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Abstract
We study reaction-diffusion processes with multi-species particles and hard-core interaction.
We add boundary driving to the system by means of external reservoirs which inject and
remove particles, thus creating stationary currents. We consider the condition that the time
evolution of the average occupation evolves as the discretized version of a system of coupled
diffusive equations with linear reactions. In particular, we identify a specific one-parameter
family of such linear reaction-diffusion systems where the hydrodynamic limit behaviour
can obtained by means of a dual process. We show that partial uphill diffusion is possible for
the discrete particle systems on the lattice, whereas it is lost in the hydrodynamic limit.

Keywords Uphill diffusion · Interacting particle systems · Hydrodynamic limit · Duality ·
Linear reaction-diffusion systems

1 Introduction

1.1 Motivation and Description of Results

The aimof this paper is to study ‘uphill diffusion’ inmulti-species interacting particle systems
with hard-core interaction. We analyse systems consisting of n types of particles and add
boundary reservoirs injecting and removing particles. Here, uphill diffusion means that mass
flows from regions with lower density to regions with higher density. Uphill diffusion is thus
a violation of Fick’s law. This phenomenon has been reported in a single-species system in
the presence of a phase transition (see [1–5] for 1D particle systems with Kac potentials
and [6] for 2D lattice gases related to the Ising model). In multicomponent systems, uphill
diffusion arises as a result of the competition between the gradients of each species [7–12].
The phenomenon whereby current in a stationary system is in a direction opposite to an
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external driving field has also been named ‘absolute negative mobility’ in [13]. Multi-species
particle systems have been much studied in the recent literature, especially in relation to the
notion of duality [14–22].

For diffusive models with a single species, transport of mass on a finite volume (here
assumed to be the unit d-dimensional cube) is often described by the continuity equation

∂

∂t
ρ = −∇ · J (1)

and the Fick’s law
J = −σ∇ρ (2)

Here ρ : [0, 1]d ×R+ → [0, 1] is the density of mass, J : [0, 1]d ×R+ → R is the current,
and σ > 0 is the diffusivity coefficient (that we assume constant throughout this paper).
Equations (1) and (2) can be obtained as the hydrodynamical limit of diffusive interacting
particle systems of “gradient type” [23], such as the simple symmetric exclusion process or
theKipnis-Marchioro-Presutti model [24]. Fick’s law (2) tells us that the total flow is opposite
to the density gradient.

Formulti-component systemswith n species, considering the vectorsρ = (ρ(1), . . . , ρ(n))

and J = (J (1), . . . , J (n)), where ρ(i)(x, t) and J (i)(x, t) denote the density and the current
of the ith species, the generalization of (1) and (2) is

∂

∂t
ρ = −∇ · J (3)

and
J = −� · ∇ρ. (4)

where � is now the n × n matrix of diffusion and ’cross-diffusion’ coefficients. When � is
non-diagonal, then uphill diffusion is possible [9–11]. We distinguish between the case of
‘partial’ uphill, which is obtained when the current of a given species has the same sign of
the boundary density gradient of that species, and ‘global’ uphill, which arises when the total
mass flows from a region of lower total density to a region of higher total density (see Sect.
1.2 for definitions of partial and global uphill).

In this paper, we shall investigate partial uphill diffusion for hard-core multi-species
interacting particle systems. Our analysis will have two targets: on one hand, we would like
to understand conditions on the rates defining the microscopic dynamics so that the system
is described by a linear reaction-diffusion system on a regular lattice; on the other hand, we
aim to understand if and how such particle systems display partial uphill diffusion in the
large scale limit. To achieve those targets we will consider the average occupation of each
species, which is a proxy for the true density. In the spirit of [25] and [26] we shall impose
that the equations for the average occupation of the species are closed. Furthermore, we shall
require that the evolution of the average occupation is described by the a discretized version
of (3) and (4). Actually, besides diffusion, we shall further include the possibility of reaction
terms, as described in the next subsection. Our main results can be summarized as follows:

• We show that the request of a linear reaction-diffusion system on a regular lattice imposes
constraints on the values of the “diffusivity matrix” and the reaction coefficient (see
Theorem 4.1).

• We identify a specific multi-species interacting particle system (see again Theorem 4.1)
for which the closure of correlation functions is accompanied by duality (see Sect. 5).
To our knowledge, this is the first multi-species interacting particle system with reaction
and diffusion for which one can prove the existence of a dual process (see [23] for
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a perturbative treatment of reaction-diffusion in the presence of duality for the sole
diffusive dynamics).

• Duality then leads to the proof of the hydrodynamic limit with the standard correla-
tion functions method [23]. Surprisingly, we shall see that – although the microscopic
dynamics has non-zero ‘cross-diffusivity’ terms – macroscopically the empirical mass
distribution of each species satisfies hydrodynamic PDE’s where the species are coupled
only by the reaction term. In other words, after a suitable space/time diffusive scaling,
the diffusivity matrix is necessarily diagonal and therefore partial uphill is absent. This
is consistent with [27, 28] where it has been observed that the densities of eq. (3) and (4)
remain positive if and only if the cross diffusivity terms are null.

We conclude this introduction with a discussion about uphill diffusion for Eqs. (3) and
(4) plus a linear reaction term.

1.2 Steady State Uphill Diffusion in Multi-component Systems

In this work we restrict ourselves to the case of two species diffusing on the unit interval.
In the case of a larger number of species one may expect that more complex regions of
uphill diffusion can arise. Let us call ρ(α)(x, t) : [0, 1] × [0,∞) → [0, 1] the density of
the species α ∈ {0, 1, 2}. We impose the constraint ρ(0) + ρ(1) + ρ(2) = 1, which will
represent later the hard-core interaction of the associated interacting particle system. It is
then enough to study the evolution of ρ(1) and ρ(2), which will be assumed to be smooth
functions. We consider a Cauchy problem with Dirichlet boundary conditions, where each
density is endowed with an initial datum ρ(α)(x, 0) = ρ

(α)
0 (x) and boundary conditions

ρ(α)(0, t) = ρ
(α)
L and ρ(α)(1, t) = ρ

(α)
R for α = 1, 2. We are interested in the stationary

properties. We consider

∂tρ
(1) = σ11∂

2
x ρ(1) + σ12∂

2
x ρ(2) + ϒ

(
ρ(2) − ρ(1)

)

∂tρ
(2) = σ21∂

2
x ρ(1) + σ22∂

2
x ρ(2) + ϒ

(
ρ(1) − ρ(2)

) (5)

where the matrix

� =
(

σ11 σ12
σ21 σ22

)
(6)

is assumed to have positive determinant and the sum of all its elements to be positive (the
reason for this assumption will become clear in what follows, see below Eq. (10)). The
stationary diffusive currents are given by

J (1)(x) = −σ11∂xρ
(1)(x) − σ12∂xρ

(2)(x)

J (2)(x) = −σ21∂xρ
(1)(x) − σ22∂xρ

(2)(x) (7)

We distinguish two cases:

• global uphill: this happens when the boundary values of the total boundary density
ρL = ρ

(1)
L + ρ

(2)
L and ρR = ρ

(1)
R + ρ

(2)
R and the total current J (x) = J (1)(x) + J (2)(x)

are such that either ρL < ρR and J (x) > 0 ∀x ∈ [0, 1], or ρL > ρR and J (x) < 0
∀x ∈ [0, 1].

• partial uphill for the ith species: for boundary values ρ
(1)
L , ρ

(2)
L , ρ

(1)
R , ρ

(2)
R ≥ 0, the system

has stationary partial uphill diffusion for the species i ∈ {1, 2} ifρ(i)
L < ρ

(i)
R and J (i)(x) >

0 ∀x ∈ [0, 1], or if ρ
(i)
L > ρ

(i)
R and J (i)(x) < 0 ∀x ∈ [0, 1].
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Clearly, in the case where each density simply obeys a one dimensional heat equation

∂tρ
(1)(x, t) = σ11∂

2
x ρ(1)(x, t)

∂tρ
(2)(x, t) = σ22∂

2
x ρ(2)(x, t)

(8)

no uphill diffusion (neither global nor partial) is possible.
Global uphill diffusion can be obtained by keeping the matrix � diagonal and adding a

reaction term, i.e.

∂tρ
(1) = σ11∂

2
x ρ(1) + ϒ

(
ρ(2) − ρ(1)

)

∂tρ
(2) = σ22∂

2
x ρ(2) + ϒ

(
ρ(1) − ρ(2)

) (9)

In [12] the above equations have been obtained as the hydrodynamical limit of a switching
interacting particle system, and the regionwith global uphill has been explicitly characterized.

Toobtain partial uphill diffusiononeneeds to consider themore general case (5)with anon-
diagonal matrix �. We give the stationary solution of (5) from which the existence of partial
uphill can be obtained. The computations to obtain these profiles are reported in Appendix A.
Introducing the constants A = ϒ σ12+σ22

σ11σ22−σ12σ21
> 0 and B = −ϒ σ11+σ21

σ11σ22−σ12σ21
< 0, the steady

state density profiles reads

ρ(1)(x) = E + Fx + C

(
1 + A − B

B

)
e−√

A−Bx + D

(
1 + A − B

B

)
e
√

A−Bx

ρ(2)(x) = E + Fx + Ce−√
A−Bx + De

√
A−Bx

(10)

where the constants C, D, E, F are determined by the boundary conditions as follows:

E = A ρ
(2)
L − B ρ

(1)
L

A − B
C =

B
(
ρ

(1)
L e2

√
A−B − ρ

(2)
L e2

√
A−B − ρ

(1)
R e

√
A−B + ρ

(2)
R e

√
A−B
)

(A − B)
(

e2
√

A−B − 1
)

F = − A ρ
(2)
L − A ρ

(2)
R − B ρ

(1)
L + B ρ

(1)
R

A − B
D =

B
(
ρ

(1)
L − ρ

(2)
L − ρ

(1)
R e

√
A−B + ρ

(2)
R e

√
A−B
)

A − B − A e2
√

A−B + B e2
√

A−B

From Eq. (10) we see that the conditions σ11+σ12+σ21+σ22 > 0 and σ11σ22−σ12σ21 > 0
guarantees A − B > 0, i.e., non-oscillating solutions. Here we plot in Fig. 1 the stationary
densities and currents for a specific choice of the boundary values and of the diffusivity
matrix and reaction term. From the picture one can clearly see partial uphill diffusion (in the
absence of global uphill).

1.3 Organization of the Paper

Our paper is organized as follows. In Sect. 2 we describe the generic form of a multi-species
Markov process with constant rates allowing at most one particle per site. We define the
process on a spatial structure given by a graph G and we compare to other models that have
been studied in the literature. We then compute in Sect. 3 the evolution equation for the
average occupation variables of each species.

