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Moving from variational principles, we develop
the Hamiltonian formalism for generally anisotropic
microstructured materials, in an attempt to extend
the celebrated Stroh formulation. Microstructure is
expressed through the indeterminate (or Mindlin-
Tiersten’s) theory of couple stress elasticity. The
resulting canonical formalism appears in the form of
a Differential Algebraic system of Equations (DAE),
which is then recast in purely differential form.
This structure is due to the internal constraint that
relates the micro- to the macro- rotation. The special
situations of plain and anti-plane deformations are
also developed and they both lead to a 7-dimensional
coupled linear system of differential equations. In
particular, the antiplane problem shows remarkable
similarity with the theory of anisotropic plates, with
which it shares the Lagrangian. Yet, unlike for plates, a
classical Stroh formulation cannot be obtained, owing
to the difference in the constitutive assumptions.
Nonetheless, the canonical formalism brings new
insight into the problem’s structure and highlights
important symmetry properties.
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1. Introduction2

The celebrated Stroh formalism [27] is a reformulation of the equations of elasticity which proves3

particularly useful for solving problems in plane anisotropic elastostatics [28]. These are reduced4

to a six-dimensional eigenvalue problem, of which they share all the relevant features. Besides, the5

method may be readily extended to steady-state elastodynamics [29]. In particular, the formalism6

is especially suited for discussing travelling wave propagation and it has gained considerable7

attention since it allows to prove existence of surface waves in generally anisotropic materials, a8

result that has eluded early researchers dealing with leaky waves [26]. As an example, in [10]9

it is illustrated how to derive the Stroh form of the governing equations for localized edge10

vibration modes in a circular isotropic Kirchhoff-Love shell, and then use the impedance matrix to11

efficiently compute the real roots of the frequency equation. It is now established that the secular12

equation governing surface waves is always real and that, whenever a surface wave exists, it is13

unique [3].14

Only recently, it could be recognized that the essence of the formalism lies in its Hamiltonian15

nature, thereby a space variable is treated as a time-like coordinate [8]. Despite this knowledge16

having been already noted in passing [2], the realization of its full potential is a recent progress,17

which has been put to advantage to systematically generalise the formalism to more complicated18

situations. For example, it could bring constrained elasticity [5] and laminated plates [7,9] in19

Stroh form. Also, it provided a basis to develop asymptotic reduced models for near-resonance20

disturbances in anisotropic media [11]. Indeed, in the absence of such a guidance, the right first-21

order formulation may only be developed by trial and error, such as it occurred for plates, see [8]22

and references therein. Furthermore, to the best of the authors’ knowledge, no similar attempts23

appear in the literature in the direction of applying the Stroh formalism to complex media. As24

a remarkable exception, we mention the extension of the Stroh formalism to piezoelectricity in25

the form of a 8-dimensional eigenvalue problem [4], and to piezo-magneto-elastic or magneto-26

electro-elastic media, as a 10-dimensional eigenproblem [1]. Similarly, anisotropic micropolar27

elasticity is considered in [15], where a 14-dimensional system is found for generalized plane28

strain and 6-dimensional for plane strain. It is worth emphasizing that all such papers develop29

the Stroh formalism through ad-hoc assumptions, in a trial and error approach, and it is not30

entirely clear how conjugate variable have been selected (that is whether they are the conjugate31

momenta of the variational principle or a linear combination thereof). In similar fashion, we32

mention the extension of the Stroh formalism to self similar problems in elastodynamics by the33

Smirnov-Sobolev method [30]. Although moving from a different perspective, that is directed at34

the problem’s solution rather than at elucidating the underlying variational structure, the paper35

reveals that a Stroh-like formalism still holds in dynamics.36

In this paper, we apply the Hamiltonian formalism to systematically develop the canonical37

form of the governing equations of elastostatics for a microstructured medium. Microstructure is38

described in the spirit of the indeterminate (or Mindlin-Tiersten’s) couple stress theory, which39

is a Cosserat theory wherein the couple stress is related to the gradient of the continuum40

(or macro) rotation [14,17,24]. Introduction of the microstructure has important downfalls on41

fracture mechanics [18,21] as well as body [12], Rayleigh [20,25], Stoneley [23] and Love [6] wave42

propagation, with important potential for applications [22]. It is therefore natural to investigate43

the variational structure of the associated Hamiltonian system. We show that the internal44

constraint relating the micro to the macro behaviour prevents reaching a classical Stroh formalism.45

This is especially surprising for antiplane problems, whose variational structure parallels that of46

anisotropic plates, which are amenable to the Stroh formalism. Still, the canonical system provides47

new insight into the fundamental structure of the equations.48
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2. Couple stress elasticity49

Let us consider a Cartesian co-ordinate system (O, x1, x2, x3), with the triad of unit vectors
(e1, e2, e3) directed alongside the relevant axes, attached to an elastic couple stress (CS) material.
This is a polar material, for which, alongside the classical Cauchy force stress tensor s, we
define the couple stress tensor µ (a table of symbols is presented in the Appendix). Across any
surface of unit normal n, an internal reduced couple vector acts, determined by the couple stress
tensor as qen =µn. It is expedient to decompose the force stress tensor s into its symmetric and
skew-symmetric parts, respectively

σ= Sym s= 1
2

(
s+ sT

)
, and τ = Skw s= 1

2

(
s− sT

)
,

where the superscript T denotes the transposed tensor. Componentwise, we have sij = σij + τij ,
with

σij = s(ij) = 1
2

(
sij + sji

)
, τij = s<ij> = 1

2

(
sij − sji

)
.

