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Abstract: Drought is a key abiotic stress that confines agriculture development worldwide. Silicon
(Si) is commonly considered to be a valuable element for resistance against drought and for sus-
tainable agriculture. To investigate the morpho-physiological and biochemical characteristics of
Gerbera jamesonii plants, a pot experiment was conducted under greenhouse conditions and exposed
to water stress (60% FC) and well-watered (100% FC) conditions. Foliar application of Si was carried
out after ten days (48 days after sowing) of drought treatment and was repeated weekly, while well-
water was regarded as control. Water deficiency significantly abridged the morphological attributes,
pigments, and stress-related metabolites and negatively affected the photosynthetic apparatus in
drought-stressed gerbera plants. However, Si supplementation by 40 mg L−1 produced increased leaf
area (31%), stem length (25%), flower diameter (22%), plant fresh biomass (17%), total chlorophyll
(48%), and concentration of carotenoids (54%) in water-stressed plants. Similarly, the accretion of a
total free amino acid (41%) and the activities of peroxidase, catalase, superoxide dismutase, ascorbate
peroxidase, glycinebetaine, total soluble proteins, total free proline, and malondialdehyde were
enhanced by 44%, 31%, 53%, 33%, 330%, 61%, 51%, and 66%, respectively, under drought stress in
comparison with control conditions. Meanwhile, the photosynthetic rate (89%), the transpiration
rate (12%), and stomatal conductance (55%) were significantly enhanced in water-deficit gerbera
leaves with Si supplementation. This study proposes that the foliar application of Si is a viable and
convenient method of improving the performance of elegant gerbera flower plants in regions of the
world that are facing severe water deficiency.
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1. Introduction

Silicon (Si) is the second-greatest copious mineral component existing in soil and
silicon dioxide comprises around 50–70% of soil mass [1]. Along with different ecological
functions, Si has multifaceted roles in plant mechanisms and in arbitrating relations with
other organisms and the environment [2]. Si concentrations range from 0.1–10% of the dry
biomass in a plant [3]. Although Si is not a crucial mineral substance, its advantageous
effects have been established in many horticultural crops, such as cucumber, melons,
tomatoes, and potatoes [4,5], particularly under stress conditions. Si plays a vital role in
improving pest and disease resistance in plants, relieving the stress of heavy metal and UV
radiations, enhancing drought resistance and nutrition deficiency tolerance, encouraging
the growth of plants, and advancing photosynthetic activities and flower quality [6].

Climate models project decreasing rainfall frequency along with increasing temper-
atures that will increase the gap between actual and potential yields [7]. Plants are often
subjected to environmental restraints and water deficiency is the most important abiotic
stress that limits crop production worldwide [8,9]. Drought, a recurrent spectacle with
significant influences on biodiversity, is a major extensive climatic extreme and will dimin-
ish crop yields by up to 30% by 2025, compared with current yields [10]. In parts of the
world, the water resource’s potential to swell landscapes and enhance the cultivation of
horticultural crops is vulnerable [11]. The distribution of water for the floricultural industry
is rivalled by other necessities, such as human consumption, urban management, and
agriculture, and must be utilized properly and with extreme efficacy [12]. Experts claimed
that the drylands on earth will enhance by 30%, and drier summers along with decreased
rainfall are predicted to disturb, primarily, southern Asia, southern Europe, and northern
and southern Africa [13].

Private gardens and public green areas are attractive and striking due to the presence
of colorful bedding plants [14]. These plants can suffer from drought constraints due to less
water availability, especially when they have a small root system and are grown in pots [15].
Bedding plants always face a great risk of undergoing water stress during the nursery stage,
due to their cultivation in limited spaces, which hinders the growth of roots and exposes
the plants to severe drought stress. Additionally, substrate hydraulic conductivity (which
is often organic), which is used for the cultivation of bedding plants, reduces speedily with
minute variations in the content of water in the substrate [16]. This makes a plant’s water
extraction very problematic, particularly when the water concentration in the substrate is
stumpy. Plants may exhibit various response processes to water-deficiency, morphologically
as well as physiologically [17]. At the whole-plant level, some plants enhance fresh root
growth and dry weight to increase the uptake of water, thereby preserving the plant water
state and safeguarding photosynthetic activities under drought stress [11]. During the
nursery phase of bedding plant production, this adaptation response may be impossible,
due to limited water availability and limited root growth in small pots [14].