From Sect. 4 onward we specialize to the case of two species on one-dimensional chains.
We start, in Sect. 4, by imposing that the average occupations evolve as the discretized version
of (5). This leads to a linear algebraic system, which can be solved. As a result, sufficient and
necessary conditions on the diffusivity matrix � and the reaction coefficient ϒ in order to
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Fig. 1 Density profile (dashed lines) and currents (continuous line). The red color is for species 1 and the blue

color for species 2. The boundary values are (ρ
(1)
L , ρ

(2)
L , ρ

(1)
R , ρ

(2)
R ) = (0.2, 0.6, 0.3, 0.1). The diffusivity

matrix and the reaction term are σ11 = σ22 = ϒ = 1 and σ12 = σ21 = 1/2

have the discrete version of a linear reaction-diffusion system are identified in Theorem 4.1.
Furthermore, it is shown in the same theorem an explicit example of a one-parameter family
of symmetric processes having such linear and discrete reaction-diffusion structure. This
specific model is further analyzed in Sect. 5, where we prove duality and the hydrodynamic
limit. Section 6 draws the conclusions of our analysis.

2 Hard-CoreMulti-species Particles on a Graph G = (V, E)

Notation: In what follows, we use greek letters (α, β, γ, δ, . . .) to denote the species of the
particles and latin letters (x, y, z, . . .) to denote the sites of the graph.

In this section we define our microscopic model on a generic graph G = (V , E). Here,
the set V = {1, 2, . . . , N } is a collection of N vertices. The set of edges E is such that the
graph is connected, oriented (directed) and without self-edges. On this graph G we consider
a system of interacting particles, each of which has its own type/species. We assume there are
n species. Furthermore, on each vertex of the graph there is at most one particle (hard-core
exclusion rule). Thus, the occupation variable at each vertex takes values in {0, 1, 2, . . . n},
with type 0 denoting the empty site.

The dynamical rule is due to a one-body interaction and a two-body interaction:

– on each site x ∈ V the occupation of type γ changes to type α at rate ax W α
γ (x);

– on each edge (x, y) ∈ E the occupations of type (γ, δ) changes to type (α, β) at rate
ax,y�

αβ
γ δ .
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Fig. 2 Hard-core two-species particles on a graph with 8 vertices and 2 reservoirs. Grey squares identify the
species 1, green triangles the species 2, and white circles the empty state. The reservoirs are represented by
rectangles, where the interior colours denote the density of species

Here the non-negative numbers {ax,y}(x,y)∈E and {ax }x∈V are, respectively, edge weights
(conductances) and site weights (local inhomogeneities) of the graph. For a visual represen-
tation of the process with two species see Fig. 2.

2.1 Process Definition

On the graph G = (V , E), we consider the Markov process {η(t); t ≥ 0} with state space

 = {0, 1, 2, . . . , n}V . A configuration of the process is denoted by η = (ηx )x∈V , where
each component can take the values ηx ∈ {0, 1, ..., n} and where ηx = α means the presence
of the species α at the site x . We recall that ηx = 0 is interpreted as an empty site.

The process is defined by the generator L working on functions f : 
 → R as

(L f )(η) = (Ledge f )(η) + (Lsi te f )(η), (11)

where

(Ledge f )(η) =
∑

(x,y)∈E

ax,y · (Lx,y f )(η)

and

(Lsi te f )(η) =
∑
x∈V

ax · (Lx f )(η)

We shall explain the two generators Ledge and Lsi te in the following subsections.
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2.1.1 The Edge Generator

We introduce the (n + 1)2 × (n + 1)2 matrix � whose elements are rates of transition for
the particle jumps on each edge. More precisely, we denote by �

αβ
γ δ the rate to change the

configuration η with ηx = γ, ηy = δ to the configuration η′ with η′
x = α, η′

y = β, while
η′

z = ηz for all z 
= x, y. Thus, the single-edge generator is given by

Lx,y f (η1, . . . , γ, . . . , δ, . . . , ηN )

=
n∑

α,β=0

�
αβ
γ δ

[
f (η1, . . . , α, . . . , β, . . . , ηN ) − f (η1, . . . , γ, . . . , δ, . . . , ηN )

]
(12)

where

�
αβ
γ δ ≥ 0 if (α, β) 
= (γ, δ)

∑

(γ,δ)∈{0,1,2,...,n}2 : (γ δ)
=(α,β)

�
αβ
γ δ = −�

αβ
αβ ∀(α, β) ∈ {0, 1, 2, . . . , n}2 .

2.1.2 The Site Generator

Having in mind that the site generator will describe a ‘boundary’ driving leading the system
to a non-equilibrium steady state, we assume that on each site there is a process which injects
and removes particles at a rate which is space-dependent. Thus, for each vertex x ∈ V , we
introduce the (n + 1) × (n + 1) matrix W (x) whose elements are rates of transitions on
that vertex. More precisely, we denote by W α

γ (x) the rate to change the configuration η with
ηx = γ into the configuration η′ with η′

x = α, while η′
z = ηz for all z 
= x . The single-vertex

generator is given by

Lx f (η1, . . . , γ, . . . , ηN )

=
n∑

α=0

W α
γ (x)
[

f (η1, . . . , α, . . . ., ηN ) − f (η1, . . . , γ, . . . , ηN )
]

(13)

where

W α
γ (x) ≥ 0 if α 
= γ

∑
γ∈{0,1,2,...,n}:γ 
=α

W α
γ (x) = −W α

α (x) ∀α ∈ {0, 1, 2, . . . , n} .

2.2 Comparison to Other Processes

Here, we discuss the relation of the general dynamics described above to some multi-species
processes considered in the past literature (we consider here the case of homogeneous con-
ductances and inhomogeneities ax,y = ax = 1). We shall mostly limit the discussion to
symmetric systems (for asymmetric models there is also a large literature, see for instance
[14] and references therein). In most cases, previous analyses have been restricted to a regular
lattice or a one-dimensional chain.

• General multi-species models. The edge dynamics of the reaction-diffusion particle sys-
tem in Sect. 2.1 has been considered on a d-dimensional lattice in [25] for the case n = 1
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species and in [26] for the case of an arbitrary number of species. In those papers, suf-
ficient conditions on the rates �

αβ
γ δ to guarantee the existence of dual process have been

identified.
• Multi-species exclusion processes. The edge dynamics ofmulti-species simple symmetric

exclusion process (SSEP) on a d-dimensional lattice, with at most one-particle per site,
has been considered in [29]. It corresponds to the model of Sect. 2.1 with�α0

0α = �0α
α0 
= 0

for all α = 0, 1, . . . , n, while all other off-diagonal elements of the matrix � vanish, as
well as the elements of the matrices W (x). For this model, the hierarchy of equations
for the correlations does not close, and the hydrodynamic limit has been shown in [29]
to be given by two coupled non-linear heat equations. An open boundary version of the
model with simple symmetric exclusion dynamic in the bulk has been presented in [7].
It corresponds to the model of Sect. 2.1 with �0b

b0 = �b0
0b = Db and with boundary rates

W b
0 (1) = αb, W 0

b = γb, W b
0 (N ) = βb, W 0

b (N ) = δb (here b labels the species). All the
other off-diagonal elements � and W (z) vanish.

• Multi-species stirring process. In the stirring process [30, 31], every couple of types
is exchanged in position with the same rate, which can be taken equal to 1 without
loss of generality. Thus, the bulk dynamics of the stirring process corresponds to the
case �

δγ
γ δ = 1 for all γ, δ = 0, 1, . . . , n, while all other off-diagonal elements of the

matrix � vanish. The hydrodynamic limit of the stirring process on a lattice is given
by n independent diffusions, i.e. the generalization of (8) to n types. The multi-species
stirring process on a chain with boundary driving has been studied in [32] with the choice
W b

γ (1) = αb and W b
γ (N ) = βb. With this particular choice of the boundary rates the

model is solvable and correlation functions in the non equilibrium steady state have been
computed using the matrix product ansatz.

• Multi-species switching process: A different set-up for multi-species particle systems
has been recently proposed in [12, 33]. One considers n “piled” copies of the graph G,
each with its own single-type dynamics. The possibility of changing type is described
by a switching rate between layers. This set-up eliminates the constraint of one particle
per site, in the sense that the projection of the dynamics on the columns of the piled
graph allows the presence of several particle of different types on the same “base” site.
In the case where each layer is a one-dimensional chain and two-layers are considered,
the hydrodynamic limit has been shown to be given by the “weakly” coupled reaction
diffusion equation (9). When boundary reservoirs are added, global uphill diffusion and
boundary layers are possible [12].

3 Evolution Equations for the Average Occupation

For the model introduced in Sect. 2.1, we define the average of the occupation variable of
each species ζ ∈ {0, 1, . . . , n} at time t ≥ 0 and at the vertex z ∈ V

μ(ζ)
z (t) = E

[
1{Iζ

z }(η(t))
]
. (14)

Similarly, we consider the time-dependent correlations (multiple occupancy variables)
between species ζ, ζ ′ ∈ {0, 1, . . . , n} at points z, z′ ∈ V

c(ζ,ζ ′)
z,z′ (t) = E

[
1{Iζ

z }(η(t))1{Iζ ′
z′ }(η(t))

]
. (15)
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Here Iζ
z = {η ∈ 
 : ηz = ζ } and1I denotes the indicator function of the set I. The notation

E [ f (η(t))] = ∫ ν0(dη)Eη [ f (η(t))] denotes the expectation in the process {η(t)}t≥0 started
from the initial measure ν0. The evolution equation of the density of the ζ -species can be
obtained by acting with the generator. We have

dE
[
1{Iζ

z }(η(t))
]

dt
= E

[(
L1{Iζ

z }
)

(η(t))
]
. (16)

In the following section we evaluate the right hand side of this equation by considering first
edge contributions and then site contributions.