In addition, the couple stress tensor µ is split into its deviatoric and spherical parts

µ=µD + µS , µS = 1
3 (µ · 1)1,

where 1 is the rank 2 identity tensor and · denotes the scalar product, i.e. componentwise,50

1ij = δij , with δij indicating Kronecker’s delta symbol, while A ·B =AijBij and Einstein’s51

summation convention over twice repeated subscripts is assumed.52

In terms of kinematics, we introduce the displacement vector u and the rotation vector53

ϕ. Unlike Cosserat micro-polar theories, for which displacements and micro-rotations are54

independent fields, CS theory relates one to the other, through [14, Eqs.(4.9)]55

ϕ= 1
2 curlu, ⇔ ϕi = 1

2eijkuk,j , (2.1)

where E is the rank-3 permutation (Levi-Civita) tensor, whose components are denoted by56

eijk, and a subscript comma denotes partial differentiation, e.g. (gradu)kj = uk,j = ∂uk/∂xj . It57

follows that ϕ is solenoidal58

divϕ= 0, ⇔ ϕj,j = 0. (2.2)

As in CE, we define the linear strain tensor

ε= Sym gradu, ⇔ εij = u(i,j).

For a linear elastic anisotropic material, we have

σ= Cε,

where C is the rank 4 tensor of elastic moduli, i.e. Cijkl = cijkl, possessing the major and the minor
symmetry property, i.e. cijkl = cklij and cijkl = cjikl = cijlk, respectively. By Cε we mean the
rank 2 tensor obtained by double summation over the last pair of indices: cijklεkl. For isotropic
materials, we have

C = 2GI + λ1⊗ 1, ⇔ cijkl = 2Gδikδjl + λδklδij ,

where I is the rank 4 identity tensor and Λ and G> 0 are Lamé moduli. Here, the dyadic product59

is introduced for rank 2 tensors such that (A⊗B)C = (B ·C)A, for any triple of rank 2 tensors60

A,B andC.61

We introduce the torsion-flexure (wryness or curvature) tensor as the gradient of the rotation field62

χ= gradϕ, ⇔ χij =ϕi,j . (2.3)

In light of the connection (2.2) and recalling that tr grad≡ div, it is seen thatχ is purely deviatoric,63

i.e. χ=χD . Here, the divergence operator on rank 2 tensors operates on the second component,64

i.e. (div s)i = sij,j .65
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For a linear elastic CS material, we have the constitutive law

µ= `2Gχ,

where ` > 0 is a characteristic length related to the microstructure and G is the rank 4 tensor66

of couple stress moduli possessing the major symmetry property gijkl = gklij . Immediately, it67

appears that, to any effect, µ may be replaced by µD and in fact, the CS theory is named68

indeterminate after the observation that the first invariant of the couple stress tensor, i.e. tr µ=69

µ · 1 = µ11 + µ22 + µ33, rests indeterminate. Therefore, we are free to set it equal to zero without70

any loss of generality, i.e. giikl = gklii = 0. In the following, for the sake of brevity, we shall write71

µwith the understanding that µD is meant. For isotropic materials, we have72

µ= 2G`2
(
χ+ ηχT

)
⇔ gijkl = 2G

(
δjlδik + ηδjkδil

)
, (2.4)

where −1< η < 1 is a dimensionless number similar to Poisson’s ratio.73

The equilibrium equations, in the absence of body forces, read [19, Eq.(2)]

div s= o, (2.5a)

axial τ − 1
2 divµ= o, (2.5b)

where axial τ = 1
2Eτ , i.e. (axial τ )i = 1

2eijkτjk, denotes the axial vector attached to a skew-74

symmetric tensor. It is observed that, introducing the curl of a tensor as (curlW )ij = ejklWil,k, it75

can be easily proved that76

2 axial curlW = div
[
(tr W )1−W T

]
.

Consequently, Eqs.(2.5) admit a solution in terms of the Günther stress tensorsW and Z [13,15]77

s= curlW , µ= curlZ + (tr W )1−W T . (2.6)

However, as pointed out in [15], this representation leads to a formalism that is not closed.78

Through the inverse formula79

τ = E axial τ , ⇔ τij = eijk(axial τ )k, (2.7)

Eq.(2.5b) may be solved for τ80

τ = 1
2E divµ=−Skw curlµT , (2.8)

that in components read τij = 1
2eijkµkl,l. Hence, the skew-symmetric part of the force stress81

tensor s is determined by rotational equilibrium. Clearly, CE is retrieved taking `= 0, for then82

µ= τ = 0.83

We now write the total energy in the sense of Eshelby [8]84

L=

∫
B

[
1
2σ · ε+ 1

2µ · χ− p ·
(
ϕ− 1

2 curlu
)]

dV −
∫
∂B

(tn · u+ qn ·ϕ) dA, (2.9)

having introduced the Lagrangian multiplier vector p= [pi] to account for the constraint (2.1)
and being n the unit normal, in the outwards direction, to the surface element dA. Besides, we
let the normal tensor N =n⊗ n, the projector tensor P = 1−N, and the skew tensor P = Ep

associated with the vector p thought of as an axial vector. The prescribed boundary force and
couple vector are given by

tn = ten + τn− 1
2n× gradµnn, qn = Pqen = qen − µnnn,

being ten =σn and qen =µn the "elastic" part of the force and couple stress vector and µnn =85

N · µ=n · µn the normal part of the couple stress. We observe that the surface integral in (2.9)86
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may be equivalently rewritten as87

−
∫
∂B

[(
ten + τn

)
· u+ qen ·ϕ

]
dA.

