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Calibration inductive logics are based on accepting estimates of relative frequencies, which 
are used to generate imprecise probabilities. In turn, these imprecise probabilities are 
intended to guide beliefs and decisions — a process called “calibration”. Two prominent 
examples are Henry E. Kyburg’s system of Evidential Probability and Jon Williamson’s 
version of Objective Bayesianism. There are many unexplored questions about these logics. 
How well do they perform in the short-run? Under what circumstances do they do better 
or worse? What is their performance relative to traditional Bayesianism?
In this article, we develop an agent-based model of a classic binomial decision problem, 
including players based on variations of Evidential Probability and Objective Bayesianism. 
We compare the performances of these players, including against a benchmark player who 
uses standard Bayesian inductive logic. We find that the calibrated players can match the 
performance of the Bayesian player, but only with particular acceptance thresholds and 
decision rules. Among other points, our discussion raises some challenges for characterising 
“cautious” reasoning using imprecise probabilities. Thus, we demonstrate a new way of 
systematically comparing imprecise probability systems, and we conclude that calibration 
inductive logics are surprisingly promising for making decisions.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

An inductive logic is a formal system that extends deductive logic to include the comparative assessment of deductively 
invalid arguments. When coupled with a decision theory, an inductive logic provides a formal guide to decisions and beliefs 
under uncertainty, which can be applied by human reasoners, intelligences, and so on.

There are many inductive logic systems. However, one interesting class, which we shall call “calibration inductive logics”, 
involves accepting hypotheses about relative frequencies. They also provide rules for determining imprecise probabilities 
for conclusions given these statistical hypotheses. These rules for imprecise probabilities are called “calibration rules” [65]. 
Finally, these imprecise probabilities can be paired with epistemological or decision-theoretic rules to determine beliefs and 
decisions.
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We can estimate relative frequencies using our data and our background knowledge, but our relevant information is 
typically imprecise — we usually only know that the relative frequency is somewhere in a certain interval. For this rea-
son, calibration inductive logics use imprecise probabilities to represent our information about relative frequencies. These 
imprecise probabilities from calibration are not the same as “Imprecise Bayesianism”, where imprecise probabilities are in-
terpreted as the properties of a set (usually convex) of probability functions that represents an individual or group’s beliefs; 
updating of this set proceeds by a generalisation of Bayesian conditionalization [61,5]. In calibration inductive logics, the 
imprecise probabilities represent information from an individual’s total evidence, rather than a psychological state.

Despite the popularity of Imprecise Bayesianism as an inductive logic based on imprecise probabilities, it faces a number 
of challenges [7,56,34,15]. Without prejudging these debates, it is worth exploring the alternatives based on calibration, 
which may avoid the challenges of Imprecise Bayesianism and yet still retain the advantages of an imprecise probability-
based inductive logic [31,33,68].

In this article, we focus on two calibration inductive logics: Henry E. Kyburg’s system of Evidential Probability and Jon 
Williamson’s version of Objective Bayesianism. Both of these approaches have been the subjects of extensive discussion in 
the past 15 years [64,65,44,37,45,18,50,40], including a special issue on Kyburg’s system [58]. We describe each of them in 
Section 1, before explaining our study design in Sections 2 and 3. We find clear and consistent results in our comparisons 
of players and their settings. We describe these results in Section 4. In discussing these results in Section 5, we also use our 
results to raise some conceptual questions for further research.

1.1. Evidential probability

The first version of Evidential Probability1 was developed by Kyburg in 1961 [27] but we shall only discuss the last 
version of his system [38]. The idea is to interpret probability as a formal relation between (a) statements about relative 
frequencies and (b) statements about events, samples, populations, and so on. Like standard Bayesianism, Kyburg’s interpre-
tation involves epistemic concepts, because his aim is to model evidential support in terms of probabilities. The essential 
idea is that imprecise probabilities should be derived, by a formal procedure, from the information about relative frequen-
cies in (a). However, since we almost always lack enough information about relative frequencies to determine a complete 
prior distribution over what we are thinking about, evidential probabilities are usually interval-valued. For example, from 
an agent’s past biological studies, they may only know that the proportion of plants with red leaves in autumn in Europe 
is no more than 50% and at least 5%, but the agent cannot determine a more precise prior from their background botanical 
information.

Evidential Probability starts from the estimation of relative frequencies. There are many conceptual issues involved in 
applying such methods to accept the estimates, including Kyburg’s famous “Lottery Paradox” [27]. We shall focus just on 
those issues that are relevant for explaining our tests in this article.

Evidential Probability allows for the use of either frequentist statistical methods or Bayesian statistical methods, de-
pending on the context. Kyburg developed a complex set of rules for determining when frequentist-style or Bayesian-style 
reasoning is appropriate. Briefly, Evidential Probability typically requires the use of estimates from Bayesian methods, but 
only if there are not more precise estimates from frequentist methods. When Bayesian estimates are vaguer than the fre-
quentist estimates (the former includes the latter as proper subintervals) then Evidential Probability uses the frequentist 
estimates. Therefore, Kyburg’s system typically requires the use of Bayesian reasoning (conditionalisation) when an agent’s 
information about relative frequencies is rich, but tends to require frequentist statistical reasoning when the agent’s in-
formation is poor [30].2 In our tests, agents will lack the frequency-based priors that Evidential Probability requires for 
Bayesian statistical methods. Instead, in contexts like our tests, Evidential Probability requires the use of confidence interval 
estimation [35].

To summarise, evidential probabilities are interval-valued, formally determined, and (in the context of this article) cor-
respond to confidence interval estimations of the parameter of interest. Following Kyburg, we shall put the evidential 
probabilities in the unit interval. Note that an evidential probability like [0.49,0.51] is not an estimate of a probability 
(as in frequentist statistics) but an interval-valued imprecise probability.

Due to its use of confidence interval estimation, Kyburg’s inductive logic requires a step of determining a probability 
for rejecting and accepting estimates. In the context of our agent-based model, such a “level of acceptance” is just the 
confidence level. For the sake of familiarity, we shall talk in terms of significance levels. Thus, an acceptance level is defined 
as 1 − α, where α ∈ [0,1] is the significance level that a test of a relative frequency (a statistical statement) must exceed in 
order to be accepted by an agent. The estimate that is accepted in Evidential Probability is always the shortest that can be 
estimated at a particular significance level [36, p. 261].

How should one choose the significance level? Kyburg, Williamson, and other users of Kyburg’s system regard this 
question as a decision problem, which needs to be answered partly on the basis of our preferences (utilities) and partly 

1 We use capitalised “Evidential Probability” for the inductive logic and the lower-case “evidential probability” for particular probability values in this 
system.

2 The complexity of Kyburg’s system is due to intermediate cases, plus the challenge of selecting among information about different “reference classes” 
for determining the evidential probability of a hypothesis relative to some information. We set aside these details, because the reference classes that 
Kyburg’s system recommends in our study match what is intuitive [28,31].
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on the basis of (mathematical and epistemological) objective constraints [29,17,62]. Different significance levels affect the 
speed of acceptance: ceteris paribus, a lower significance level increases the sample size that we need to accept a statistical 
statement.

The next element for the application of Evidential Probability to a decision problem is a rule for making decisions 
given utilities and evidential probabilities. Kyburg was open to a range of possible decision rules, which might be chosen 
on pragmatic grounds, such as computational speed [32, p. 148]. While Kyburg pioneered the application of agent-based 
modelling in formal epistemology [35], he does not seem to have considered the possibility of using such modelling to 
choose among decision rules. Our article fills this gap in the literature.

1.2. Objective Bayesianism

In the inductive logic literature, an important system that uses Kyburg’s rules for inductive inference is Objective 
Bayesianism, as developed by Williamson [69]. Williamson employs Evidential Probability as a tool to determine the in-
formation about relative frequencies that Objective Bayesians should use to guide their reasoning.3 We begin by explaining 
Williamson’s interpretation of probability. Evidential probabilities are epistemic: they are quantitative representations of 
how our evidence constrains what we reasonably believe [36, pp. 201–202]. In contrast, Objective Bayesian probabilities 
have a mix of evidential and pragmatic justifications [63]. On pragmatic grounds, Williamson adds a rule to transition from 
evidential probabilities to precise probabilities about “rational” degrees of belief: the Objective Bayesian degree of belief in 
a hypothesis is given by an entropy-maximising probability function (see Section 2.10) given the constraints from Evidential 
Probability intervals.4

From a decision-theoretic perspective, the key consequence of Williamson’s modifications is that an Objective Bayesian 
always has precise credences, and therefore an Objective Bayesian can use expected payoff maximisation as their deci-
sion rule [68]. Williamson argues that Objective Bayesian credences are the best way to achieve this result [63]. However, 
calibrating by accepting statistical statements is the core of Objective Bayesian updating, rather than standard Bayesian 
conditionalization using one’s priors; Williamson defends this deviation from standard Bayesian epistemology [66]. Like Evi-
dential Probability, Objective Bayesianism is a hybrid of frequentist statistics and Bayesian statistics, but one that is closer to 
traditional Bayesianism, since the ultimate result is a precise probability representing (arguably ideally rational) psychologi-
cal states. In our agent-based model, Objective Bayesianism will be represented by a calibration agent called MaxEnt, whom 
we explain later.

2. The agent-based model

We begin by explaining our agent-based model’s general conditions, before detailing the decision problem in the model, 
and we finish by describing the agents in the model. Each agent that we compare is a combination of a decision rule 
and a significance level α. We shall call these agents “players” because their decision problem will be a (solo) game. 
Supporters of imprecise probabilities have argued for one or other rule on general theoretical grounds [43,29,55,39,6]. Hence, 
we decided to investigate the performance of a range of different decision rules. Each agent represents a particular rule, and 
we investigated each rule with respect to three different values of α. We also included a standard Bayesian agent as a 
benchmark.

2.1. Decision problem

Our agent-based model is designed for testing players’ ability to acquire and use information to make successful deci-
sions. Each test is an iterative sequence of a decision problem — a game — in which players separately observe a sequence 
of binomial trials, which we shall call “coin tosses”, before choosing whether to bet on the outcome of the last toss in the 
game. The players know that these coin tosses are exchangeable and binomial, but they do not have any prior estimates 
of the coin’s bias. In each game, players go through the following sequence: (a) 4 tosses are observed and added to any 
observations from previous games; (b) the player makes a decision whether and how to bet on an additional 5th toss; (c) 
the player observes the 5th toss and adds its outcome to their overall set of observations in the test.

Formally, in each observation, players observe either (1) ωh , a state where the coin lands heads or (2) ωt , a state where 
the coin lands tails. The set of states � := {ωh,ωt} with a typical element ωi thus contains every possible outcome of an 
observation. A “history” is a sequence of observations up until a particular point in the test. The “no observation” history is 
s̃ := ∅. The set S := �m includes the possible histories with observations that can be generated by a finite number m ≥ 1
of coin tosses. Each s ∈ S is a sequence s := (s1, . . . , sm) where, for each j ∈ [1,m], s j ∈ �. The set of all possible histories is 
S := {S ∪ {s̃

}}
with a typical element s.

3 He also makes some modifications to the calibration procedure that are not relevant here [62,65, Chapter 7].
4 Or the closest approximation to such a function. For example, if the evidential probability of a binomial event given some evidence is the half-closed 

interval (0.5, 1], then there is no probability that is closest to the entropy-maximising value of 0.5, but there can be more entropic probabilities [67, p. 
469].
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Fig. 1. Player Payoff Matrix.

The players count the frequencies of heads and tails in their observed histories. Thus, we define a counting function for 
ωh as κ : S →Z≥0 such that, for every history s ∈ S , κ (s) = n 

({
s j ∈ s : s j = ωh

})
, where n (·) is the cardinality of the set.

Given the observed histories, players have an option to bet on the 5th toss in every game. An action’s outcome is defined 
by a function π : C × � → R, where C := {h, t,a} is the set of possible actions that players can choose, with a typical 
element c. The function π assigns, to every possible action-state combination (c,ωi) ∈ C × �, a real number π (c,ωi) ∈ R
representing the payoff from action c ∈ C given the state ωi ∈ �. Players know, with certainty, the information in Fig. 1, 
which gives the action payoffs associated with every possible outcome of the 5th toss.

δ ∈ [0, 1] is a randomly generated value that determines the ticket prices for h and t under winning and losing. We 
explain the generation of δ in Section 3. A player wins (1 − δ) for choosing h when the 5th toss results in state ωh and δ
for choosing t when the 5th toss results in state ωt . They suffer a loss of −δ when they choose h and the 5th toss results 
in ωt . They lose (δ − 1) when they choose t and the 5th toss results in ωh . Note that abstaining, a, provides a guaranteed 
payoff of 0.

2.2. The standard Bayesian

As a benchmark player, we included a standard Bayesian player, whom we call Stan. We are not attempting an overall 
epistemological comparison of Stan and the calibration players that we describe below, because that would involve many is-
sues beyond the scope of this article. Instead, Stan is a point of comparison, because decision theory with Bayesian expected 
payoffs is relatively well-studied and often used in statistics, economics, and elsewhere.

We define an epistemic model MB := {
�, �, S, κ, p

}
, where � is the set of states, � := {

x ∈R : x ∈ [0,1]
}

is the set of 
coin biases5 towards ωh with a typical element θ , S is the set of possible observation histories, κ is the counting function 
for ωh , and p : S → 
 (�) is a credence function that assigns, to every history s ∈ S , a probability distribution p (s) ∈ 
 (�)

on �, where p (θ | s) ∈ (0,1) is the marginal probability of a coin bias θ ∈ � given a history s.
For Stan’s credences, we used a beta distribution prior. These priors are a very common Bayesian tool for the decision 

problem that we use in our tests. Beta distribution priors have the useful feature that, with Bayesian updating in our 
decision problem, their posteriors will also be beta distributions. A beta distribution can be summarised as B (a,b), where 
a > 0 and b > 0 are its shape parameters. Stan’s bias towards ωh is given by a and their bias towards ωt is given by b. Thus, 
as a and b tend towards 0, Stan’s credences converge more quickly to their sample’s frequencies for ωh and ωt , while as a
and b tend towards infinity, Stan’s credences become less responsive to evidence.