3.1 Action ofLx,y

If z /∈ {x, y} then obviously
(
Lx,y1{Iζ

z }
)

(η) = 0. Otherwise, recalling that the graph G is

directed and the notation of [26], we have the following: when we fix z = x then

(
Lz,y1{Iζ

z }
)

(η) = Aζ
1 +

n∑
δ=1

Fζ δ
+11{Iδ

y }(η)+
n∑

γ=1

Bζγ
1 1{Iγ

z }(η)+
n∑

γ,δ=1

Gζγ δ
+1 1{Iγ

y }(η)1{Iδ
z }(η)

(17)
and when we fix z = y then

(
Lx,z1{Iζ

z }
)

(η) = Aζ
2 +

n∑
γ=1

Fζγ
−11{Iγ

x }(η)+
n∑

δ=1

Cζ δ
2 1{Iδ

z }(η)+
n∑

γ,δ=1

Gζγ δ
−1 1{Iγ

z }(η)1{Iδ
x }(η)

(18)
where the constants are defined as follows:

1. zero-order terms:

Aζ
1 =

n∑
β=0

�
ζβ
00 Aζ

2 =
n∑

β=0

�
βζ
00

2. first-order terms:

Bζγ
1 =
⎧
⎨
⎩

∑n
β=0(�

ζβ
γ 0 − �

ζβ
00 ) if ζ 
= γ

−∑n
β=0

(∑n
ζ

′=0 : ζ
′ 
=ζ

�
ζ

′
β

ζ0 + �
ζβ
00

)
if ζ = γ

Cζ δ
2 =
⎧
⎨
⎩

∑n
β=0(�

βζ
0δ − �

βζ
00 ) if ζ 
= δ

−∑n
β=0

(∑n
ζ

′=0 : ζ
′ 
=ζ

�
βζ

′
0ζ + �

βζ
00

)
if ζ = δ

Fζγ
−1 = Bζγ

2 =
n∑

β=0

(�
βζ
γ 0 − �

βζ
00 )

Fζ δ
+1 = Cζ δ

1 =
n∑

β=0

(�
ζβ
0δ − �

ζβ
00 )

3. second-order terms:

Gζγ δ
+1 = Dζ,γ,δ

1 =

⎧⎪⎪⎨
⎪⎪⎩

∑n
β=0(�

ζβ
γ δ

− �
ζβ
γ 0 − �

ζβ
0δ + �

ζβ
00 ); if ζ 
= γ

−∑n
β=0

(
∑n

ζ
′ =0 : ζ

′ 
=ζ
�

ζ
′
β

ζδ
+ �

ζβ
0δ

)
+∑n

β=0

(
∑n

ζ
′ =0 : ζ

′ 
=ζ
�

ζ
′
β

ζ0 + �
ζβ
00

)
if ζ = γ
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G
ζγ δ
−1 = D

ζ,γ,δ
2 =

⎧⎪⎪⎨
⎪⎪⎩

∑n
β=0(�

βζ
γ δ

− �
βζ
γ 0 − �

βζ
0δ + �

βζ
00 ) if ζ 
= δ

−∑n
β=0

(
∑n

ζ
′ =0 : ζ

′ 
=ζ
�

βζ
′

γ ζ
+ �

βζ
γ 0

)
+∑n

β=0

(
∑n

ζ
′ =0 : ζ

′ 
=ζ
�

βζ
′

0ζ + �
βζ
00

)
if ζ = δ

3.2 Action ofLx

If z 
= x then obviously
(
Lx1{Iζ

z }
)

(η) = 0. Otherwise

(
Lz1{Iζ

z }
)

(η) = Aζ (z) +
n∑

β=1

Fζβ(z)1{Iβ
z }(η) (19)

where now the constants are defined as:

1. zero-order term:

Aζ (z) = W ζ
0 (z)

2. first-order term:

Fζβ(z) =
⎧
⎨
⎩

W ζ
β (z) − W ζ

0 (z) if ζ 
= β

−∑n
ζ

′=0 : ζ
′ 
=ζ

W ζ
′

ζ (z) − W ζ
0 (z) if ζ = β

.

3.3 Action ofL

We now collect the results of the previous sections. We may write
(
L1{Iζ

z }
)

(η) =
∑

x,y : (x,y)∈E

ax,y

(
Lx,y1{Iζ

z }
)

(η) +
∑

x

ax

(
Lx1{Iζ

z }
)

(η)

=
∑

y : (z,y)∈E

az,y

(
Lz,y1{Iζ

z }
)

(η) +
∑

x : (x,z)∈E

ax,z

(
Lx,z1{Iζ

z }
)

(η)

+az

(
Lz1{Iζ

z }
)

(η).

Substituting (17), (18), (19) in the above expression we obtain

(
L1{Iζ

z }
)

(η) =
∑

y : (z,y)∈E

az,y

⎛
⎝Aζ

1 +
n∑

δ=1

Fζ δ
+11{Iδ

y }(η) +
n∑

γ=1

Bζγ
1 1{Iγ

z }(η)

+
n∑

γ,δ=1

Gζγ δ
+1 1{Iγ

y }(η)1{Iδ
z }(η)

⎞
⎠

+
∑

x : (x,z)∈E

ax,z

⎛
⎝Aζ

2 +
n∑

γ=1

Fζγ
−11{Iγ

x }(η) +
n∑

δ=1

Cζ δ
2 1{Iδ

z }(η)

+
n∑

γ,δ=1

Gζγ δ
−1 1{Iγ

z }(η)1{Iδ
x }(η)

⎞
⎠
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+az

⎛
⎝Aζ (z) +

n∑
β=1

Fζβ(z)1{Iβ
z }(η)

⎞
⎠ . (20)

3.4 Evolution Equations

Using Eq. (20) for the right hand side of (16) we obtain the evolution equation for the average
occupation. Recalling the notation in (14) and (15) (for the sake of space we do not write the
explicit t-dependence) we arrive to

d

dt
μ(ζ)

z =
∑

y : (z,y)∈E

az,y

⎛
⎝Aζ

1 +
n∑

δ=1

Fζ δ
+1 μ(δ)

y +
n∑

γ=1

Bζγ
1 μ

(γ )
z +

n∑
γ,δ=1

Gζγ δ
+1 c(γ,δ)

y,z

⎞
⎠

+
∑

x : (x,z)∈E

ax,z

⎛
⎝Aζ

2 +
n∑

γ=1

Fζγ
−1 μ

(γ )
x +

n∑
δ=1

Cζ δ
2 μ(δ)

z +
n∑

γ,δ=1

Gζγ δ
−1 c(γ,δ)

z,x

⎞
⎠

+ az

⎛
⎝Aζ (z) +

n∑
β=1

Fζβ(z) μ(β)
z

⎞
⎠ . (21)

We notice that the equations for the time-dependent averages μ
(ζ)
z (t) are not closed, as they

involve the correlations c(ζ,ζ ′)
z,z′ (t).

Remark 3.1 (The process on the lattice) The generator (11) is an generalization of the lattice
generator studied in [26] to a general graph with the addition of open boundaries. Indeed,
take as a special graph the d-dimensional regular lattice Zd and ignore the boundaries. Then,
calling e(k) the unit vector in the kth direction (k = 1, . . . , d) and defining

Eζ = Aζ
1 + Aζ

2

Fζβ
0 = Cζβ

2 + Bζβ
1

(22)

Equation (20) becomes

(
L1{Iζ

z }
)

(η) =
d∑

k=1

⎧
⎨
⎩Eζ +

n∑
β=1

+1∑
j=−1

Fζβ
j 1{Iβ

z+ je(k)
}(η) +

n∑

β,β
′ =1

∑
j=±1

Gζββ
′

j 1{Iβ

z+ je(k)
}(η)1{Iβ

′
z }(η)

⎫
⎬
⎭

(23)
which is equation (3.12) in [26].

4 Boundary-Driven Chains with Linear Reaction-Diffusion

In this and the following sections we specialize to the case with only two species, labelled
by 1 and 2. Furthermore, we specialize to the one-dimensional geometry by considering an
undirected linear chain.

More precisely, the graph has N vertices labelled by {1, 2, . . . , N } with a distinguish role
of the sites {1, N }which model two reservoirs. The interaction is of nearest neighbor type,
i.e.

ax,y =
{
1 if |x − y| = 1

0 otherwise
ax =
{
1 if x ∈ {1, N }
0 otherwise
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It is convenient to call the sites {2, . . . , N − 1} as “bulk” and the two end sites {1, N } as
“boundary”. The generator of the process thus reads:

L = L1 +
N−1∑
z=1

Lz,z+1 + LN (24)

We specialize the result of Eq. (21) to the boundary-driven chain. Introducing ∀ζ, β = 1, 2:

Fζβ
0 = Bζβ

1 + Cζβ
2 Eζ = Aζ

1 + Aζ
2

Aζ
L = Aζ (1) Aζ

R = Aζ (N )

Fζβ
L = Fζβ(1) Fζβ

R = Fζβ(N )

the evolution equations for the densities of the two species at site z ∈ {1, 2, . . . , N } are given
by:

d

dt
μ

(ζ)
1 = Aζ

L + Aζ
1 +

2∑
β=1

((
Bζβ
1 + Fζβ

L

)
μ

(β)
1 + Fζβ

+1μ
(β)
2

)

+
2∑

β,β
′=1

Gζββ
′

+1 c(β,β
′
))

1,2

(25)

d

dt
μ(ζ)

z = Eζ +
2∑

β=1

(
Fζβ

−1μ
(β)
z−1 + Fζβ

0 μ(β)
z + Fζβ

+1μ
(β)
z+1

)
if z ∈ {2, . . . , N − 1}

+
2∑

β,β
′=1

(
Gζββ

′
−1 c(β,β

′
)

z−1,z + Gζββ
′

+1 c(β,β
′
)

z,z+1

)

(26)

d

dt
μ

(ζ)
N = Aζ

R + Aζ
2 +

2∑
β=1

((
Cζβ
2 + Fζβ

R

)
μ

(β)
N + Fζβ

−1μ
(β)
N−1

)

+
2∑

β,β
′=1

Gζββ
′

−1 c(β,β
′
)

N−1,N

(27)
In the next section, we simplify the evolution equations for the average density by selecting
a subclass of processes with closed equations and a linear structure.

