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Highlights: 

 Excitatory stimulation protocols (anodal tDCS and HF-rTMS) are most effective 

 intervention in improving upper limb motor function and performance in ADLs after 

 acute/sub-acute stroke and chronic stroke. 

 Transcutanous Vagus nerve stimulation appeared to be a promising intervention in 

 improving upper limb motor function and performance in ADLs after acute/sub-acute 

 stroke and chronic stroke. 

 More taVNS trials are needed to find optimal stimulation paradigm and relative 

 superiority compared to other NIBS. 

  

                  



2 
 

Non-invasive brain stimulation techniques for the improvement of upper limb motor 

function and performance in activities of daily living after stroke: a systematic review 

and network meta-analysis. 

Ishtiaq Ahmed DPT, Msc
1*

, Rustem Mustafoglu PhD
2
, Simone Rossi PhD

3
, Fatih A. Cavdar 

Msc
1
, Seth Kwame Agyenkwa Msc

1
, Marco Y. C. Pang PhD

 4
, Sofia Straudi PhD

5
. 

Affiliations 

1
Pain in Motion International Research Group, Department of Physiotherapy, Human 

Physiology and Anatomy, Faculty of Physical Education &Physiotherapy, Vrije Universiteit 

Brussel, 1090 Brussels, Belgium.  

2
Istanbul University-Cerrahpasa, Faculty of Health Sciences, Department of Physiotherapy 

and Rehabilitation, Istanbul, Turkey.  

3
Department of Medicine, Surgery, and Neuroscience, Si-BIN Lab, Human Physiology 

Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy  

4
 Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong 

Kong. 

5
 Neuroscience and Rehabilitation Department, Ferrara University, 44121 Ferrara, Italy  

 

Short Title: Non-invasive brain stimulation for stroke rehabilitation. 

 

Correspondence 

*
Pain in Motion International Research Group, Department of Physiotherapy, Human 

Physiology and Anatomy, Faculty of Physical Education &Physiotherapy, Vrije Universiteit 

Brussel, 1090 Brussels, Belgium. 

E: ixhtiaq8@gmail.com Phone: +923465226426   ORCID: 0000-0002-6763-6324 

Adress: Vrije Universiteit Brussel, 1090 Brussels, Belgium. 

 

ORCID iDs: 0000-0002-6763-6324(IA); 0000-0001-7030-0787(RM); 0000-0001-6697-

9459(SR); 0000-0003-1183-5727(SKA); 0000-0003-1972-0502(FAC); 0000-0003-1652-

8945(MYCP); 0000-0002-2061-9922 (SS). 

 

Number of words in the manuscript: 5280 words 

Number of words in the abstract: 299 words 

Number of references: 143 

Number of tables: 02 

                  



3 
 

Number of figures: 05 

 

DECLARATIONS 

Acknowledgments: The authors would like to thank the authors who responded to our email 

inquiry and provided the data for analysis. 

Contributors: IA contributed to study conceptualization, data curation, formal analysis, 

investigation, writing - original draft, and visualization; RM contributed to study 

conceptualization, supervision, methodology, formal analysis, and, writing- review & editing; 

SR contributed to supervision, methodology, writing- review & editing; S.M contributed to 

data curation, formal analysis, and investigation; F.Y contributed to data curation, formal 

analysis, and investigation; SS contributed to supervision, methodology and, writing- review 

& editing; MP contributed to supervision, methodology, and, writing- review & editing of 

manuscript. All authors read the final draft of the manuscript and gave approval for its 

submission or publication. 

Funding: The authors have not declared a specific grant for this research from any funding 

agency in the public, commercial or not-for-profit sectors. 

Disclaimer: RM is Section Editor for Turkish Journal of Physiotherapy and Rehabilitation 

while MP is Editor-in-chief for Hong Kong Physiotherapy Journal. 

Competing interests: None declared 

Patient and public involvement: Patients and/or the public were not involved in the design, 

or conduct, or reporting, or dissemination plans of this research. 

Patient consent for publication: Not required. 

Ethics approval: Not required. 

Data availability statement: All data relevant to the study are included in the article or 

uploaded as supplementary information. Further information is available upon reasonable 

request. 

ORCID iD: Ishtiaq Ahmed (https://orcid.org/0000-0002-6763-6324) 

Twitter handle: @ixhtiaq_ahmed 

 

 

Abstract 

Objective: To compare the efficacy of non-invasive brain stimulation (NiBS) such as 

transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation 
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(rTMS), theta-burst stimulation (TBS), and transcutaneous vagus nerve stimulation (taVNS) 

in upper limb stroke rehabilitation. 

