ (the empty string); the set of all nonempty strings
over V , that is, V ∗ − {λ}, is denoted by V +. When V = {a} is a singleton, then we
write simply a∗ and a+ instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted
by |x|. The family of Turing computable sets of natural numbers is denoted by NRE (it
is the family of length sets of recursively enumerable languages) and the family of Turing
computable sets of vectors of natural numbers is denoted by PsRE.

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is a construct
of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

3

a) ni ≥ 0 is the initial number of spikes contained by the neuron;

b) Ri is a finite set of extended rules of the following form:

E/ac → ap; d,

where E is a regular expression with a the only symbol used, c ≥ 1, and p, d ≥ 0,
with c ≥ p; if p = 0, then d = 0, too.

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);

4. out ∈ {1, 2, . . . ,m} indicates the output neuron.

A rule E/ac → ap; d with p ≥ 1 is called extended firing (we also say spiking) rule; a
rule E/ac → ap; d with p = d = 0 is written in the form E/ac → λ and is called a forgetting
rule. If L(E) = {ac}, then the rules are written in the simplified form ac → ap; d and
ac → λ. A rule of the type E/ac → a; d and ac → λ is said to be restricted (or standard).

In this paper, we investigate extended spiking rules using particular types of regular
expressions.

A rule is bounded if it is of the form ai/ac → ap; d, where 1 ≤ c ≤ i, p ≥ 0, and d ≥ 0.
A neuron is bounded if it contains only bounded rules. A rule is called unbounded if is
of the form ai(aj)∗/ac → ap; d, where i ≥ 0, j ≥ 1, c ≥ 1, p ≥ 0, d ≥ 0. (In all cases,
we also assume c ≥ p; this restriction rules out the possibility of “producing more than
consuming”, but it plays no role in arguments below and can be omitted.) A neuron
is unbounded if it contains only unbounded rules. A neuron is general if it contains both
bounded and unbounded rules. An SN P system is bounded if all the neurons in the system
are bounded. It is unbounded if it has bounded and unbounded neurons. Finally, an SN P
system is general if it has general neurons (i.e., it contains at least one neuron which has
both bounded and unbounded rules).

One can allow rules like α1+. . .+αn → ap; d in the neuron, where all αi’s have bounded
(resp., unbounded) regular expressions as defined above. But such a rule is equivalent to
putting n rules αi → ap; d (1 ≤ i ≤ n) in the neuron. Moreover, it is known that any
regular set over a 1-letter symbol a can be expressed as a finite union of regular sets of
the form {ai(aj)k | k ≥ 0} for some i, j ≥ 0. Note that such a set is finite if j = 0.

The rules are applied as follows: if the neuron σi contains k spikes, ak ∈ L(E) and
k ≥ c, then the rule E/ac → ap; d ∈ Ri is enabled and it can be applied. This means
that c spikes are consumed, k − c spikes remain in the neuron, the neuron is fired, and it
produces p spikes after d time units. If d = 0, then the spikes are emitted immediately, if
d = 1, then the spikes are emitted in the next step, and so on. In the case d ≥ 1, if the
rule is used in step t, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed; this
means that during these steps it uses no rule and it cannot receive new spikes (if a neuron
has a synapse to a closed neuron and sends spikes along it, then the spikes are lost). In
step t + d, the neuron spikes and becomes again open, hence can receive spikes (which
can be used in step t + d + 1). The p spikes emitted by a neuron σi are replicated and
they go to all neurons σj such that (i, j) ∈ syn (each σj receives p spikes). If the rule is a
forgetting one of the form E/ac → λ then, when it is applied, c ≥ 1 spikes are removed.

In the synchronized mode, considered up to now in the SN P systems investigations, a
global clock is considered, marking the time for all neurons, and in each time unit, in each
neuron which can use a rule, a rule should be used. Because two rules E1/ac1 → ap1 ; d1

and E2/ac2 → ap2 ; d2 can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules

4

can be applied in a neuron, and then one of them is chosen non-deterministically. Note
that the neurons work in parallel (synchronously), but each neuron processes sequentially
its spikes, using only one rule in each time unit.

In the non-synchronized case considered here the definition of a computation in an
SN P system is easy: in each time unit, any neuron is free to use a rule or not. Even if
enabled, a rule is not necessarily applied, the neuron can remain still in spite of the fact
that it contains rules which are enabled by its contents. If the contents of the neuron is
not changed, a rule which was enabled in a step t can fire later. If new spikes are received,
then it is possible that other rules will be enabled – and applied or not.

It is important to point out that when a neuron spikes, its spikes immediately leave
the neuron and reach the target neurons simultaneously (as in the synchronized systems,
there is no time needed for passing along a synapse from one neuron to another neuron).

The initial configuration of the system is described by the numbers n1, n2, . . . , nm

representing the initial number of spikes present in each neuron. Using the rules as sug-
gested above, we can define transitions among configurations. Any sequence of transitions
starting in the initial configuration is called a computation.

A computation is successful if it reaches a configuration where all bounded and un-
bounded neurons are open but none is fireable (i.e., the SN P system has halted)

Because now “the time does not matter”, the spike train can have arbitrarily many
occurrences of 0 between any two occurrences of 1, hence the result of a computation
can no longer be defined in terms of the steps between two consecutive spikes as in the
standard SN P system definition. That is why, the result of a computation is defined here
as the total number of spikes sent into the environment by the output neuron.

Specifically, a number x is then generated by the SN P system if there is a successful
computation of the system where the output neuron emits exactly x spikes (if several
spikes are emitted by the output neuron, at the same time, all of them are counted).
Because of the non-determinism in using the rules, a given system computes in this way
a set of numbers.

Successful computations which send no spike out can be considered as generating
number zero, but in what follows we adopt the convention to ignore number zero when
comparing the computing power of two devices.