A flat prior of B (1,1) is a common choice among Bayesian statisticians for problems like our game, where all Stan knows 
is that the game consists of Bernoulli trials (binomial events in an exchangeable sequence) and betting with randomised 
payoffs. A flat prior updates relatively quickly. A flat prior is also equivocal, which many Bayesian statisticians would regard 
as required (or at least permissible) in such a game. Therefore, Stan will use a flat prior beta distribution.

Stan’s evidence consists of observing a sequence of coin tosses. Stan updates their credence in each θ ∈ � by revising p
using Bayes’ rule:

p (θ | s) = p
(
θ | s̃

)
p (s | θ)

p (s)
, where p

(
θ | s̃

)
> 0 denotes a prior probability of θ . (1)

Since Stan knows that each toss is a Bernoulli trial and the game generates a binomial distribution, Bayes’ rule can be 
reformulated using a counting function κ for each history s ∈ S and every coin bias θ ∈ � as

p (θ | κ (s) ,m) = p
(
θ | s̃

)
p (κ (s) ,m | θ)

p (κ (s) ,m)
, (2)

where p (κ (s) ,m | θ) =
(

m
κ (s)

)
θκ(s) (1 − θ)m−κ(s) . Thus, the posterior probability distribution p (κ (s) ,m) ∈ 
 (�) and the 

prior probability distribution p 
(
s̃
) ∈ 
 (�) are both beta distributions.

5 For brevity, we shall say “coin bias” rather than “coin toss bias”.
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The prior credence in any bias can be described as

p (θ | a,b) = θa−1 (1 − θ)b−1

B (a,b)
. (3)

Consequently, Bayes’ rule for each bias and history is

p (θ | κ (s) ,m) =

(
m

κ (s)

)
θκ(s)+a−1 (1 − θ)m−κ(s)+b−1

/
B (a,b)

1∫
0

((
m

κ (s)

)
θ ′κ(s)+a−1 (1 − θ ′)m−κ(s)+b−1

/
B (a,b)

)
dθ ′

= θκ(s)+a−1 (1 − θ)m−κ(s)+b−1

B (a + κ (s) ,b + m − κ (s))
. (4)

Thus, Stan’s posterior is another beta distribution characterised by a + κ (s) and b + m − κ (s).
For Stan’s prior in ωh , we define an aggregate belief function ψ p : S → 
 (�), such that for any s̃, the conditional belief 

in ωh is

ψ p (ωh | s̃
)=

1∫
0

θ p (θ)dθ = a

a + b
, (5)

while we define the conditional belief in ωt as ψ p
(
ωt | s̃

)= 1 − ψ p
(
ωh | s̃

)
. Stan’s posterior belief in ωh given s ∈ S is

ψ p (ωh | s) =
1∫

0

θ p (θ | κ (s) ,m)dθ = a + κ (s)

(a + κ (s)) + (b + m − κ (s))
, (6)

while their posterior belief in ωt given that history s is ψ p (ωt | s) = 1 − ψ p (ωh | s).
We define Stan’s expectation-based reasoning about actions using a model D B := {

C, S,π,ψ p
}

, where C is the set of 
possible actions, S is the set of possible observation histories, π is the payoff function, and ψ p is Stan’s aggregate belief 
function. For any history s ∈ S , the expected payoff from some action c ∈ C is

E
[
c | ψ p, s

]= π (c,ωh)ψ p (ωh | s) + π (c,ωt)ψ p (ωt | s) . (7)

It follows that Stan always has a specific real number representing the expected payoff associated with each action. The 
choice of an action associated with the highest expected payoff is considered to be an optimal (i.e. expected payoff max-
imising) choice, and thus choosing such an action is rational according to standard Bayesian decision theory [52]. However, 
the optimal choice may not be unique: there may be more than one action that maximises Stan’s expected payoff. The 
non-uniqueness of the optimal choice is a common result in many contexts of application of Bayesian decision theory (for 
a technical discussion of applications of Bayesian decision theory models to different types of decision problems, see, for 
example, [14,26,49,4]). In such situations, a player’s final choice of an action remains undetermined by the Bayesian decision 
theory model: according to the expected utility maximisation criterion, the choice of every action that maximises expected 
payoffs is a permissible, and therefore possible, choice.

Optimal choices can also be non-unique according to other decision rules considered in this study.6 In such cases, the 
criterion cannot be used to determine the final choice of such player, since, according to the decision criterion, each choice 
that satisfies it is a permissible, and therefore possible, choice.

Many applications of decision theory that require fully determinate choices deal with the non-uniqueness problem by 
introducing tie-breakers: secondary decision criteria that the decision-maker uses to select among actions that are optimal 
according to the primary decision criterion. The player who uses additional tie-breakers essentially uses a compound deci-
sion rule that involves two or more decision criteria. This approach, however, cannot be applied for our purposes. The goal 
of this study is to compare the performance of individual decision criteria. To do this, we need to obtain a record of the 
consequences of the choices that each individual decision criterion prescribes in isolation from other decision criteria. An 
introduction of tie-breakers would generate compound decision rules that would make it impossible to determine the per-
formance of compound decision rules’ components. Moreover, the use of some of the tie-breakers suggested in the literature 
would simply generate compound decision rules that combine two or more individual decision rules that we are aiming to 
compare in this study [42]. Although such a study could inform the design of successful and practically applicable decision 
rules, the introduction of compound decision rules would not attain this study’s objectives.

6 In this particular study, this occurs only for one player, Dominance, but other players can have non-uniqueness in other decision problems.
5
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Therefore, we deal with the non-uniqueness problem by assuming that each player responds to non-uniqueness by 
uniformly randomizing among actions that are optimal according to the primary decision criterion. This assumption allows 
us to represent the player as a decision-maker who uses only one decision criterion to evaluate the actions, and thus is 
strictly indifferent between actions that satisfy it. The uniform probability distribution puts equal weight on each action 
that satisfies the decision criterion, and thus allows us to fully implement the assumption that the player regards each 
action satisfying their rule as equivalent.

In addition, the uniform randomization assumption allows us to model the non-uniqueness situations as having 
a “neutral” effect on player’s overall performance. Suppose that player’s decision criterion selects a choice set {h, t}. 
The player then chooses a randomized action σ ∈ 
 ({h, t}), where 
 ({h, t}) is the set of all the possible probabil-
ity distributions on the set {h, t}, that assigns probability σ (h) = 1

2 to action h and probability σ (t) = 1
2 to action t . 

Given any probability distribution  ∈ 
 (�) on �, where  (ωh) ∈ [0,1], a player’s ex ante expected payoff from σ is 
1
2

(
 (ωh) (1 − δ) + (1 −  (ωh)

)
(−δ)

)+ 1
2

(
 (ωh) (δ − 1) + (1 −  (ωh)

)
(δ)
) = 1

2

(
 (ωh) − δ

)+ 1
2

(− (ωh) + δ
) = 0. Thus, a 

uniform randomization over {h, t} has an ex ante expected payoff of 0. The same results can be shown to hold for a uniform 
randomization on {h, t,a}. Given a randomized action ς ∈ 
 (C), such that ς (h) = ς (t) = ς (a) = 1

3 , the ex ante expected 
payoff from ς given  is 1

3

(
 (ωh) − δ

)+ 1
3

(− (ωh) + δ
)+ 1

3 (0) = 0. Thus, if the player adopts the randomization principle 
for each decision situation where that player faces a non-uniqueness problem, then, no matter which of the possible coin 
biases is used, the overall ex ante expected payoff from the consistent application of the randomization procedure is 0.

Returning to the particular case of Stan, note how they possess precise expectations and payoffs. Hence, they can use 
payoff maximisation to make their decisions. Stan randomly chooses an action among those with the highest expected payoff 
given their credences, meaning that they make a selection from the set according to a uniform probability distribution. The 
set of such actions can be defined as

Bp,s :=
{

c ∈ C : c ∈ arg max
c′∈C

(
E
[
c′ | ψ p, s

] )}
. (8)

2.3. Calibration players

In this subsection, we shall describe (1) the updating procedure used by the calibration players and (2) their decision 
rules. The calibration players include the combinations of Evidential Probability with different decision rules, including a 
player who can also be interpreted as an Objective Bayesian. To describe the players, we shall explain a generic player 
called Calibration, who becomes a specific player in our agent-based model when they are paired with a specific decision 
rule. Initially, Calibration lacks any information about the relative frequency of heads tosses in the reference class of coin 
tosses. They just know that the coin tosses are exchangeable and that a toss can only land heads or tails.

Calibration’s reasoning is represented using a model M F := {�,A, κ, S, λ}, where � is the set of states, A is the set 
of considered significance levels with a typical element α, κ is the counting function for ωh , S is the set of possible 
histories, and ϕ : A × S → P ([0,1]) is the function that assigns, to every significance level-history pair (α, s) ∈ A × S , 
a Clopper-Pearson interval ϕ (α, s) := (φL, φU ) ∈ P ([0,1]). The Clopper-Pearson interval is a commonly used method for 
determining a binomial confidence interval. It guarantees a coverage level that is never lower than the nominal level 1 − α. 
Its primary technical advantage is that, due to relationship between the binomial distribution and beta distributions, the 
Clopper-Pearson interval can be easily derived from beta distributions with the counting function κ (·) defined in section 2.1. 
Moreover, unlike some confidence interval estimation methods for binomial distributions (such as the normal approximation 
or the Jeffreys approximation) the Clopper-Pearson method can be reliably used even given very small samples, which occur 
in the early parts of our tests.

The lower bound φL ∈ [0,1] and the upper bound φU ≥ φL of this interval can be represented in terms of beta distribution 
quantiles:

φL = B
(α

2
;κ (s) ,m − κ (s) + 1

)
; (9)

φU = B
(

1 − α

2
;κ (s) + 1,m − κ (s)

)
. (10)

For a significance level α and a history of m coin tosses s ∈ S with κ (s) ≥ 0 “heads”, Calibration estimates the actual 
coin bias to be within the Clopper-Pearson interval ϕ (α, s). Hence, they reject any values φ /∈ ϕ (α, s). For an Evidential 
Probabilist, in a scenario like the coin tossing problem where any other statistical statement would be eliminated, the 
confidence interval is the (imprecise) probability that the coin toss lands on heads.7 For an Objective Bayesian, this evidential 
probability provides constraints on the application of entropy-maximisation to generate the (precise) Objective Bayesian 
probability.8

7 Note the difference with standard frequentist statistical reasoning, where the confidence interval is not a probability.
8 In his illustrations of Objective Bayesianism, Williamson has used confidence interval estimation with the normal approximation given relatively large 

samples [69]. Since the samples in our tests can be too small to use the normal approximation of the binomial, our players use Clopper-Pearson methods 
to directly estimate the binomial confidence level.
6
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Calibration’s expectation-based reasoning about actions can be represented with a model D F := {�,A, S, C,π,E}, where 
E : C × A × S → P

(
R
)

is a function that assigns, to every action-significance level-history combination (c,α, s) ∈ C × A ×
S , an expected payoff vector E (c,α, s) := (E [c | φl] , . . . , E [c | φu]), where φl = min (ϕ (α, s)), φu = max (ϕ (α, s)) and each 
expectation E [c | φ] := φπ (c,ωh) + (1 − φ)π (c,ωt) for every φ ∈ ϕ (α, s).

For many of the decision rules that define specific calibration players, two important terms will be the minimum and 
maximum expectations of an action given a confidence interval. Given an action-significance level-history combination 
(c,α, s) ∈ C × A × S , we define the minimum expectation of an action c as

Emin
c|α,s := min

E[c|φ]∈E(c,α,s)
(E [c | φ]) , (11)

and the maximum expectation as

Emax
c|α,s := max

E[c|φ]∈E(c,α,s)
(E [c | φ]) . (12)

Note how Emin
a|α,s = Emax

a|α,s = 0 for each (α, s) ∈ A × S , because a has a guaranteed payoff of zero.

2.4. Dominance

We shall now define the individual players based on the Calibration template. The first player, Dominance, uses the Inter-
val Dominance rule, sometimes known as the “non-dominated set rule” [9, p. 15]. If an action c’s maximum expected payoff 
is strictly less than the minimum expected payoff of one or more alternatives, then c is “dominated”. Interval Dominance 
permits any non-dominated action. Dominance randomises among the set of non-dominated actions.

We define the set of non-dominated actions, given any (α, s) ∈ A × S as

Dα,s :=
{

c ∈ C : Emax
c|α,s ≥ Emin

c′|α,s], for every c′ ∈ C
}

. (13)

Dominance randomly (meaning according to a uniform distribution) chooses an action c from Dα,s .

2.5. E-Admissibility

The next rule was developed as a decision rule for imprecise probabilities by Isaac Levi [41]. We shall call this player 
E-Admissibility, after Levi’s name for his rule. It has not previously been considered as a rule for calibrated inductive logics, 
but it can be adapted to any type of imprecise probabilities, including Kyburg’s Evidential Probability system.

A set of actions where each action in the set maximizes E-Admissibility’s expected payoff with some element of ϕ (α, s)
can be defined as

Eα,s :=
{

c ∈ C : ∃φ ∈ ϕ (a, s) , c ∈ arg max
c′∈C

(
E
[
c′ | φ])} . (14)

E-Admissibility randomly chooses an action c from Eα,s .

2.6. Maximin

The next rule is an adaptation of maximin decision theory to imprecise probabilities. In the context of Imprecise 
Bayesianism, it has been called �-Maximin [55], but for simplicity’s sake we shall just call it Maximin. This rule instructs 
us to maximise the minimum expected payoff of our actions.

A set of actions that maximize the minimum expectation given a significance level α and a history s can be defined as

Mα,s :=
{

c ∈ C : Emin
c|α,s ≥ Emin

c′|α,s, for every c′ ∈ C
}

. (15)

Thus, each c in the set is minimum payoff-maximising according to some coin bias that is consistent with Maximin’s 
estimated interval in a particular game. The player Maximin randomly chooses an action c from Mα,s .