Data sources: PubMed, Web of Science, and Cochrane databases were searched from 

January 2010 to June 2022. 

Data Selection: Randomized controlled trials (RCT’s) assessing the effects of “tDCS”, 

“rTMS”, “TBS”, or “taVNS” on upper limb motor function and performance in activities of 

daily livings (ADLs) after stroke. 

Data Extraction: Data were extracted by 2 independent reviewers. Risk of bias were was 

evaluated with the Cochrane Risk of Bias tool. 

Data Synthesis: 87 RCTs with 3750 participants were included. Pairwise meta-analysis 

showed that all NiBS except continuous TBS (cTBS) and cathodal tDCS were significantly 

more efficacious than sham stimulation for motor function (Standard Meand Differerence 

(SMD) range 0.42 to 1.20) whereas taVNS, anodal tDCS, and both low and high frequency 

rTMS were significantly more efficacious than sham stimulation for ADLs (SMD range 0.54 

to 0.99). NMA showed that taVNS was more effective than cTBS (SMD:1.00;95%CI(0.02 to 

2.02), cathodal tDCS (SMD:1.07;95%CI(0.21 to 1.92) and Physical rehabilitation alone 

(SMD:1.46;95%CI(0.59 to 2.33)) for improving motor function. P-score found that taVNS is 

best ranked treatment in improving motor function (SMD: 1.20;95%CI(0.46 to 1.95) and 

ADLs (SMD:1.20;95%CI(0.45 to 1.94) after stroke. After taVNS, excitatory stimulation 

protocols (intermittent TBS, anodal tDCS and HF-rTMS) are most effective in improving 

motor function and ADLs after acute/sub-acute (SMD range 0.53 to 1.63) and chronic stroke 

(SMD range 0.39 to 1.16). 

Conclusions: Evidence suggests that excitatory stimulation protocols are the most promising 

intervention in improving upper limb motor function and performance in ADLs. taVNS 
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appeared to be a promising intervention for stroke patients, but further large RCTs are 

required to confirm its relative superiority. 

 

Keywords: Stroke, Upper Limb, brain stimulation, Motor recovery. 

 

Prospero Registration number: CRD42022302542 

 

Introduction 

 Upper limb motor impairment is one of the most common sequelae of stroke
1-3

. 

Approximately 80% of stroke survivors have upper limb motor impairment
4, 5

 and only 20-

30% of these survivors achieve functional recovery
6
, while 50-60% still have persistent 

impaired upper limb function six months later 
7
. Since the efficacy of standard physical 

rehabilitative approaches is limited
8
, novel and possibly more effective alternative treatment 

methods to improve upper limb functionality after stroke, with positive impact on activities of 

daily living (ADLs), is a research priority for both stroke survivors and caregivers
7-9

.      

 Currently available treatment methods to improve upper limb function after stroke 

include intensive, task-specific, repetitive rehabilitative interventions and non-invasive brain 

stimulation (NiBS) 
7, 10-16

. In recent years, considerable evidence for NiBS strategies in stroke 

patients have emerged, particularly for transcranial direct current stimulation (tDCS) 
17-20

, 

repetitive transcranial magnetic stimulation (rTMS) 
21-23

, theta-burst stimulation (TBS)
24, 25

 

and transcutaneous vagus nerve stimulation (taVNS) 
16, 26

.The NiBS techniques potentialities 

for recovery rely on the principle of neuroplasticity, best defined as changes in neuronal 

function and structure to increase neural functioning through synaptogenesis, reorganization, 

and network strengthening and suppression
27, 28

. The tDCS, rTMS, and TBS stimulation 

paradigms may lead to motor recovery capitalizing from induced changes in synaptic function 
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(long-term potentiation or depression) 
29

, whereas taVNS facilitate motor recovery by 

indirectly modulating the cortical re-organization of the motor cortex 
15, 30

. Several 

randomized controlled trials (RCTs) have explored the effects of tDCS, rTMS, TBS, or 

taVNS combined with other therapies on upper limb motor function in the sub-acute
18, 22, 31, 32

 

and chronic stage of stroke 
33-36

. Few studies demonstrated improvement in upper limb motor 

function 
16, 18, 24-26, 37

, but there is a mixed approach towards the output of NiBS combined 

with other therapies, and the effect on upper limb motor function is not well established yet 
38

. 