Of course, a natural definition of the result of a computation can also be the number
of spikes present in a specified neuron in the halting configuration. This is much closer
to the traditional style of membrane computing, but there is no difference with respect to
the previous definition: consider an additional neuron, which receives the spikes emitted
by the previous output neuron and has no rule inside. When the computation halts, the
contents of this additional neuron is the result of the computation.

SN P systems can also be used for generating sets of vectors, by considering several
output neurons, σi1 , . . . , σik . In this case, the system is called a k-output SN P system.
Here a vector of numbers, (n1, . . . , nk), is generated by counting the number of spikes sent
out by neurons σi1 , . . . , σik respectively during a successful computation.

We denote by Nnsyn
gen (Π) [Psnsyn

gen (Π)] the set [the set of vectors, resp.] of numbers
generated in the non-synchronized way by a system Π, and by NSpiktotEPnsyn

m (α, deld)
[PsSpiktotEPnsyn

m (α, deld)], α ∈ {gen, unb, boun}, d ≥ 0, the family of such sets of numbers
[sets of vectors of numbers, resp.] generated by systems of type α (gen stands for general,
unb for unbounded, boun for bounded), with at most m neurons and rules having delay
at most d. (The subscript tot reminds us of the fact that we count all spikes sent to the
environment.)

5

A 0-delay SN P system is one where the delay in all the rules of the neurons is zero.
Because in this paper we always deal with 0-delay systems, the delay (d = 0) is never
specified in the rules.

An SN P system working in the non-synchronized manner can also be used in the
accepting way: a number n is introduced in the system, in the form of n spikes placed in
a distinguished input neuron, and if the computation eventually stops, then n is accepted.
In what follows we will only occasionally mention the accepting case. Because there is
no confusion, in this paper, non-synchronized SN P systems are often simply called SN P
systems.

The examples from the next section will illustrate and clarify the above definitions.

3 Three Examples

In order to clarify the previous definitions, we start by discussing some examples, which
are also of an interest per se. In this way, we also introduce the standard way to pictorially
represent a configuration of an SN P system, in particular, the initial configuration. Specif-
ically, each neuron is represented by a “membrane”, marked with a label and having inside
both the current number of spikes (written explicitly, in the form an for n spikes present
in a neuron) and the evolution rules. The synapses linking the neurons are represented by
directed edges (arrows) between the membranes. The output neuron is identified by both
its label, out, and pictorially by a short arrow exiting the membrane and pointing to the
environment. pointing to the environment.

Example 1. The first example is the system Π1 given in Figure 1. We have only
two neurons, initially each of them containing one spike. In the synchronized manner,
Π1 works forever, with both neurons using a rule in each step – hence the output neuron
sends one spike out in each step, i.e., the spike train is the infinite sequence of symbols 1,
written 1ω.

'
&

$
%

#
"

!

?

6

-

1
a

a → a

out
a

a → a

Figure 1: An example of an SN P system where synchronization matters

In the non-synchronized mode, the system can halt in any moment: each neuron can
wait an arbitrary number of steps before using its rule; if both neurons fire at the same
time, then the computation continues, if not, one neuron consumes its spike and the other
one gets two spikes inside and can never use its rule.

Consequently, Nnsyn
gen (Π1) = N, the set of natural numbers.

It is worth noting that synchronized systems with one or two neurons characterize
the finite sets of numbers (see [11]), hence we already have here an essential difference

6

between the two modes of using the rules: in the non-synchronized mode, systems with
two neurons can generate infinite sets of numbers.

Example 2. The two neurons of the system above can be synchronized by means of
a third neuron even when they do not work synchronously, and this is shown in Figure 2.

'
&
$
%

�
�
�
�

'
&
$
%

?

6

?

6

-

1
a

a → a

2
a2 → a

out
a

a → a

Figure 2: An SN P system functioning in the same way in both modes

This time, the intermediate neuron σ2 stores the spikes produced by the two neurons
σ1, σout, so that only after both these neurons spike they receive spikes back. Both in the
synchronized and the non-synchronized way, this system never halts, and the number of
spikes sent out is infinite in both cases.

Example 3. A slight (at the first sight) change in the neuron σ2 from the previous
example will lead to a much more intricate functioning of the system – this is the case
with the system Π3 from Figure 3.

'
&
$
%

'
&
$
%

'
&
$
%

?
6

?
6

-

1
a

a → a

2
a2 → a

a2/a → a

out
a

a → a

Figure 3: A version of the system from Figure 2

The system behaves like that from Figure 2 as long as neuron σ2 uses the rule a2 → a.

7

If, instead, rule a2/a → a is used, then either the computation stops (if both σ1 and
σout spike, then σ2 will get 3 spikes and will never spike again), or it continues working
forever. In this latter case, there are two possibilities: σ2 will cooperate with σ1 or with
σout (the neuron which spikes receives one spike back, but the other one gets two spikes
and is blocked; σ2 continues by using the rule a2/a → a, otherwise the computation halts,
because σ2 will get next time only one spike). If the computation continues between σ2

and σ1, then no spike will be sent outside; if the cooperation is between σ2 and σout, then
the system sends out an arbitrary number of spikes.

Again the number of spikes sent out is the same both in the synchronized and the
non-synchronized modes (the generated set is again N), but the functioning of the system
is rather different in the two modes.

4 Computational Completeness of General SN P Systems

We pass now to prove that the power of general neurons (where extended rules, producing
more than one spike at a time, are used) can compensate the loss of power entailed by
removing the synchronization.

In the following proof we use the characterization of NRE by means of multicounter
machines (abbreviated CM and also called register machines) [15].