Indeed, recalling the vector identities

div (a× b) = b · curla− a · curl b, (2.10a)

div (φb) = gradφ · b+ φ div b, (2.10b)

curl gradφ= o, (2.10c)

and making use of the divergence theorem, it is easily proved that

− 1
2

∫
∂B

(n× gradµnn · u) dA= 1
2

∫
∂B

(u× gradµnn · n) dA

= 1
2

∫
B

div (u× gradµnn) dV = 1
2

∫
B

(gradµnn · curlu) dV

=

∫
B

(gradµnn ·ϕ) dV =

∫
B

div (µnnϕ) dV =

∫
∂B

(ϕ · µnnn) dA,

having made use of Eq.(2.2). Therefore, − 1
2n× gradµnn in tn cancels out the term µnnn in qn.88

By the divergence theorem and making use of the equilibrium equations (2.5), we get89

L=−
∫
B
LdV,

having introduced the Lagrangian density function L90

L(gradu,ϕ, gradϕ,p) = 1
2σ · ε+ 1

2µ · χ+ p ·
(
ϕ− 1

2 curlu
)
, (2.11)

that, component-wise, reads

L(gradu,ϕ, gradϕ,p) = 1
2σiju(i,j) + 1

2µijϕi,j + pi
(
ϕi − 1

2eijkuk,j
)
.

The Euler-Lagrange (E-L) equations are

− ∂

∂xj

∂L

∂ui,j
+
∂L

∂ui
=−σij,j + 1

2pm,jemji = 0, (2.12a)

− ∂

∂xj

∂L

∂ϕi,j
+
∂L

∂ϕi
=−µij,j + pi = 0, (2.12b)

∂L

∂pi
=ϕi − 1

2eijkuk,j = 0, (2.12c)

that, recalling (2.7), amount to

−div
(
σ + 1

2P
)

= 0, (2.13a)

p− divµ= 0, (2.13b)

and the constraint (2.1). In particular, looking at (2.5b,2.13b), we are able to give a physical91

meaning to the Lagrange multiplier p92

p= 2 axial τ = 2 (τ23, τ31, τ12) (2.14)

wherefrom, 1
2P = τ and Eqs.(2.13) correspond to (2.5).93
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Special care is required when dealing with the Lagrange multiplier p. Indeed, acknowledging94

(2.2), it can be proved that divp= 0, whence95

p=− curlh,

with the gauge relation divh= 0. Consequently, making use of the vector identities (2.10)
alongside

curlh · curlu= 2 gradu · Skw gradh,

we may equivalently write

L(gradu,ϕ, gradϕ,h) = 1
2σiju(i,j) + 1

2µijϕi,j − ekjihkϕi,j + 1
2ui,j

(
hi,j − hj,i

)
,

up to boundary terms. This observation will be used in Sec.4 when seeking expressions for the96

Lagrange multiplier.97

3. Plane strain98

We now consider plane-strain conditions [24]99

u3 =ϕ1 =ϕ2 = 0,

by which there is no dependence of the deformation on x3. Thus, ε= grad2 u, and grad2 is the100

gradient operator restricted to the co-ordinates xα, Greek subscripts ranging in the set {1, 2}.101

Similarly, the constraint (2.1) reduces to the single component102

ϕ3 = 1
2

(
u2,1 − u1,2

)
= 1

2

(
u,1 · e2 − u,2 · e1

)
, (3.1)

that immediately satisfies (2.2), while the wryness tensor (2.3) becomes

χ= grad2 ϕ3 =ϕ3,1e3 ⊗ e1 + ϕ3,2e3 ⊗ e2,

having introduced the dyadic operator for vectors such that (a⊗ b)c= (b · c)a, for any triple of103

vectors a, b and c.104

Within a Stroh formalism, we define the usual rank 2 matrices105

Qαβ = cα1β1, Rαβ = cα1β2, Tαβ = cα2β2, (3.2)

whereQ and T are symmetric, alongside the symmetric matrix106

Uαβ = `2g3α3β . (3.3)

Through these, we can define the elastic part of the reduced traction vectors (in the plane of strain)107

te1 = Qu,1 + Ru,2, te2 = RTu,1 + Tu,2, (3.4)

and the out-of-plane component of the reduced couple-stress vectors qe1 and qe2 , respectively108

qe13 = qe1 · e3 =U11ϕ3,1 + U12ϕ3,2, qe23 = qe2 · e3 =U21ϕ3,1 + U22ϕ3,2. (3.5)

We observe that109

σ · ε= te1 · u,1 + te2 · u,2,

and110

µ · χ=µ · grad2 ϕ3 = µ31χ31 + µ32χ32 = qe13ϕ3,1 + qe23ϕ3,2.

Besides, specializing (2.13b), the Lagrangian multiplier p has the single non-zero component

p3 = µ31,1 + µ32,2 = qe13,1 + qe23,2,

and from (2.7,2.14) we get the single non-zero component in the skew part of the force stress111

tensor112

τ12 = 1
2P12 = 1

2p3 =−τ21. (3.6)
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Then, the Lagrangian density (2.11) becomes

L(u,1,u,2, ϕ3, ϕ3,1, ϕ3,2, p3) = 1
2

[
te1 · u,1 + te2 · u,2 + qe13ϕ3,1 + qe23ϕ3,2

]
+ p3ϕ3 − 1

2p3
(
u,1 · e2 − u,2 · e1

)
,

where it is understood that the scalar product now carries over 2 components only. The conjugate
momenta are

∂L

∂u,1
= te1 − 1

2p3e2 = te1 + τ21e2 = s1, (3.7a)

∂L

∂u,2
= te2 + 1

2p3e1 = te2 + τ12e1 = s2, (3.7b)

∂L

∂ϕ3,1
= qe13, (3.7c)

∂L

∂ϕ3,2
= qe23, (3.7d)

whereupon the Lagrangian may be rewritten as

L(u,1,u,2, ϕ3, ϕ3,1, ϕ3,2, p3) = 1
2u,1 ·Qu,1 + u,1 ·Ru,2 + 1

2u,2 ·Tu,2

+ 1
2U11ϕ

2
3,1 + U12ϕ3,1ϕ3,2 + 1

2U22ϕ
2
3,2 + p3ϕ3 + 1

2p3
(
u,2 · e1 − u,1 · e2

)
.