Drought-stress exposure causes morphological variations in the shoots that smaller
plant leaves produce, and older leaves drop down to minimize transpiration and, ultimately,
water loss [18]. The leaf-area decline decreases photosynthesis and plant carbon gain.
Photosynthesis declines significantly in plants that are under drought stress because of their
high sensitivity to drought conditions [19]. Drought stress causes osmotic stress, harming
enzymatic activity and the structure of perilous macromolecules [20]. Under drought
stress, plants show an unevenness between generation and scavenging of reactive oxygen
species (ROS), such as H2O2. Peroxidase (POX), catalase (CAT), and dismutase (SOD) are
major ROS detoxification enzymes, while carotenoids are key non-enzymatic antioxidant
metabolites [21]. The undue generation of ROS causes a range of destructive impacts,
such as leakage of coupled electrolyte and peroxidation of lipids [22]. Although numerous
experiments have studied the effect of water stresses in the alteration of photosynthesis
in bedding plants [23], there is limited experiment-based information related to morpho-
biochemical and physiological adjustments to drought by bedding plants.
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Gerbera (Gerbera jamesonii) is one of the world’s most popular ornamental plants and is
extensively used as a bedded plant, a potted plant, and a cut flower in a variety of climatic
conditions [24]. It belongs to the Asteraceae family and, due to its attractive color variation,
its stem length, its floral diameter, and its long adaptability for culture [25], gerbera is an
ideal choice for cultivation in greenhouses in several countries. In the cut flower industry,
it ranks fifth after roses, carnations, mums, and tulips [26].

Numerous studies have indicated that Si application to crops elevates their drought
tolerance [8,27]. Therefore, crop plants use Si as a quasi-essential element for the mitigation
of the effects of drought. The impact of Si application under drought stress, enhancing
plant growth and biomass, has been observed in several ornamental species such as Callis-
temon [28], Bougainvillea [29], Pittosporum, Spiraea [30], and Chrysanthemum [31]. In these
previous studies, the useful effects of Si were mainly due to its role in enhancing the
production of antioxidants, upholding photosynthetic processes, and delaying plant senes-
cence [32]. In addition to its increased-antioxidant activities, Si has been shown to increase
redial hydraulic conductivity and to arbitrate stress tolerance in gerbera plants exposed to
drought conditions [33]. Al-Maitah [34] argued that Si supplementation decreased osmotic
stresses in plant cells and encouraged root activities, resulting in enhanced nutrient uptake
and improved growth, as well as improved quality of gerbera flowers.

Due to the increasing frequency of drought that severely affects the growth and de-
velopment of plants, analyzing the impacts of drought stress on plants provides a basis
for hypothesizing about the impacts of future climate change on the production of plant
species. Silicon provides strength to ornamental plants by making plant tissues strong
and rigid under abiotic stress [34]. With this in mind, an experiment was conducted to
investigate the impact of Si, under water-deficient conditions, on the important floricultural
plant gerbera. In this study, we hypothesize that Si foliar application positively affects mor-
phological, physiological, and biochemical mechanisms, thus increasing the performance
of Gerbera jamesonii under drought stress.

2. Materials and Methods
2.1. Plant Collection, Experimental Treatments, and Layout

The present study was conducted from late October to mid-March 2021 in a green-
house at the Research Area of the Horticultural Department, The Islamia University of Ba-
hawalpur, Pakistan (29◦22′42′′ N, 71◦45′534′′ E). There was a natural photoperiod (approxi-
mately 14 h light), temperature (day/night) of 29/20 ◦C, and relative humidity of 75%.

Gerbera jamesonii cv. Ruby red nurseries at four-leaf stages were purchased from the
local nursery and transplanted in terracotta pots (diameter of 18 cm; depth of 25 cm) filled
with sandy loam soil (one plant per pot). The electrical conductivity and pH of the soil
were 0.97 dS m−1 and 7.88, respectively. Arrangement of the pots was carried out following
a two-factor factorial setup with a completely randomized design that was replicated four
times. There were four treatments in the experiment, i.e., well-watered with tap water
spray (W), foliar spray of Si under well-watered conditions (W + Si), drought stress with
tap water spray (D), and foliar spray of Si with drought stress conditions (D + Si). Each
treatment consisted of eight pots; there were 3.2 kg soil per pot.