 Previous meta-analyses have determined the efficacy of NiBS techniques compared 

with sham stimulation
39-41

 or within pairs of active stimulation
42

. Due to methodological 

limitations, those analyses were only able to draw a pairwise-comparison and were not able to 

provide an overall treatment hierarchy (network-evidence), because the estimated effects were 

calculated from the subset of relevant treatment comparison only. Secondly, to avoid multiple 

subgroup analyses, authors had to combine different types of brain stimulation into a single 

category, which results in masking possible differences in the treatment effect of various 

NiBS techniques
39

. Furthermore, the lack of clinical trials that compared different NIBS 

techniques, prevents clinicians to select the most effective intervention for the upper limb 

motor function recovery in stroke patients. A network meta-analysis (NMA) or multiple 

treatment comparison meta-analysis, the best level of evidence in treatment guidelines
43

, 

allows the quantitative synthesis of network evidence by combining direct evidence from 

head-to-head comparisons of multiple interventions within RCTs and indirect evidence across 

RCTs on the basis of a common comparator 
43, 44

. Previous NMAs of NiBS have provided the 

comprehensive synthesis of single brain stimulation protocols i.e tDCS but did not include 

rTMS, TBS or taVNS
45, 46

. Recently Ahmed et al. have compared the tDCS with VNS but did 

not include rTMS and TBS in their analysis
1
. Therefore, a comprehensive NMA comparing 

different types of NiBS (i.e., tDCS, rTMS, TBS, tRNS taVNS) is required to determine the 
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relative efficacy of NiBS in improving upper limb motor function and performance in ADLs 

after stroke.  

Objective: 

This is the first systematic review with NMA, which aimed to give an overview of the 

evidence network of RCTs of tDCS (cathodal, anodal, or dual), rTMS (low or high frequency 

rTMS), TBS (intermittent or continuous), and taVNS for improving upper limb motor 

function and performance in ADLs after stroke and to estimate and rank the relative 

effectiveness of the different NiBS techniques.  

Material and Methods 

2.1.  Protocol and Registration 

 The study was conducted in accordance with guidelines based on evidence-based 

criteria in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 

extension statement for NMA
47

. The study protocol was designed a priori according to 

PRISMA extension statement for NMA guidelines and was registered in the PROSPERO 

database (Registration number: CRD42022302542). 

2.2. Search strategy and study selection 

 Literature Search included the following electronic bibliographic databases:  Medline 

(PubMed), Web of Science (WOS), and Cochrane Central Register of Controlled Trials 

(Cochrane CENTRAL). Literature was searched for English articles (Spoken language of 

authors), which were published between January 1, 2010, and March 25, 2022, using specific 

keywords. The following keywords were employed: “Stroke”, “Cerebrovascular Accident”, 

“Transcranial Direct Current Stimulation”, “Transcranial Magnetic Stimulation”, “repetitive 

Transcranial Magnetic Stimulation”, “Theta Burst Stimulation”, “Transcranial Random Noise 

Stimulation”, “Transcranial Alternating Current Stimulation”, “Vagus Nerve Stimulation”, 
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“Transcutaneous Vagus Nerve Stimulation”, “transcutaneous auricular Vagus Nerve 

Stimulation”, “Non-invasive brain stimulation”, and “Upper Extremity”. The search strategy 

is given in Appendix 1. Initially, two pairs of the authors (I.A and R.M and S.M and F.A.Y) 

independently screened all titles, abstracts, and full texts for eligibility. Any discrepancies 

identified during the screening process were resolved through a consensus meeting (S.R, S.S, 

and M.P). Articles published as abstract, case reports, non-randomized controlled trials, 

reviews, and conference papers were excluded.  In order to identify further articles, secondary 

searches were performed by manually screening of bibliographies of identified articles and 

tracking the citing articles to identify studies that were not identified by the database search, 

and an additional search was also made through Google Scholar. 

2.3. Eligibility Criteria 

 We followed the Lefaucheur et al. evidence-based guidelines for clinical use of brain 

stimulation, which classified studies into four classes from I to IV according to decreasing 

level of evidence
48

. Class-I constitutes high-quality randomized, sham-controlled clinical trial 

with a representative sample i.e., 25 or more patients receiving active stimulation/treatment. 

Class-II constitutes good-quality randomized, sham-controlled clinical trial with a sample size 

ranges between 10 and 25 patients receiving active stimulation/treatment. Class-III constitutes 

controlled clinical trial with low methodological quality and sample size i.e., 9 patients or less 

receiving active stimulation/treatment. Class IV constitutes un-controlled studies, case report 

or case series. This classification was further used to determine the level of evidence from A 

to C (see Lefaucheur et al. 
48

).  Level A (requiring at least two studies from Class I or one 

study from Class I and at least two studies from Class II) evidence was constituted in the 

review to report the efficacy of NiBS i.e., ‘‘definitely effective or ineffective”. 