We now come to an important juncture and treat either co-ordinate as a time-like variable, say
x2 to fix ideas. Consequently, we introduce the Legendre transformation

H(u,1, s2, ϕ3, ϕ3,1, q
e
23, p3) = s2 · u,2 + qe23ϕ3,2 − L

= 1
2s2 · u,2 + 1

2q
e
23ϕ3,2 − 1

2 t
e
1 · u,1 − 1

2q
e
13ϕ3,1 − p3ϕ3 − 1

4p3
(
u,2 · e1 − 2u,1 · e2

)
,

provided that we write u,2 in terms of s2 by (3.7b) and ϕ3,2 in terms of qe23 by (3.7d). For the113

former, making use of (3.4), we get114

u,2 = T−1
(
− 1

2p3e1 −RTu,1 + s2

)
, (3.8)

assuming that T is invertible, while for the latter115

ϕ3,2 =U−122

(
qe23 − U21ϕ3,1

)
, (3.9)

assuming U22 6= 0. Therefore, we can write the Hamiltonian density function (whose arguments
are omitted for brevity)

H = 1
2s2 ·T

−1
(
− 1

2p3e1 −RTu,1 + s2

)
+ 1

2q
e
23
qe23 − U21ϕ3,1

U22
− 1

2u,1 ·Qu,1

− 1
2u,1 ·RT−1

(
− 1

2p3e1 −RTu,1 + s2

)
− 1

2U11ϕ
2
3,1 − 1

2U12ϕ3,1
qe23 − U21ϕ3,1

U22

− p3ϕ3 − 1
4p3

[
T−1

(
− 1

2p3e1 −RTu,1 + s2

)
· e1 − 2u,1 · e2

]
,

which reduces to

H = 1
2

(
− 1

2p3e1 −RTu,1 + s2

)
·T−1

(
− 1

2p3e1 −RTu,1 + s2

)
+ 1

2

(qe23 − U21ϕ3,1)2

U22
− 1

2u,1 ·Qu,1 −
1
2U11ϕ

2
3,1 − p3

(
ϕ3 − 1

2u,1 · e2
)
. (3.10)
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Indeed, letting the generalized co-ordinate vector q̄= (u, ϕ3) and the conjugate momenta p̄=116

(s2, q
e
23), the first set of canonical equations117

δH

δp̄
= ˙̄q (3.11)

is
δH

δs2
= T−1

(
− 1

2p3e1 −RTu,1 + s2

)
=u,2,

corresponding to (3.8), and
δH

δqe23
=

(qe23 − U21ϕ3,1)

U22
=ϕ3,2,

that matches (3.9). Likewise, the second set of canonical equations118

δH

δq̄
=− ˙̄p, (3.12)

yields119

δH

δu
=− ∂

∂x1

∂H

∂u,1
=
[
RT−1

(
− 1

2p3e1 −RTu,1 + s2

)
+ Qu,1 − 1

2p3e2

]
,1

=−s2,2 (3.13)

and120

δH

δϕ3
=− ∂

∂x1

∂H

∂ϕ3,1
+
∂H

∂ϕ3
=

[
U21

U22
(qe23 − U21ϕ3,1) + U11ϕ3,1

]
,1

− p3 =−qe23,2. (3.14)

Indeed, in light of Eqs.(3.6,3.7a), Eq.(3.13) is simply121 (
te1 + τ21e2

)
,1

+ s2,2 = s1,1 + s2,2 = o,

that corresponds to (2.5a). Similarly, making use of (3.5,3.6) and (3.9), Eq.(3.14) may be rewritten122

as123

qe13,1 + qe23,2 − 2τ12 = 0,

which amounts to the rotational equilibrium (2.8). Thus, for a homogeneous material, we get

u,2 =−T−1RTu,1 + T−1φ,1 − Λ,1T
−1e1, (3.15a)

φ,2 =
(
RT−1RT −Q

)
u,1 −RT−1φ,1 + Λ,1

(
e2 + RT−1e1

)
, (3.15b)

ϕ3,2 =−U21

U22
ϕ3,1 + U−122 Φ,1, (3.15c)

Φ,2 =

(
U2
21

U22
− U11

)
ϕ3,1 −

U21

U22
Φ,1 + 2Λ, (3.15d)

having let the stress functions φ=
∫x1s2dξ1, Λ= 1

2

∫x1p3dξ1 =
∫x1τ12dξ1 and Φ=

∫x1qe23dξ1,124

that are defined up to an arbitrary function of x2. In the spirit of considering x2 a time-like125

variable, this is a system of ODEs in canonical form. We also observe a connection with Günther126

tensor potentials (2.6), namely φα =−Wα3 and Φ,1 =−Z33,1 + φ2, cf. [15, Eqs(2.38-40)].127

Now, we only need to dispose of the so-far undetermined Lagrange multiplier Λ. For this, we
take the scalar product of (3.8) with e1 and make use of the constraint (3.1)

u,2 · e1 =−2ϕ3 + u,1 · e2 = T−1
(
− 1

2p3e1 −RTu,1 + s2

)
· e1,

whereupon we find128

Λ,1 = ζ
(
φ,1 · f1 − u,1 · f2 + 2ϕ3

)
, (3.16)

having let the shorthand vectors

f1 = T−1e1, and f2 = e2 + Rf1,

and ζ−1 = T−1e1 · e1 = f1 · e1. The connection (3.16) shows that, similarly to classical129

incompressible elasticity, the Lagrange multiplier is determined by an algebraic relation where130
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no x2 derivative appears. Consequently, the governing equations (3.15,3.16) form a system131

of Differential Algebraic Equations (DAEs) in semi-explicit form. However, in contrast to132

incompressible elasticity, Eqs.(3.15d) and (3.16) indicate that a Stroh classical formulation, where133

the unknown vectors only appear in differential form, is not accessible.134

We now show that this system of DAEs has differential index 1. For the sake of convenience, we
let the matrices