4.1 Imposing theMatching

One could go further and compute the hierarchy of equations for higher-order correlation
function [26]. For general choices of the rate matrices � and W , the equations do not close.
In the following, we shall focus on those choices of rates that satisfy the following two
requirements:

1. Closure of the correlation equations. This amounts to requiring that the correlation terms
in (25), (26), (27) vanish. It is shown in [26] that the vanishing of correlations actually
implies closure of the multi-point correlation function at all orders.
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2. The average occupations follow the discretization of the reaction diffusion equation.
Considering the reaction diffusion system (5), we approximate the laplacians with the
central difference operators. We call ρ

(α)
i the density of species α ∈ {0, 1, 2} at vertex

i ∈ {1, . . . , N } with the constraint ρ
(0)
i + ρ

(1)
i + ρ

(2)
i = 1. Furthermore we fix the

densities at the left end (vertex 1) to the values of ρ
(1)
L , ρ(2)

L and similarly at the right end

(vertex N ) we impose ρ
(1)
R , ρ(2)

R . Then the discretization of the two component reaction
diffusion equations (5), reads

d

dt
ρ

(1)
1 = σ11

(
ρ

(1)
L − 2ρ(1)

1 + ρ
(1)
2

)
+ σ12

(
ρ

(2)
L − 2ρ(2)

1 + ρ
(2)
2

)
+ ϒ
(
ρ

(2)
1 − ρ

(1)
1

)

d

dt
ρ

(2)
1 = σ21

(
ρ

(1)
L − 2ρ(1)

1 + ρ
(1)
2

)
+ σ22

(
ρ

(2)
L − 2ρ(2)

1 + ρ
(2)
2

)
+ ϒ
(
ρ

(1)
1 − ρ

(2)
2

)

(28)

d

dt
ρ(1)

z = σ11

(
ρ

(1)
z−1 − 2ρ(1)

z + ρ
(1)
z+1

)
+ σ12

(
ρ

(2)
z−1 − 2ρ(2)

z + ρ
(2)
z+1

)
+ ϒ
(
ρ(2)

z − ρ(1)
z

)

d

dt
ρ(2)

z = σ21

(
ρ

(1)
z−1 − 2ρ(1)

z + ρ
(1)
z+1

)
+ σ22

(
ρ

(2)
z−1 − 2ρ(2)

z + ρ
(2)
z+1

)
+ ϒ
(
ρ(1)

z − ρ(2)
z

)

∀z = 2, . . . , N − 1

(29)

d

dt
ρ

(1)
N = σ11

(
ρ

(1)
N−1 − 2ρ(1)

N + ρ
(1)
R

)
+ σ12

(
ρ

(2)
N−1 − 2ρ(2)

N + ρ
(2)
R

)
+ ϒ
(
ρ

(2)
N − ρ

(1)
N

)

d

dt
ρ

(2)
N =σ21

(
ρ

(1)
N−1 − 2ρ(1)

N + ρ
(1)
R

)
+ σ22

(
ρ

(2)
N−1 − 2ρ(2)

N + ρ
(2)
R

)
+ ϒ
(
ρ

(1)
N − ρ

(2)
N

)

(30)

We impose that the evolution equations for the averaged occupations given in (25), (26),
(27) do coincide with the discretized reaction-diffusion equations (28), (29), (30).

By imposing the closure condition 1. and the discrete linear reaction-diffusion condition 2.
we get the set of equations described below.

Conditions from the bulk.We first consider Eq. (26) which we require to have the form of
(29). We obtain the following conditions:

• Closure conditions: Equation (29) has no second order terms, thus:

Gαββ
′

+1 = 0 Gαββ
′

−1 = 0 ∀α, β, β
′ = 1, 2 (31)

The above requirement leads to 16 conditions on the transition rates �
αβ
γ δ .• Laplacian conditions: the one point correlation function should evolve as the coupled

discrete Laplacian in (29) with linear reaction. This is accomplished by imposing:

F11−1 = F11+1 = σ11 F12−1 = F12+1 = σ12 F21−1 = F21+1 = σ21 F22−1 = F22+1 = σ22

F11
0 = −2σ11 − ϒ F12

0 = −2σ12 + ϒ F21
0 = −2σ21 + ϒ F22

0 = −2σ22 − ϒ

(32)

The above requirement leads to 12 conditions on the transition rates �
αβ
γ δ .• Zero-order terms: Equation (29) has no zero-order term, thus:

E1 = 0 E2 = 0 (33)

The above requirement leads to 2 conditions on the transition rates �
αβ
γ δ .
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Our task is to determine the 81 transition rates �
αβ
γ δ ∀α, β, γ, δ = 0, 1, 2 that define the bulk

infinitesimal generator. By exploiting the stochasticity properties of the generator (sum of
the elements on the rows must be zero), the problem reduces to finding 72 transition rates.
By considering (31), (32), (33), only 16+ 12+ 2 = 30 conditions are available. This means
that the problem to solve is under-determined.

For the analysis that will follow, it is convenient to introduce an unknown vector u ∈ R
72+

that contains the desired 72 transition rates, and an appropriatematrix K ∈ R
30×72 and vector

b ∈ R
30. Then, it is possible (for details see Appendix C) to rewrite (31), (32), (33) as:

Ku = b. (34)

The matrix K is full rank, thus there exists a family of solutions with 42 free parameters.
Furthermore we have to guarantee the non-negativity of the solution, as the transition rates
are non-negative. For later use, recalling the definitions of F, G, E’s, we observe that the
conditions (31), (32), (33) actually only involve sums of three transition rates.

Conditions from the boundaries. We now want to find conditions to match (25) and (27)
with (28) and (30), respectively. We consider the conditions on the left boundary; the right
boundary is treated similarly. We get:

• Closure conditions: the vanishing of correlation in (25) is already guaranteed by (31).
• Laplacian conditions:

F11
L + B11

1 = −2σ11 − ϒ F12
L + B12

1 = −2σ12 + ϒ F11+1 = σ11 F12+1 = σ12

F22
L + B22

1 = −2σ22 − ϒ F21
L + B21

1 = −2σ21 + ϒ F21+1 = σ21 F22+1 = σ22

Since the equations that involve Fζ,δ
+1 are already imposed in (32), inserting the definition

of the Fζ,δ
L , the above conditions reduce to

−W 1
0 (1) − W 0

1 (1) − W 2
1 (1) + B11

1 = −2σ11 − ϒ B12
1 + W 1

2 (1) − W 1
0 (1)

= −2σ12 + ϒ

W 2
1 (1) − W 2

0 (1) + B21
1 = −2σ21 + ϒ − W 0

2 (1) − W 2
0 (1) − W 1

2 (1) + B22
1

= −2σ22 − ϒ (35)

• Zero-order terms:

A1
L + A1

1 = σ11ρ
(1)
L + σ12ρ

(2)
L A2

L + A2
1 = σ21ρ

(1)
L + σ22ρ

(2)
L

As a consequence of (33), Aζ
2 are zero. Therefore, the above conditions reduce to

W 1
0 (1) = σ11ρ

(1)
L + σ12ρ

(2)
L W 2

0 (1) = σ21ρ
(1)
L + σ22ρ

(2)
L (36)

All in all, combining (35) and (36) we see that the rates of the boundary generators are
uniquely determined by the bulk rates. Indeed, for a choice of the bulk rates (which in turn
appear in the Bζ,δ

1 ), we have:

W 1
0 (1) = σ11ρ

(1)
L + σ12ρ

(2)
L W 2

0 (1) = σ21ρ
(1)
L + σ22ρ

(2)
L

W 1
0 (1) + W 0

1 (1) + W 2
1 (1) = 2σ11 + ϒ + B11

1 W 1
2 (1) − W 1

0 (1) = −2σ12 + ϒ − B12
1

W 2
1 (1) − W 2

0 (1) = −2σ21 + ϒ − B21
1 W 0

2 (1) + W 2
0 (1) + W 1

2 (1) = 2σ22 + ϒ + B22
1

(37)
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On the right boundary, a similar argument yields:

W 1
0 (N ) = σ11ρ

(1)
R + σ12ρ

(2)
R W 2

0 (N ) = σ21ρ
(1)
R + σ22ρ

(2)
R

W 1
0 (N ) + W 0

1 (N ) + W 2
1 (N ) = 2σ11 + ϒ + C11

2 W 1
2 (N ) − W 1

0 (N ) = −2σ12 + ϒ − C12
2

W 2
1 (N ) − W 2

0 (N ) = −2σ21 + ϒ − C21
2 W 0

2 (N ) + W 2
0 (N ) + W 1

2 (N ) = 2σ22 + ϒ + C22
2

(38)

Let us notice that (37) and (38) are determined systems of algebraic equations in the unknowns
W ·· (1), W ·· (N ).

4.2 Determination of the Rates

Our first main result is contained in Theorem 4.1. It identifies a necessary and sufficient
condition (in terms of two parameters h, m ≥ 0) on the diffusivity matrix � and the reac-
tion coefficient ϒ such that the one-dimensional boundary driven chain with two-species
has averaged densities satisfying the discrete linear reaction-diffusion equations (28), (29),
(30). Furthermore, by setting h = m, it provides the example of a one-parameter family of
symmetric models with such a property. To state the example it is convenient to introduce
the mutation map α �→ ᾱ defined by:

1 → 2

2 → 1

0 → 0 .

(39)

Theorem 4.1 Let � be a 2 × 2 positive definite diffusion matrix and ϒ > 0 be a reaction
coefficient. Let ρ

(1)
L and ρ

(2)
L (respectively, ρ

(1)
R and ρ

(2)
R ) be the densities of the species 1

and 2 at the left (respectively, right) boundary. Then, for any choice of h, m ≥ 0 there
exist boundary-driven interacting particle systems on the chain {1, . . . , N } such that their
evolution equations of the average occupation variable are (28), (29), (30) if and only if the
diffusion matrix coefficients σ11, σ12, σ21, σ22 and the reaction coefficient ϒ are non-negative
and fulfill the conditions

σ11 + σ21 = σ12 + σ22 σ12 ≤ ϒ − m

2
σ21 ≤ ϒ − h

2
. (40)

Moreover, an explicit example of a symmetric generator (parameterized by h = m ≥ 0) is
given by

L = L1 +
N−1∑
x=1

Lx,x+1 + L N (41)

with edge generator

Lx,x+1 f (η) = σ11( f (η1, . . . , ηx+1, ηx , . . . , ηN ) − f (η))

+ σ12( f (η1, . . . , η̄x+1, η̄x , . . . , ηN ) − f (η))

+ (ϒ − 2σ12 − m)( f (η1, . . . , η̄x , ηx+1, . . . , ηN ) − f (η))

+ m( f (η1, . . . , ηx , η̄x+1, . . . , ηN ) − f (η)) . (42)

The site generator at the left boundary is given by
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L1 f (η) = (σ11ρ
(1)
L + σ12ρ

(2)
L )1{I0

1 }(η)
[

f (η1 + δ1, . . . , ηN ) − f (η1, . . . , ηN )
]

+ (σ12ρ
(1)
L + σ11ρ

(2)
L )1{I0

1 }(η)
[

f (η1 + δ2, . . . , ηN ) − f (η1, . . . , ηN )
]

+ (σ11 + σ12)ρ
(0)
L 1{I1

1 }(η)
[

f (η1 − δ1, . . . , ηN ) − f (η1, . . . , ηN )
]

+ (σ11 + σ12)ρ
(0)
L 1{I2

1 }(η)
[

f (η1 − δ2, . . . , ηN ) − f (η1, . . . , ηN )
]

+ (m + σ12ρ
(1)
L + σ11ρ

(2)
L )1{I1

1 }(η)
[

f (η1 + δ2 − δ1, . . . , ηN ) − f (η1, . . . , ηN )
]

+ (m + σ11ρ
(1)
L + σ12ρ

(2)
L )1{I2

1 }(η)
[

f (η1 − δ2 + δ1, . . . , ηN ) − f (η1, . . . , ηN )
]

(43)

where ρ
(0)
L := 1−ρ

(1)
L −ρ

(2)
L . Here ±δα denotes the addition/removal of species α. The site

generator at the right boundary is defined similarly (now with parameters ρ
(1)
R and ρ

(2)
R ).