Treatments to counteract drought stress, i.e., 60% FC (drought stress) and 100% FC
(well-watered), were applied to every pot. A soil moisture sensor (ML3 ThetaProbe, Delta-T
Devices Co., Burwell, UK) was fixed and used to determine the applied water quantity.
Foliar treatment of Si at 40 mg Si L−1 was prepared by utilizing sodium metasilicate
(Na2SiO3; MW = 122.06; Sigma–Aldrich, St. Louis, MO, USA). The first Si foliar spray was
carried out after 10 days of applying the drought-stress treatment during the vegetative
stage, and there were four sprays at weekly intervals. The spraying was carried out in the
early morning (07:00 to 08:00 a.m.) via a compression layer with a capacity of 1 L. The
pots were irrigated daily in a measured quantity to maintain the respective FCs during the
experimental period.
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2.2. Measurement of Morphological Parameters

Plant morphological parameters, such as the number of leaves, were recorded after the
flowers reached full bloom. The stem length and the diameter of the flowers were noted
with the help of digital caliper. For plant biomass, the plants were uprooted and washed
with deionized water and oven dried at 70 ◦C for 48 h. Dry plant biomass was measured
via electric balance (Sartorius, Basic, Bavaria, Germany). The leaf area was estimated with
a leaf-area meter (Delta-T, Ltd., Cambridge, UK).

2.3. Determination of Amino Acids and Antioxidants Enzyme Activity

For the estimation of total free amino acids (TFA), fresh leaves (1.0 g) were used accord-
ing to the suggestions of Hamilton and Van Slyke [35]. With the help of a spectrophotometer,
the antioxidant enzymes, such as ascorbate peroxidase (APX), superoxide dismutase (SOD),
catalase (CAT), and peroxidase (POX), were estimated. For this purpose, a 1.0 g fresh
leaf sample was standardized in 50 mM buffer of phosphate (7.0 pH) and dithiothreitol
(DTT), as explained by Dixit et al. [36]. The SOD and APX activities were estimated by
following the procedure of Giannopolitis and Ries [37] and Cakmak [38], respectively. The
methodology suggested by Zhang et al. [39] was adopted for the measurement of CAT and
POX activities.

2.4. Detection of Pigments

About 1.0 g of fresh leaf sample was chosen for each treatment and sliced into 0.5 cm
sections. Extraction was done at 4 ◦C overnight in 80% acetone (10 mL) for the determi-
nation of carotenoid (CAR) and levels of chlorophyll (Chl), following the procedures of
Davis [40] and Arnon [41]. With the help of the formula, the Chla, Chlb, total Chl, and CAR
concentrations were calculated after estimating the absorbance of the supernatant on a
spectrophotometer (Hitachi, U-2800) at 645, 652, 663, and 480 nm.

Chla (mg g−1 FW) = [12.7 (OD 663) − 2.69 (OD 645)] × V/1000 ×W

Chlb (mg g−1 FW) = [22.9 (OD 645) − 4.68 (OD 663)] × V/1000 ×W

Chlt (mg g−1 FW) = [20.2 (OD 645) + 8.02 (OD 663)] × V/1000 ×W

CAR (µg g−1 FW) = A car/Emax
100.

where V is the sample volume, OD is the optical density indicating the wavelength at
which the readings were recorded, W is the sample weight, and Acar = (OD 480) + 0.114
(OD 663) − 0.638 (OD 645); Emax

100 cm = 2500

2.5. Determination of Glycinebetaine (GB) and Total Soluble Proteins

Glycinebetine (GB) was estimated via a 500 mg leaf sample (dry form) with 0.5%
toluene (10 mL), which was kept overnight at 4 ◦C. A filtrate of about 1.0 mL was reacted
with H2SO4 (1.0 mL). The extract (0.5 mL) and the solution of Kl3 (200 µL) were cooled.
The 1–2 di-chloroethane (5 mL) and de-ionized H2O (2.8 mL) were added. The absorbance
of the organic layer was determined by the spectrophotometer at λ 365 nm. Applying the
method of Grieve and Grattan [42], the concentration of GB was confirmed by a curve.
Moreover, fresh leaf (500 mg) was used for the estimation of soluble protein and extracted
in an ice bath along with 10 mL potassium phosphate (50 mM). The aliquot was centrifuged
at 4 ◦C for 15 min at 10,000× g. Applying the method of Bradford [43], the contents of
protein in the extract were estimated.