N1 =−T−1RT , (3.17a)

N2 = RT−1RT −Q =−RN1 −Q = NT
2 , (3.17b)

N3 =U−122

[
−U21 1

U2
21 − U22U11 −U21

]
. (3.17c)

Differentiating (3.16) with respect to x2 and then making use of (3.15c), we get

ζ−1Λ,2 =φ,2 · f1 − u,2 · f2 + 2U−122 (−U21ϕ3 + Φ) ,

and, by (3.15a,3.15b),

ζ−1Λ,2 =
(
N2u,1 + NT

1 φ,1 + Λ,1f2

)
· f1

−
(
N1u,1 + T−1φ,1 − Λ,1f1

)
· f2 + 2U−122 (−U21ϕ3 + Φ) ,

that provides the evolution equation for Λ

ζ−1Λ,2 =
(
N2f1 −NT

1 f2

)
· u,1 +

(
N1f1 −T−1f2

)
· φ,1 + 2Λ,1f1 · f2

+ 2U−122 (−U21ϕ3 + Φ) .

For better understanding, we adopt the convention that vectors are columns and their
transpose are rows. Thus, letting the 7-component row vector

ξT =
[
uT , φT , Λ, ϕ3, Φ

]
,

we finally obtain the system of first order linear PDEs135

dξ

dx2
= N

dξ

dx1
+ b, (3.18)

where we have let the 7 by 7 Stroh matrix136

N =

[
N5×5 O

O N3

]
, (3.19)

with the 5 by 5 matrix

N5×5 =


N1 T−1 −f1
N2 NT

1 f2

ζ
(
N2f1 −NT

1 f2

)T
ζ
(
N1f1 −T−1f2

)T
2ζf1 · f2

 .
and the right hand side is a linear function of ξ137

b =


o

o

2ζU−122 (−U21ϕ3 + Φ)

0

2Λ

 . (3.20)

Clearly, the Stroh (or fundamental elasticity) matrix (3.19) has block structure and coupling of the
unknowns ξT1 = [uT , φT , Λ] and ξT2 = [ϕ3, Φ] only occurs through the right hand side (3.20).
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Indeed, we can write the coupled system

dξ1
dx2

= N5×5
dξ1
dx1

+ L5×2ξ2, (3.21a)

dξ2
dx2

= N3
dξ2
dx2

+ L2×5ξ1, (3.21b)

with138

L5×2 = 2ζU−122


0 0

0 0

0 0

0 0

−U21 1

 , L2×5 = 2

[
0 0 0 0 0

0 0 0 0 1

]
. (3.22)

(a) Isotropic material139

We now show that the Hamiltonian/Stroh formulation so far developed correctly represents the140

governing equations of plane isotropic CS elasticity. These are [12,19]141

(G+ λ) grad2 div2 u+G42

[
u− 1

2 `
2 curl2 curl2 u

]
= 0, (3.23)

where 42 ≡ div2 grad2, while (curl2 u)α = eαβuβ,α, having let the rank 2 alternating tensor eαγ
such that e11 = e22 = 0 and e12 =−e21 = 1. Besides, the sharing force is connected to the rotation
through

τ12 =G`242ϕ3.

Upon introducing the potentials ω,H such that142

u1 = ω,1 +H,2, u2 = ω,2 −H,1, (3.24)

the governing equations (3.23) decouple as [19, Eqs.(14)]

(2G+ λ)42ω= 0, and G42

(
1− 1

2 `
242

)
H = 0.

Indeed, ϕ3 =− 1
242H and143

µ3α = 2G`2ϕ3,α =−G`242H,α. (3.25)

whence we get the physical meaning of H , whose bilaplacian is related to the shearing force τ12,144

τ12 =Λ,1 =G`242ϕ3 =− 1
2G`

242
2H. (3.26)

Finally, the scalar potential is related to displacement flux

div2 u=42ω.

We let the matrices (3.2,3.3)

U = 2G`212, Q =

[
2G+ λ 0

0 G

]
,

R =

[
0 λ

G 0

]
, T =

[
G 0

0 2G+ λ

]
,

where 12 is the rank 2 identity matrix. It easily follows that

N1 =−

[
0 1
λ

2G+λ 0

]
, N2 =−4G

[
G+λ
2G+λ 0

0 0

]
,

while ζ =G,
f1 =G−1e1, f2 = 2e2.
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The system (3.18) becomes

u1,2 =−u2,1 +
1

G
φ1,1 −

1

G
Λ,1 (3.27a)

u2,2 =− λ

2G+ λ
u1,1 +

1

2G+ λ
φ2,1, (3.27b)

φ1,2 =−4G
G+ λ

2G+ λ
u1,1 −

λ

2G+ λ
φ2,1, (3.27c)

φ2,2 =−φ1,1 + 2Λ,1, (3.27d)

Λ,2 =−2Gu1,1 − φ2,1 + `−2Φ, (3.27e)

ϕ3,2 =
1

2G`2
Φ,1, (3.27f )

Φ,2 =−2G`2ϕ3,1 + 2Λ. (3.27g)

Differentiation of Eq.(3.27d) with respect to x1 gives

s12,1 + s22,2 = 2τ12,1,

that immediately corresponds to (2.5a) in consideration of the connection s21 = σ21 + τ21 = s12 −
2τ12. Similarly, differentiation of (3.27c) lends

s12,2 +
λ

2G+ λ
s22,1 + 4G

G+ λ

2G+ λ
u1,11 = 0,

which, with a bit of algebra, corresponds to the first of Eqs.(3.23). Cross differentiation of (3.27f )
and (3.27g) allows eliminating Φ,12 to give