2.7. Regret

The Minimax Regret rule was developed to address a criticism of Maximin rules: the latter is insensitive to opportu-
nity costs [52,57,6].9 The Regret player makes decisions based on a “regret number” for each action, which is the highest 

9 The opportunity cost of a choice is the value of the best possible alternatives. In contrast, accounting cost is the absolute net profit. For example, if 
the loss from making a particular choice is $20, but your best alternative was losing $15, then the loss in terms of accounting costs was $20. However, 
your opportunity cost was $15, then you lost just $5 in opportunity cost terms. If your best alternative was losing $20, then you lost nothing in terms of 
opportunity costs.
7
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opportunity cost of the action (in terms of expected payoffs) for any coin bias that is compatible with Regret’s confidence 
interval. Put another way, an action’s regret number represents the greatest difference, according to some coin bias that is 
consistent with the confidence interval, between (1) the highest expected payoff associated with any possible action, and 
(2) the actual expected payoff of that action. In a particular game, Regret chooses an action with a minimal regret number, 
given their confidence interval estimate. They choose an action that minimises the maximum regret number.

The set of regret-minimising choices can be defined with a regret function r : C × A × S → R that assigns, to each 
combination (c,α, s) ∈ C × A × S , a regret value

r (c,α, s) := max
φ∈ϕ(α,s)

(
max
c′∈C

(
E
[
c′ | φ])− E [c | φ]

)
. (16)

We define the set of regret-minimising choices as

Rα,s :=
{

c ∈ C : c ∈ arg min
c′∈C

(
r
(
c′,α, s

))}
. (17)

Regret randomly chooses an action c from Rα,s .

2.8. The Hurwicz players

The next rule, developed by Leonid Hurwicz, uses a constant parameter γ ∈ [0,1] to quantify different degrees of cau-
tiousness [20]. When γ = 1, a Hurwicz player only makes decisions using their minimum expectations. Similarly, when 
γ = 0, then a Hurwicz player only takes their maximum expectations into account when making decisions.

In our model, we examine γ values of 0.25, 0.5, and 0.75, because it is with such middling values that the Hurwicz 
approach is distinct from other rules. The Pessimist player has γ = 0.75. The Intermediate player has γ = 0.5. The Optimist
player has γ = 0.25.

A set of actions that maximize the Hurwicz measure given some combination (γ ,α, s) can be defined as

Hγ ,α,s :=
{

c ∈ C : c ∈ arg max
c′∈C

(
γ Emin

c′|α,s + (1 − γ ) Emax
c′|α,s

)}
. (18)

The Hurwicz players randomly choose an action c from Hγ ,α,s .

2.9. Opportunity risk optimisation

This decision rule was first suggested by Daniel Ellsberg [11, p. 664], building on earlier research [19]. Ellsberg does 
not give it a name. However, it balances two goals: (1) maximising payoff opportunities and (2) avoiding extreme risks, so 
we call it ORO: Opportunity-Risk Optimisation. ORO calculates a second-order parameter using two values: (1) the average 
expected payoff given their confidence interval, plus (2) the minimum expected payoff for each action. These factors are 
weighted by ORO’s confidence in their confidence interval estimate. We formalise this “confidence” in terms of the length 
of the interval, as defined below.

For any combination (c,α, s) ∈ C × A × S , the average expected payoff can be defined as

Eavg
c|α,s := φavgπ (c,ωh) + (1 − φavg)π (c,ωt) , where φavg := φl + φu

2
. (19)

The set of actions that are optimal for the ORO player given some (α, s) ∈ A × S can be defined as

Oα,s :=
{

c ∈ C : c ∈ arg max
c′∈C

(
(φu − φl) Emin

c′|α,s + (1 − (φu − φl)) Eavg
c′|α,s

)}
. (20)

The ORO player randomly chooses an action c from Oα,s .

2.10. MaxEnt

The next rule corresponds to what is required by Williamson’s version of Objective Bayesianism, when applied to our 
problem. It could also be applied by a user of Evidential Probability or a frequentist reasoning under uncertainty, since 
the entropy-maximising probabilities can be interpreted as auxiliary quantities for making decisions, rather than as rational 
degrees of belief.10

The Maximum Entropy Principle extends the Principle of Indifference – that, in situations of complete ignorance (where 
we have no information about the relevant relative frequencies) we should generate probabilities by assigning equal prob-
abilities to what we believe to be the fundamental states of the world. The Principle of Indifference is a rule for complete 

10 See also John Maynard Keynes’s suggestion [25, p. 214].
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ignorance, whereas the Maximum Entropy Principle can be applied outside situations of complete ignorance [21]. In the 
context of our agent-based model, this means that the player uses an entropy-maximising probability distribution given the 
constraints provided by their confidence interval estimates.

To define the MaxEnt player, we define a probability function u : � → 
 (�) which assigns a uniform probability distri-
bution on the set � and a belief function � : P ([0,1]) → P ([0,1]) that assigns, to any interval ϕ (α, s) ∈ P ([0,1]), a set 
of entropy-maximizing beliefs � (ϕ (α, s)) ⊆ ϕ (α, s), where each belief w ∈ � (ϕ (α, s)) is such that

w ∈ arg min
φ∈ϕ(α,s)

∣∣∣∣∣∣
⎛
⎝φ −

1∫
0

θu (θ)dθ

⎞
⎠
∣∣∣∣∣∣ . (21)

Since 
1∫

0

θu (θ)dθ = 1

2
, equation (21) can be simplified to

w ∈ arg min
φ∈ϕ(α,s)

∣∣∣∣φ − 1

2

∣∣∣∣ . (22)

A set of entropy-maximizing actions given some (α, s) ∈ A × S can be defined as

Wα,s :=
{

c ∈ C : ∃w ∈ � (ϕ (α, s)) , c ∈ arg max
c′∈C

(
E
[
c′ | w

])}
. (23)

MaxEnt randomly chooses an action c from Wα,s .

2.11. Significance levels

We decided to test a range of significance levels, since a wide range of significance levels are consistent with the cali-
bration inductive logics developed by Kyburg and Williamson. For values of α, we used 0.01, 0.05, and 0.5. The first two 
correspond to common choices of values in frequentist statistics. The 0.5 value has performed well in earlier studies [35,50].

3. Test methods

Our aim was to use our agent-based methods to test the Calibration players (those using frequentist statistical methods) 
against each other, as well as against our benchmark player Stan. In this section, we detail our methods for conducting these 
tests.

Each “test” has 1000 games. The tosses in each particular test were randomly generated for a particular coin bias. We 
defined each bias in terms of heads, with 1 being a coin that always lands heads, 0 being a coin that always lands tails, 0.5 
being a toss that lands heads 50% in the long-run, and so on. To test players with a broad spread of biases, we tested biases 
of 0.1, 0.3, 0.5, 0.7, and 0.9.

Using a powerful server, we created a large number of tests (1000 per player setting) to greatly reduce the risk of 
random errors. The players made all their decisions separately. They did not retain information from previous tests. For the 
sake of fairness, we used the same randomly generated coin toss outcomes for all players. Since there were 1000 games 
and 5 tosses per game, there were 5000 tosses per test. Each player also was faced with the same 1000 randomly generated 
ticket prices in a particular test. We randomly generated the parameter δ using a uniform distribution; these parameter 
values determined the values in Fig. 1. Each test was fair, in the sense that players were evaluated using the same coin 
toss outcomes and ticket prices. This design made our tests into controlled experiments, where we could vary one factor (a 
decision rule, significance level, coin bias, and so on) at a time.

Our tests can be regarded as a set of random observations, because each was stochastically independent of the others, 
while coin tosses and ticket prices were randomly generated, and the player parameters (such as α) were constant for a 
given test setting. Consequently, we used confidence interval estimation. It is crucial to note that, in some cases, our metrics 
for comparing players have overlapping confidence intervals. Thus, all of our analyses of relative player performances are 
always in terms of the confidence intervals around averages, not the averages themselves. All our results, provided at the end 
of the article, were estimated as confidence intervals at the 0.95 confidence level.

We coded ten different scripts using Python 3 (version 3.8.1), with the statsmodel econometric and statistical library 
[53]. The first two scripts generated coin toss outcomes and ticket prices. The other eight scripts generated average monetary 
net profits for each player (see Figs. 2 to 9 plus the statistics for the conditions met by players in the tests — see Table 2
to Table 9. All tests were performed on an Ubuntu Linux server powered by a 64 cores (128 threads) Intel Xeon (Phi type) 
processor with a clock speed of 1.3 GHz, coupled with 128 GB RAM.
9



M. Radzvilas, W. Peden and F. De Pretis International Journal of Approximate Reasoning 162 (2023) 109030
3.1. Comparison criteria

We used three comparison tools. First, we compared players’ average aggregate performance in terms of the goodness of 
fit between their decisions and those that they (or any other player) would make if they knew the true bias in a test setting. 
Second, we used graphical comparisons of the evolution of their average decision-making performance, in terms of average 
payoffs, over all simulations. Third, we compared calibration players against Stan using the aforementioned two criteria.

3.1.1. Aggregate comparisons
To quantitatively compare players’ overall performances, we aimed to contrast them with respect to the goodness of fit 

between their (averaged) choices given a coin bias and the distribution of choices that they (or any other player) would 
have made if they knew the true coin bias at the start of the test. A measure using such an approach has the advantage of 
comparing player’s performances given particular distributions of coin tosses, rather than simply measuring average payoffs, 
because the performance we can expect from players depends on the bias and the particular distributions that occurred in 
our tests. The latter factor is not very important due to the large number of tests we performed, which almost entirely wash 
out random variations. The bias issue is more serious. For example, it is easier to perform well given a bias of 0.9 or 0.1 than 
a bias of 0.5. Hence, the true long-run bias gives a natural benchmark for assessing players. Thus, we needed a measure 
that was sensitive to the degree of difficulty created by different tests. We also wanted the measure to be insensitive to 
particular payoffs in the tests, because the latter fact was randomly generated and unreflective of player’s performances as 
such.

Ideally, we would simply construct, using the average statistics in our tests, (a) a probability distribution corresponding 
to a player’s choices and (b) a probability distribution for the choices that they would make if they knew the true bias. The 
latter is the same for each player, in that their decision rules require different choices only because they are using imprecise 
information from confidence interval estimates of the bias. However, the possibility of randomising or abstaining in our 
games meant that players’ choices could not be straightforwardly represented by a probability distribution. Instead, we 
created proxy statistics for players’ behaviour and adapted the Wasserstein metric to measure the goodness of fit between 
proxy distributions and the true bias [59,24]. In the rest of this subsection, we explain the details of this measure.

Randomisation is a particular challenge that arose from how some of our players sometimes make choices. How should 
these randomised choices be weighted? Randomising frequently is clearly better than persistently deviating from the true 
bias. For example, if the true coin bias is 0.9, then it is better to randomise than to act as if the coin bias is 0.1. On the 
other hand, it is even better to act insofar as one acts on the assumption that the true coin bias is 0.9, when this reflects 
the result of plausible update and decision rules. Additionally, a player who is randomising between h and t when the bias 
is 0.5 should not receive the same score as a player who has learned that the bias is 0.5, because we are measuring their 
capacity to quickly learn the true bias and use that information to make choices, not simply their ability to make successful 
decisions. Thus, we discounted random choices by 1/z, where a player is randomising among z > 1 choices. This approach 
has further advantages:

1. The more actions that a player rules out (for example, they randomise between just two actions, rather than three) the 
higher their score, reflecting their greater ability to use information from their observations.

2. The discount rates for two players who randomise in the same way would be identical, even if one was lucky and 
guessed the correct answer at a higher frequency. Our study is about players’ ability to systematically make better 
choices, so it is important to remove the effects of lucky randomisation.

3. Discounting in this way is proportionate to the difference between a player’s choice to randomise and the optimal 
choice. To simplify, imagine that our tests consisted of just one game. If the optimal choice in that game is t and a 
player uniformly randomised between t and h, then in the long-run they would be right in 50% of such tests, which 
matches the discounting of their choices. Similarly, discounting by 1/z would match their performance in making the 
optimal choice if they randomised between t , h, and a.

However, we recognise that any discounting of randomisation could be controversial. In our article, the relevant of these 
controversies is mitigated by the fact that our other comparison method (described in the next subsection) does not discount 
randomisation, as it looks purely at average payoffs. Furthermore, only Dominance randomises — see Tables 3 to 9.

Another issue was how to weigh abstaining. On one version of our measure, abstaining is costly, because it indicates a 
slower ability to successfully use information from small samples, which is the central challenge in our tests. However, in 
the original base game that we used (see Fig. 1) we set the payoff from the action a to 0. Thus, abstaining gave neither a 
profit nor a loss. Similarly we included a reparameterisation of our measure that disregards players’ abstaining, so that only 
the goodness of fit of their choices with ideal choices is included in the reparameterised measure. We also recorded the size 
of the abstaining factors, in order to enable easier assessments of its effects.11 Furthermore, we provide the raw statistics 
for how often players abstained, randomised, and so on. Hence, if readers wish to weigh such decisions differently to match 
their own theories of rationality, they can re-weigh our results.

11 We thank an anonymous referee for suggesting a neutral treatment of abstaining.
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Table 1
Possible player choice conditions.

Condition Description

K1 Directly choosing h.

K2 Directly choosing t.

K3 Directly choosing a.

K4 Randomising between h and t.

K5 Randomising between h and a.

K6 Randomising between t and a.

K7 Randomising between h, t, and a.

To summarise, we quantitatively assessed players by assessing their speed in obtaining and using sample information 
as if they knew the true bias. To make this comparison, we adapted a standard method for measuring the distance be-
tween probability distributions. We measured players over two periods, 250 games and 1000 games. We normalised the 
measure to provide a real number between 0 and 1. For each recorded measure value, we also included a separation of the 
abstaining factor and the goodness of fit factor in that value. Below, we explain the formal details of this measure and its 
reparameterisations.