Such a device – in the non-deterministic version – is a construct M = (m,H, l0, lh, I),
where m is the number of counters, H is the set of instruction labels, l0 is the start label
(labeling an ADD instruction), lh is the halt label (assigned to instruction HALT), and I is
the set of instructions; each label from H labels only one instruction from I, thus precisely
identifying it.

When it is useful, a label can be seen as a state of the machine, l0 being the initial
state, lh the final/accepting state.

The labeled instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to counter r and then go to one of the instructions with
labels lj , lk non-deterministically chosen),

• li : (SUB(r), lj , lk) (if counter r is non-empty, then subtract 1 from it and go to the
instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A counter machine M generates a set N(M) of numbers in the following way: we start
with all counters empty (i.e., storing the number zero), we apply the instruction with label
l0 and we continue to apply instructions as indicated by the labels (and made possible
by the contents of counters). If we reach the halt instruction, then the number n present
in counter 1 at that time is said to be generated by M . It is known (see, e.g., [15]) that
counter machines generate all sets of numbers which are Turing computable.

A counter machine can also accept a set of numbers: a number n is accepted by M
if, starting with n in counter 1 and all other counters empty, the computation eventually
halts (without loss of generality, we may assume that in the halting configuration all
counters are empty). Deterministic counter machines (i.e., with ADD instructions of the
form li : (ADD(r), lj)) working in the accepting mode are known to be equivalent with
Turing machines.

8

It is also possible to consider counter machines producing sets of vectors of natural
numbers. In this case a distinguished set of k counters (for some k ≥ 1) is designated as
the output counters. A k-tuple (n1, . . . , nk) ∈ Nk is generated if M eventually halts and
the contents of the output counters are n1, . . . , nk, respectively.

Without loss of generality we may assume that in the halting configuration all the
counters, except the output ones, are empty. We also assume (without loss of general-
ity) that the output counters are non-decreasing and their contents are only incremented
(i.e., the output counters are never the subject of SUB instructions, but only of ADD
instructions).

We will refer to a CM with k output counters (the other counters are auxiliary counters)
as a k-output CM. It is well known that a set S of k-tuples of numbers is generated by
a k-output CM if and only if S is recursively enumerable. Therefore they characterize
PsRE. We shall refer to a 1-output CM as simply a CM.

Theorem 1 SpiktotEPnsyn
∗ (gen, del0) = NRE.

Proof. We only have to prove the inclusion NRE ⊆ SpiktotEPnsyn
∗ (gen, del0), and to

this aim, we use the characterization of NRE by means of counter machines used in the
generating mode.

Let M = (m,H, l0, lh, I) be a counter machine with m counters, having the properties
specified above: the result of a computation is the number from counter 1 and this counter
is never decremented during the computation.

We construct a spiking neural P system Π as follows.
For each counter r of M let tr be the number of instructions of the form li :

(SUB(r), lj , lk), i.e., all SUB instructions acting on counter r (of course, if there is no
such a SUB instruction, then tr = 0, which is the case for r = 1). Denote

T = 2 ·max{tr | 1 ≤ i ≤ m}+ 1.

For each counter r of M we consider a neuron σr in Π whose contents correspond to
the contents of the counter. Specifically, if the counter r holds the number n ≥ 0, then
the neuron σr will contain 3Tn spikes.

With each label l of an instruction in M we also associate a neuron σl. Initially, all these
neurons are empty, with the exception of the neuron σl0 associated with the start label
of M , which contains 3T spikes. This means that this neuron is “activated”. During the
computation, the neuron σl which receives 3T spikes will become active. Thus, simulating
an instruction li : (OP(r), lj , lk) of M means starting with neuron σli activated, operating
the counter r as requested by OP, then introducing 3T spikes in one of the neurons σlj , σlk ,
which becomes in this way active. When activating the neuron σlh , associated with the
halting label of M , the computation in M is completely simulated in Π; we will then send
to the environment a number of spikes equal to the number stored in the first counter of
M . Neuron σ1 is the output neuron of the system.

Further neurons will be associated with the counters and the labels of M in a way
which will be described immediately. All of them are initially empty.

The construction itself is not given in symbols, but we present modules associated with
the instructions of M (as well as the module for producing the output) in the graphical
form introduced in the previous section. These modules are presented in Figures 4, 5,
6. Before describing these modules and their work, let us remember that the labels are
injectively associated with the instructions of M , hence each label precisely identifies

9

one instruction, either an ADD or a SUB one, with the halting label having a special
situation – it will be dealt with by the FIN module. Remember also that counter 1 is
never decremented.

As mentioned before, because the system we construct has only rules with delay 0, the
delay is not specified in the figures below.

�
�
�
�
�
�
�
�

'
&
$
%
'
&
$
%

'
&
$
%

�
�
�
�
�
�
�
�

�
�
�
�
'
&
$
%

XXXXXXz
�

�
�

�	

@
@

@
@R

@
@

@R

�
�

�	

�
�

�	

@
@

@R

??

li

a3T → a3T r

i, 1

a3T → a3T

i, 2

a3T → a3T

i, 3

a6T → a3T

a6T → a4T

i, 4

a3T → a3T

a4T → λ

i, 5

a3T → λ

a4T → a3T

lj
a3T → aδ(lj)

lk
a3T → aδ(lk)

Figure 4: Module ADD (simulating li : (ADD(r), lj , lk))