Λ,1 =G`242ϕ3,

that matches Eq.(3.26). Besides, plugging this result in either equation lends

Φ,12 = qe23,2 = µ32,2 = 2G`2ϕ3,22,

which corresponds to (3.25).145

4. Antiplane deformations146

Under antiplane shear deformations, the displacement fieldu= (u1, u2, u3) is completely defined147

by the out-of-plane component u3 =w(x1, x2). Thus we have148

u1 = u2 =ϕ3 = 0,

and again no dependence of the deformation on x3. Thus, Eq.(2.1) lends the rotationϕ= 1
2 curl2 w149

(see [19] for the definition of curl operating on a scalar field)150

ϕα = 1
2eαγw,γ . (4.1)

Thus, we define the 2D rotation vector

ϕT =
[
ϕ1, ϕ2

]
,

whence the curvature tensor (2.3) is immediately obtained and it is deviatoric

χαβ =ϕα,β = 1
2eαγw,γβ , ⇔ χ= 1

2

[
w,12 w,22
−w,11 −w,12

]
.

Furthermore, from (2.8) and (2.13b), we get the non-zero components of the skew force stress151

tensor152

τ13 =− 1
2µ2β,β =− 1

2p2, τ23 = 1
2µ1β,β = 1

2p1. (4.2)
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The Lagrangian density (2.11) becomes153

L(grad2 w,ϕ, grad2ϕ,p) = 1
2

[
σ3αw,α + qe1 ·ϕ,1 + qe2 ·ϕ,2

]
+ p1

(
ϕ1 − 1

2w,2
)

+ p2
(
ϕ2 + 1

2w,1
)
.

(4.3)
The Euler-Lagrange equation associated with the variation of w reads

−σ3α,α + 1
2p1,2 −

1
2p2,1 = 0,

that, by (4.2), reduces to (2.13a). Similarly, through varying ϕ, we get the vector E-L equation,154

− q1,1 − q2,2 + p= o, (4.4)

that corresponds to (2.13b).155

We now try to relate antiplane problems in CS elasticity with the theory of anisotropic156

Kirchhoff plates, which admits a classical Stroh formalism. If we identify the Lagrange multiplier157

p with the shearing force for plates, by assuming p=− curl2 h, we immediately obtain the plate158

equilibrium equation div2 p= 0. Besides, employing the divergence theorem, (4.3) attains the159

alternative form160

Lp(grad2 w, grad2ϕ, h, grad2 h) = 1
2

[
(σ3α + h,α)w,α + µαβϕα,β

]
+ h

(
ϕ1,2 − ϕ2,1

)
, (4.5)

that is formally equivalent to the Lagrangian density adopted for anisotropic plates [8, Eq.(4.15)],161

provided we identify ϕ with θ, µαβ with the bending moment in the plate, Mαβ , and σ3α + h,α162

with either normal force,N1α orN2α, acting in the plane of the plate. Indeed, such an assumption163

allows to express the constraint associated with the Lagrange multiplier h in terms of "time"164

derivatives, i.e. they become rheonomic. However, to allow for a classical Stroh formulation, one165

feature is missing: namely, unlike in plate problems, the term σ3α + h,α is not constitutively166

defined.167

We proceed with the Lagrangian density (4.3) and, making use of (2.14), obtain the conjugate
momenta

∂L

∂w,2
= σ32 − 1

2p1 = σ32 − τ23 = s32, (4.6a)

∂L

∂ϕ,2
= qe2. (4.6b)

In analogy with (3.3), we let the symmetric matrix168

Ûαβ = c3α3β , (4.7)

whence169

σ3α = Ûαβw,β , (4.8)

and Eq.(4.6a) may be easily solved for w,2170

w,2 = Û−122

(
s32 + 1

2p1 − Û21w,1

)
. (4.9)

For (4.6b) we need to let, in analogy with (3.2),171

Q̂αβ = `2gα1β1, R̂αβ = `2gα1β2, T̂αβ = `2gα2β2, (4.10)

so that, paralleling (3.4),172

qe1 = Q̂ϕ,1 + R̂ϕ,2, qe2 = R̂Tϕ,1 + T̂ϕ,2, (4.11)

we can write173

ϕ,2 = T̂−1
(
qe2 − R̂Tϕ,1

)
. (4.12)

Besides, from (4.4) and the constitutive law (4.11), we get174

p= Q̂ϕ,11 +
(
R̂ + R̂T

)
ϕ,12 + T̂ϕ,22, (4.13)
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which shows that indeed div2 p= 0, inasmuch as (2.2) holds, as discussed in Sec.2. Recalling175

(2.14), this implies176

τ31,2 − τ32,1 = 0, (4.14)

which is in fact satisfied by Eqs.(2.14) of [20].177

We define the Hamiltonian density function H =H(s32, w,1,ϕ,ϕ,1, q
e
2,p)

H = s32w,2 + qe2 ·ϕ,2 − L= 1
2 Û
−1
22

(
s32 + 1

2p1 − Û21w,1

)2
+ 1

2

(
qe2 − R̂Tϕ,1

)
· T̂−1

(
qe2 − R̂Tϕ,1

)
− 1

2 Û11w
2
,1 − 1

2ϕ,1 · Q̂ϕ,1 − p ·ϕ−
1
2p2w,1, (4.15)

whence, from (3.11), we retrieve (4.9)

δH

δs32
= Û−122

(
s32 + 1

2p1 − Û21w,1

)
=w,2,

and (4.12)
δH

δqe2
= T̂−1

(
qe2 − R̂Tϕ,1

)
=ϕ,2.