There are seven possible conditions that can occur, which we delineate in Table 1. We define a set of player types 
T :={Dominance, E-Admissibility, Maximin, Regret, Optimist, Intermediate, Pessimist, ORO, MaxEnt, Stan} with a typical element 
τ , and an ordered set of choice conditions K := (K1, K2, K3, K4, K5, K6, K7), where each condition Kl ∈ K is an action from
Table 1. These actions can be either mixed (randomising) or pure (non-randomising). Next is a condition allocation rule 
ι : T → P (K ) that assigns, to each player type τ ∈ T, a set of conditions ι (τ ) ∈ P (K ) such that ι (τ ) = (K1, K2, K3) if and 
only if τ ∈ {MaxEnt, Stan} and ι (τ ) = K otherwise. The condition allocation rule functions as a formal way to refer to players 
in our measure’s definition. Stan and MaxEnt are treated separately, because their rules mean that they will never randomise 
or abstain in our decision problem. By contrast, with suitable payoffs and settings, the other players’ decision rules could be 
compatible with randomising.

The cardinality of the sets ι (τ ) ∈ P (K ) can be defined as n (ι (τ )) ∈ {3,7}. This enables us to define a function μ :
C × T → [0,1]n(ι(τ )) that assigns, to every action-player type combination (c, τ ) ∈ C × T, a vector of weights μ (c, τ ) :=(
μ1 (c, τ ) , . . . ,μn(ι(τ )) (c, τ )

)
, where μl (c, τ ) ∈ [0,1] is the weight of a condition Kl ∈ ι (τ ) given an action c ∈ C . The 

function μ is such that the choices and their circumstances are weighted as follows:

μ(h, τ ) =
{

(1,0,0) if and only if τ ∈ {MaxEnt, Stan} ;(
1,0,0, 1

2 ,0, 1
2 , 1

3

)
otherwise.

(24)

μ(t, τ ) =
{

(0,1,0) if and only if τ ∈ {MaxEnt, Stan} ;(
0,1,0, 1

2 , 1
2 ,0, 1

3

)
otherwise.

(25)

μ(a, τ ) =
{

(0,0,1) if and only if τ ∈ {MaxEnt, Stan} ;(
0,0,1,0, 1

2 , 1
2 , 1

3

)
otherwise.

(26)

We examined two periods: 250 games and 1000 games. To refer to these periods, we define a set � := {250,1000} with 
a typical element ξ . Our measure also takes inputs from the statistics of the average number of times that a player met 
a condition. The data from our tests provides the statistics for the members of a set χτ

θ,ξ :=
{
χτ

h|θ,ξ
,χτ

t|θ,ξ ,χ
τ
a|θ,ξ

}
, where 

each element χτ
c|θ,ξ ∈ [0,1]n(ι(τ )) is a vector reporting the mean number of times that a given condition Kl was met in 

the appropriate set ι (τ ), given a player type τ , action c, and period ξ . These sets provide the inputs for the performance 
measure. These are weighted using μ. The data that we used for χτ

θ,ξ are detailed in Tables 2 to 9.
Our performance measure is a function that uses the aforementioned terms and generates a real number between 0 and 

1 to assess player’s aggregate performances. We define the function as λ : � × T × � → [0,1] that assigns, to every coin 
bias-player type-period of games combination (θ, τ , ξ) ∈ � × T × �, a real number λ (θ, τ , ξ) ∈ [0,1], such that

λ (θ, τ , ξ) :=
√√√√√1 −

(
μ(a, τ )•χτ

a|θ,ξ

)
ξ−1︸ ︷︷ ︸

Abstaining factor

·

11
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√√√√√√√√√√

Normalizing
and scaling terms︷ ︸︸ ︷

1 − (2−1 − ∣∣2−1 − θ
∣∣)
⎡
⎢⎢⎢⎢⎢⎣
∣∣∣θ −

(
μ(h, τ )•χτ

h|θ,ξ

)
ξ−1

∣∣∣ θ−1︸ ︷︷ ︸
Goodness of fit in predicting

the frequency of heads

+

Goodness of fit in predicting
the frequency of tails︷ ︸︸ ︷∣∣∣1 − θ −

(
μ(t, τ )•χτ

t|θ,ξ

)
ξ−1

∣∣∣ (1 − θ)−1

⎤
⎥⎥⎥⎥⎥⎦ . (27)

In this formula, the symbol • denotes the scalar product between vectors. To account for the potential action a (abstain) 
among players, the goodness of fit must be separately defined for both heads and tails. In other words, the goodness of 
fit in predicting the frequency of heads can’t be retrieved directly by only observing the goodness of fit in predicting the 
frequency of tails, given the possibility of abstention. Furthermore, certain parts of the formula have been designed to 
ensure that the resulting measure falls within the familiar unit interval, while the use of absolute values helps prevent 
cancellations.

To disaggregate the two different information sources that contribute to this performance measure, we have re-
parameterized the previous formula by introducing �1 and �2, two terms related to the abstain and the goodness of 
fit factors defined above:

λ (θ, τ , ξ) :=√1 − �1 ·√�2, where (�1,�2) ∈ [0,1]2 . (28)

The parameter �1 measure the influence of the abstaining factor by compacting the information in Tables 2 to 9. It equals 0 
for those players who do not abstain; it increases as the relative frequency of abstention rises. The parameter �2 provides 
a measure for aggregate comparisons that disregards the abstaining factor, and thus measures just players’ goodness of fit 
performance. We report the values of λ and (�1, �2) in Tables 10 to 13.

3.1.2. Graphical comparisons
To examine the evolutionary path of players’ performances, we constructed graphs of their average performances (in 

terms of payoffs) over the games. We report these results in Figs. 2 to 9. Each graph is for a particular player, coin bias, 
and significance level. To plot the graph for each such combination of settings, we used our computation of the average 
performance over 1000 tests of that player for each game. The zero point in each chart is the average of all players’ payoff 
performances given a coin bias of 0.5, which provides a convenient common scale.

Our evolutionary comparison graphs provide additional information to our aggregate comparisons. Firstly, they show 
how a player’s average performance evolved in a particular test setting. Secondly, the graphs directly test their ability to 
maximise payoffs in the games, whereas our aggregate comparisons test players ability to approximate the true bias in the 
short run. Thirdly, the graphs enable disaggregated assessments of players’ performances, so we can examine any differences 
in particular subperiods of a test.

3.1.3. Comparisons with Stan
As a benchmark, we used Stan, who has performed well in similar earlier studies that applied agent-based modelling 

to the evaluation of inductive logics; they performed at least as well as any other player in comparable decision problems 
[35,50]. Hence, if a player can match or approximate Stan’s performance, they can perform as well as any other studied 
player in such tests, which is a strong point in their favour. Conversely, if Stan outperforms a player by a large margin, 
then that is useful information for assessing whether to use that player’s update and decision rules in areas like AI, policy 
evaluation, or financial-decision making. Thus, in both our graphical comparisons and our aggregate comparisons, we include 
the results for Stan, and we compare the calibration players to this Stan’s benchmark performance.

4. Results

In this section, we describe the results of both the aggregate comparisons and the graphical comparisons. We begin by 
making some general points about players’ performances, before discussing specific results and their comparisons. We finish 
by making comparisons with Stan.

As expected, players did better as the tests proceeded — their performance were better as their acquired more data. This 
provides a useful adequacy check for our tests, since confidence interval estimation should tend to result in more accu-
rate estimates (and hence better average performances) as the sample sizes increase. In contrast, the relationship between 
aggregate performances and coin biases varied among the players, as we shall detail.

For both the aggregate comparisons and the graphic comparisons, players generally did better as α was higher. Thus, 
α = 0.05 led to better performances than α = 0.01, while α = 0.5 led to better performances than α = 0.05. This result 
may seem surprising, since the lower values of α are more typical in scientific practice, but it mirrors results in similar 
earlier research [35,50] where players using calibration inductive logics performed better with lower values of α in this 
decision problem. The explanation is that in this game there is a high value, in terms of opportunity cost, for quickly 
detecting coin biases. Obviously, the estimates from small samples are less reliable than with larger samples, but they still 
tend to provide some valuable information, and generally there are payoff rewards for using this information. Hence, insofar 
as calibration players made more use of these small samples, they did better in this decision problem.
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Moreover, while α = 0.5 is not reliable according to usual scientific standards, it does have a rational interpretation in 
Kyburg’s Evidential Probability and Williamson’s Objective Bayesianism. It means that if the error rate in the significance 
level is the appropriate statistical information for determining the evidential probability, then the confidence interval esti-
mate is “more probable than not”, in the sense that the hypothesis that the confidence interval includes the true coin bias 
is an imprecise (evidential) probability with a lower bound of 0.5. Additionally, neither system commits us to the view that 
there is a universal appropriate standard of acceptance. According to Kyburg and Williamson, the level of acceptance can 
vary with the context [29,65]. Hence, it is compatible with their views that α = 0.5 is a possible standard of acceptance 
in decision problems like the game we study, whereas in scientific contexts like statistical testing of hypotheses a value of 
0.05, 0.01, or even lower could be appropriate. In general, we stress that our results do not have the absurd implication that 
scientists in general should use confidence intervals of 0.5 in statistical estimations. Instead, what we have found is that 
calibration inductive logics perform better with this standard in this particular type of decision problem.

The size of differences between players’ performances varied with α. However, the ordering of differences was the same 
according to our main aggregate comparison measure λ, as well as our graphical comparisons. Thus, the best performing 
players with α = 0.01 were also the best performing players with α = 0.5.

4.1. Aggregate comparisons

Three calibration players made the same decisions and also performed the best on our aggregate comparisons, so we 
categorise these together as the Leaders. These players were E-Admissibility, Optimist, and Intermediate. We report our aggre-
gate comparison results in Tables 10 to 13. We shall begin with results for λ in periods of 250 games. We shall only discuss 
periods of 250 games rather than 1000 games, because it was in the shorter periods that differences between players were 
most apparent.

In our aggregate comparisons, the Leaders performed very well. Unexpectedly, the Leaders’ performance was best when 
the bias was 0.5. In fact, under that condition, the difference could only be detected at 2 or more decimal places. The reason 
is that, on average, their confidence interval estimates will be symmetric around the true bias when the latter is 0.5. Thus, 
they rapidly approximate the rational decisions given knowledge that the bias is 0.5, and therefore perform better according 
to λ.

MaxEnt and Dominance were the next two best performing players on our aggregate comparisons. The extreme similarity 
of their performances is interesting, because they are based on two fundamentally different decision rules. In our decision 
problem, MaxEnt initially assigns a probability of 0.5 to the hypothesis that the next coin toss will land heads; they only 
shift away from this assumption insofar as it is inconsistent with their confidence interval estimates. They never randomise 
in our decision problem. In contrast, Dominance chooses the uniquely dominant action if it exists, and randomises whenever 
there are two or more undominated actions. However, while these two players do about equally well on average over all 
biases, they have opposite patterns for particular biases, due to the details of their decision rules.

We shall now explain the causes of those differences. Unsurprisingly, MaxEnt does best with a bias of 0.5, since they 
begin with a prior that matches this value. However, they did better with extreme biases of 0.1 or 0.9 than 0.3 and 0.7. The 
explanation of the latter pattern is that with an extreme bias, MaxEnt is more quickly pulled away from their misleading 
initial prior, because the sample variance is lower — a bias of 0.1 or 0.9 produces representative samples at a higher rate 
than 0.3 or 0.7. In contrast, Dominance does better insofar as the bias was more extreme, because this provided them with a 
higher frequency of uniform samples, enabling more precise confidence interval estimates. When Dominance lacked uniform 
samples, they had a greater tendency to randomise between actions; see Tables 4 to 9 for the precise averages. When 
randomising, Dominance abstains in 1/3 of games in the long-run. Abstaining in these games did not cause an accounting 
loss, since the payoff of a is always 0, but abstaining did create an opportunity cost relative to the Leaders. Thus, Dominance
underperformed due to abstaining, whereas MaxEnt underperformed due to their slow (in comparison to Stan, who also 
starts with an equivocal prior) revision of their prior.

Regret performed the same as Dominance, in that they both did better with extreme biases. However, the cause of Regret’s 
slight underperformance was different. As Tables 4 to 9 show, Regret directly chose to abstain in some games. In contrast, 
Dominance only chose a when randomising between h, t , and a. Therefore, by different routes, these players failed to make 
optimal use of their information. This underperformance occurred because of their decision rules rather than their update 
rule or significance level, because all the calibration players in our study update in the same way.

The most severe underperformances were by ORO and Maximin. Both of these players had the same problems, but 
Maximin had marginally greater losses. These two players choose a at the highest rates than other players. Since their 
expected payoffs are interval-valued, it is possible for both h and t to have low maximal minimum expected payoffs. This is 
more likely in earlier games, when their confidence intervals are wide, causing wide expected payoff intervals. ORO chooses 
a less often than Maximin because ORO only uses Maximin-type reasoning as part of its decision rule.

Like ORO, Pessimist has some fundamental similarities to Maximin. The latter is equivalent to a Hurwicz player with 
α = 1, whereas Pessimist is a Hurwicz player with α = 0.75. ORO, Maximin, Regret, and Pessimist were the only players to 
directly choose a. However, since Pessimist chooses a at roughly half the rate of Maximin, their performance was statistically 
significantly better.

To summarise these results for the λ measure, players did better insofar as they abstained less often, avoided unrobust 
priors, and used a high value of α. Abstaining in earlier games would not cause an underperformance if it were not possible 
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for players to systematically identify profit opportunities in these games. However, players like Leaders can systematically 
identify these profit opportunities, and thus there is a cost for calibration reasoners to use the rules that sometimes select 
a in this decision problem.

We now turn to �2 (the aggregate comparison measure that disregards the abstaining factor) and again describe results 
for periods of 250 games. Given α = 0.01, all players performed roughly equally well given a bias of 0.9. They also performed 
roughly equally well given a bias of 0.1, except Maximin. However, the Leaders retained their position as the top performing 
players under other biases, with the exception of MaxEnt matching them given a bias of 0.5.