Simulating an ADD instruction li : (ADD(r), lj , lk) – module ADD (Figure 4).
The initial instruction, that labeled with l0, is an ADD instruction. Assume that

we are in a step when we have to simulate an instruction li : (ADD(r), lj , lk), with 3T
spikes present in neuron σli (like σl0 in the initial configuration) and no spike in any
other neuron, except those neurons associated with the counters. Having 3T spikes inside,
neuron σli can fire, and at some time it will do it, producing 3T spikes. These spikes will
simultaneously go to neurons σi,1 and σi,2 (as well as to neuron σr, thus simulating the
increase of the value of counter r with 1). Also these neurons can spike at any time. If
one of them is doing it, then 3T spikes arrive in neuron σi,3, which cannot use them. This
means that neuron σi,3 must wait until further 3T spikes come from that neuron σi,1, σi,2

which fired later. With 6T spikes inside, neuron σi,3 can fire, by using one of its rules,
non-deterministically chosen. These rules determine the non-deterministic choice of the
neuron σlj , σlk to activate. If, for instance, the rule a6T → a3T was used, then both σi,4

and σi,5 receive 3T spikes. Only σi,4 can use them for spiking, while σi,5 can forget them.
Eventually σi,4 fires, otherwise the computation does not halt. If this ADD instruction is
simulated again and further spikes are sent to neuron σi,5 although it has not removed its

10

spikes, then it will accumulate at least 6T spikes and will never fire again. This means
that no “wrong” step is done in the system Π because of the non-synchronization. If in σi,3

one uses the rule a6T → a4T , then the computation proceeds in a similar way, eventually
activating neuron σlk . Consequently, the simulation of the ADD instruction is possible in
Π and no computation in Π will end and will provide an output (see also below) if this
simulation is not correctly completed.

�
�

�
�

�
�

�
�

'

&

$

%

'

&

$

%

'

&

$

%

�
�

�
�

'

&

$

%

�
�

�
�'

&

$

%

ZZ~�
�

�
�

�/

-

�
�

�
�

�
��=

?

?

HH
HHH

HHHHj

Z
Z

Z
Z~

�
�

�
�=

?

li

a3T → a3T−s

r

a3T−s(a3T)+/a6T−s → a3T+s

a3T−s → a2T+s

i, 0

aq → λ

for 2T < q < 4T

a5T → a2T

a6T → a3T

i, 1

a2T → λ

a3T → a3T

i, 2

a3T → λ

a2T → a2T

i, 3

a3T → λ

a2T → a2T

i, 4
a4T → a3T

lj

a3T → aδ(lj)

lk
a3T → aδ(lk)

Figure 5: Module SUB (simulating li : (SUB(r), lj , lk))

Simulating a SUB instruction li : (SUB(r), lj , lk) – module SUB (Figure 5).
Let us examine now Figure 5, starting from the situation of having 3T spikes in neuron

σli and no spike in other neurons, except neurons associated with counters; assume that
neuron σr holds a number of spikes of the form 3Tn, n ≥ 0. Assume also that this is the
sth instruction of this type dealing with counter r, for 1 ≤ s ≤ tr, in a given enumeration
of instructions (because li precisely identifies the instruction, it also identifies s).

Sometimes, neuron σli spikes and sends 3T − s spikes both to σr and to σi,0. These
spikes can be forgotten in this latter neuron, because 2T < 3T − s < 4T . Sometimes, also
neuron σr will fire, and will send 2T + s of 3T + s spikes to neuron σi,0. If no spike is here,
then no other action can be done, also these spikes will eventually be removed, and no

11

continuation is possible (in particular, no spike is sent out of the system; remember that
number zero is ignored, hence we have no output in this case).

If neuron σi,0 does not forget the spikes received from σli (this is possible, because of
the non-synchronized mode of using the rules), then eventually neuron σr will send here
either 3T +s spikes – in the case where it contains more than 3T −s spikes (hence counter
r is not empty), or 2T +s spikes – in the case where its only spikes are those received from
σli . In either case, neuron σi,0 accumulates more than 4T spikes, hence it cannot forget
them.

Depending on the number of spikes accumulated, either 6T or 5T , neuron σi,0 even-
tually spikes, sending 3T or 2T spikes, respectively, to neurons σi,1, σi,2, and σi,3. The
only possible continuation of neuron σi,1 is to activate neuron σlj (precisely in the case
where the first counter of M was not empty). Neurons σi,2 and σi,3 will eventually fire
and either forget their spikes or send 4T spikes to neuron σi,4, which activates neuron σlk

(in the case where the first counter of M was empty).
It is important to note that if any neuron σi,u, u = 1, 2, 3, skips using the rule which

is enabled and receives further spikes, then no rule can be applied there anymore and the
computation is blocked, without sending spikes out.

The simulation of the SUB instruction is correct in both cases, and no “wrong” com-
putation is possible inside the module from Figure 5.

What remains to examine is the possible interferences between modules.
First, let us consider the easy issue of the exit labels of the instructions of M , which

can be labels of either ADD or SUB instructions, or can be lh. To handle this question, in
both the ADD and the SUB modules we have written the rules from the neurons σlj , σlk

in the form a3T → aδ(lu), where δ is the function defined on H as follows:

δ(l) =

3T, if l is the label of an ADD instruction,
3T − s, if l is the label of the sth SUB instruction

dealing with a counter r of M ,
1 if l = lh.

What is more complicated is the issue of passing spikes among modules, but not
through the neurons which correspond to labels of M . This is the case with the neurons
σr for which there are several SUB instructions, and this was the reason of considering
the number T in writing the contents of neurons and the rules. Specifically, each σr for
which there exist tr SUB instructions can send spikes to all neurons σi,0 as in Figure 5.
However, only one of these target neurons also receives spikes from a neuron σli , the one
identifying the instruction which we want to simulate.