Before discussing the proof of the theorem, a few comments are collected in the following
remarks.

Remark 4.2 The theorem is in agreement with the previous literature results stating that in the
absence of the reaction term, for the existence of the two dimensional coupled heat equations
the cross diffusivities must vanish [27, 28]. Here we find the corresponding statement at the
level of the particle process. Indeed, by assuming ϒ = 0, then the condition (40) can be
satisfied iff σ12 = σ21 = h = m = 0 and σ11 = σ22.

Remark 4.3 The transitions allowed by the edge generator (42) are the following:

(γ, δ) →

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(δ, γ ) stirring at rate σ11

(δ, γ ) stirring and mutation at rate σ12

(γ , δ) left mutation at rateϒ − 2σ12 − m

(γ, δ) right mutation at ratem

(44)

Thus we see that the rate of stirring is associated to the diffusion coefficient σ11, while the
rate of stirring with mutation is related to the cross-diffusion coefficient σ12. The rates of the
left and right mutations are precisely tuned to guarantee that, for all m ≥ 0, the evolution
equations of the average occupation variables are (28), (29), (30). A visual representation of
this process is showed in Fig. 3. In particular, the choice m = 0 kills the right mutations, the
choice m = ϒ − 2σ12 kills the left mutations, while the choice m = ϒ

2 − σ12 gives the same
rate to left and right mutations. Let us also observe that only when m = 0, the boundary
generators satisfy the conditions ∀z ∈ {1, N }:

W 0
1 (z) = W 0

2 (z) W 1
0 (z) = W 1

2 (z) W 2
0 (z) = W 2

1 (z) . (45)

Remark 4.4 In Theorem 4.1 we identified a one-parameter family generator. However, for
fixed diffusivity matrix � and reaction coefficient ϒ that satisfy condition (40) there exists
a two-parameter (h, m ≥ 0) family of generators with average density evolution equations
given by (28),(29) and (30). In Appendix B we have written the general form of these gener-
ators, depending on the parameters h, m ≥ 0. We observe that the rate matrix is symmetric
only when h = m, σ11 = σ22 and σ12 = σ21.

Remark 4.5 Considering the “color-blind” process, i.e. the process that does not distinguish
between the particles of type 1 and those of type 2, we obtain a process with just occupied or
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Fig. 3 The boundary driven process with generator (42), (43) . Grey squares identify species 1, green triangles
species 2, and white circles the empty state. The reservoirs are represented by rectangles, where the interior
colours denote the particles or vacuum densities. In the boxes, we give two examples of allowed bulk transition
with the corresponding rates

empty sites. This is indeed the classical boundary-driven simple symmetric exclusion process
[34], where in the bulk particles jump to the left or to the right at rate σ := σ11+σ12, provided
there is space, and at the left boundary particles are created at rate σρL and removed at rate
σ(1− ρL), where ρL is the particle density (and similarly at the right boundary with density
ρR).

Proof of Theorem 4.1. We provide here the main ideas; full details of the proof are given in
the appendix C. We first consider the bulk part and then the boundary one.

• Bulk process: To find the rates of the bulk process we need to solve (34), i.e. the system
Ku = bwhere K is a matrix of size 30×72 and b is a vector described in the appendix C.
This system has a great under-determination order (72-30=42). To overcome this diffi-
culty, we exploit the fact that, as already noticed in the text following (34), the required
conditions (31), (32), (33) only involve sums of three rates. As a consequence, we may
introduce a new system where the unknowns are the summed triples. This new system,
which will be denoted by �y = b where � is a matrix of size 30 × 36, has an under-
determination order equal to 6, and thus can be solved explicitly under the non-negativity
constraint on y (see Appendix B). It is precisely the request y ≥ 0 that further reduces the
under-determination order to 2 (parametrized by the parameters h, m ≥ 0) and produces
the constraint (40).
Once the vector y, whose components are sum of three rates, has been found, the next
step is the identification of the transition rates themselves. This of course can be done in
several ways. To produce an explicit example we have followed the two criteria below:

– The matrix associated to the generator has the greatest number of zeros.
– Choice of the following rates:

�21
12 = σ11 �12

21 = σ22 �22
11 = σ21 �11

22 = σ12. (46)

After simple but long computations, this choice leads to the generator (84) in Appendix B
involving the two parameters h, m ≥ 0. When we set h = m and we choose a symmetric
diffusivity matrix (which in turn guarantees a symmetric particle process) the generator
(42) is obtained.
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• Boundary process: to find the rates of the boundary process we need to solve (37) and
(38). Having already determined the rates of the bulk process, by direct computation we
find the boundary generators (83) and (85) reported in the appendix B, which depend
on h, m ≥ 0. When we set h = m and choose a symmetric diffusivity matrix, then the
generator (43) is obtained.


�

5 Duality and Hydrodynamic Limit

We aim to derive the hydrodynamic equations for the family of processes defined in (42). In
this section, we assume to work on the whole one-dimensional lattice Z. To formulate the
results, it is convenient to change notation. The state space of the Markov process defined by
the edge generator (42) on the full line can be identified with the three-dimensional simplex


̃ = {(n0, n1, n2) ∈ {0, 1}3 : n0 + n1 + n2 = 1
}Z

.

In this notation, the component nz at site z ∈ Z of a configuration n ∈ 
̃ is thus a triplet
with two 0’s and a 1, whose position is associated with a hole, or with a particle of type 1, or
with a particle of type 2. For example, (nz

0, nz
1, nz

2) = (0, 1, 0) indicates that in the site z ∈ Z

there is one particle of species 1. Then, recalling the notation in (39) for the mutation map,
the process {n(t), t ≥ 0} taking values in 
̃ is defined by the following generator L working
of local functions f : 
̃ → R:

L =
∑
z∈Z

Lz,z+1 (47)

with

Lz,z+1 = σ11L S
z,z+1 + σ12L SM

z,z+1 + (ϒ − 2σ12 − m)L L M
z,z+1 + mL RM

z,z+1 (48)

where

L S
z,z+1 f (n) =

2∑
α,β=0

nz
αnz+1

β

[
f (n − δz

α + δz
β + δz+1

α − δz+1
β ) − f (n)

]

L SM
z,z+1 f (n) =

2∑
α,β=0

nz
αnz+1

β

[
f (n − δz

α + δz
β

− δz+1
β + δz+1

α ) − f (n)
]

L L M
z,z+1 f (n) =

2∑
α=0

nz
α

[
f (n − δz

α + δz
α) − f (n)

]

L RM
z,z+1 f (n) =

2∑
β=0

nz+1
β

[
f (n − δz+1

β + δz+1
β

) − f (n)
]

(49)

A fundamental tool for the hydrodynamic limit is duality: usually, the hydrodynamic limit is
dictated by the scaling properties of one dual particles. We say that the Markov process with
generator (47) is self-dual with respect to the self-duality function D : 
̃ × 
̃ → R if for all
t ≥ 0 and for all (n, �) ∈ 
̃ × 
̃

En[D(n(t), �)] = E�[D(n, �(t))]
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where on the left hand side En denotes expectation in the process {n(t), t ≥ 0} initialized
from the configuration n and, analogously, on the right hand side E� denotes expectation in
{�(t), t ≥ 0} which is a copy of the process initialized from the configuration �.

In this section, by abuse of notation, we denote 1{a≥b} the function defined by

1{a≥b} =
{
1 if a ≥ b

0 if a < b

Theorem 5.1 (Self-Duality) The Markov process {n(t), t ≥ 0} defined by the generator (47)
is self-dual with the self duality function

D(n, �) =
∏
z∈Z

2∏
k=1

1{nz
k≥�z

k } (50)

Proof It is enough to prove that

(L D(·, �)) (n) = (L D(n, ·)) (�) ∀(n, �) ∈ 
̃ × 
̃ (51)

The generator (47) is a superposition of four generators. Remarkably, the duality relation can
be verified for each of them. Indeed, one has:

(L S
z,z+1D(·, �))(n)

=
[
1{nz+1

1 ≥�z
1}1{nz+1

2 ≥�z
2}1{nz

1≥�z+1
1 }1{nz

2≥�z+1
2 }

−1{nz
1≥�z

1}1{nz
2≥�z

2}1{nz+1
1 ≥�z+1

1 }1{nz+1
2 ≥�z+1

2 }
] ∏

x /∈{z,z+1}

2∏
k=1

1{nx
k ≥�x

k }

=
[
1{nz

1≥�z+1
1 }1{nz

2≥�z+1
2 }1{nz+1

1 ≥�z
1}1{nz+1

2 ≥�z
2}

−1{nz
1≥�z

1}1{nz
2≥�z

2}1{nz+1
1 ≥�z+1

1 }1{nz+1
2 ≥�z+1

2 }
] ∏

x /∈{z,z+1}

2∏
k=1

1{nx
k ≥�x

k }

= (L S
z,z+1D(n, ·))(�) .

Similarly, one has

(L SM
z,z+1D(·, �))(n)

=
[
1{nz+1

2 ≥�z
1}1{nz+1

1 ≥�z
2}1{nz

2≥�z+1
1 }1{nz

1≥�z+1
2 }

−1{nz
1≥�z

1}1{nz
2≥�z

2}1{nz+1
1 ≥�z+1

1 }1{nz+1
2 ≥ �z+1

2 }
] ∏

x /∈{z,z+1}

2∏
k=1

1{nx
k ≥�x

k }

=
[
1{nz

1≥�z+1
2 }1{nz

2≥�z+1
1 }1{nz+1

1 ≥�z
2}1{nz+1

2 ≥�z
1}

−1{nz
1≥�z

1}1{nz
2≥�z

2}1{nz+1
1 ≥�z+1

1 }1{nz+1
2 ≥�z+1

2 }
] ∏

x /∈{z,z+1}

2∏
k=1

1{nx
k ≥�x

k }

= L SM
z,z+1(D(n, ·)(�) .
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For the generator that mutates at site z we have