There were similar results for α = 0.05. The difference was that ORO fell slightly below the Leaders’ performances when 
the bias was 0.1 and Maximin likewise when the bias was 0.9. However, these differences between Maximin and ORO were 
very marginal. As with α = 0.01, the only players who were consistent top performers under all coin biases were the Leaders.

Finally, given α = 0.5, the only change in the ordering of performances relative to those using λ was that Dominance, 
Regret, and Pessimist matched the Leaders when the bias was 0.1 or 0.9. However, this improvement was not maintained 
under other coin biases.

Therefore, the results for �2 reiterate the main result when using λ as the aggregate comparison measure. Some cali-
bration players can match Leaders under certain conditions. However, no calibration player could consistently match their 
performance.

4.2. Graphical comparisons

We begin with a few general points. For the value of α, the graphical comparisons corroborated the pattern from the 
aggregate comparisons: higher values of α correlated to a better performance. Additionally, the ordering of players’ perfor-
mances remained stable over different values of α and coin biases.

We now turn to specific groups of players. The best performers according to our graphs were the Leaders, Regret, and 
ORO. These players performed best regardless of the coin bias. While these players made different decisions, the differences 
were not important enough to create an observable difference in the graphs. However, recall that our aggregate comparisons 
showed an advantage for the Leaders over Regret and ORO.

MaxEnt equalled these players when the bias was 0.5, but did as poorly as any player with a bias of 0.1 or 0.9. When 
the bias was 0.3 or 0.7, MaxEnt’s performance was contingent on the level of α. Given α = 0.5, MaxEnt performed about 
as well as any player. However, with lower values of α, there was an observable lag in MaxEnt’s convergence (see Fig. 6). 
This pattern occurred because MaxEnt does better given biases other than 0.5 if they more quickly revise their initial prior. 
A higher α value increases the speed of MaxEnt’s revision and thereby results in better average performances.

The Pessimist player approximately matched the top performers when the bias was 0.1, 0.3, 0.7, or 0.9. However, when the 
bias was 0.5, they had a slightly slower convergence. This tendency can be explained by Pessimist’s abstaining; the cessation 
of this behaviour is slower with a 0.5 bias, due to the higher sample variance. For the same reason, their underperformance 
was more pronounced insofar as α was lower.

Finally, the worst performers were Dominance and Maximin. On the graphical comparisons, Dominance sometimes did 
slightly better than Maximin, but the differences were marginal. These two players performed badly in comparison to other 
players, regardless of the bias. However, they performed better insofar as the bias was extreme and insofar as α was higher. 
These latter tendencies are especially troubling for these rules, because they are essentially the factors that can accelerate a 
decision rule’s convergence towards expected payoff maximisation. Ceteris paribus, as the coin bias becomes more extreme 
and α is higher, players make more similar decisions. Therefore, Dominance and Maximin perform badly exactly when they 
behave differently from other players.

Why did Dominance perform as badly as Maximin in the graphical comparisons, but better than Maximin in the aggregate 
comparisons? The graphical comparisons detect that both players have problems with their average performances. However, 
the aggregate comparisons provide the additional information that Maximin sometimes chooses a directly, whereas Domi-
nance only chooses a by randomising, and thus the latter’s selection benefits from the discounting of random choices in the 
λ measure. This discounting is to reflect the fact that Dominance’s choice is a product of “bad luck”. This result demonstrates 
the usefulness of including both of these methods of comparison: it enables us to not just detect results, but also to identify 
the causes of these results in particular features of players’ decision rules.

4.3. Comparisons with Stan

We begin with the information in Tables 10 to 13. According to our aggregate comparisons, there were no statistically 
significant differences between Stan and the Leaders. However, the averages were closer when α = 0.5, and there is a the-
oretical explanation for this pattern: insofar as the significance level is higher, confidence interval estimation approximates 
conditionalization with a flat prior beta distribution. Finally, in addition to having identical overall performances in our 
tests, the Leaders (with α = 0.5) and Stan each had no statistically significant differences in their performances across dif-
ferent biases. Hence, there were no statistically significant differences in their performances for particular biases. Yet, with 
α = 0.01 or α = 0.05, the performance of the Leaders relative to Stan became inconsistent across coin biases: except with 
a bias of 0.5, Stan gained a small but statistically significant advantage. These results were corroborated by our graphical 
comparisons.
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Stan and the Leaders were both very consistent performers. Hence, the comparisons of the other players relative to Stan
match those reported in Subsection 4.1, and for the same reasons. Even given α = 0.5, the calibration players other than the 
Leaders did at least slightly worse than Stan under some circumstances. However, given α = 0.5, these underperformances 
were not persistent. This is because, if a calibration player’s significance level is high, then they rapidly obtain a fairly precise 
interval of estimates for the coin bias. All the decision rules that we investigated have the property that if the confidence 
interval is very narrow, then the rule approximates expected payoff maximisation.

5. Discussion

Our results are especially intriguing because calibration players possess the same background knowledge and data as 
Stan.12 Overall, we found that calibration players could match Stan, but only with certain rules and α = 0.5. The latter 
setting narrows the procedural differences between the calibration players and Stan, but the calibration inductive logics are 
still a genuinely distinct approach to updating and decisions. Thus, their ability to match Stan means that there is more 
than one way to perform well in our decision problem. In the following subsections, we discuss some implications and 
limitations of these results.

5.1. Significance levels

Confidence interval estimation in science normally involves much lower values of α than were optimal for the calibration 
players (regardless of their decision rule) in our decision problem, so our results may be puzzling. The explanation is that in 
Bernoulli trials even early samples generally provide some information about the bias of the coin. This information should 
not be overestimated, but α = 0.5 still discounts the significance of small samples relative to just extrapolating (or, worse, 
generating a sticky credence from) early sample frequencies. In this respect, it is analogous to Stan’s prior, which slightly 
discounts early sample data via a small but non-zero factor (their flat prior) against rapid extrapolation. Hence, despite 
their deep differences, the equally strong performance of Stan and the top performing calibration players is explained by a 
common ability to use (but not overuse) evidence to make good decisions in the early part of tests.

Obviously, we do not argue that the strong results for the α = 0.5 setting imply that this significance level should be 
used in all comparable decision problems. For example, in scientific research, the incentives that scientists have to report 
statistically significant results, along with the incentives of journal editors to publish such results rather than replication 
studies, create the problem of publication bias in favour of significance. This publication bias problem complicates and 
potentially invalidates inferences made by aggregating these studies’ results [12,13]. For this reason, some have argued 
that tougher significance levels should be used in statistical research, at least in some contexts [16,23,10,1]. Our results are 
consistent with these proposals, since we are looking at one class of decisions: betting on events in a single-agent context. 
By contrast, in contexts such as science, where there are distorting factors in favour of publishing significant results, like 
publication bias, political bias, and funding bias, it is plausible that lower significance levels are appropriate.

However, our results do suggest that it might be advantageous for scientists to provide a wider range of results, with 
estimates (and perhaps even discussion of their wider implications) at a broad range of different significance levels. People 
use scientific results to make many different types of decisions; a significance level that is appropriate for theoretical 
reasoning may be too cautious for decision problems featuring pecuniary or political decisions. (It depends on our loss 
functions, and therefore our aims and values.) According to some philosophers of science, such as Gregor Betz, showing the 
sensitivity of results and estimates to different standards for uncertainty would also increase the objectivity of science, since 
the research findings would be less closely tied to the partly subjective choice of a level of uncertainty (or “inductive risk”) 
that a scientist might make, such as choosing a significance level [2]. Our results do not determine the outcomes of these 
philosophical debates, but do inform them, by illustrating how different purposes can require different significance levels.

5.2. Common factors

In this subsection, we shall describe the respective common features of the most successful calibration players and less 
successful players. The former, the Leaders, never randomised. Instead, they made what they regarded as their “best bet” 
given the available information. This distinguished the Leaders from Dominance. Meanwhile, they were distinguished from 
most of the less successful players by not abstaining, a behaviour they shared with MaxEnt. Additionally, the Leaders had a 
decision rule that performed as well as any other, regardless of the coin bias, unlike MaxEnt.

The middling players (in terms of our aggregate comparisons) were Dominance, Regret, MaxEnt, and Pessimist. With the 
exception of MaxEnt, their underperformance was partly due to failing to adequately utilise the information in early samples 
of Bernoulli trials, such that they randomised and abstained in games where the Leaders did not. The possibility of abstaining 
from betting is sometimes cited as a strength of imprecise probability decision rules [7] but in this decision problem it 
misses some possible systematic profit opportunities. MaxEnt undervalues the information from early samples, but in a 

12 We thank an anonymous referee for emphasising this point.
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different way: like Stan, MaxEnt begins with an equivocal prior, but revises it more slowly. Surprisingly, at least by 250 
games, MaxEnt gained no advantages over the Leaders when the coin bias is 0.5.

The least successful performers, Maximin and ORO, underperform partly because they randomise and abstain the most. 
Note that these players are still successful in the sense that they avoid making losses, even under the most challenging 
(for statistical inference) setting of a 0.5 coin bias. Our aggregate comparisons show that they also rapidly approximate the 
distribution of the choices that are appropriate given the knowledge of the true coin bias. Thus, their underperformance is 
relative to other players. The problem is that, even if they want to keep their calibration inductive logic rather than adopt a 
traditional Bayesian update and decision procedure like Stan’s, these players could do better in our decision problem if they 
adopted a different decision rule, like E-Admissibility or the Hurwicz criterion with a suitable value of α.

5.3. Limitations and generality

How far do our results generalise? As noted above, the key factor in the differences among players is that they exploit 
some fundamental features of Bernoulli trials. A very wide range of events can be understood as approximately binomial 
and exchangeable, especially in the limit, as shown by the central limit theorem and its extensions.13 Thus, while most 
decision problems do not feature strict Bernoulli trials, there are many problems that are partly or wholly approximations 
of Bernoulli trials problems. Below, we discuss some additional considerations for determining the generality of our results.

5.3.1. Interaction
One might worry about making such comparative assessments when players do not take other players’ behaviours or 

rules into account when making their decisions. Is it legitimate to compare players, if these players are not trying to 
defeat each other in a particular test, but simply maximise their own (accounting) profits? Additionally, our players do 
not contemplate switching rules in a particular test. So, is there a sense in which the performance of other rules are really 
opportunity costs for them? However, evaluating players in terms of opportunity costs does not require modelling interactive 
decision-making. We can interpret the opportunity costs as the costs that are considered by someone choosing which rule 
to use. The importance of opportunity cost for rationality does not depend on interactive behaviour.

Of course, interactive behaviour can illustrate points such as the general importance of opportunity costs. Competing 
business, scientific research teams, and other decision-makers usually must perform well in terms of opportunity costs to 
win competitions. In sum, it makes sense to compare players in terms of opportunity costs, even though the tests are not 
interactive.

5.3.2. Complexity
One concern about our study’s generality could be that rapid learning and use of information is beneficial in our decision 

problem, whereas imprecise probability decision rules are often proposed to systematise cautious choice-making under cir-
cumstances where rapid learning can be costly. Yet it proves to be surprisingly difficult to specify circumstances where using 
one’s information is not useful, except in ad hoc ways. As a source of relevant reasons for using “cautious” decision rules, we 
shall examine some arguments discussed by Peter Walley in his influential book [60, 215].14 In the rest of this subsection 
we shall argue that, while Walley’s points reveal some limitations of our results, the overall generality is considerable.

First, Walley suggests that precise probability approaches might be inappropriate given “complex or unstable” physical or 
social processes. One might think that this concern justifies lower significance levels (i.e. lower α values) or more cautious 
decision rules. Yet rapid learning can still be beneficial when making decisions about such processes. For example, if one is 
making decisions about a multidimensional set of Bernoulli (or approximately Bernoulli) parameters and one has a meagre 
data stream with respect to any particular dimension, then being able to learn rapidly from small samples can be very 
beneficial.

But what about when the early samples include misleading information? If this information is more misleading than 
would occur simply from random sampling, then exchangeability does not hold: the probability of certain outcomes in 
early samples must be higher or lower than the long-run probabilities. Like earlier studies using agent-based modelling to 
test calibrated inductive logic players ([35,50] we have focused on a decision problem featuring exchangeable events. The 
extension of our tests to games with non-exchangeable events will vary with the details of the probability distributions. 
While exchangeability is a very common assumption (even when it is not strictly true) in statistics and decision theory, 
extending our study to problems without this assumption is an exciting but challenging topic for future research.

For an example of these challenges, note that if calibration players know that their early samples are misleading, then 
they can lower their value of α. Thus, players with rules that might be regarded as less “cautious”, such as the Leaders or 
Dominance, can actually reason in a cautious way, in that they will discount information from early samples. Both Objective 
Bayesians ([17]) and Evidential Probabilists ([29, Chapter 15]) regard the value of α as something that can be adjusted 

13 However, recall the role of the short-run: in the limit, a problem with a binomial distribution may be equivalent, for practical purposes, to a problem 
with a normal distribution or another type of probability distribution, but not the short-run. Therefore, one should not overinterpret the importance of 
asymptotic results like the central limit theorem for the generalisation of our findings in this study.
14 We thank an anonymous referee for this suggestion.
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in accordance with contextual payoffs and background information. Therefore, while there are complex decision problems 
where the ranking of players’ performances will differ from our article, the extent of such problems is itself complex.

5.3.3. Unknowability
Walley mentions two more situations where imprecise probabilities could be useful: “the processes are physically inde-

terminate, governed by imprecise chances... or... the parameters of a complete model are not estimable from data”. [60, p. 
215] In either situation, agents cannot learn a true precise probability distribution. Are cautious imprecise probabilities or 
decision rules better in such situations? It will depend on the details of the decision problem. In our study, there is a true, 
precise, and knowable coin bias. Different results might be obtained when this assumption is changed. However, recall that 
even when discounting early sample information is advantageous, this can be obtained either by lowering α or by adopting 
a decision rule that makes minimal use of early sample information.