Assume that we simulate the sth instruction li : (SUB(r), lj , lk), hence neuron σr sends
3T +s or 2T +s spikes to all neurons of the form σi′,0 for which there is an instruction li′ :
(SUB(r), lj′ , lk′) in M . These spikes can be forgotten, and this is the correct continuation
of the computation (note that 2T < 2T + s < 3T + s < 4T hence there is a forgetting
rule to apply in each σi′,0). If these spikes are not forgotten and at a subsequent step of
the computation neuron σi′,0 receives further spikes from the neuron σr (the number of
received spikes is 3T +s′ or 2T +s′, for some 1 ≤ s′ ≤ tr), then we accumulate a number of
spikes which will be bigger than 4T (hence no forgetting rule can be used) but not equal to
5T or 6T (hence no firing rule can be used). Similarly, if these spikes are not forgotten and
at a subsequent step of the computation the neuron σi′,0 receives spikes from the neuron
σli′ (which is associated with σi′,0 in a module SUB as in Figure 5), then again no rule can
ever be applied here: if li′ : (SUB(r), lj′ , lk′) is the s′th SUB instruction acting on counter

12

r, then s 6= s′ and the neuron accumulates a number of spikes greater than 4T (we receive
3T −s′ spikes from σli′) and different from 5T and 6T . Consequently, no computation can
use the neurons σi′,0 if they do not forget the spikes received from σr. This means that
the only computations in Π which can reach the neuron σlh associated with the halting
instruction of M are the computations which correctly simulate the instructions of M and
correspond to halting computations in M .

Ending a computation – module FIN (Figure 6).
When the neuron σlh is activated, it (eventually) sends one spike to neuron σ1, corre-

sponding to the first counter of M . From now on, this neuron can fire, and it sends out
one spike for each 3T spikes present in it, hence the system will emit a number of spikes
which corresponds to the contents of the first counter of M in the end of a computation
(after reaching instruction lh : HALT).

�
�

�
�
�
�

�
�- -

lh

a3T → a

1

a(a3T)+/a3T → a

Figure 6: Module FIN (ending the computation)

Consequently, Nnsyn
gen (Π) = N(M) and this completes the proof. 2

Clearly, the previous construction is the same for the accepting mode, and can be
carried out for deterministic counter machines (the ADD instructions are of the form
li : (ADD(r), lj)), hence also the obtained system is deterministic. Similarly, if the result
of a computation is defined as the number of spikes present in a specified neuron in the
halting configuration, then the previous construction is the same, we only have to add
one further neuron which is designated as the output neuron and which collects all spikes
emitted by neuron σ1.

Theorem 1 can be easily extended by allowing more output neurons and then simulating
a k-output CM, producing in this way sets of vectors of natural numbers.

Theorem 2 PsSpiktotEPnsyn
∗ (gen, del0) = PsRE.

Note that the system Π constructed in the proof of Theorem 1 is general: neurons σr

involved in SUB instructions contain both bounded and unbounded rules.

5 Unbounded SN P Systems

As mentioned in the Introduction, bounded SN P systems characterize the semilinear sets
of numbers and this equivalence is proven in a constructive manner – see, e.g., [11]. Thus,
the interesting case which remains to investigate is that of unbounded SN P systems.

In the following constructions we restrict the SN P systems syntactically to make
checking a valid computation easier. Specifically, for an SN P system with unbounded
neurons σ1, . . . , σk (one of which is the output neuron) we assume as given non-negative
integers m1, . . . ,mk, and for the rules in each σi we impose the following restriction: If
mi > 0, then ami /∈ L(E) for any regular expression E appearing in a rule of neuron σi.
This restriction guarantees that if neuron σi contains mi spikes, then the neuron is not

13

fireable. It follows that when the following conditions are met during a computation, the
system has halted and the computation is valid:

1. All bounded neurons are open, but none is fireable.

2. Each σi contains exactly mi spikes (hence none is fireable, too).

This way of defining a successful computation, based on a vector (m1, . . . ,mk), is called
µ-halting. In the notation of the generated families we add the subscript µ to N or to Ps,
in order to indicate the use of µ-halting.

As defined earlier, a non-synchronized SN P system is one in which at each step, we
select zero or more neurons to fire. Clearly, for 0-delay SN P systems, selecting zero or
more neurons to fire at each step is equivalent to selecting one or more neurons to fire at
each step. This is due to the fact that there are no delays. Hence, if we select no neuron
to fire, the entire configuration of the system will remain the same.

5.1 0-Delay Unbounded SN P Systems and Partially Blind Counter Ma-
chines

In this section we give a characterization of 0-delay unbounded SN P systems in terms of
partially blind counter machines.

A partially blind k-output CM (k-output PBCM) [7] is a k-output CM, where the
counters cannot be tested for zero. The counters can be incremented by 1 or decremented
by 1, but if there is an attempt to decrement a zero counter, the computation aborts
(i.e., the computation becomes invalid). Note that, as usual, the output counters are
nondecreasing. Again, by definition, a successful generation of a k-tuple requires that the
machine enters an accepting state with all non-output counters zero.

We denote by NPBCM the set of numbers generated by PBCMs and by PsPBCM
the family of sets of vectors of numbers generated by using k-output PBCMs.

It is known that k-output PBCMs can be simulated by Petri nets, and vice-versa [7].
Hence, PBCMs are not universal.

We shall refer to a 1-output PBCM simply as PBCM.
We show that unbounded 0-delay SN P systems with µ-halting are equivalent to

PBCMs. This result generalizes to the case when there are k outputs. First, we describe
a basic construction.

Basic Construction:

Let C be a partially blind counter. It is operated by a finite-state control. C can only
store nonnegative integers. It can be incremented/decremented but when it is decremented
and the resulting value become negative, the computation is aborted. Let i, j, d be given
fixed nonnegative integers with i ≥ 0, j > 0, d > 0. Initially, C is incremented (from zero)
to some m ≥ 0.

Depending on the finite-state control (which is non-deterministic), one of the following
operations is taken at each step:

(1) C remains unchanged.

(2) C is incremented by 1.

(3) If the contents of C is of the form i + kj (for some k ≥ 0), then C is decremented
by d.