2.6. Free Proline and MDA Contents Estimation

The concentration of free proline was estimated by using a fresh leaf sample (1.0 g) that
was homogenized in 5 mL of 3% aqueous sulfosalicylic acid, as described by Ahmad et al. [44],
for the determination of proline contents with the help of the spectrophotometer (Jenway,
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Staffordshire, UK). The malondialdehyde (MDA) value was estimated by using a sample
of leaf in 5 mL 1.0% trichloroacetic acid (w/v), as proposed by Li et al. [45].

2.7. Determination of Photosynthetic Attribute

Photosynthetic synthetic attributes, such as the rate of photosynthesis and transpira-
tion and stomatal conductance, were determined by using an infrared gas analyzer (LCA-4,
Analytical Development Company, Hoddesdon, UK).

2.8. Statistical Analysis

With the help of computer software STATISTIX (version 8.1), the analysis of variance
(ANOVA) procedure was adopted for statistical analysis of the collected data. The treatment
means were compared, statistically, by the LSD at a 5% probability.

3. Results
3.1. Morphological Attributes

Drought stress (60% FC) noticeably reduced leaf numbers and the areas of gerbera by
11% and 38%, respectively, compared with well-water spray (control). The supplementation
of Si enhanced both leaf characteristics by 7% and 8% in well-watered conditions and by
12% and 31% in drought-stress conditions (Figure 1a,b). A similar trend was noted with
elevated stem length (29%) and flower diameter (22%), as Si supplementation increased
both parameters under drought-stress conditions. There were 25% and 22% reductions
in stem length and flower diameter, respectively, in water-deficient plants, as compared
to control (Figure 1c,d). Foliar spray of Si enhanced plant fresh weight by 24% under
controlled conditions and by 17% in drought-stress conditions (Figure 1e). Plant dry weight
was also enhanced by 8% in drought-stressed plants (without Si supplementation), but Si
foliar spray reduced dry weight by 17% with 60% FC and increased dry weight by 38%
with 100% FC (Figure 1f).

3.2. Total Free Amino Acids and Antioxidants Enzyme

Statistically, the impact of drought stress significantly (p < 0.05) enhanced the accu-
mulation of TFA by 130% compared with well-watered conditions (control), whereas Si
foliar spray increased TFA contents by 40% under drought-stress conditions (Figure 2a).
The antioxidant enzymatic activities were significantly enhanced under drought-stress
conditions. For plants at 60% FC, Si foliar application increased POX, CAT, SOD, and APX
by 44% (Figure 2b), 31% (Figure 2c), 53% (Figure 2d), and 33% (Figure 2e), respectively,
compared with well-watered spray (control).

3.3. Pigments

Exposure of plants to water-deficient conditions significantly (p < 0.05) decreased the
Chla (50%), Chlb (33%), Chlt (48%), and CAR (57%), compared with plants in well-watered
conditions (control). However, gerbera plants with Si foliar spray showed increases of 44%,
51%, 48%, and 54% in leaf Chla (Figure 3a), Chlb (Figure 3b), Chlt (Figure 3c), and CAR
(Figure 3d), respectively, compared with those irrigated under water-stressed regimes.