The canonical equation (3.12) gives

δH

δϕ
=
[
Q̂ϕ,1 + R̂T̂−1

(
qe2 − R̂Tϕ,1

)]
,1
− p=−qe2,2,

and
δH

δw
=
[
Û21Û

−1
22

(
s32 + 1

2p1 − Û21w,1

)
+ Û11w,1 + 1

2p2

]
,1

=−s32,2,

corresponding to (2.13b) and (2.13a), respectively. We introduce the stream functions, which are178

defined up to a function of x2,179

φ=

∫x1

s32dξ1, Φ=

∫x1

qe2dξ1, Λ= 1
2

∫x1

pdξ1,

and write the first order system

ϕ,2 = N̂1ϕ,1 + T̂−1Φ,1, (4.16a)

Φ,2 = N̂2ϕ,1 + N̂T
1 Φ,1 + 2Λ, (4.16b)

w,2 =− Û21

Û22

w,1 +
1

Û22

φ,1 +
1

Û22

Λ1,1 (4.16c)

φ,2 =

(
Û2
21

Û22

− Û11

)
w,1 −

Û21

Û22

φ,1 −
Û21

Û22

Λ1,1 − Λ2,1, (4.16d)

having let180

N̂1 =−T̂−1R̂T , N̂2 =−R̂N̂1 − Q̂.

It only remains to determine an expression for the Lagrange multiplier p, which amounts to181

acknowledging the constraint (2.1). In fact, Eq.(4.1) allows to solve (4.16c) for Λ1,1 and to dispense182

with w,1 and w,2183

Λ1,1 = 2Û22ϕ1 − 2Û21ϕ2 − φ,1. (4.17)

In light of (4.1) and (4.8), this algebraic condition simply states that τ23 = σ32 − s32. When we plug184

this result into (4.16d) and use (4.8), we find185

φ,2 = 2Û11ϕ2 − 2Û12ϕ1 − Λ2,1 =−σ31 − τ31 =−s31 (4.18)

that, differentiated with respect to x1, gives the equilibrium equation (2.5a). To get an equation
for Λ2, we cannot directly employ the connection 2ϕ2 =−w,1, for it is algebraic. Instead, we take
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advantage of div2 p= 0, whereby

div2Λ= 0.

Mathematically, this amounts to exploiting (2.2), which is obtained cross differentiating and
adding (4.1), whence a differentiation index 2 is implied. Thus, Eq.(4.17) immediately lends the
evolution equation

Λ2,2 =−2Û22ϕ1 + 2Û21ϕ2 + φ,1,

that corresponds to (4.14), integrated with respect to x1. In this form, the problem’s variables are
ϕ,Φ, φ,Λ, and they are governed by a semi-explicit system of first order DAE, the single algebraic
relation being (4.17). To obtain a pure system of ODEs, an evolution equation for Λ1 is demanded.
This is obtained differentiating (4.17) with respect to x2 and then integrating with respect to x1

Λ1,2 = 2
[
N̂1ϕ+ T̂−1Φ

]
·
(
Û22e1 − Û21e2

)
− φ,2 = 2ϕ ·

[
N̂T

1 f2 + f1

]
+ 2Φ · T̂−1f2 + Λ2,1,

having made use of (4.16a,4.18) and let186

f1 = Û12e1 − Û11e2, f2 = Û22e1 − Û21e2.

Consequently, the system of DAEs has differentiation order 3, that is typical of constrained187

mechanical systems. Also, we note that188

σ31 = 2ϕ · f1, σ32 = 2ϕ · f2. (4.19)

We thus obtain the linear system in the variables (ϕ,Φ, φ,Λ)

ϕ,2 = N̂1ϕ,1 + T̂−1Φ,1, (4.20a)

Φ,2 = N̂2ϕ,1 + N̂T
1 Φ,1 + 2Λ, (4.20b)

φ,2 =−Λ2,1 − 2ϕ · f1, (4.20c)

Λ1,2 =Λ2,1 + 2ϕ ·
[
N̂T

1 f2 + f1

]
+ 2Φ · T̂−1f2, (4.20d)

Λ2,2 = φ,1 − 2ϕ · f2, (4.20e)

Cross-differentiating Eqs.(4.20a,4.20b) to eliminate Φ,12 yields (4.13). Besides, multiplying189

(4.20a) by −R and substituting in (4.20b) gives (4.4). In light of Eqs.(4.19), Eq.(4.20c) gives the190

equilibrium equation (2.5a), while (4.20e) amounts to (4.14), both having being integrated along191

x1. Finally, adding (4.20c) and (4.20d) and differentiating lends (4.6a), while cross-differentiating192

(4.20c,4.20e) and adding lends the second order connection for φ193

42φ= 2ϕ,1 · f2 − 2ϕ,2 · f1 = σ32,1 − σ31,2, (4.21)

that supports the interpretation of φ as a stress function for the problem.194

Thus, letting ξ̂
T

= [ϕT ,ΦT , φ,ΛT ], we have195

dξ̂

dx2
= N̂

dξ̂

dx1
+ b̂, (4.22)

where we have let the Stroh matrix196

N̂ =


N̂1 T̂−1 o o o

N̂2 N̂T
1 o o o

oT oT 0 0 −1

oT oT 0 0 1

oT oT 1 0 0

 , (4.23)
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and the right hand side is a linear function of ξ̂197

b̂= 2


O O o o o

O O o e1 e2
−f1T oT 0 0 0

(N̂T
1 f2 + f1)T (T−1f2)T 0 0 0

f2
T oT 0 0 0

 ξ̂. (4.24)

(a) Isotropic anti-plane deformations198

We now show that the above canonical formulation correctly reproduces the governing equations199

for antiplane deformations in isotropic CS media. Such framework demands200

ε= 1
2w,1e3 ⊗ e1 + 1

2w,2e3 ⊗ e2,

whence201

σ31 =Gw,1 =−2Gϕ2, σ32 =Gw,2 = 2Gϕ1. (4.25)