14

Note that in (3) we may not know whether i + jk is greater than or equal to d, or what
k is (the multiplicity of j), since we cannot test for zero. But if we know that C is of
the form i + jk, when we subtract d from it and it becomes negative, it aborts and the
computation is invalid, so we are safe. Note that if C contains i + jk and is greater than
or equal to d, then C will contain the correct value after the decrement of d.

We can implement the above computation using only finite-state control in addition
to C.

i < j case

Define a modulo-j counter to be a counter that can count from 0 to j − 1. We can think
of the modulo-j counter as an undirected circular graph with nodes 0, 1, . . . , j− 1, where
node s is connected to node s + 1 for 0 ≤ s ≤ j − 2 and j − 1 is connected to 0. Node s
represents count s. We increment the modulo-j counter by going through the nodes in a
“clockwise” direction. So, e.g., if the current node is s and we want to increment by 1, we
go to s + 1, provided s ≤ j − 2; if s = j − 1, we go to node 0. Similarly, decrementing the
modulo-j counter goes in the opposite direction, i.e., “counter-clockwise” – we go from s
to s− 1; if it is 0, we go to s− 1.

The parameters of the machine are the triple (i, j, d) with i ≥ 0, j > 0, d > 0. We
associate with counter C a modulo-j counter, J , which is initially in node (count) 0.
During the computation, we keep track of the current visited node of J . Whenever we
increment/decrement C, we also increment/decrement J . Clearly, the requirement that
the value of C has to be of the form i + kj for some k ≥ 0 in order to decrement by d
translates to the J being in node i, which is easily checked.

i ≥ j case

Suppose i = r + sj where s > 0 and 0 ≤ r < j.

Subcase 1:

If d > i − j, then we run i < j case described above with parameters (r, j, d). When
we want to perform a decrement-d, it is enough to check that the counter is of the form
r + kj for some k ≥ 0. Note that if r + kj < r + sj, then the machine will abort, so the
computation branch is not successful anyway.

Subcase 2:

If d ≤ i − j, then we run i < j case described above with parameters (r, j, d) with the
following difference. When we want to perform a decrement-d, we make sure that the
counter is of the form r + kj for some k ≥ 0. Then first subtract i − j + 1 from the
counter (and if the machine aborts, nothing is lost), then add back (i− j + 1− d) to the
counter. The intermediate step of subtracting i− j + 1 from the counter is accomplished
by a suitably modified copy of the original machine.

We are now ready to prove the following result.

Lemma 5.1 NµSpiktotEPnsyn
∗ (unb, del0) ⊆ NPBCM .

15

Proof. We describe how a PBCM M simulates an unbounded 0-delay SN P system
Π. Let B be the set of bounded neurons; assume that there are g ≥ 0 such neurons. The
bounded neurons can easily be simulated by M in its finite control. So we focus more on
the simulation of the unbounded neurons. Let σ1,, σk be the unbounded neurons (one
of which is the output neuron). M uses counters C1, . . . , Ck to simulate the unbounded
neurons. M also uses a nondecreasing counter C0 to keep track of the spikes sent by the
output neuron to the environment. Clearly, the operation of C0 can easily be implemented
by M . We introduce another counter, called ZERO (initially has value 0), whose purpose
will become clear later.

Assume for the moment that each bounded neuron in B has only one rule, and each
unbounded neuron σt (1 ≤ t ≤ k) has only one rule of the form ait(ajt)∗/adt → aet . M
incorporates in its finite control a modulo-jt counter, Jt, associated with counter Ct (as
described above). One step of Π is simulated in five steps by M as follows:

1. Non-deterministically choose a number 1 ≤ p ≤ g + k.

2. Non-deterministically select a subset of size p of the neurons in B ∪ {σ1, . . . , σk}.

3. Check if the chosen neurons are fireable. The neurons in B are easy to check, and
the unbounded neurons can be checked as described above, using their associated
Jt’s (modulo-jt counters). If at least one is not fireable, abort the computation by
decrementing counter ZERO by 1.

4. Decrement the chosen unbounded counter by their dt’s and update their associated
Jt’s, as described above. The chosen bounded counters are also easily decremented
by the amounts specified in their rules (in the finite control).

5. Increment the chosen bounded counters and unbounded counters by the total number
of spikes sent to the corresponding neurons by their neighbors (again updating the
associated Jt’s of the chosen unbounded counters). Also, increment C0 by the number
of spikes the output neuron sends to the environment.

At some point, M non-deterministically guesses that Π has halted: It checks that all
bounded neurons are open and none is fireable, and the unbounded neurons have their
specified values of spikes. M can easily check the bounded neurons, since they are stored
in the finite control. For the unbounded neurons, M decrements the corresponding counter
by the specified number of spikes in that neuron. Clearly, C0 = x (for some number x)
with all other counters zero if and only if the SN P system outputs x with all the neurons
open and non-fireable (i.e., the system has halted) and the unbounded neurons containing
their specified values.

It is straightforward to verify that the above construction generalizes to when the
neurons have more than one rule. An unbounded neuron with m rules will have associated
with it m modulo-jtm counters, one for each rule and during the computation, and these
counters are operated in parallel to determine which rule can be fired. A bounded neuron
with multiple rules is easily handled by the finite control. We then have to modify item 3
above to:

Non-deterministically select a rule in each chosen neuron. Check if the chosen neu-
rons with selected rules are fireable. The neurons in B are easy to check, and the
unbounded neurons can be checked as described above, using the associated Jt’s

16

(modulo-jt counters) for the chosen rules. If at least one is not fireable, abort the
computation by decrementing counter ZERO by 1.

We omit the details. 2

Clearly, Lemma 5.1 generalizes to the following.

Corollary 1 PsµSpiktotEPnsyn
∗ (unb, del0) ⊆ PsPBCM .

We now show the converse of Lemma 5.1.