(L L M
z,z+1D(·, �))(n) =

[
1{nz

2≥�z
1}1{nz

1≥�z
2} − 1{nz

1≥�z
1}1{nz

2≥�z
2}
]∏

x 
=z

2∏
k=1

1{nx
k ≥�x

k }

=
[
1{nz

1≥�z
2}1{nz

2≥�z
1} − 1{nz

1≥�z
1}1{nz

2≥�z
2}
]∏

x 
=z

2∏
k=1

1{nx
k ≥�x

k }

= (L L M
z,z+1D(n, ·))(�) ,

and analogously, for the generator that mutates at site z + 1, we find

(L RM
z,z+1D(·, �))(n) =

[
1{nz+1

2 ≥�z+1
1 }1{nz+1

1 ≥�z+1
2 } − 1{nz+1

1 ≥�z+1
1 }1{nz+1

2 ≥�z+1
2 }
] ∏

x 
=z+1

2∏
k=1

1{nx
k ≥�x

k }

=
[
1{nz+1

1 ≥�z+1
2 }1{nz+1

2 ≥�z+1
1 } − 1{nz+1

1 ≥�z+1
1 }1{nz+1

2 ≥�z+1
2 }
] ∏

x 
=z+1

2∏
k=1

1{nx
k ≥�x

k }

= (L RM
z,z+1D(n, ·)(�)


�
Remark 5.2 It is interesting to notice that to ensure the existence of a dual process, closure
condition (31) is not enough. Considering the most general reaction-diffusion process satis-
fying closed equations, described by the generator Lz,z+1 in (84), we have to further assume
that

σ22 = σ11 σ21 = σ12 h = m. (52)

Indeed, the duality relation (51) is equivalent to the following relation between matrices

(d ⊗ d)−1 Lz,z+1 (d ⊗ d) = L̃T
z,z+1 ∀z ∈ Z (53)

where T denotes transposition and where

d =
⎛
⎝
1 0 0
1 1 0
1 0 1

⎞
⎠ (54)

In order to interpret L̃ z,z++1 as a generator of a stochastic particle system, we have to impose
that the out of diagonal elements are non-negative and the sum of the elements of each row
is equal to zero. It is possible to show that this is equivalent to requiring that (52) holds.
Moreover, if (52) is fulfilled, both the matricesLz,z+1 and L̃ z,z+1 do coincide with the matrix
associated to the generator Lz,z+1 given in (48), i.e. self-duality.

To formulate the hydrodynamic limit, we consider a scaling parameter ε ≥ 0 and we
introduce the empirical density fields

X ε
1(t) = ε

∑
z∈Z

nz
1(ε

−2t)δεz X ε
2(t) = ε

∑
z∈Z

nz
2(ε

−2t)δεz (55)

The empirical density fields {X ε
1(t), t ≥ 0} and {X ε

2(t), t ≥ 0} are measure-valued processes
constructed from the process {n(t), t ≥ 0}. We also need to specify a good set of initial
distributions.
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Definition 5.3 Let ρ̂(α) : R → [0, 1], with α ∈ {1, 2}, be a continuous bounded real function
called the initial macroscopic profile. A sequence (με)ε≥0 of measures on 
̃, is a sequence
of compatible initial conditions if ∀α ∈ {1, 2}, ∀δ > 0:

lim
ε→0

με

(∣∣∣∣〈X ε
α(0), g〉 −

∫

R

g(x)ρ̂(α)(x)dx

∣∣∣∣ > δ

)
= 0 (56)

where g : R → R is a smooth test function with compact support.

We then have the following theorem for the hydrodynamic limit.

Theorem 5.4 (Hydrodynamic limit of the Markov process {n(t), t ≥ 0}). Let ρ̂(α) with
α ∈ {1, 2} be initial macroscopic profiles and (με)ε>0 be a sequence of compatible initial
conditions. Let Pμε be the law of the measure valued process (X ε

1(t), X ε
2(t)) defined in (55).

Then ∀T , δ > 0,∀α ∈ {1, 2} and for all smooth test function with compact support g : R → R

lim
ε→0

Pμε

(
sup

t∈[0,T ]

∣∣∣∣〈X ε
α(t), g〉 −

∫

R

g(x)ρ(α)(x, t)dx

∣∣∣∣ > δ

)
= 0, (57)

where ρ(1), ρ(2) are the strong solutions of
⎧
⎪⎨
⎪⎩

∂tρ
(1) = σ11∂

2
x ρ(1) + ϒ̃

(
ρ(2) − ρ(1)

)

∂tρ
(2) = σ11∂

2
x ρ(2) + ϒ̃

(
ρ(1) − ρ(2)

)

ρ(α)(0, x) = ρ̂(α)(x) ∀x ∈ [0, 1], ∀α ∈ {1, 2}
(58)

Proof The proof is standard and it is based on the Dynkin’s martingale and its quadratic
variation. For the tightness and the uniqueness of the limiting point we refer to [23] and
[35]. we provide here some details for the computations of the Dynkin’s martingale and its
quadratic variation via Carré-Du-Champ.

We introduce the following real and positive parameters:

σ̃12 = ε−2σ12, ϒ̃ = ε−2ϒ m̃ = ε−2m. (59)

We consider the re-scaled generator

L(ε) =
∑
z∈Z

L(ε)
z,z+1 (60)

where

L(ε)
z,z+1 = σ11L S

z,z+1 + σ̃12ε
2L SM

z,z+1 + ε2(ϒ̃ − 2σ̃12 − m̃)L L M
z,z+1 + m̃ε2L RM

z,z+1. (61)

By choosing ∀z ∈ Z and ∀α ∈ {1, 2} the action of the rescaled generator on nz
α is the

following:

(L(ε)nx
α)(n) = σ11

(
nz+1

α − 2nz
α + nz−1

α

)

+ σ̃12ε
2
(

nz+1
α − 2nz

α + nz−1
α

)
+ ε2
(
ϒ̃ − 2σ̃12

) (
nz

α − nz
α

)

By consequence considering a test function g
∫ t

0
ds ε−2L(ε)〈X ε

α(s), g〉

= σ11

∫ t

0
ds ε−2 ε

∑
z∈Z

nz
α(s) [g ((z + 1)ε) − 2g (zε) + g ((z − 1)ε)]

123



132 Page 22 of 32 F. Casini et al.

+ σ̃12

∫ t

0
ds ε−2ε3

∑
z∈Z

(
nz

α(s) [g ((z + 1)ε) + g ((z − 1)ε)] − 2nz
α(s)g(zε)

)

+
∫ t

0
ds ε−2 ε3(ϒ̃ − 2σ̃12)

∑
z∈Z

g (zε)
[
nz

α − nz
α

]

By using the Taylor expansion we rewrite the above equality as

∫ t

0
ds ε−2L(ε)〈X ε

α(s), g〉 = σ11

∫ t

0
ε
∑
z∈Z

nz
α�g (zε)

+ σ̃12

∫ t

0
ε3
∑
z∈Z

nz
α�g (zε) + ϒ̃

∫ t

0
ε
∑
z∈Z

g (zε)
[
nz

α − nz
α

]

+ o(ε)

= σ11

∫ t

0
ε
∑
z∈Z

nz
α�g (zε) + ϒ̃

∫ t

0
ε
∑
z∈Z

g (zε)
[
nz

α − nz
α

]+ o(ε).

Defining the Dynkin’s martingale ∀α ∈ {1, 2}

Mt
g(X ε

α) := 〈X ε
α(t), g〉 − 〈X ε

α(0), g〉 −
∫ t

0
ε−2L(ε)〈X ε

α(s), g〉ds, (62)

by the previous computations, we have

Mt
g(X ε

α) + o(ε) = 〈X ε
α(t), g〉 − 〈X ε

α(0), g〉

− σ11

∫ t

0
〈X ε

α(s),�g〉ds − ϒ̃

∫ t

0
〈X ε

α(s) − X ε
α(s), g〉ds.

The right-hand side is the discrete counterpart of the weak solution of (58).
To have tightness of the law of the measure-valued processes (55) we need to show that

lim
ε→0

Eμε

[
Mt

g(X ε
α)2
]

= 0. (63)

We first observe that

Eμε

[
Mt

g(X ε
α)2
]

≤ Eμε

[
sup

t∈[0,T ]
|Mt

g(X ε
α)|2
]

≤ 4Eμε

[
MT

g (X ε
α)2
]

= 4Eμε

[∫ T

0
ε−2�s

g(X ε
α)ds

]
,

where �s
g(X ε

α) is the Carré-Du-Champ operator that can be written as

�s
g(X ε

α) = L(ε)〈Xα(t), g〉2 − 2〈Xα(t), g〉L(ε)〈Xα(t), g〉. (64)
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By using the definition of the re-scaled generator (61) we obtain the following

ε−2�s
g(X ε

α) = σ11ε
2
∑
z∈Z

[
nz

α(1 − nz+1
α ) + nz

α(1 − nz+1
α )
]
(∇g(zε))2

+ σ̃12ε
2
∑
z∈Z

{
2
[
nz

αnz+1
α + nz

αnz+1
α

]
g(zε)g((z + 1)ε)

+nz
α

[
g((z + 1)ε)2 + g((z − 1)ε)2

]+ nz
α2g(zε)2

}

+ (ϒ̃ − 2σ̃12
)
ε2
∑
z∈Z

(nz
α + nz

α)g(zε)2 + o(ε2).

(65)

Let’s introduce the set Sg as the smallest compact subset of R that contains the supports
of a fixed g and of the first two derivatives. Then, |Sg| ≤ C

′
ε−1, with a C

′
positive and

finite constant. Moreover, by the hard-core constraint nz
α ≤ 1, ∀z ∈ Z and ∀α ∈ {1, 2}. By

consequence, exploiting the smoothness of g we derive the following bound

Eμε

[∫ T

0
ε−2�s

g(X ε
α)ds

]
≤ Cε, (66)

with C < ∞. This concludes the proof. 
�
Remark 5.5 Let’s define a “color-blind” density field

X ε(t) := ε
∑
z∈Z

nz(tε−2)δzε (67)

where nz(t) := nz
α(t)+nz

α(t). By re-scaling only the L RM
z,z+1 and L L M

z,z+1 terms of the generator,
the same proof of Theorem 5.4 we would give, as limiting PDE, the heat equation

{
∂tρ(x, t) = (σ11 + σ12)∂xxρ(x, t)

ρ(x, 0) = ρ0(x)
(68)

This is in agreement with the Remark 4.5.