2.3.1. Types of Studies 
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 We included only Class I or Class II RCTs and cross over RCTs with a minimum 

sample size of 10 which determined the effect of “tDCS”, “rTMS”, “TBS”, “tRNS”, or 

“taVNS” with/without “upper limb physical rehabilitation approaches” on upper limb motor 

function and performance in ADLs after stroke. For cross-over design, only the first phase of 

intervention was analyzed and between-group difference was assumed to be identical to trials 

with parallel-group design.  

2.3.2. Types of Participants 

 Only those studies were included that focused on adults (aged 18 years and over) with 

a confirmed diagnosis of acute/subacute (<6 months) or chronic (>6 months) ischemic and/or 

hemorrhagic stroke. The eligibility of the study was confirmed by reviewing the inclusion 

criteria of study. 

2.3.3. Types of Interventions 

 Studies were included if they focused on interventions of “tDCS”, “rTMS”, “TBS”, 

“tRNS”, or “taVNS” combined with upper limb physical rehabilitation approaches. For tDCS, 

we grouped intervention according to treatment protocol and electrodes’ location: cathodal 

stimulation of non-lesioned hemisphere; anodal stimulation of lesioned hemisphere; dual 

tDCS-bilateral stimulation of both lesioned and non-lesioned hemispheres by anodal and 

cathodal stimulation, respectively. For rTMS, we grouped intervention according to 

stimulation frequency and coil location: low-frequency stimulation of non-lesioned 

hemisphere (LF-rTMS); and high-frequency stimulation of lesioned hemisphere (HF-rTMS). 

Similarly, we grouped TBS into intermittent Theta Burst Stimulation (iTBS) and continuous 

Theta Burst Stimulation (cTBS). Sham stimulations and active physical rehabilitation 

interventions were combined into their single group respectively for the main analysis. We 

combined different stimulation durations and different stimulation locations for the same 

NiBS type i.e., dual, anodal, or cathodal tDCS, LF-rTMS or HF- rTMS, and iTBS or cTBS. 
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2.3.4. Types of Comparators 

We included those studies which have compared any type of “tDCS”, “rTMS”, “TBS”, 

“tRNS”, or “taVNS” for improving upper limb motor functions and performance in ADLs.  In 

multi-arm study design, all comparators were included. 

2.3.5. Types of Outcomes 

 Mean change from baseline to post intervention of outcomes related to upper limb 

motor function (such as Fugl Meyer Assessment scale-Upper extremity (FMA-UE), Wolf 

Motor Function Test (WMFT), Box and Block Test (BBT), Jebsen-Taylor Hand Function 

Test (JTHFT), Action Research Arm Test  (ARAT) etc.) and performance in ADL (Barthel 

Index (BI), modified Barthel Index (mBI), modified Rankin Scale (mRS), Motor Activity Log 

-Quality of Movement  (MAL-QoM), Nottingham Extended Activities of Daily Living Scale 

(NEADL), Functional Independence Measure (FIM), etc.) after stroke were included. 

2.4.  Data Extraction 

 Two independent authors (IA and RM) extracted the data from the selected studies. In 

case of any discrepancies identified during the screening process, a consensus was achieved 

through face-to-face discussion (RM, IA, and SR). The following information has been 

extracted from the selected articles: Publication year, Authors, Country, Stroke type, Number 

of Participants, Methodological design, Comparison groups, Intervention protocols, Outcome, 

and Summary of results. 

2.5.  Quality assessment 

 Cochrane Risk of Bias assessment tool (Review Manager version 5.4.1) was used to 

determine the risk of bias in randomized controlled trials 
49

. The assessment tool includes 1-

Random sequence generation, 2-Allocation concealment, 3-Blinding of participants and 

personnel, 4-Blinding of outcome assessors, 5-Intention-to-treat analysis, and 6-Description 

of exclusions and losses. Each domain was categorized as “Unclear”, “Low” or “High” bias 
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risk. Studies were considered moderate to high quality if there was a low risk of bias in three 

or more than three domains 
1, 39, 49-51

. Egger’s regression asymmetry tests were used to assess 

publication bias 
52

. 

2.6.  Geometry of the network 

 The network geometry shows the interaction among articles included in NMA 
53, 54

 

and characterizes the precision of possible direct comparisons. We analyzed the comparison 

of different types of NiBS techniques with sham-intervention. Network graphs were generated 

to assess the geometry of network 
54, 55

. Each node in the network graph represents an 

intervention and lines between the nodes show the randomized comparison between 

interventions 
53, 54

. 