In particular,202

σ32,1 − σ31,2 = 2Gdivϕ= 0, (4.26)

and, by (4.21), φ turns harmonic. From (2.4), we get the curvature tensor

µ11 = 2G`2(1 + η)ϕ1,1 =G`2(1 + η)w,12 =−µ22, (4.27a)

µ21 = 2G`2
(
ϕ2,1 + ηϕ1,2

)
=−G`2

(
w,11 − ηw,22

)
, (4.27b)

µ12 = 2G`2
(
ηϕ2,1 + ϕ1,2

)
=−G`2

(
ηw,11 − w,22

)
, (4.27c)

whereby, from (2.13b,2.14), we have [20, Eq.(2.14)]203

τ13 =−G`242ϕ2, τ23 =G`242ϕ1, (4.28)

which clearly satisfy (4.14) in light of (2.2). The equilibrium equation (2.5a) reads [20, Eq.(2.15)]204

G
(

1− 1
2 `

242

)
42w= 0, (4.29)

or, equivalently, given that curl2ϕ=− 1
242w,205

2G curl2ϕ− τ31,1 − τ32,2 = 0. (4.30)

We let the vectors206

f1
T = [0,−G], f2

T = [G, 0],

alongside the matrices (4.7,4.10)

Û =G12, Q̂ = 2G`2
[

1 + η 0

0 1

]
,

R̂ = 2G`2
[

0 0

η 0

]
, T̂ = 2G`2

[
1 0

0 1 + η

]
,

where 12 is the rank 2 identity matrix. It easily follows that

N̂1 =−

[
0 η

0 0

]
, N̂2 =−2G`2

[
1 + η 0

0 1− η2

]
.



16

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc0000000
..................................................................

Eq.(4.20) gives the first order system

ϕ1,2 =−ηϕ2,1 +
1

2G`2
Φ1,1, (4.31a)

ϕ2,2 =
1

2G`2(1 + η)
Φ2,1 (4.31b)

Φ1,2 =−2G`2(1 + η)ϕ1,1 + 2Λ1 (4.31c)

Φ2,2 =−2G`2
(

1− η2
)
ϕ2,1 − ηΦ1,1 + 2Λ2 (4.31d)

φ,2 = 2Gϕ2 − Λ2,1 (4.31e)

Λ1,2 =−2G(1 + η)ϕ2 + Λ2,1 + `−2Φ1 (4.31f )

Λ2,2 = φ,1 − 2Gϕ1. (4.31g)

Cross-differentiating and adding Eqs.(4.31e) and (4.31g) shows that φ is harmonic inasmuch as
(2.2) holds, which result is in line with (4.21). Consequently, letting the harmonic conjugate
function φ∗, upon recalling that φ,2 =−φ∗,1, we get, from (4.31e),

φ∗ =Gw + Λ2 =

∫x1

s31dξ1,

which gives to the harmonic conjugate function the role of the stress function for s31.207

Eqs.(4.31a,4.31b) correspond to Eqs.(4.27c) and (4.27a), respectively. Eqs.(4.31c,4.31d) represent208

rotational equilibrium (2.13b), provided that we use (4.31a) to eliminate Φ1,1. Similarly, in light of209

(4.25) and of (2.14), Eq.(4.31e) lends translational equilibrium (4.18). Eq.(4.31g) amounts to (4.14),210

while (4.31f ) is (4.30), having differentiated and used (4.31a) to eliminate `−2Φ1,1.211

5. Conclusions212

We derived the Hamiltonian formalism associated with the indeterminate couple stress theory213

of elasticity for general anisotropic media. The Hamiltonian framework is known to lead to214

the celebrated Stroh formalism in classical elasticity. This canonical rewriting of the governing215

equations is of great theoretical and practical value, because it lends fundamental existence216

and uniqueness results, as well as providing a powerful tool for solving problems in generally217

anisotropic media. For such reasons, we extend the formalism to the couple stress theory. This218

is a strain gradient theory that incorporates microstructural effects in a fashion similar to lattice219

elasticity [16]. We show that, unlike classical and constrained elasticity, the theory does not allow220

for a standard Stroh formalism, owing to the nature of the internal constraint on the micro-rotation221

vector. Indeed, the constraint is algebraic and it cannot be eliminated. The resulting canonical222

formulation is a differential algebraic system of equations (DAE), which may be rewritten223

in purely differential terms by developing suitable evolution equations. However, the simple224

structure of classical elasticity cannot be reproduced.225

The developed canonical system is then specialized to the case of plane and antiplane strain226

for couple stress anisotropic media. The antiplane framework is especially noteworthy because227

it admits a Lagrangian formulation that exactly matches that of flexural/extensional Kirchhoff228

anisotropic plates, which are amenable to a Stroh formalism. Nonetheless, the corresponding229

canonical system in couple stress elasticity still lacks the features of a classical Stroh formulation,230

because the term corresponding to the normal force in the plate is not determined constitutively,231

owing to the presence of tangential stresses. This notwithstanding, the Hamiltonian formalism232

still provides a wealth of informations, including unexpected connections which are not apparent233

from the standard treatment.234
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239

Table of symbols240

Symbol Description Symbol Description
s Cauchy stress tensor µ Couple-stress tensor
ε Strain tensor χ Curvature tensor
σ Sym part of the stress tensor τ Skew-sym part of the stress tensor
u Displacement field ϕ Micro-rotation field
L Lagrangian density H Hamiltonian density
N Stroh matrix U Microstructure matrix (symmetric)

Q,T Diagonal blocks in N (symmetric) R,RT Off-diagonal blocks in N

eijk Rank 3 permutation tensor δij Kroneker delta tensor
e1, e2, e3 Orthonormal basis vectors Λ,G, `, η Constitutive parameters

241
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