Lemma 5.2 NPBCM ⊆ NµSpiktotEPnsyn
∗ (unb, del0).

Proof. To simulate a PBCM we need to be able to simulate an addition instruction, a
subtraction instruction, and a halting instruction (but we do not need to test for zero).
The addition instruction will add one to a counter. The halting instruction will cause the
system to halt. The subtraction instruction will subtract one from a counter and cause
the system to abort if the counter was zero.

Also, from our definition of a “valid computation”, as a µ-halting computation, for the
output of the SN P system to be valid, the system must halt and be in a valid configuration
– we will see that in our construction, all neurons (bounded and unbounded) will contain
zero spikes, except the output neuron which will contain exactly one spike. This means
that any computation that leaves the non-output neurons with a positive spike count is
invalid.

To create a 0-delay unbounded SN P system Π that will simulate a PBCM M we
follow the simulation in the proof of Theorem 1. To simulate an instruction of the form
li = (ADD(r), lj , lk), we create the same ADD module as in the proof of Theorem 1. It is
important to note that all neurons in this module are bounded. Also, when the instruction
is done executing, all neurons in the module contain zero spikes if the module executed in
a valid manner. (There are some alternate computations which leave some spikes in some
of these neurons. These computations are invalid and the system will not generate any
output. This is explained more precisely in the proof of Theorem 1.)

To simulate an instruction of the form li = (SUB(r), lj , lk), we use the SUB module
from the proof of Theorem 1 with a few small changes. In this module we remove the
instruction a3T−s → a2T+s from neuron σr. Before, the neuron was a general neuron, but
by removing all the finite rules we are only left with rules of the form ai(aj)∗/ad → ap; t
and hence the neuron is unbounded. Note that all of the other neurons in the module are
bounded. This rule change still allows neuron r (representing counter σr) to fire if it stored
a3Tn spikes for some n (representing a positive count in the counter) before instruction li
is executed. In this case, the firing of neuron σr continues the computation. However, if
neuron σr contained no spikes before the execution of instruction li (representing a count
of zero), neuron σr will not fire causing the system to eventually halt (after other neurons
forget). In this case, M tried to decrement a zero counter and so the system aborted. In
the simulation, Π has halted in an invalid configuration since no neuron is fireable but
neuron σr is not empty and still contains 3T − s spikes. (Also, no output was generated
by the system).

The final change to the SUB module is that the instruction a5T → a2T is changed to
a6T → a2T causing the next instruction (lj or lk) to be chosen non-deterministically if the
subtraction simulation was successfully. Note that a correct execution of this module also
leaves all the neurons (other than σr) with zero spikes.

17

To simulate an instruction of the form li : HALT, we again create the same HALT
module given in the proof of Theorem 1. To generalize this simulation for a k-output
PBCM we modify the HALT module slightly to trigger all of the k output neurons. This
is done by creating extra synapses from neuron σlh to the neurons σ2, . . . , σk. In this case,
an accepting configuration leaves all non-output neurons with zero spikes and all output
neurons with exactly one spike. 2

Again, Lemma 5.2 generalizes to:

Corollary 2 PsPBCM ⊆ PsµSpiktotEPnsyn
∗ (unb, del0).

From Corollaries 1 and 2, we have the main result of this section:

Theorem 3 PsµSpiktotEPnsyn
∗ (unb, del0) = PsPBCM.

It is known that PBCMs with only one output counter can only generate semilinear
sets of numbers. Hence:

Corollary 3 0-delay unbounded SN P systems with µ-halting can only generate semilinear
sets of numbers.

Theorem 3 is the best possible result we can obtain, since if we allow bounded rules and
unbounded rules in the neurons, SN P systems become universal, as shown in Theorem 1,
where the subtraction module (Figure 5) has a neuron with the following rules

a6T−s(a3T)∗/a6T−s → a3T+s and a3T−s → a2Ts.

5.2 Closure Properties and Decision Problems

The following theorem is known:

Theorem 4 1. (Union, intersection, complementation) The sets of k-tuples generated
by k-output PBCMs are closed under union and intersection, but not under comple-
mentation.

2. (Membership) It is decidable to determine, given a k-output PBCM M and a k-tuple
α (of integers), whether M generates α.

3. (Emptiness) It is decidable to determine, given a k-output PBCM, whether it gen-
erates an empty set of k-tuples.

4. (Infiniteness) It is decidable to determine, given a k-output PBCM, whether it gen-
erates an infinite set of k-tuples.

5. (Disjointness) It is decidable to determine, given two k-ouput PBCMs, whether they
generate a common k-tuple.

6. (Containment, equivalence) It is undecidable to determine, given two k-output
PBCMs, whether the set generated by one is contained in the set generated by the
other (or whether they generate the same set).

18

7. (Reachability) It is decidable to determine, given a PBCM with k output coun-
ters and m auxiliary counters (thus a total of k + m counters) and configurations
α = (i1, . . . , ik, j1, . . . , jm) and β = (i′1, . . . , i

′
k, j

′
1, . . . , j

′
m) (the first k components

correspond to the output), whether α can reach β.

Then, from Theorem 3 and Theorem 4 parts 1–5, we have:

Corollary 4 Theorem 4 parts 1–6 also hold for 0-delay unbounded k-output SN P systems
with µ-halting.

In the construction of the PBCM from SN P system in the proof of Lemma 5.1, we
only provided counters for the unbounded neurons and a counter to keep track of the
number of spikes that the output neuron sends to the environment. The bounded neurons
are simulated in the finite control of the PBCM. We could have also allocated a partially
blind counter for each bounded neuron (for manipulating a bounded number) and use the
finite control to make sure that these added counters never become negative. Then the
PBCM will have m + 1 counters, where m is the total number of neurons (bounded and
unbounded) in the SN P system and σ1 corresponds to the output. In the case of k-output
SN P system, the PBCM will have m+k counters. Then from Theorem 4 part 7, we have:

Corollary 5 It is decidable to determine, given a 0-delay unbounded k-output SN
P system with m neurons, and configurations α = (i1, . . . , ik, j1, . . . , jm) and β =
(i′1, . . . , i

′
k, j

′
1, . . . , j

′
m) (the first k components correspond to the output), whether α can

reach β.