2.7.  Data synthesis and analyses 

 The results of the included studies were reported as median and interquartile range 

(IQR) or mean and standard deviation. When data were provided as median and range, we 

converted median and IQR to mean and standard deviation using appropriate statistical 

formulas
56, 57

. WebPlotDigitizer (https://apps.automeris.io/wpd/) was used to extract 

numerical data from figures. If the data could not be retrieved from the selected publications, 

requests were made to corresponding Authors to provide the necessary data. We calculated 

the mean difference (MD) and their 95% confidence interval (CI) for studies that used the 

same outcome measure, whereas standard mean difference (SMD) and their 95% confidence 

interval (CI) were calculated for the studies that did not use the same outcome measure to 

evaluate the same construct. Contrast-based forest plots were generated for all the possible 

comparisons and all the competing interventions were ranked according to the P-score 
1, 54, 58, 

59
. P-score ranges from 0 to 1. The higher or closer to 1 the P-score, the higher the probability 

that the intervention is in the highest or top position 
45, 46

. P-score describes the mean degree 

of certainty about a particular treatment is comparable to its surface under the cumulative 
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ranking curve (SUCRA) 
45

. All the analysis was performed with package “netmeta” in 

statistical software R version 4.1.3. 

2.8.  Planned method of analysis 

 This NMA was conducted to analyze the indirect evidence based on multivariate 

regression with random effects by using the frequentist approach 
60, 61

. The frequentist 

approach allows the incorporation of multi-arm trials and includes maximum-likelihood 

estimation 
53, 61

. This NMA is based on two assumptions: (1) consistency of effects 

(transitivity) and (2) independence of trials 
54, 62, 63

. We used random-effect-model to 

determine the summary estimate of the treatment effect.  

2.9.  Assessment of inconsistency 

 Cochran’s Q chi-squared statistics for multivariate meta-analysis was used to 

determine the inconsistency and homogeneity assumption
63

. Both global (between design) 

and local (loop specific or within-design or between pairwise) inconsistency has been 

determined in this analysis.  To determine the global inconsistency, the between-designs 

Cochran’s Q score was calculated on the basis of a full design-by-treatment interaction by 

using the random effects model
64

, defined with a generalized methods-of-moments (MoM) 

estimate of the between-studies variance (ie, τ²)
64, 65

. To determine local inconsistency, net 

split method was used to split network estimates into the contribution of direct-and-indirect 

evidence. A direct and indirect comparison of treatment estimates can serve as check for 

consistency/coherence of NMA 
64-66

.  

2.10. Sensitivity analyses 

 We conducted several sensitivity analyses to assess the robustness of our findings for 

motor function and performance in ADLs, by excluding stimulation protocol determining the 

effect of taVNS, iTBS, and cTBS in stroke. We also conducted the sub-group analysis 

according to stage of stroke i.e. acute/sub-acute and chronic stage of stroke. 
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3. Results 

3.1. Study Selection 

 A total of 3382 potentially relevant articles were retrieved from the three considered 

electronic databases: PubMed (n=673), WOS (n=1156), and Cochrane (n=1553). In addition, 

2 studies were identified by hand searching of bibliography of the included papers’ reference 

lists from Google Scholar. Endnote duplicate citation checker found 863 duplicate studies 

which were also removed. After removing the duplicate, the remaining 2521 studies were 

screened based on title and abstract by two pairs of independent authors for eligibility, of 

which 2370 studies were excluded.  Remaining 151 articles were screened for full text, of 

which 64 studies were removed because of the following reasons: a) full texts were not 

available (n=6); b) outcome measure not fitting our criteria (Kinematic measurements) (n=9); 

c) preliminary or intermediate result (n=5); d) ineligible article (n=11); e) non-English papers 

(n=4) and f) sample size less than 10 (n=29). Finally, 87 studies (42
18-20, 33-38, 67-99

 performed 

with tDCS, three
16, 100, 101

 with taVNS, 33
22, 23, 31, 102-131

 with rTMS, and nine
24, 25, 132-138

 with 

TBS) were included in the systematic review with network meta-analysis to determine the 

effect of NiBS on upper limb motor function and performance in ADLs as compared to sham 

stimulation. No studies were found investigating the effects of tRNS and tACS on upper limb 

motor function and performance in ADLs in stroke patients. The study selection and the 

search processes were performed in accordance with the PRISMA extension statement for 

NMA guidelines and is shown in Figure 1. 