Remark 5.6 We observe that in order to obtain the hydrodynamic limit of the process
{n(t); t ≥ 0} we had to scale the parameters as in (59). Indeed, the ‘naive’ scaling where the
diffusivity parameters σ11 and σ12 are both kept constant (while the reaction parameters are
scaled as ϒ = ε2ϒ̃ and m = ε2m̃) is not viable as it would make (65) infinite when ε → 0.
In other words, the problem with the ‘naive’ rescaling is that the rate of left mutations

(ϒ̃ε2 − 2σ12 − m̃ε2) (69)

becomes negative (!) for sufficiently small ε. One could still wonder if other scalings of the
parameters would lead to Eq. (5) in the hydrodynamic limit.We argue that this is not possible,
because the maximum principle (which is a necessary condition for the Markov property)
would be violated. To show this, we rewrite the PDEs (5) in the form

⎧⎪⎨
⎪⎩

∂t

(
ρ(1)

ρ(2)

)
= A

(
ρ(1)

ρ(2)

)
∀x ∈ [0, 1]

ρ(1)(0, x) = ρ̂(1)(x), ρ(2)(0, x) = ρ̂(2)(x)

(70)

where the operator A is defined as

A :=
(

σ11∂xx σ12∂xx

σ12∂xx σ11∂xx

)
+ ϒ

(−1 1
1 −1

)
(71)
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Now, for a function f = ( f (1), f (2)) in the domain of A, let x∗ ∈ (0, 1) be such that

f (1)(x∗) := max
x∈(0,1)

f (1)(x) (72)

Then the first component of (A f )(x∗) reads

σ11∂xx f (1)(x∗) + σ12∂xx f (2)(x∗) + ϒ̃
(

f (2)(x∗) − f (1)(x∗)
)

. (73)

Clearly (73) can be positive, since (72) guarantees that ∂xx f (1)(x∗) ≤ 0, but the other terms
of (73) can be positive and arbitrary large. As a consequence of the violation of the maximum
principle it follows that A can not be the generator of a Markov process.

Remark 5.7 If we perform the hydrodynamic limit with an “Euler" re-scaling, i.e. we re-scale
the time only by a factor ε and we define σ̂12 = ε−1σ12, ϒ̂ = ε−1ϒ and m̃ = ε−1m we
obtain the following ODE’s system

⎧⎪⎨
⎪⎩

d
dt ρ

(1)(t) = ϒ̂(ρ(2) − ρ(1))
d
dt ρ

(2)(t) = ϒ̂(ρ(1) − ρ(2))

ρ(1)(0) = ρ
(1)
0 , ρ(2)(0) = ρ

(2)
0

(74)

that is a purely reacting system. The ODE’s are linear and the solution is given by
⎧⎨
⎩

ρ(1)(t) = ρ
(1)
0 +ρ

(2)
0

2 + ρ
(1)
0 −ρ

(2)
0

2 e−2ϒ̂ t

ρ(2)(t) = ρ
(1)
0 +ρ

(2)
0

2 − ρ
(1)
0 −ρ

(2)
0

2 e−2ϒ̂ t
(75)

6 Conclusions

Weconsideredmulti-species stochastic interacting particle systemswith hard-core interaction
defined on a directed graph.We also added site-generators, that allow to define the boundary-
driven version having non-zero stationary currents.

For a one dimensional chain with two species, we established that in order to have that
the average occupation evolves as the discrete counterpart of the linear reaction-diffusion
equation (5), the diffusivity matrix � and the reaction coefficient ϒ have to fulfill condition
(40) of Theorem 4.1. As an additional result, we have identified a one-parameter family
of multi-species interacting particle systems (the one defined by the generator (42)) where
the analysis can be pushed further. In particular, due to the existence of a dual process, the
hydrodynamic limit is deduced. In the hydrodynamic regime the coupling between species
due to the cross-diffusivity coefficients disappears. The origin of this is that if the cross-
diffusivities are not scaled to zero then the Markov property is lost (see Remark 5.6). Partial
uphill diffusion, although present in a finite size system, is lost in the hydrodynamic limit.

It would be interesting to extend the analysis to a higher number of species. As observed
in [9–11] the uphill phenomenology of systems with three species of particles or more can be
substantially different from the ones with two species. Another open problem is the study of
uphill diffusion for systems with a non-linear reaction-diffusion system, i.e. with diffusivity
matrix whose elements are functions of the particle densities [29]. Finally, we mention that
the family of models with generator (42) includes the stirring process which is known to
possess the algebraic structure of the GL(n) group (which in fact leads to integrability of
the model [36]). It would be interesting to check if the model we have introduced preserves
such algebraic structure.
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A Steady State Partial Uphill Diffusion

Non Diagonal Diffusivity Matrix Equation

We shall show that in this set up partial uphill diffusion is possible. To this aim, because of
the great number of parameters we specialize (10) to a particular choice, namely

σ11 = σ22 = ϒ = 1 σ21 = σ12 = 1

2
. (76)

The stationary profiles become

ρ(ζ )(x) =ρ
(1)
L

2
+ ρ

(2)
L

2
−

x
(
ρ

(1)
L + ρ

(2)
L − ρ

(1)
R − ρ

(2)
R

)

2

+ (−1)ζ
e2−2 x

(
ρ

(1)
R − ρ

(2)
R − ρ

(1)
L e2 + ρ

(2)
L e2
)

2
(
e4 − 1

)

+ (−1)ζ
e2 x
(
ρ

(1)
L − ρ

(2)
L − ρ

(1)
R e2 + ρ

(2)
R e2
)

2
(
e4 − 1

) ∀ζ = 1, 2

(77)
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and the diffusive currents read

J (ζ )(x) =3 ρ
(1)
L

4
+ 3 ρ

(2)
L

4
− 3 ρ

(1)
R

4
− 3 ρ

(2)
R

4

+ (−1)ζ
e2−2 x

(
ρ

(1)
R − ρ

(2)
R − ρ

(1)
L e2 + ρ

(2)
L e2
)

2
(
e4 − 1

)

− (−1)ζ
e2 x
(
ρ

(1)
L − ρ

(2)
L − ρ

(1)
R e2 + ρ

(2)
R e2
)

2
(
e4 − 1

) ∀ζ = 1, 2

(78)

The problem of having partial uphill for, say, the species 1 is then the following: by assuming
that ρ(1)

L < ρ
(1)
R

find (ρ
(1)
L , ρ

(2)
L , ρ

(1)
R , ρ

(2)
R ) such that min

x∈[0,1] J (1)(x) > 0. (79)

There are choices of boundary densities that allow for partial uphill diffusion of the species
1. We give an example in Fig. 1.

Diagonal Diffusivity Matrix Equations

We specialize the stationary solution (10) to the case where σ12 = σ21 = 0 and ϒ > 0.
Motivated by the hydrodynamic result (58), we consider the case σ11 = σ22. Introducing the
constant k2 = ϒ

σ11
, the stationary profiles takes the form:

ρ(ζ )(x) = 1

2

(
ρ

(1)
L + ρ

(2)
L + x(−ρ

(1)
L − ρ

(2)
L + ρ

(1)
R + ρ

(2)
R )

− (−1)ζ csch
(√

2k
) (

(ρ
(2)
L − ρ

(1)
L ) sinh

(√
2k(x − 1)

)

+(ρ
(1)
R − ρ

(2)
R ) sinh

(√
2kx
)))

∀ζ = 1, 2

(80)

The diffusive currents then read:

J (ζ )(x) =1

2

(
ρ

(1)
L + ρ

(2)
L − ρ

(1)
R − ρ

(2)
R +

+ (−1)ζ
√
2kcsch

(√
2k
) (

(ρ
(2)
L − ρ

(1)
L ) cosh

(√
2k(x − 1)

)

+(ρ
(1)
R − ρ

(2)
R ) cosh

(√
2kx
)))

∀ζ = 1, 2

(81)

The problem of having partial uphill for, say, the species 1 is then the following: by assuming
that ρ(1)

L < ρ
(1)
R

find (ρ
(1)
L , ρ

(2)
L , ρ

(1)
R , ρ

(2)
R ) such that min

x∈[0,1] J (1)(x) > 0. (82)

One can check that ∀k > 0 and ∀ρ
(1)
L , ρ

(2)
L , ρ

(1)
R , ρ

(2)
R such that ρ(1)

L < ρ
(1)
R , the minimum of

J (1)(x) is always negative. By consequence, partial uphill cannot occur for (58).
A similar analysis can be done for the discretized equations (28), (29), (30).
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B A Two-Parameter Family of Models

In the following we report the matrices that describe the two-parameter family of generators
introduced in Remark 4.4. The matrices representing the generators Lz,z+1 are of dimension
9 × 9 while the matrices representing the generators L1, LN are of dimension 3 × 3. The
elements of these matrices are ordered as follows:

• for Lz,z+1, the row and the column indexes are

00, 01, 02, 10, 11, 12, 20, 21, 22

For example, the element on the 3rd row and 4th column gives the rate of transition
02 → 10

• for the site matrices L1 and LN , the rows and the columns a indexes are 0, 1, 2.

L1 =
⎛
⎜⎜⎜⎜⎜⎝

−σ11ρ
(1)
L − σ12ρ

(2)
L − σ21ρ

(1)
L − σ22ρ

(2)
L σ11ρ

(1)
L + σ12ρ

(2)
L σ21ρ

(1)
L + σ22ρ

(2)
L

σ11 + σ21 − σ11ρ
(1)
L − σ12ρ

(2)
L − σ21ρ

(1)
L − σ22ρ

(2)
L σ11ρ

(1)
L − σ21 − h − σ11 + σ12ρ

(2)
L h + σ21ρ

(1)
L + σ22ρ

(2)
L

σ22 + σ12 − σ22ρ
(2)
L − σ21ρ

(1)
L − σ12ρ

(2)
L − σ11ρ

(1)
L m + σ11ρ

(1)
L + σ12ρ

(2)
L σ21ρ

(1)
L − σ12 − m − σ22 + σ22ρ

(2)
L

⎞
⎟⎟⎟⎟⎟⎠

(83)
Lz,z+1 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�00
00 0 0 0 0 0 0 0 0

0 �01
01 h σ11 0 0 σ21 0 0

0 m �02
02 σ12 0 0 σ22 0 0

0 σ11 σ21 �10
10 0 0 ϒ − 2σ21 − h 0 0

0 0 0 0 �11
11 h 0 ϒ − 2σ21 − h σ21

0 0 0 0 m �12
12 0 σ11 ϒ − σ12 − σ21 − h

0 σ12 σ22 ϒ − 2σ12 − m 0 0 �20
20 0 0

0 0 0 0 ϒ − σ12 − σ21 − m σ22 0 �21
21 h

0 0 0 0 σ12 ϒ − 2σ12 − m 0 m �22
22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(84)

Due to the stochasticity of the generator, the diagonal elements are the following

�00
00 = 0 �01

01 = −σ11 − σ21 − h �02
02 = −σ22 − σ12 − m

�10
10 = −ϒ − σ11 + σ21 + h �11

11 = −ϒ + σ21 �12
12 = −σ11 − ϒ + σ12 + σ21 − m + h

�20
20 = −ϒ − σ22 + σ12 + m �21

21 = −ϒ − σ22 + σ21 + σ12 + m − h �22
22 = −ϒ + σ12

LN =
⎛
⎜⎜⎜⎜⎜⎝

−σ11ρ
(1)
R − σ12ρ

(2)
R − σ21ρ

(1)
R − σ22ρ

(2)
R σ11ρ

(1)
R + σ12ρ

(2)
R σ21ρ

(1)
R + σ22ρ

(2)
R

σ11 + σ21 − σ11ρ
(1)
R − σ12ρ

(2)
R − σ21ρ

(1)
R − σ22ρ

(2)
R σ11ρ

(1)
R − σ21 − h − σ11 + σ12ρ

(2)
R h + σ21ρ

(1)
R + σ22ρ

(2)
R

σ22 + σ12 − σ22ρ
(2)
R − σ21ρ

(1)
R − σ12ρ

(2)
R − σ11ρ

(1)
R m + σ11ρ

(1)
R + σ12ρ

(2)
R σ21ρ

(1)
R − σ12 − m − σ22 + σ22ρ

(2)
R

⎞
⎟⎟⎟⎟⎟⎠

(85)
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C Details of the Proof of Theorem 4.1