5.3.4. Overview
When extrapolating from our results to other problems, it is crucial to note that changes to the games in tests would 

modify player’s behaviour. For example, we noted above that if players have reasons to discount the informational value of 
early samples, then they can modify their α values. An additional example is the following: if the base game described in
Fig. 1 had an increased guaranteed return from abstaining, this would increase payoffs for players who tend to abstain due 
to internal features of their decision rules. However, it would also affect the choice behaviour of players who do not abstain 
in the current version of the decision problem. Hence, one cannot infer that players who abstain more given the current 
base game will do better relative to other players when its payoff structure is modified to reward more cautious behaviour.

Furthermore, note that many of the decision rules we have discussed were originally designed for reasoning under pure 
ignorance, or even uncertainty about a decision-maker’s information regarding the problem. Our results do not extend to 
these contexts, where learning prior to decisions is not possible. Consequently, they should not be interpreted as a criticism 
of the applicability of these decision rules in all situations. Despite these limitations, our results will extend to many 
traditional problems in inductive logic and dynamic decision theory, where rapid acquisition and use of information from 
samples is helpful for average payoff performances.

5.4. Characterising caution

In this study, we have included a wide range of decision rules. The purposes of these decision rules can conflict. For 
example, maximising payoffs can conflict with minimising worst-case expected loss. As an anonymous referee notes, this 
creates a challenge for evaluating these decision rules, since no single dimension of evaluation will include the goals of each 
decision theorist developing or using these rules.

To some extent, we have mitigated this issue by looking at two dimensions of assessment. Our aggregate comparison 
method is a test of an agent’s ability to rapidly convergence to behaving as if they knew the true bias. In contrast, our 
graphical comparisons assess players with respect to their average payoff performances and their development over tests. 
Hence, the graphical comparisons enable the detection of subperiod differences, so a player who performs well overall but 
poorly in the very short-run will be identified. For instance, if a decision rule D1 is more likely to make comparative losses 
in the first 20 games, whereas a different rule D2 performs the same or worse in aggregate but is less likely to make those 
losses, then the graphical comparisons can detect this difference. As it happens, the Leaders did best with respect to both 
dimensions of assessment, but this was not inevitable.

Nonetheless, the article’s results do not provide a self-contained evaluation of these rules performances in every possible 
respect. For instance, an evaluator needs to weigh Maximin’s performance in our measure and graphs given this rule’s other 
decision-theoretic properties, such as with respect to minimising expected losses in particular games. Additionally, there 
might be other aspects of the tests that could be analysed in further research, such as the relative frequencies of absolute 
losses, the variance of payoffs, and so on. We look forward to examining such issues in future research.

There is an intriguing conceptual challenge raised by the divergent performances of decision rules when paired with 
these calibration inductive logics. Many of these rules are justified by their proponents as being “cautious” [63]. We do not 
dispute the significance of such formal results. For instance, if we interpret a coin bias of 0.5 as a “worst case” scenario for 
calibration inductive logics in our decision problem (because this bias has the highest long-run frequency of unrepresenta-
tive samples) then it is true that MaxEnt can match Stan and the Leaders. So, in the sense of “cautious” that means being 
prepared for worst case scenarios, MaxEnt is cautious.

Yet there are other ways to characterise “cautious” decision-making. Maximin’s decision rule is also intended to be 
cautious, but in the sense that it minimises expected worst-case losses. One might also think that avoiding opportunity 
costs could also be a criterion for making “cautious” decisions. There are two types of opportunity cost that are relevant. 
Firstly, there are opportunity costs in terms of an agent’s own potential expected payoffs. The insensitivity of some rules, 
like Maximin, to this type of opportunity costs is one of the arguments for the Minimax Regret rule [51, p. 28]. Secondly, 
there is the opportunity cost of using one decision rule over another. Suppose that an agent is attracted to a rule because 
it satisfies some set of desiderata. Such a player might perform as well as any other rule, but there is a risk of doing worse. 
Our tests reveal the size of these risks for this decision problem. These risks could clearly be important in commercial, 
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policy, military, or other contexts. Minimising such risks could be characterised as “cautious”. In that second sense, the 
Leaders are cautious: relative to other players, they minimise, on average, the risk of comparative underperformance.

Given these conceptual difficulties in characterising caution, we expect ongoing debates about imprecise probability 
update and decision rules that will be pertinent to the evaluation of our results. What are the senses in which a rule can 
be “cautious”? To what extent can they be combined in a single rule? How should different criteria be incorporated into 
the analysis of a rule’s performance? We hope that the agent-based modelling methodology that we have expanded in this 
article, via the λ measure and other innovations, will help these debates in decision theory and inductive logic.

6. Conclusion

For some readers, it is perhaps surprising that some calibration players can match Stan. There have only been a few 
detailed comparisons of calibration inductive logics to more common approaches, such as conditionalization with standard 
Bayesianism [54,68,35], conditionalizing with sets of probability functions [54,56,48], or Dempster-Shafer belief functions [3]. 
Our results provide additional reasons for researchers in imprecise probability theory and inductive logic to study calibration 
approaches in more detail and to contrast their performance with alternative approaches in a wider range of problems.

Unlike almost all earlier studies (with the exceptions of [35] and [50]) we have proceeded by testing players via an 
agent-based model, rather than thought experiments or proofs of their general properties. We do not dispute the value 
of the latter approaches, but agent-based modelling enables fine-grained and quantitative comparisons that are otherwise 
impossible.

Furthermore, by focusing on opportunity costs, our results provide a new and very important perspective to some long-
standing debates. It is one thing to know that a decision rule like Maximin is “cautious” in the sense of focusing on 
worst-case scenarios. However, if this caution is achieved at the price of a greatly inferior relative performance in the 
short-run, then it might be a price that users of calibrated inductive logics are unwilling to pay.

Advocates of these inductive logics should be encouraged that their systems can match the performances of Stan in 
this classic decision problem. Good decision-making is a common raison d’être for Bayesianism. While our results do not 
impact many decision-theoretic arguments for Bayesianism (such as Dutch Book Arguments) they do show that, in the 
context of Bernoulli trials and in the short-run, someone who favours Evidential Probability or Objective Bayesianism need 
not systematically underperform. However, this result is sensitive to the value of α. On the other hand, just as standard 
Bayesians can adjust their priors to different types of problems, so users of calibration inductive logics can adjust α and 
similar parameters to adapt to different types of decision problems. Thus, our results inform but do not settle the relevant 
debates between these approaches.

The common strong performance of Stan and the Leaders, despite their fundamental differences, echoes the early history 
of artificial intelligence. Researchers discovered that employing quantitative factors (such as probabilities, Dempster-Shafer 
belief functions, or certainty factors) in developing automated reasoning systems improved the performance of those sys-
tems, relative to purely qualitative rules. Yet the exact details of these quantitative factors or even their methodological 
justifications were less important than just adding finer-grained content to the system’s reasoning [46, p. 487].15

There are many possible directions for future research. Firstly, there are other ways to update imprecise probabilities, 
such as Imprecise Bayesianism (where one conditionalizes using a set of probability functions) [7] and alpha-cut (where one 
“cuts” out probability functions from such a set if the function’s prior probability for one’s new evidence is below a certain 
level) [8]. Secondly, there are other popular priors in statistics that a Bayesian might use, such as Jeffreys priors, which 
would imply a setting of B(0.5, 0.5) for the Bayesian player’s beta prior [22]. Does such a standard Bayesian set a higher 
benchmark for the calibration players? Similarly, some probability theorists distinguish among the different probabilities 
that are compatible (according to an inductive logic) with a particular estimate of relative frequencies [47]. In the context of 
our investigations, this could mean that expectations in the imprecise probability interval that are further away from more 
natural values (such as those occurring more often in nature) are weighted more heavily in players’ reasoning.16 It would 
be interesting to see if such an approach can augment the performances of the calibration players in our tests. Thirdly, there 
are many ways in which we could modify the decision problem, as we discussed in the preceding section. Overall, this 
study has provided the first agent-based modelling tests of methods for making decisions with calibration inductive logics, 
and revealed the superiority of some methods for this type of decision problem.
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Appendix A. Additional tables

Table 2
Statistics regarding the conditions met by Stan; Games = {250, 1000}.

Coin Bias Condition STAN

250 Games 1000 Games

0.1 K1 26.252 ± 0.667 102.507 ± 0.689
K2 223.748 ± 0.667 897.493 ± 0.689
K3 0 0

0.3 K1 74.844 ± 1.053 300.704 ± 1.033
K2 175.156 ± 1.053 699.296 ± 1.033
K3 0 0

0.5 K1 125.344 ± 1.149 500.205 ± 1.115
K2 124.656 ± 1.149 499.795 ± 1.115
K3 0 0

0.7 K1 175.120 ± 1.104 699.271 ± 1.066
K2 74.880 ± 1.104 300.729 ± 1.066
K3 0 0

0.9 K1 223.940 ± 0.683 898.902 ± 0.705
K2 26.060 ± 0.683 101.098 ± 0.705
K3 0 0

Mean values and related standard errors multiplied by z = 1.96 (5% significance level) of the num-
ber of times a given condition was met by the pure action players. Statistics based on 1000 tests, 
each comprising 250 and 1000 games. Conditions’ legend provided in Table 1.

Table 3
Statistics regarding the conditions met by MaxEnt; Games = {250, 1000}; α = {0.01, 0.05, 0.5}.

Coin Bias Condition MAXENT

α = 0.01 α = 0.05 α = 0.5

250 Games 1000 Games 250 Games 1000 Games 250 Games 1000 Games

0.1 K1 38.147 ± 0.397 126.021 ± 0.752 35.117 ± 0.382 120.157 ± 0.735 29.003 ± 0.357 108.255 ± 0.715
K2 211.853 ± 0.397 873.979 ± 0.752 214.883 ± 0.382 879.843 ± 0.735 220.997 ± 0.357 891.745 ± 0.715
K3 0 0 0 0 0 0

0.3 K1 91.077 ± 0.536 333.323 ± 1.062 87.522 ± 0.532 325.574 ± 1.055 79.783 ± 0.529 309.380 ± 1.042
K2 158.923 ± 0.536 666.677 ± 1.062 162.478 ± 0.532 674.426 ± 1.055 170.217 ± 0.529 690.620 ± 1.042
K3 0 0 0 0 0 0

0.5 K1 124.927 ± 0.483 499.688 ± 0.930 124.938 ± 0.484 499.720 ± 0.932 124.897 ± 0.503 499.883 ± 0.978
K2 125.073 ± 0.483 500.312 ± 0.930 125.062 ± 0.484 500.280 ± 0.932 125.103 ± 0.503 500.117 ± 0.978
K3 0 0 0 0 0 0

0.7 K1 159.103 ± 0.544 667.083 ± 1.079 162.461 ± 0.549 674.550 ± 1.084 170.015 ± 0.539 690.613 ± 1.072
K2 90.897 ± 0.544 332.917 ± 1.079 87.539 ± 0.549 325.450 ± 1.084 79.985 ± 0.539 309.387 ± 1.072
K3 0 0 0 0 0 0

0.9 K1 212.039 ± 0.410 875.672 ± 0.769 215.088 ± 0.396 881.477 ± 0.752 221.207 ± 0.363 893.265 ± 0.719
K2 37.961 ± 0.410 124.328 ± 0.769 34.912 ± 0.396 118.523 ± 0.752 28.793 ± 0.363 106.735 ± 0.719
K3 0 0 0 0 0 0

Mean values and related standard errors multiplied by z = 1.96 (5% significance level) of the number of times a given condition was met by the pure action 
players. Statistics based on 1000 tests, each comprising 250 and 1000 games. Conditions’ legend provided in Table 1.
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Table 4
Statistics regarding the conditions met by other calibration players; Games = 250; α = 0.01.

Coin Bias Condition LEADERS PESSIMIST DOMINANCE MAXIMIN REGRET ORO

0.1 K1 27.587 ± 0.342 21.980 ± 0.312 16.484 ± 0.281 16.484 ± 0.281 23.833 ± 0.318 18.211 ± 0.297
K2 222.413 ± 0.342 216.926 ± 0.369 211.474 ± 0.399 211.474 ± 0.399 218.743 ± 0.362 213.222 ± 0.387
K3 0 11.094 ± 0.200 0 22.042 ± 0.272 7.424 ± 0.167 18.567 ± 0.255
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 22.042 ± 0.272 0 0 0

0.3 K1 76.207 ± 0.518 68.086 ± 0.489 60.280 ± 0.471 60.280 ± 0.471 70.890 ± 0.502 63.542 ± 0.478
K2 173.793 ± 0.518 165.822 ± 0.528 157.677 ± 0.544 157.677 ± 0.544 168.474 ± 0.526 160.917 ± 0.538
K3 0 16.092 ± 0.234 0 32.043 ± 0.321 10.636 ± 0.192 25.541 ± 0.298
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 32.043 ± 0.321 0 0 0

0.5 K1 124.998 ± 0.567 116.040 ± 0.572 107.351 ± 0.570 107.351 ± 0.570 119.055 ± 0.572 111.098 ± 0.571
K2 125.002 ± 0.567 116.266 ± 0.561 107.501 ± 0.552 107.501 ± 0.552 119.188 ± 0.566 111.362 ± 0.558
K3 0 17.694 ± 0.251 0 35.148 ± 0.322 11.757 ± 0.205 27.540 ± 0.307
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 35.148 ± 0.322 0 0 0

0.7 K1 173.526 ± 0.535 165.680 ± 0.551 157.766 ± 0.557 157.766 ± 0.557 168.273 ± 0.544 160.985 ± 0.550
K2 76.474 ± 0.535 68.344 ± 0.514 60.237 ± 0.495 60.237 ± 0.495 71.114 ± 0.521 63.599 ± 0.504
K3 0 15.976 ± 0.236 0 31.997 ± 0.312 10.613 ± 0.198 25.416 ± 0.285
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 31.997 ± 0.312 0 0 0

0.9 K1 222.628 ± 0.350 217.123 ± 0.379 211.597 ± 0.411 211.597 ± 0.411 218.954 ± 0.371 213.369 ± 0.400
K2 27.372 ± 0.350 21.966 ± 0.313 16.630 ± 0.285 16.630 ± 0.285 23.805 ± 0.323 18.330 ± 0.299
K3 0 10.911 ± 0.201 0 21.773 ± 0.283 7.241 ± 0.167 18.301 ± 0.260
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 21.773 ± 0.283 0 0 0

Mean values and related standard errors multiplied by z = 1.96 (5% significance level) of the number of times a given condition was met by the mixed 
action players. Statistics based on 1000 tests, each one comprising 250 games. Conditions’ legend provided in Table 1.
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Table 5
Statistics regarding the conditions met by other calibration players; Games = 1000; α = 0.01.