3.2.Study Characteristics 

 A comprehensive summary about the characteristics of studies examining NiBS for 

improving upper limb motor function and performance in ADLs is shown in Supplementary 

File, Table S1.  Regarding the tDCS protocol, sample size ranged from 20
76

 to 96
38

, current 

intensity ranged between 0.7mA
91

  to  2.2mA
84

, number of sessions varied from 5
96

 to 36
35
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and the time of stimulation ranged between 10
78

 to 40
76

 minutes. Considering rTMS protocol, 

sample size ranged from 20
105

 to 199
31

, stimulation frequency ranged between 1Hz
104

  to 20 

Hz
115

, number of sessions varied from 5
116

 to 40
129

, and the time of stimulation ranged 

between 5
128

 to 40
126

 minutes. Regarding TBS protocol, sample size ranged from 23
133

 to 

71
135

, stimulation intensity ranged between 60-80% of active and resting motor threshold 

potential, number of sessions varied from 9
137

 to 40
25

, and the number of pulses varied 

between 600
137

 to 1200
133

 per session. Considering taVNS protocols, sample size ranged from 

21
16

 to 60
100

, stimulation frequency ranged between 20 Hz
16

 to 30 Hz
101

, number of sessions 

varied from 9
101

  to 20
100

,  and duration of stimulation ranged 20
100

  to 30
16

 minutes. 

3.3. Quality Assessment 

 Among the selected studies, 85% reported the random sequence generation, 77% 

reported allocation concealment, more than 80 % of studies have blinded the participants, 

personnel and assessor and have provided the information on losses and exclusion during the 

trial. However, only 65% of studies used intention-to-treat analysis to present the result. 

Majority of selected studies are of moderate to high quality (Supplementary File, Figure S1). 

Egger’s regression analysis shows no evidence of publication bias for upper limb motor 

function (p = 0.56) and performance in ADLs (p= 0.75). 

3.4.  Network Map 

 Network graph comparing NiBS technique with sham stimulation for improving upper 

limb motor function is shown in Figure 2. The network graph comparing NiBS technique with 

sham stimulation for improving upper limb performance in ADLs is shown in Figure 3. The 

thickness of lines in the figures illustrates that more studies are in direct comparison in the 

loop 

3.5.  Exploration for inconsistency 
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 The test for global inconsistency does not reveal any disagreement between the direct 

and indirect comparison (Q=10.65; df=20; p=0.95 for upper limb motor function and Q=8.20; 

df=11; p=0.69 for performance in ADLs). The p-value indicates that there was no significant 

inconsistency/ incoherence which supports the consistency test for every model, which is the 

null hypothesis, thus network model is acceptable. The net split test for loop-specific/local 

inconsistency showed that the p-value was statistically insignificant for all comparisons of 

treatments, which means there is no inconsistency between any of the loops (Supplementary 

File, Table S2-S3). Therefore, the consistency model is supported once again. As the 

inconsistency/ incoherence is absent at both local and global levels, the consistency/coherence 

assumption for NMA is accepted. 

3.6.  Synthesis of results 

3.6.1.  Summary of Network 

  A total of 1917 stroke patients received the real NiBS with the declared aim to 

improve upper limb motor function (number of studies: k = 79, number of arms = 103). The 

stimulation types studied were mostly LF-rTMS (26 study arm, 686 participants), anodal 

tDCS (24 study arm, 466 participants), HF-rTMS (11 study arm, 191 participants), dual tDCS 

(14 study arm, 190 participants), cathodal tDCS (8 study arm, 180 participants), iTBS (4 

study arm, 90 participants), taVNS (3 study arm, 58 participants), and cTBS (3 study arm, 56 

participants). A total of 1205 stroke patients received sham NiBS as a comparator intervention 

(67 studies) whereas 166 stroke patients received Physical rehabilitation as a comparator 

intervention. 

          A total of 1074 stroke patients received the real NiBS with the declared aim to improve 

Performance in ADL (number of studies: k = 46, number of arms = 58). The stimulation types 

studied were mostly LF-rTMS (15 study arm, 353 participants), anodal tDCS (11 study arm, 

223 participants), HF-rTMS (8 study arm, 149 participants), dual tDCS (7 study arm, 118 
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participants), cathodal tDCS (6 study arm, 119 participants), iTBS (4 study arm, 58 

participants), cTBS (2 study arm, 44 participants) and taVNS (1 study arm, 10 participants). A 

total of 728 stroke patients received sham NiBS as a comparator intervention (39 study arm) 

whereas 83 stroke patients received Physical rehabilitation as a comparator intervention. 

3.6.2. Pair-wise Meta-analysis 

  Supplementary File, Table S4 shows the result of pairwise meta-analysis. All NiBS 

protocols except cTBS and cathodal tDCS were significantly more efficacious than sham 

stimulation for upper limb motor function (SMD range 0.42 to 1.20). Among active 

stimulation, HF-rTMS was more effective than LF-rTMS (SMD: 0.01; 95%CI (-0.58 to 0.59); 

p=0.04, 𝜏2 =0.23; I
2
 =64%) in improving upper limb motor function. 