C.1 Bulk Process

To solve (34) it is useful to rewrite the system by using the following variables, that are
made by sums of three non diagonal rates:

y1 =
2∑

β=0

�
β1
10 y2 =

2∑
β=0

�
β1
00 y3 =

2∑
β=0

�
1β
01 y4 =

2∑
β=0

�
1β
00 y5 =

2∑
β=0

�
0β
10 y6 =

2∑
β=0

�
2β
10

y7 =
2∑

β=0

�
β0
01 y8 =

2∑
β=0

�
β2
01 y9 =

2∑
β=0

�
β1
20 y10 =

2∑
β=0

�
1β
02 y11 =

2∑
β=0

�
β1
02 y12 =

2∑
β=0

�
1β
20

y13 =
2∑

β=0

�
β2
20 y14 =

2∑
β=0

�
β2
00 y15 =

2∑
β=0

�
2β
02 y16 =

2∑
β=0

�
2β
00 y17 =

2∑
β=0

�
0β
20 y18 =

2∑
β=0

�
β0
02

y19 =
2∑

β=0

�
β2
10 y20 =

2∑
β=0

�
2β
01 y21 =

2∑
β=0

�
β0
11 y22 =

2∑
β=0

�
β0
21 y23 =

2∑
β=0

�
β1
22 y24 =

2∑
β=0

�
0β
11

y25 =
2∑

β=0

�
0β
12 y26 =

2∑
β=0

�
β1
12 y27 =

2∑
β=0

�
1β
21 y28 =

2∑
β=0

�
1β
22 y29 =

2∑
β=0

�
β2
11 y30 =

2∑
β=0

�
β0
12

y31 =
2∑

β=0

�
β2
21 y32 =

2∑
β=0

�
β0
22 y33 =

2∑
β=0

�
2β
11 y34 =

2∑
β=0

�
2β
12 y35 =

2∑
β=0

�
0β
21 y36 =

2∑
β=0

�
0β
22

Let us introduce the following:

• unknown vector: y ∈ R
36+

y = (yi )i=1,...36

• known term: b ∈ R
30 (that is exactly the one in (34))

b = (σ11, σ11,−2σ11 − ϒ, σ12, σ12,−2σ12 + ϒ, σ22, σ22,−2σ22 − ϒ, σ21, σ21,

−2σ21 + ϒ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

• coefficient matrix: � ∈ R
30×36 (that is full rank)

By using the above vectors and matrix, the system (34) can be rewritten as

�y = b. (86)

The systems (34) and (86) are two ways of writing the conditions (31), (32), (33). By con-
sequence, there exists an other full rank matrix, say � ∈ R

36×72, that allows to retrieve a 36
parameter family of solutions of (34) once we know the one of (86) as follows

�u = y. (87)

We first solve (86) and then we retrieve the specific solution (84) of (34), by solving (87)
with some specific choices of the 36 parameters.

Solution of (86): the under-determination order is 6 and thus 6 components of the vector
y are, actually, free parameters. Without any constraint (86) would have a 6 parameter family
of solutions. However, the non-negativity of the solution (the yi are sums of transition rates)
will reduce the dependence on just two free parameters.

Indeed, by direct computations and by recalling that the variables {y j } j=1,...36 must be
non-negative we find the following 12 unknowns by using just 10 equations, namely:
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y1 − y2 = σ11 y3 − y4 = σ11 y9 − y2 = σ12 y10 − y4 = σ12 y13 − y14 = σ22

y15 − y16 = σ22 y19 − y14 = σ21 y20 − y16 = σ21 y2 + y14 = 0 y4 + y16 = 0

that are solved if and only if

y2 = y4 = y14 = y16 = 0 y1 = y3 = σ11 y19 = y20 = σ21

y9 = y10 = σ12 y13 = y15 = σ22.

By the non negativeness of the above y j , it follows that

σ11, σ12, σ21, σ22 ≥ 0. (88)

Now, it remains to solve a system with 20 equations and 24 unknowns. By introducing
as parameters (y7, y8, y11, y17) := (g, h, m, s), this 20 × 24 system becomes a 20 × 20
parametric system. This last one has the following explicit parametric solution:

(y5, y6, y12, y18, y21, y22, y23, y24, y25, y26, y27,

y28, y29, y30, y31, y32, y33, y34, y35, y36)

= (2σ11 + 2σ21 − g, ϒ − 2σ21 − h, ϒ − 2σ12 − m, 2σ12 + 2σ22 − s,

g − σ21 − σ11, g − σ22 − σ12, σ12 + m,

σ11 + σ21 − g, 2σ11 − σ12 + 2σ21 − σ22 − g, σ11 + m,

σ11 − 2σ12 + σ − m, ϒ − σ12 − m, σ21 + h,

2σ12 − σ11 − σ21 + 2σ22 − s, σ22 + h, σ12 + σ22 − s,

ϒ − σ21 − h, σ22 − 2σ21 + ϒ − h, s − σ21 − σ11,

s − σ22 − σ12) .

(89)

Since all the yi are sums of non negative transition rates, we impose that the components of
(89) are non negative. This is true if and only if:

s = σ11 + σ21 g = σ11 + σ21 (90)

and

ϒ, h, m ≥ 0 σ12 ≤ ϒ − m

2
σ21 ≤ ϒ − h

2
σ11 + σ21 = σ12 + σ22. (91)

Since (90) fixes the value of two of the four parameters, the non negative solution only
depends on h, m. Putting together (88) and (91) we obtain (40). Finally, this explicit non-
negative solution of (86) is

y = (σ11, 0, σ11 0, σ11 + σ21, ϒ − 2σ21 − h, σ11 + σ21,

h, σ12, σ12, m, ϒ − 2σ12 − m,

σ11 − σ12 + σ21, 0, σ11 − σ12 + σ21, 0, σ11 + σ21, σ11

+ σ21σ21, σ21, 0, 0, σ12 + m, 0, 0, σ11 + m,

σ11 − 2σ12 + ϒ − m, ϒ − σ12 − m,

σ21 + h, 0, σ11 − σ12 + σ21 + h, 0, ϒ − σ21 − h,

σ11 − σ12 − σ21 + ϒ − h, 0, 0)

(92)

Solution of (34): from (92) we know the explicit solution of (86). To find the solution of
(34), we solve (87). This last system is full rank. It has 72 unknowns in 36 equations, thus
the order of under-determination is 36. We must look for non-negative solution. To remove
the under-determination, and produce examples (84) we impose the following conditions:
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i The matrix associated to the generator has the greater number of zeros;
ii Fix the following rates:

�21
12 = σ11 �12

21 = σ22 �22
11 = σ21 �11

22 = σ12. (93)

With the above two requests, the solution of (87) is unique (for fixed parameters h, m and
for fixed diffusivity matrix and reaction constant) and the bulk generator takes the form (84).
Indeed, by considering (92) we have:

• The row �
α,β
00 has all the elements are zero;

• The row �
α,β
01 is found by solving

�10
01 + �11

01 + �12
01 = σ11 �00

01 + �10
01 + �20

01 = σ11 + σ21

�02
01 + �12

01 + �22
01 = h �20

01 + �21
01 + �22

01 = σ21.

By the conditions i and i i previously required, we obtain�10
01 = σ11,�20

01 = σ12,�02
01 = h

and all the other off-diagonal rates are equal to zero. By similar arguments, also the rows
�

αβ
02 , �

αβ
10 , �

αβ
20 are determined.

• The row �
αβ
11 is found by solving:

�02
11 + �12

11 + �22
11 = σ21 + h �20

11 + �21
11 + �22

11 = ϒ − σ21 − h

�00
11 + �10

11 + �20
11 = 0 �00

11 + �01
11 + �02

11 = 0.

By the conditions i and i i previously required we obtain �22
11 = σ21, �12

11 = h, �21
11 =

ϒ −2σ21 −h and all the other off-diagonal rates are equal to zero. By similar arguments,
also the rows �

αβ
12 , �

αβ
21 , �

αβ
22 are determined.

We observe that, when h = m = 0 (84) do coincide with the non negative least square
solution (see [37]) of (87). (42) is recovered from (84) when σ21 = σ12, σ22 = σ11 and
h = m in (84).

C.2 Boundary Processes

Once the bulk is known, the conditions for the boundaries form two determined systems of
linear algebraic equations. We solve explicitly only the left boundary; the solution of the
right one is very similar.

Left boundary: recalling the definitions of B1 and C2, we have the following

B11
1 = −y5 − y6 − y4 B12

1 = y12 − y4 B21
1 = y6 − y16 B22

1 = −y17 − y12 − y16

C11
2 = −y7 − h − y2 C12

2 = m − y2 C21
2 = h − y14 C22

2 = −y18 − m − y14;
by consequence system (37) is rewritten as:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
−1 0 −1 −1 0 0
−1 0 0 0 0 1
0 1 0 0 0 0
0 −1 0 1 0 0
0 −1 0 0 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

W 1
0 (1)

W 2
0 (1)

W 0
1 (1)

W 2
1 (1)

W 0
2 (1)

W 1
2 (1)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11ρ
(1)
L + σ12ρ

(2)
L−σ11 − σ21 − h

m

σ21ρ
(1)
L + σ22ρ

(2)
L

h
−σ22 − σ12 − m

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The coefficient matrix of the above system has full rank; thus there exists a unique solution.
Recalling the definition of W α

γ (1)we obtain (83). As a consequence of (40), and in particular
σ11 + σ21 = σ12 + σ22, this generator has non negative non-diagonal transition rates if

0 ≤ ρ
(1)
L + ρ

(2)
L ≤ 1. (94)

(94) is always true since we assumed that the sum of the densities of the two species in the
reservoir is at most one.

Right boundary: by similar arguments we solve (38) and we obtain the right boundary,
i.e. (85). This matrix has non-negative off-diagonal rates if:

0 ≤ ρ
(1)
R + ρ

(2)
R ≤ 1. (95)

(95) is always true since we assumed that the sum of the densities in the reservoir is at most
one.
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