3.4. GB and Soluble Proteins

The application of Si significantly (p < 0.05) enhanced GB concentration in both well-
watered and water-stressed regimes. There was an increase of 112% and 330% under
well-watered and water-deficit conditions, respectively (Figure 4a). Drought treatment
without Si spray reduced GB contents by 49%, compared with plants in well-watered
conditions (control). A similar trend was also recorded for total soluble protein, as Si
application enhanced total soluble protein by 24% (well-watered conditions) and 61%
(drought-stress conditions), respectively, compared with well-watered irrigated plants
(Figure 4b).
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Figure 1. Influence of Si supplementation on the number of leaves (a), the leaf area (b), the stem
length (c), the flower diameter (d), the plant fresh weight (e), and the plant dry weight (f) of
Gerbera jamesonii under water-deficient conditions. Each bar shows a mean of four replicates ± SE.
Dissimilar lettering illustrates significant statistical differences at p ≤ 0.05 after applying LSD test.
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Figure 2. Impact of foliar Si supplementation on accrual of osmoprotectants and activities of antioxi-
dant enzymes, total free amino acids (a), peroxidase (b), catalase (c), superoxide dismutase (d) and
ascorbate peroxidase (e) of Gerbera jamesonii under water-deficient conditions. Each bar shows a mean
of four replicates ± SE. Dissimilar lettering illustrates significant statistical differences at p ≤ 0.05
after applying LSD test.
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Figure 3. Impact of foliar Si supplementation on leaf photosynthetic pigments, chlorophyll a (a),
chlorophyll b (b), total chlorophyll (c), and carotenoid contents (d) of Gerbera jamesonii under water-
deficient conditions. Each bar shows a mean of four replicates ± SE. Dissimilar lettering illustrates
significant statistical differences at p ≤ 0.05 after applying LSD test.

3.5. Free Proline and MDA

Free proline contents were significantly enhanced under drought-stressed gerbera
plants, compared with well-watered irrigated plants. Proline levels increased by 38% and
51%, respectively, due to Si supplementation in both well-watered and water-stressed
gerbera plants (Figure 5a). However, without Si foliar spray, drought-stressed (60% FC)
plants showed 83% proline enhancement, compared with plants with 100% FC. MDA
concentration also showed that Si supplementation was effectively enhanced by 66%
(drought-stress conditions) and 20% (well-watered conditions), while the plants under
drought stress reduced MDA level by 13%, compared with well-watered (control) plants
(Figure 5b).
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Figure 4. Effect of foliar Si supplementation on glycinebetaine (a) and total soluble proteins (b) of
Gerbera jamesonii under water-deficient conditions. Each bar shows a mean of four replicates ± SE.
Dissimilar lettering illustrates significant statistical differences at p ≤ 0.05 after applying LSD test.
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Figure 5. Impact of foliar Si supplementation on free proline (a) and MDA (b) of Gerbera jamesonii
under water-deficient conditions. Each bar shows a mean of four replicates ± SE. Dissimilar lettering
illustrates significant statistical differences at p ≤ 0.05 after applying LSD test.

3.6. Photosynthetic Attributes

Drought-stress conditions markedly abridged photosynthetic attributes such as A, E,
and gs by 38%, 7%, and 27%, respectively, in well-watered conditions. The supplementation
of Si enhanced A (28% and 89%), E (9% and 12%), and gs (29% and 55%) with 100% FC and
60% FC conditions, respectively (Figure 6a–c).
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Figure 6. Impact of foliar Si supplementation on photosynthetic rate (a), transpiration rate (b), and
stomatal conductance (c) of Gerbera jamesonii under water-deficient conditions. Each bar shows an
average of four replicates ± SE. Dissimilar lettering illustrates significant statistical differences at
p ≤ 0.05 after applying LSD test.

4. Discussion

Water availability is the most important factor in the cultivation of ornamental plants,
especially those with shallow root systems [14]. In the nursery stage, the generalized
container usage, often of small volume, determines the impact of root constraints [46]. In
cities, it is imperative to choose plant types that survive under drought conditions without
losing their plant quality [47]. Bedding ornamental plants are sensitive to drought stress.
In these plants, the first response to water shortage is the reduction in plant growth. In
the present experiment, water-deficient conditions noticeably decreased external quality
traits such as the number of leaves, the leaf area, the stem length, the flower diameter, and
the plant biomass, i.e., the fresh and dry weight of the plant. All of these parameters are
very important, and market value is often determined by these external quality traits in
both potted plants and cut flowers [48]. Previous experiments revealed that plant growth
parameters in Zinnia [14] and Adonis species [49] decreased significantly in drought-stress
conditions Water status and the production of biomass are supposed to be the standards
for evaluating plant behavior in response to osmotic stress [50]. Abridged biomass accu-
mulation results from water deficiency because of the reduction in leaf biomass, which is
caused by the decrease in the number and sizes of the leaves [51]. In situations of drought
stress, the reduction in plant growth and biomass is linked to a decrease in the expansion
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and elongation of cells, as the diminished absorption of water leads to a decrease in the
production of metabolites to uphold the regular activities of cells [47].