 Considering upper limb performance in ADLs, taVNS, anodal tDCS, LF-rTMS and 

HF-rTMS were significantly more efficacious than sham stimulation (SMD range 0.54 to 

0.99) (Supplementary File, Table S4). Among active stimulation, LF-rTMS was more 

effective than HF-rTMS (SMD: 0.12; 95%CI (-0.63 to 0.87); p=0.04, 𝜏2 =0.24; I
2
 =61%). 

3.6.3. Network meta-analysis 

 League-table providing effect estimate of NMA and pair-wise comparison of NiBS for 

improving upper limb motor function is available in Table 1.  The result of NMA showed that 

taVNS was more efficacious than cTBS (SMD: 1.00 (0.02 to 2.02), cathodal tDCS (SMD: 

1.07 (0.21 to 1.92)), sham stimulation (SMD: 1.20; 95%CI (0.46 to 1.95) and physical 

rehabilitation (SMD 1.46; 95%CI (0.59 to 2.33)) for upper limb motor function. No 

significant differences were found between the taVNS, iTBS, anodal or dual tDCS, and HF or 

LF rTMS (SMD range 0.04 to 0.78). Figure 4 shows the forest plot for NiBS for improving 

upper limb motor function in stroke. The highest effect for pairwise comparisons was for 

taVNS (SMD: 1.20; 95%CI (0.46 to 1.95) vs sham stimulation. P-score indicated that taVNS 
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is the best-ranked treatment for improving upper limb motor function in stroke followed by 

iTBS, HF-rTMS, and anodal tDCS, respectively (Figure 4). 

 League-table providing effect estimate of NMA and pair-wise comparison of NiBS for 

improving upper limb performance in ADLs is available in Table 2. The result of NMA 

showed that taVNS, anodal tDCS, HF-rTMS, and LF-rTMS were more efficacious than sham 

stimulation (SMD range 0.52 to 1.00) and physical rehabilitation (SMD range 0.74 to 1.21) 

for upper limb performance in ADLs. No significant differences were found between taVNS, 

iTBS or cTBS, anodal, cathodal or dual tDCS and HF-rTMS or LF-rTMS (SMD range 0.02 to 

1.34). Figure 5 shows the forest plot for NiBS for improving upper limb performance in 

ADLs in stroke. The highest effect for pairwise comparisons was for taVNS (SMD: 1.20; 

95%CI (0.45 to 1.94) vs sham stimulation. P-score indicated that taVNS is the best-ranked 

treatment for improving upper limb performance in ADLs in stroke followed by anodal tDCS, 

LF-rTMS and HF-rTMS, respectively (Figure 5). 

3.7. Sensitivity analyses 

3.7.1. Stimulation protocols 

 We conducted a sensitivity analysis by excluding the stimulation protocol determining 

the effect of taVNS on upper limb motor function and performance in ADLs after stroke. 

Excluding taVNS, the stimulation protocol did not change our results (motor function: 

Supplementary File, sensitivity analysis- Figure S2-S3; performance in ADLs: Supplementary 

File, sensitivity analysis-Figure S6-S7). The ranking and estimated effect size for other 

stimulation protocols remained the same (motor function: Supplementary File, sensitivity 

analysis-Table S5; performance in ADLs: Supplementary File, sensitivity analysis-Table S7). 

Further exclusion of TBS (iTBS, and cTBS) studies, due to the small number of trials, also 

did not change the ranking and estimated effect size for other stimulation protocols (motor 

function: Supplementary File, sensitivity analysis-Figure S4-S5 and Table S6; performance in 

                  



18 
 

ADLs: Supplementary File, sensitivity analysis-Figure S8-S9 and Table S8). Unfortunately, 

after removing the studies with per protocol analysis, the transitivity and consistency 

assumption for NMA is not satisfied and so a sensitivity analysis using an NMA approach 

was not performed. 

3.7.2. Acute/sub-acute and chronic stroke 

 Sub-group analysis according to the stage of stroke showed that taVNS, anodal tDCS, 

HF-rTMS, and LF-rTMS were more efficacious than sham stimulation for improving upper 

limb motor function (SMD range 0.53 to 1.63), and performance in ADLs (SMD range 0.56 

to 0.95) in acute/sub-acute stroke whereas iTBS, anodal and dual tDCS were more efficacious 

than sham stimulation for improving upper limb motor function in chronic stroke (SMD range 

0.39 to 1.16) (Supplementary File, sensitivity analysis-Table S9-Table S11). P-score indicated 

that taVNS is the best-ranked treatment for improving upper limb motor function in 

acute/sub-acute stroke followed by anodal tDCS, HF-rTMS and LF-rTMS, respectively, 

whereas iTBS is the best ranked treatment for improving upper limb motor function in 

chronic stroke followed by, HF-rTMS, dual and anodal tDCS, respectively (Supplementary 

File, sensitivity analysis-Figure S10 and Figure S11). Considering upper limb performance in 

ADLs, P-score indicated that anodal tDCS is the best ranked treatment for improving upper 

limb performance in ADLs in acute/sub-acute stroke followed by taVNS, LF-rTMS and HF-

rTMS, respectively (Supplementary File, sensitivity analysis-Figure S12). 