Coin Bias Condition LEADERS PESSIMIST DOMINANCE MAXIMIN REGRET ORO

0.1 K1 104.218 ± 0.691 93.112 ± 0.664 82.134 ± 0.628 82.134 ± 0.628 96.803 ± 0.667 84.232 ± 0.637
K2 895.782 ± 0.691 884.648 ± 0.721 873.600 ± 0.753 873.600 ± 0.753 888.332 ± 0.716 875.702 ± 0.744
K3 0 22.240 ± 0.285 0 44.266 ± 0.399 14.865 ± 0.234 40.066 ± 0.381
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 44.266 ± 0.399 0 0 0

0.3 K1 301.567 ± 1.031 284.991 ± 1.007 268.884 ± 1.002 268.884 ± 1.002 290.715 ± 1.021 272.933 ± 1.005
K2 698.433 ± 1.031 682.091 ± 1.054 665.431 ± 1.069 665.431 ± 1.069 687.512 ± 1.046 669.498 ± 1.063
K3 0 32.918 ± 0.341 0 65.685 ± 0.471 21.773 ± 0.279 57.569 ± 0.451
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 65.685 ± 0.471 0 0 0

0.5 K1 500.214 ± 1.111 482.235 ± 1.113 464.419 ± 1.104 464.419 ± 1.104 488.228 ± 1.111 469.110 ± 1.106
K2 499.786 ± 1.111 481.901 ± 1.117 464.168 ± 1.120 464.168 ± 1.120 487.876 ± 1.110 468.971 ± 1.126
K3 0 35.864 ± 0.367 0 71.413 ± 0.490 23.896 ± 0.302 61.919 ± 0.475
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 71.413 ± 0.490 0 0 0

0.7 K1 698.418 ± 1.064 682.155 ± 1.081 665.746 ± 1.089 665.746 ± 1.089 687.466 ± 1.074 669.715 ± 1.080
K2 301.582 ± 1.064 285.056 ± 1.038 268.732 ± 1.024 268.732 ± 1.024 290.544 ± 1.048 272.899 ± 1.029
K3 0 32.789 ± 0.326 0 65.522 ± 0.470 21.990 ± 0.281 57.386 ± 0.446
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 65.522 ± 0.470 0 0 0

0.9 K1 897.216 ± 0.707 886.162 ± 0.732 875.230 ± 0.770 875.230 ± 0.770 889.868 ± 0.725 877.319 ± 0.762
K2 102.784 ± 0.707 91.846 ± 0.667 80.963 ± 0.635 80.963 ± 0.635 95.466 ± 0.684 83.023 ± 0.647
K3 0 21.992 ± 0.284 0 43.807 ± 0.415 14.666 ± 0.235 39.658 ± 0.390
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 43.807 ± 0.415 0 0 0

Mean values and related standard errors multiplied by z = 1.96 (5% significance level) of the number of times a given condition was met by the mixed 
action players. Statistics based on 1000 tests, each one comprising 1000 games. Conditions’ legend provided in Table 1.
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Table 6
Statistics regarding the conditions met by other calibration players; Games = 250; α = 0.05.

Coin Bias Condition LEADERS PESSIMIST DOMINANCE MAXIMIN REGRET ORO

0.1 K1 26.812 ± 0.340 22.433 ± 0.316 18.203 ± 0.291 18.203 ± 0.291 23.906 ± 0.322 19.273 ± 0.299
K2 223.188 ± 0.340 218.943 ± 0.363 214.681 ± 0.383 214.681 ± 0.383 220.338 ± 0.357 215.753 ± 0.377
K3 0 8.624 ± 0.181 0 17.116 ± 0.238 5.756 ± 0.147 14.974 ± 0.230
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 17.116 ± 0.238 0 0 0

0.3 K1 75.796 ± 0.518 69.535 ± 0.495 63.433 ± 0.477 63.433 ± 0.477 71.688 ± 0.505 65.450 ± 0.485
K2 174.204 ± 0.518 168.001 ± 0.527 161.702 ± 0.537 161.702 ± 0.537 170.049 ± 0.527 163.824 ± 0.534
K3 0 12.464 ± 0.208 0 24.865 ± 0.283 8.263 ± 0.170 20.726 ± 0.265
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 24.865 ± 0.283 0 0 0

0.5 K1 124.992 ± 0.569 118.042 ± 0.574 111.224 ± 0.571 111.224 ± 0.571 120.293 ± 0.572 113.679 ± 0.574
K2 125.008 ± 0.569 118.186 ± 0.566 111.475 ± 0.560 111.475 ± 0.560 120.532 ± 0.569 113.868 ± 0.562
K3 0 13.772 ± 0.219 0 27.301 ± 0.288 9.175 ± 0.180 22.453 ± 0.277
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 27.301 ± 0.288 0 0 0

0.7 K1 173.922 ± 0.536 167.758 ± 0.547 161.593 ± 0.558 161.593 ± 0.558 169.870 ± 0.539 163.689 ± 0.552
K2 76.078 ± 0.536 69.806 ± 0.523 63.514 ± 0.506 63.514 ± 0.506 71.927 ± 0.522 65.619 ± 0.513
K3 0 12.436 ± 0.209 0 24.893 ± 0.284 8.203 ± 0.177 20.692 ± 0.269
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 24.893 ± 0.284 0 0 0

0.9 K1 223.369 ± 0.346 219.157 ± 0.374 214.862 ± 0.397 214.862 ± 0.397 220.584 ± 0.365 215.936 ± 0.391
K2 26.631 ± 0.346 22.429 ± 0.317 18.298 ± 0.299 18.298 ± 0.299 23.844 ± 0.324 19.342 ± 0.306
K3 0 8.414 ± 0.177 0 16.840 ± 0.248 5.572 ± 0.147 14.722 ± 0.235
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 16.840 ± 0.248 0 0 0

Mean values and related standard errors multiplied by z = 1.96 (5% significance level) of the number of times a given condition was met by the mixed 
action players. Statistics based on 1000 tests, each one comprising 250 games. Conditions’ legend provided in Table 1.
22



M. Radzvilas, W. Peden and F. De Pretis International Journal of Approximate Reasoning 162 (2023) 109030
Table 7
Statistics regarding the conditions met by other calibration players; Games = 1000; α = 0.05.

Coin Bias Condition LEADERS PESSIMIST DOMINANCE MAXIMIN REGRET ORO

0.1 K1 103.238 ± 0.690 94.634 ± 0.669 86.229 ± 0.643 86.229 ± 0.643 97.550 ± 0.674 87.489 ± 0.643
K2 896.762 ± 0.690 888.181 ± 0.719 879.641 ± 0.736 879.641 ± 0.736 891.004 ± 0.713 880.930 ± 0.732
K3 0 17.185 ± 0.255 0 34.130 ± 0.346 11.446 ± 0.211 31.581 ± 0.337
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 34.130 ± 0.346 0 0 0

0.3 K1 301.069 ± 1.033 288.466 ± 1.015 275.866 ± 1.006 275.866 ± 1.006 292.665 ± 1.022 278.370 ± 1.011
K2 698.931 ± 1.033 686.358 ± 1.048 673.650 ± 1.061 673.650 ± 1.061 690.554 ± 1.040 676.216 ± 1.058
K3 0 25.176 ± 0.298 0 50.484 ± 0.418 16.781 ± 0.248 45.414 ± 0.400
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 50.484 ± 0.418 0 0 0

0.5 K1 500.205 ± 1.113 486.378 ± 1.115 472.629 ± 1.110 472.629 ± 1.110 490.921 ± 1.115 475.625 ± 1.113
K2 499.795 ± 1.113 486.004 ± 1.112 472.386 ± 1.121 472.386 ± 1.121 490.616 ± 1.112 475.339 ± 1.121
K3 0 27.618 ± 0.324 0 54.985 ± 0.434 18.463 ± 0.263 49.036 ± 0.417
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 54.985 ± 0.434 0 0 0

0.7 K1 698.920 ± 1.066 686.208 ± 1.077 673.682 ± 1.091 673.682 ± 1.091 690.556 ± 1.072 676.234 ± 1.088
K2 301.080 ± 1.066 288.365 ± 1.043 275.837 ± 1.029 275.837 ± 1.029 292.597 ± 1.050 278.391 ± 1.033
K3 0 25.427 ± 0.292 0 50.481 ± 0.404 16.847 ± 0.249 45.375 ± 0.389
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 50.481 ± 0.404 0 0 0

0.9 K1 898.170 ± 0.704 889.752 ± 0.729 881.251 ± 0.753 881.251 ± 0.753 892.565 ± 0.718 882.491 ± 0.746
K2 101.830 ± 0.704 93.365 ± 0.675 85.041 ± 0.652 85.041 ± 0.652 96.173 ± 0.686 86.275 ± 0.657
K3 0 16.883 ± 0.252 0 33.708 ± 0.357 11.262 ± 0.204 31.234 ± 0.344
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 33.708 ± 0.357 0 0 0

Mean values and related standard errors multiplied by z = 1.96 (5% significance level) of the number of times a given condition was met by the mixed 
action players. Statistics based on 1000 tests, each one comprising 1000 games. Conditions’ legend provided in Table 1.
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Table 8
Statistics regarding the conditions met by other calibration players; Games = 250; α = 0.5.

Coin Bias Condition LEADERS PESSIMIST DOMINANCE MAXIMIN REGRET ORO

0.1 K1 25.683 ± 0.336 23.987 ± 0.324 22.287 ± 0.316 22.287 ± 0.316 24.527 ± 0.330 22.513 ± 0.318
K2 224.317 ± 0.336 222.633 ± 0.346 220.969 ± 0.358 220.969 ± 0.358 223.171 ± 0.343 221.199 ± 0.356
K3 0 3.380 ± 0.113 0 6.744 ± 0.158 2.302 ± 0.091 6.288 ± 0.154
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 6.744 ± 0.158 0 0 0

0.3 K1 75.247 ± 0.519 72.872 ± 0.514 70.471 ± 0.504 70.471 ± 0.504 73.671 ± 0.514 70.862 ± 0.504
K2 174.753 ± 0.519 172.380 ± 0.522 170.008 ± 0.531 170.008 ± 0.531 173.164 ± 0.520 170.402 ± 0.530
K3 0 4.748 ± 0.132 0 9.521 ± 0.180 3.165 ± 0.110 8.736 ± 0.175
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 9.521 ± 0.180 0 0 0

0.5 K1 124.972 ± 0.572 122.247 ± 0.574 119.712 ± 0.574 119.712 ± 0.574 123.136 ± 0.575 120.136 ± 0.573
K2 125.028 ± 0.572 122.385 ± 0.570 119.904 ± 0.572 119.904 ± 0.572 123.269 ± 0.571 120.373 ± 0.572
K3 0 5.368 ± 0.133 0 10.384 ± 0.188 3.595 ± 0.111 9.491 ± 0.181
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 10.384 ± 0.188 0 0 0

0.7 K1 174.486 ± 0.537 172.099 ± 0.541 169.797 ± 0.543 169.797 ± 0.543 172.908 ± 0.542 170.184 ± 0.542
K2 75.514 ± 0.537 73.163 ± 0.536 70.756 ± 0.527 70.756 ± 0.527 73.980 ± 0.533 71.138 ± 0.527
K3 0 4.738 ± 0.131 0 9.447 ± 0.185 3.112 ± 0.108 8.678 ± 0.179
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 9.447 ± 0.185 0 0 0

0.9 K1 224.456 ± 0.342 222.808 ± 0.354 221.175 ± 0.363 221.175 ± 0.363 223.376 ± 0.351 221.407 ± 0.361
K2 25.544 ± 0.342 23.902 ± 0.334 22.315 ± 0.322 22.315 ± 0.322 24.468 ± 0.334 22.508 ± 0.323
K3 0 3.290 ± 0.111 0 6.510 ± 0.152 2.156 ± 0.092 6.085 ± 0.146
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 6.510 ± 0.152 0 0 0

Mean values and related standard errors multiplied by z = 1.96 (5% significance level) of the number of times a given condition was met by the mixed 
action players. Statistics based on 1000 tests, each one comprising 250 games. Conditions’ legend provided in Table 1.
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Table 9
Statistics regarding the conditions met by other calibration players; Games = 1000; α = 0.5.