The supplementation of Si under both well-watered and drought-stress conditions
markedly bettered the growth of gerbera plants. The application of Si is known to arbitrate
biochemical and physiological processes to enhance biomass accumulation in plants [52].
Similarly, in the current study, Si augmented morphological growth characteristics un-
der water-deficit conditions. Kamenidou et al. [33] showed increased gerbera flower
diameter and stem length when Si was applied under a hydroponic nutrient solution.
Hameed et al. [53] proposed that Si supplementation enhances the protein contents in
plant seedlings that provide amino acids and energy to counter the harmful effects of
drought stress. This study confirms the results of Zomorrodi et al. [48], who stated that
Si supplementation offers improvement in the ornamental quality of flowering plants,
independently of water accessibility, under drought-stress conditions.

Silicon foliar application remarkably enhanced the accrual of TFA, which assisted
water-deficient gerbera to maintain a level of water. This effect can be contingent on
data showing that Si arouses the activity of amylase to boost the decomposition of starch
during drought stress. Previous studies on the Zinnia elegance [14] and Iris species [54] are
concordant with our results, suggesting that acquaintance with drought stress results in the
biosynthesis and accretion of the amino acids that vigorously take part in the adjustment of
osmotic potential under drought-stress conditions. The augmented antioxidant enzymatic
activities show increased production of reactive oxygen species (ROS) under water-deficient
conditions [55]. The enzymes are responsible for O2

− and H2O2 detoxification and assist
in averting the highly poisonous HO− formation [56]. A significant increment in POX,
CAT, SOD, and APX production by Si application provides an additional indication that Si
controls the spontaneous dismutation of O2

− and H2O2, or can be responsible directly for
the quenching of O2

− and OH− in cells [57]. Early reports on ornamental sunflower [56],
Rosa damascena [11], and gerbera [24] also proposed a rise in antioxidant activity in plants
supplemented by Si during drought stress. The current study is in agreement about the
improvement of CAT and POX capabilities to scavenge H2O2 from the chloroplast [58], due
to Si supplementation. In scavenging ROS, the antioxidant enzymes—especially APX and
SOD—have a major role. APX acts directly on H2O2 molecules and converts them to water.
SOD carries out the dismutation reaction by dropping the O2

− molecule to H2O2: APX
converts H2O2 to water, thus achieving the ROS removal [59]. The capacity of antioxidant
enzyme activities in ROS scavenging and minimizing harmful impact may be related to the
drought resistance of plants [60].

Chlorophylls are indicative of stressful conditions of a plant under abiotic stress.
Biosynthesis and the conservation of photosynthetic pigments are latent predictors of
drought resistance in plants [61]. The intensity of the green color on leaves generally
assists as a vital gauge of plant health [48]. The current study showed that plants un-
der water-deficient conditions (60% FC) were severely affected and caused a noticeable
decrease in Chla, Chlb, Chlt, and CAR concentrations, compared with plants with 100%
FC. This reduction in chlorophyll pigments might be linked to the decline in methionine
and cysteine concentrations under drought stress, which are key constituents of chloro-
plast target proteins [62]. A shortage of water supply results in oxidative impairment or
ROS overproduction, which diminishes chlorophyll because of photo-oxidative injury to
pigments [63]. Carotenoids (non-enzymatic antioxidant) are major metabolites for the ap-
propriate functioning of photosynthetic apparatus during fluctuations of light intensity [64].
Furthermore, drought-stressed plants are associated with decreased CAR contents and the
elevation of antioxidant enzymatic activity [48]. The foliar application of Si substantially
reduces the damage to photosynthetic pigments and significantly enhances the carotenoid
contents in tissues of leaves under drought-stress conditions. Carotenoids transmit photo-
chemical energy to chlorophyll to facilitate photosynthesis [65]. These reports accord with
the findings of previous studies in other ornamental bedding plants, such as marigold [66],
Zinnia [14], and sunflower [67]. Beneficial Si impacts are associated with activities of antiox-
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idant enzyme upregulation that protect the structure of chloroplast to maintain chlorophyll
contents under drought-stress conditions [60].