Note that for the above corollary, we do not need to define what is a halting configuration
for the SN P system, as we are only interested in reachability and not the set of tuples
the system generates.

6 Final Remarks

We have considered spiking neural P systems with a non-synchronized use of rules: in
any step, a neuron can apply or not its rules which are enabled by the number of spikes
it contains (further spikes can come, thus changing the rules enabled in the next step).
Asynchronous spiking neural P systems have been proved to be universal when using
extended rules (several spikes can be produced by a rule) and neurons containing both
bounded and unbounded rules.

Moreover, we have given a characterization of a class of spiking neural P systems – the
unbounded ones, with µ-halting – in terms of partially blind counter machines.

SN P systems operating in sequential mode were studied earlier in [9]. In this mode,
at every step of the computation, if there is at least one neuron with at least one rule
that is fireable we only allow one such neuron and one such rule (both chosen non-
deterministically) to be fired. It was shown in [9] that certain classes of sequential SN
P systems are equivalent to partially blind counter machines, while others are universal.
Thus, in some sense, non-synchronized and sequential modes of computation are equiva-
lent.

Many issues remain to be investigated for the non-synchronized SN P systems, starting
with the main open problem whether or not SN P systems with standard rules (rules can
only produce one spike) are Turing complete also in this case. Then, most of the questions

19

considered for synchronized systems are relevant also for the non-synchronized case. We
just list some of them: associating strings to computations (if i ≥ 1 spikes exit the output
neuron, then the symbol bi is generated); finding universal SN P systems, if possible, with
a small number of neurons; considering restricted classes of systems (e.g., with a bounded
number of spikes present at a time in any neuron). In the bibliography below we indicate
papers dealing with each of these issues for the case of synchronized SN P systems.

In the proof of the equivalence of asynchronous unbounded SN P systems with partially
blind counter machines e have used the µ-halting way of defining successful computations;
the resulting decidability consequences are also based on this condition. Can µ-halting
be replaced with the usual halting (hence ignoring the contents of neurons in the halting
configuration) without losing these results?

Then, a natural question is to investigate the class of systems for which “the time does
not matter”, for instance, such that N syn

gen (Π) = Nnsyn
gen (Π) (like in the second example

from Section 3). Suggestions in this respect can be found, e.g., in [1], [2].

Acknowledgements

The work of the authors was supported as follows. O. Egecioglu, O.H. Ibarra and S.
Woodworth were supported in part by NSF Grants CCF-0430945 and CCF-0524136. M.
Ionescu was supported by the fellowship “Formación de Profesorado Universitario” from
the Spanish Ministry of Education, Culture and Sport. Gh. Păun was partially supported
by the project BioMAT 2-CEx06-11-97/19.09.06. This research was in part carried out
during a visit of M. Ionescu and Gh. Păun at the Microsoft Research-University of Trento
Center for Computational and Systems Biology, Trento, Italy.

References

[1] M. Cavaliere, V. Deufemia: Further results on time-free P systems. Intern. J. Found.
Computer Sci., 17, 1 (2006), 69–90.

[2] M. Cavaliere, D. Sburlan: Time-independent P systems. In Membrane Computing.
International Workshop WMC5, Milano, Italy, 2004, LNCS 3365, Springer, 2005,
239–258.

[3] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. In [6], Vol. I, 169–194.

[4] H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In [6], Vol. I, 241–265.

[5] W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge Univ. Press, 2002.

[6] M.A. Gutiérrez-Naranjo et al., eds.: Proceedings of Fourth Brainstorming Week on
Membrane Computing, Febr. 2006, Fenix Editora, Sevilla, 2006.

[7] S. Greibach: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7, 3 (1978), 311–324.

20

[8] O.H. Ibarra, S. Woodworth: Characterizations of some restricted spiking neural P
systems. Proc. 7th Workshop on Membrane Computing, Leiden, July 2006, LNCS
4361, Springer, Berlin, 2006, 424–442.

[9] O.H. Ibarra, S. Woodworth, F. Yu, A. Păun: On spiking neural P systems and par-
tially blind counter machines. Proc. 5th International Conference on Unconventional
Computation, LNCS 4135, Springer, Berlin, 2006, 113–129.

[10] O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sosik, S. Woodworth: Nor-
mal forms for spiking neural P systems. In [6], Vol. II, 105–136, and Theoretical
Computer Sci., to appear.

[11] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

[12] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with exhaustive use
of rules. Intern. J. of Unconventional Computing, to appear.

[13] W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK, 8, 1 (2002), 32–36.

[14] W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.

[15] M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

[16] M. Minsky: Recursive unsolvability of Post’s problem of tag and other topics in theory
of Turing machines. Annals of Mathematics, 74, 3 (1961), 437–455.

[17] A. Păun, Gh. Păun: Small universal spiking neural P systems. In [6], Vol. II, 213–234,
and BioSystems, in press.

[18] Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.

[19] Gh. Păun: Languages in membrane computing. Some details for spiking neural P
systems. In Proceedings of Developments in Language Theory Conference, DLT 2006,
Santa Barbara, CA, June 2006, LNCS 4036, Springer, Berlin, 2006, 20–35.

[20] Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.

[21] Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural
P systems. Submitted 2005.

[22] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes. Springer-
Verlag, Berlin, 1997.

[23] The P Systems Web Page: http://psystems.disco.unimib.it.

21