Coin Bias Condition LEADERS PESSIMIST DOMINANCE MAXIMIN REGRET ORO

0.1 K1 101.860 ± 0.689 98.676 ± 0.680 95.486 ± 0.671 95.486 ± 0.671 99.712 ± 0.684 95.737 ± 0.672
K2 898.140 ± 0.689 894.888 ± 0.699 891.717 ± 0.715 891.717 ± 0.715 895.971 ± 0.696 891.963 ± 0.713
K3 0 6.436 ± 0.158 0 12.797 ± 0.220 4.317 ± 0.127 12.300 ± 0.217
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 12.797 ± 0.220 0 0 0

0.3 K1 300.388 ± 1.035 295.743 ± 1.028 291.105 ± 1.026 291.105 ± 1.026 297.280 ± 1.031 291.539 ± 1.025
K2 699.612 ± 1.035 695.106 ± 1.037 690.411 ± 1.043 690.411 ± 1.043 696.589 ± 1.036 690.856 ± 1.042
K3 0 9.151 ± 0.184 0 18.484 ± 0.257 6.131 ± 0.153 17.605 ± 0.253
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 18.484 ± 0.257 0 0 0

0.5 K1 500.186 ± 1.117 495.062 ± 1.119 490.092 ± 1.115 490.092 ± 1.115 496.686 ± 1.118 490.583 ± 1.117
K2 499.814 ± 1.117 494.675 ± 1.116 489.744 ± 1.114 489.744 ± 1.114 496.370 ± 1.116 490.275 ± 1.115
K3 0 10.263 ± 0.192 0 20.164 ± 0.273 6.944 ± 0.158 19.142 ± 0.268
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 20.164 ± 0.273 0 0 0

0.7 K1 699.592 ± 1.067 694.965 ± 1.074 690.395 ± 1.074 690.395 ± 1.074 696.512 ± 1.071 690.831 ± 1.074
K2 300.408 ± 1.067 295.786 ± 1.059 291.096 ± 1.049 291.096 ± 1.049 297.335 ± 1.057 291.533 ± 1.050
K3 0 9.249 ± 0.185 0 18.509 ± 0.255 6.153 ± 0.151 17.636 ± 0.251
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 18.509 ± 0.255 0 0 0

0.9 K1 899.501 ± 0.704 896.380 ± 0.713 893.233 ± 0.719 893.233 ± 0.719 897.462 ± 0.710 893.493 ± 0.718
K2 100.499 ± 0.704 97.308 ± 0.694 94.190 ± 0.683 94.190 ± 0.683 98.437 ± 0.696 94.410 ± 0.684
K3 0 6.312 ± 0.156 0 12.577 ± 0.215 4.101 ± 0.128 12.097 ± 0.210
K4 0 0 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 12.577 ± 0.215 0 0 0

Mean values and related standard errors multiplied by z = 1.96 (5% significance level) of the number of times a given condition was met by the mixed 
action players. Statistics based on 1000 tests, each one comprising 1000 games. Conditions’ legend provided in Table 1.
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Table 10
Aggregate comparisons: Stan.

Coin Bias Games STAN

0.1 250 99.738
(0; 99.477)

1000 99.861
(0; 99.721)

0.3 250 99.861
(0; 99.723)

1000 99.950
(0; 99.899)

0.5 250 99.996
(0; 99.993)

1000 99.980
(0; 99.959)

0.7 250 99.779
(0; 99.558)

1000 99.948
(0; 99.896)

0.9 250 99.776
(0; 99.552)

1000 99.939
(0; 99.878)

Average 250 99.830 ± 0.097
Performance 1000 99.935 ± 0.039

Performance measurements for 250 games and 
1000 games, for each coin bias, with abstain 
and goodness of fit parameter values �1, �2 re-
ported between brackets. At the bottom, average 
performance with confidence intervals shown at 
5% significance level.

Table 11
Aggregate comparisons: Calibration players α = 0.01.

Coin Bias Games LEADERS MAXENT DOMINANCE REGRET PESSIMIST ORO MAXIMIN

0.1 250 99.423 97.034 98.153 98.136 96.987 94.644 93.557
(0; 98.850) (0; 94.157) (02.939; 99.258) (02.970; 99.255) (04.438; 98.433) (07.427; 96.761) (08.817; 95.992)

1000 99.765 98.544 99.041 99.031 98.456 97.067 96.740
(0; 99.531) (0; 97.109) (01.476; 99.560) (01.487; 99.551) (2.224; 99.141) (04.007; 98.153) (04.427; 97.920)

0.3 250 99.655 95.296 96.484 96.489 94.606 91.379 89.141
(0; 99.310) (0; 90.813) (04.272; 97.246) (04.254; 97.237) (06.437; 95.661) (10.216; 93.003) (12.817; 91.142)

1000 99.888 97.591 98.172 98.179 97.219 95.111 94.414
(0; 99.776) (0; 95.240) (02.189; 98.535) (02.177; 98.536) (03.292; 97.732) (05.757; 95.986) (06.568; 95.407)

0.5 250 99.999 99.971 95.314 95.297 92.922 88.984 85.941
(0; 99.998) (0; 99.942) (04.686; 95.314) (04.703; 95.297) (07.078; 92.922) (11.016; 88.984) (14.059; 85.941)

1000 99.979 99.969 97.620 97.610 96.414 93.808 92.859
(0; 99.957) (0; 99.938) (02.380; 97.620) (02.390; 97.610) (03.586; 96.414) (06.192; 93.808) (07.141; 92.859)

0.7 250 99.578 95.350 96.481 96.521 94.669 91.421 89.149
(0; 99.158) (0; 90.916) (04.266; 97.235) (04.245; 97.292) (06.390; 95.740) (10.166; 93.037) (12.799; 91.140)

1000 99.887 97.620 98.170 98.158 97.230 95.123 94.421
(0; 99.774) (0; 95.298) (02.184; 98.525) (02.199; 98.517) (03.279; 97.741) (05.739; 95.992) (06.552; 95.405)

0.9 250 99.471 97.077 98.183 98.173 97.026 94.725 93.643
(0; 98.946) (0; 94.240) (02.903; 99.282) (02.896; 99.253) (04.364; 98.436) (07.320; 96.815) (08.709; 96.056)

1000 99.845 98.639 98.991 98.983 98.414 97.037 96.714
(0; 99.691) (0; 97.297) (01.460; 99.444) (01.467; 99.434) (02.199; 99.031) (03.966; 98.050) (04.381; 97.821)

Average 250 99.625 ± 0.200 96.946 ± 1.666 96.923 ± 1.080 96.923 ± 1.076 95.242 ± 1.540 92.231 ± 2.146 90.286 ± 2.889
Performance 1000 99.873 ± 0.068 98.473 ± 0.852 98.399 ± 0.532 98.392 ± 0.531 97.547 ± 0.768 95.629 ± 1.231 95.030 ± 1.468

Performance measurements for 250 games and 1000 games, with �1, �2 values reported between brackets. The players are ordered by their average performances. Confi-
dence intervals at 5% significance level.
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Table 12
Aggregate comparisons: Calibration players α = 0.05.

Coin Bias Games LEADERS MAXENT DOMINANCE REGRET PESSIMIST ORO MAXIMIN

0.1 250 99.597 97.726 98.535 98.523 97.621 95.640 94.970
(0; 99.195) (0; 95.504) (03.315; 99.358) (02.302; 99.355) (03.450; 98.704) (05.990; 97.298) (06.846; 96.823)

1000 99.820 98.874 99.261 99.254 98.805 97.686 97.488
(0; 99.640) (0; 97.760) (01.138; 99.661) (01.145; 99.655) (01.719; 99.332) (03.158; 98.537) (3.413; 98.397)

0.3 250 99.772 96.356 97.256 97.259 95.811 92.978 91.561
(0; 99.545) (0; 92.845) (03.315; 97.830) (03.305; 97.826) (04.986; 96.614) (08.290; 94.264) (09.946; 93.094)

1000 99.924 98.156 98.589 98.591 97.871 96.136 95.701
(0; 99.847) (0; 96.347) (01.683; 98.861) (01.678; 98.862) (02.518; 98.262) (04.541; 96.818) (05.048; 96.457)

0.5 250 99.997 99.975 96.360 96.330 94.491 91.019 89.080
(0; 99.994) (0; 99.950) (03.640; 96.360) (03.670; 96.330) (05.509; 94.491) (08.891; 91.019) (10.920; 89.080)

1000 99.979 99.972 98.167 98.154 97.238 95.096 94.502
(0; 99.959) (0; 99.944) (01.833; 98.167) (01.846; 98.154) (02.762; 97.238) (04.904; 95.096) (05.498; 94.502)

0.7 250 99.692 96.351 97.263 97.303 95.850 93.007 91.562
(0; 99.384) (0; 92.835) (03.319; 97.849) (03.281; 97.891) (04.974; 96.681) (08.277; 94.309) (09.957; 93.107)

1000 99.923 98.165 98.588 98.585 97.851 96.139 95.701
(0; 99.846) (0; 96.364) (01.683; 98.860) (01.685; 98.855) (02.543; 98.245) (04.537; 96.821) (05.048; 96.456)

0.9 250 99.637 97.773 98.556 98.553 97.668 95.709 95.049
(0; 99.275) (0; 95.595) (02.245; 99.363) (02.229; 99.341) (03.366; 98.712) (05.889; 97.334) (06.736; 96.869)

1000 99.898 98.966 99.210 99.204 98.766 97.652 97.459
(0; 99.797) (0; 97.942) (01.124; 99.544) (01.126; 99.535) (01.688; 99.223) (03.123; 98.433) (03.371; 98.296)

Average 250 99.739 ± 0.139 97.636 ± 1.299 97.594 ± 0.827 97.594 ± 0.829 96.288 ± 1.187 93.671 ± 1.752 92.444 ± 2.236
Performance 1000 99.909 ± 0.051 98.827 ± 0.653 98.763 ± 0.407 98.758 ± 0.408 98.106 ± 0.588 96.542 ± 0.976 96.170 ± 1.128

Performance measurements for 250 games and 1000 games, with �1, �2 values reported between brackets. The players are ordered by their average performances. Confi-
dence intervals at 5% significance level.

Table 13
Aggregate comparisons: Calibration players α = 0.5.

Coin Bias Games LEADERS MAXENT DOMINANCE REGRET PESSIMIST ORO MAXIMIN

0.1 250 99.848 99.106 99.417 99.404 99.068 98.158 98.016
(0; 99.696) (0; 98.221) (00.899; 99.735) (00.921; 99.730) (01.352; 99.490) (02.515; 98.836) (02.698; 98.736)

1000 99.897 99.540 99.752 99.747 99.583 99.127 99.088
(0; 99.793) (0; 99.083) (00.427; 99.931) (00.432; 99.926) (00.644; 99.811) (01.230; 99.484) (01.280; 99.457)

0.3 250 99.929 98.624 98.938 98.944 98.400 97.030 96.760
(0; 99.859) (0; 97.267) (01.269; 99.146) (01.266; 99.154) (01.899; 98.700) (03.494; 97.557) (03.808; 97.333)

1000 99.972 99.328 99.482 99.484 99.225 98.500 98.425
(0; 99.945) (0; 98.660) (00.616; 99.580) (00.613; 99.582) (00.915; 99.365) (01.760; 98.762) (01.848; 98.700)

0.5 250 99.989 99.959 98.615 98.562 97.853 96.204 95.846
(0; 99.978) (0; 99.918) (01.385; 98.615) (01.438; 98.562) (02.147; 97.853) (03.796; 96.204) (04.154; 95.846)

1000 99.981 99.988 99.328 99.306 98.974 98.086 97.984
(0; 99.963) (0; 99.977) (00.672; 99.328) (00.694; 99.306) (01.026; 98.974) (01.914; 98.086) (02.016; 97.984)

0.7 250 99.853 98.565 98.975 98.994 98.436 97.078 96.814
(0; 99.706) (0; 97.151) (01.260; 99.210) (01.245; 99.233) (01.895; 98.768) (03.471; 97.630) (03.779; 97.410)

1000 99.971 99.327 99.481 99.484 99.219 98.498 98.423
(0; 99.942) (0; 98.659) (00.617; 99.579) (00.615; 99.584) (00.925; 99.363) (01.764; 98.760) (01.851; 98.698)

0.9 250 99.879 99.154 99.426 99.426 99.073 98.203 98.074
(0; 99.758) (0; 98.314) (00.868; 99.720) (00.862; 99.715) (01.316; 99.463) (02.434; 98.844) (02.604; 98.756)

1000 99.972 99.625 99.695 99.703 99.530 99.079 99.043
(0; 99.945) (0; 99.252) (00.419; 99.810) (00.410; 99.816) (00.631; 99.691) (01.210; 99.369) (01.258; 99.344)

Average 250 99.900 ± 0.052 99.082 ± 0.490 99.074 ± 0.304 99.066 ± 0.315 98.566 ± 0.452 97.335 ± 0.742 97.102 ± 0.827
Performance 1000 99.959 ± 0.030 99.562 ± 0.238 99.548 ± 0.152 99.545 ± 0.158 99.306 ± 0.220 98.658 ± 0.386 98.593 ± 0.410

Performance measurements for 250 games and 1000 games, with �1, �2 values reported between brackets. The players are ordered by their average performances. Confi-
dence intervals at 5% significance level.
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Appendix B. Additional figures

Fig. 2. Stan. Average profit per bet (Y-axis) against number of bets (X-axis) Coloured lines are the averages. The confidence intervals around them are 
calculated at the 0.95 level. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
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Fig. 3. Leaders. Average profit per bet (Y-axis) against number of bets (X-axis) In each subcaption, we report values for α. Coloured lines are the averages. 
The confidence intervals around them are calculated at the 0.95 level.
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Fig. 4. Pessimist. Average profit per bet (Y-axis) against number of bets (X-axis) In each subcaption, we report values for α. Coloured lines are the averages. 
The confidence intervals around them are calculated at the 0.95 level.
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Fig. 5. Dominance. Average profit per bet (Y-axis) against number of bets (X-axis) In each subcaption, we report values for α. Coloured lines are the 
averages. The confidence intervals around them are calculated at the 0.95 level.
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Fig. 6. MaxEnt. Average profit per bet (Y-axis) against number of bets (X-axis) In each subcaption, we report values for α. Coloured lines are the averages. 
The confidence intervals around them are calculated at the 0.95 level.
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Fig. 7. Maximin. Average profit per bet (Y-axis) against number of bets (X-axis) In each subcaption, we report values for α. Coloured lines are the averages. 
The confidence intervals around them are calculated at the 0.95 level.
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Fig. 8. Regret. Average profit per bet (Y-axis) against number of bets (X-axis) In each subcaption, we report values for α. Coloured lines are the averages. 
The confidence intervals around them are calculated at the 0.95 level.
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Fig. 9. ORO. Average profit per bet (Y-axis) against number of bets (X-axis) In each subcaption, we report values for α. Coloured lines are the averages. The 
confidence intervals around them are calculated at the 0.95 level.
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