In plants, for the management of the lethal impacts of ROS, a defensive mechanism is
started for drought-stress resistance, including the production of solutes such as GB [68].
In the present study, Si supplementation significantly increased GB under both drought-
stress and well-watered conditions. The elevated contents of this osmolyte in plants
might be responsible for various processes such as the integrity of the membrane, ROS
detoxification, and osmotic adjustment for drought resistance in plants [69]. In plants,
the total accumulation of soluble protein content varies from species to species [56]. In
the present study, total soluble proteins were remarkably enhanced by the addition of
Si in both well-watered and drought-stressed plants. The increase in soluble proteins
might be one of the prime mechanisms for the mitigation by Si of drought-stress injury [70].
Similar reports were provided by Rastogi et al. [71], who found an increased soluble-protein
concentration in strawberry leaves that was induced by Si supplementation, which elevates
photosynthetic activities under abiotic stress.

Plants under water-deficient conditions accrue compatible solutes, such as proline,
for facilitating water absorption, minimizing cell damage, and enhancing the osmotic
potential of cells [72]. The accrual of proline is a general marker of water-deficiency
tolerance and permits osmotic change that results in cell dehydration avoidance and water
retention [73]. In our study, drought-stressed plants showed remarkably higher proline
concentrations than well-watered (control) irrigated plants of gerbera. Proline accumulation
under abiotic strain in several crops has been linked to tolerance of stress; proline content
has been higher in stress-tolerant plants than in stressed-sensitive plant species [74]. MDA
(a producer of lipid peroxidation) has been regarded as a gauge of oxidative injury [56].
It is generally considered the greatest physiological component of drought resistance in
plants [75]. The present study revealed a reduction in MDA contents under drought-stress
conditions; however, with Si supplementation, MDA contents increased in gerbera plants
under both water-deficient and well-watered conditions. Enhanced MDA concentrations
with Si supplements under drought-stress conditions showed a strong encouraging effect
on membrane protection from abiotic stress injury [76]. These findings from the current
experiment are in contrast to the recommendations of Zahedi et al. [77], who stated that Si
supplementation reduced MDA contents with increased antioxidant enzymatic activities.
The increase in MDA contents during drought conditions also showed that, despite the
existence of an antioxidant mechanism, drought stress may cause peroxidation of lipids in
the leaves of plants [78].

The rates of gas exchange are severely affected by drought-stress conditions. The
primary site of stress in the photosynthetic apparatus of plants is extremely delicate in
response to water shortage; as a result, photosynthetic activity is decreased, due to the
closure of stomata and complicated non-gassing impacts [79]. In the present research, the
photosynthetic rate (A), the transpiration rate (E), and stomatal conductance (gs) were re-
markably reduced in water-deficit plants, compared with well-watered and irrigated plants.
As water-deficient plants decrease A, E, and gs, the application of Si can enhance water-use
efficiency by reducing photosynthetic attributes. Nevertheless, the supplementation of Si
considerably improved these reductions in gerbera leaves. It can be speculated that the
application of Si permitted water-deficient plants to retain higher chlorophyll contents and
water-use efficiency, thereby improving photosynthesis. Improvement in the gs level by Si
supplementation showed that regulation of gaseous exchange (CO2 and water) can allow
plants under well-watered growth conditions to enhance their CO2 uptake and, thereafter,
increase photosynthesis [77]. Toscano and Romano [14] argued that the supplementation
of Si enhanced the photosynthetic enzymatic activities that are involved in the Si-induced
regulation of photosynthesis in Zinnia under drought stress.
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5. Conclusions

As an effective quasi-vital element, Si plays a key part in elevating the drought tol-
erance of elegant gerbera plants. Positive impacts of exogenous Si supplementation on
the morphological attributes and the plant biomass were recorded to be linked with Si-
mediated improvement in physiological processes, including the maintenance of turgor by
the accrual of osmolytes, such as free amino acids, and enhancement of chlorophyll and
carotenoid contents. Silicon diminishes the injury caused by drought stress through differ-
ent biochemical processes, including the stimulation of antioxidant enzymatic machinery
and the uplifting of the stress-related metabolites under drought-stress conditions. Water-
deficient plants severely reduced soluble proteins and gaseous exchange rates, but the
addition of Si might alleviate such adversative effects. The addition of Si helped plants to
increase nutrient availability and improved the performance of underwater photosynthetic
apparatus applications.
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