Discussion 

 This systematic review and NMA compares all available NiBS protocols for the 

improvement of upper limb motor function and performance in ADLs and has included 87 

RCTs with 3750 (1697 tDCS, 1537 rTMS, 399 TBS, and 117 taVNS) patients with 

acute/subacute (<6 months) or chronic (>6 months) ischemic and/or hemorrhagic stroke who 

were randomized to 8 distinct stimulation protocols or sham stimulation. Current evidence 
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revealed that taVNS and excitatory stimulation protocol (that is, iTBS, anodal tDCS, and HF-

rTMS) were found to be more effective than sham stimulation in improving upper limb motor 

functions and performance in ADLs in acute/subacute and chronic stroke. The taVNS is best-

ranked treatment in improving upper limb motor functions and performance in ADLs after 

stroke.  

         The result from NMA provides further clarification about the comparative efficacy of 

different NiBS protocols. taVNS was found to be significantly more effective than cathodal 

tDCS, cTBS, sham stimulation, and physical rehabilitation for improving upper limb motor 

function after stroke. The reason for this might be that stimulation of vagus nerve increases 

the level of brain-derived neurotrophic factors (BDNF) and neurotransmitters, such as 

noradrenaline, which are linked to neuroplasticity and recovery after brain lesion 
139

. The 

results of our NMA are in line with the previous reviews accessing the effect of VNS in 

improving upper limb motor function 
15, 140

. The analysis reported that VNS is effective in 

improving upper limb motor function after stroke (Jiang et al., (2020); SMD 3.86; 95%CI 

(1.19-6.52, 3 studies, 49 participants); Liu et al., (2017); MD 3.31; 95%CI (2.33-4.29, 5 

studies, 168 participants)), which is in accordance with our findings. Recent NMA compared 

the effect of taVNS with tDCS and reported that taVNS is more effective in improving upper 

limb motor function after stroke (MD:5.50; 95%CI (0.67, 11.67), which is in accordance with 

our NMA findings 
1
.  

 The taVNS is comparatively new investigational treatment and early-phase positive 

findings of studies may likely to be biased in favor of pilot interventions. The sensitivity 

analysis after removing taVNS revealed that iTBS is the best ranked treatment in improving 

upper limb motor function after stroke. The reason for this might be that iTBS increase the 

excitability of lesioned hemisphere which may enhance motor function
141

. Ackerley et al., 

also reported that iTBS increases cortical excitability whereas cTBS decreases cortical 
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excitability and motor function deteriorated after cTBS
142

. The result was supported by 

previous meta-analysis which revealed that iTBS may be more helpful for motor function 

than cTBS (0.60 vs 0.35, respectively)
21, 143

. Although our analysis revealed that iTBS is 

effective in improving upper limb motor function after stroke, the result should be interpreted 

with great caution because recent studies indicate that TBS effects on cortical excitability may 

not be reliable
144, 145

. The reason for this might be that the TBS is generally performed at an 

intensity (80-90% of the threshold) which, by definition, is unlikely to excite cortical neurons 

(i.e., it is sub-threshold). Because of these reasons we performed the sensitivity analysis by 

removing TBS and found that excitatory stimulation protocols (HF-rTMS and anodal tDCS) 

are the best-ranked treatment for improving upper limb motor functions in stroke patients. An 

imbalance in inter-hemispheric inhibition occurred after stroke and this imbalance could be 

reduced by increasing the cortical excitability in the lesioned hemisphere by HF-rTMS and 

anodal tDCS, which in turn may promote motor recovery 
146, 147

. The results are in line with 

the previous reviews which assessed the effect of anodal tDCS and rTMS on upper limb 

motor function and included both RCTs, non-RCTs and pre-post trials 
143, 148

. They reported 

significant beneficial effect of anodal tDCS (SMD:0.49; 95%CI (0.18-0.81, 7 studies, 168 

participants) and HF-rTMS (ES:0.45; 95%CI (0.22 - 0.69, 8 studies, 335 participants) on 

upper limb motor function. Previous NMA also provide evidence in favor of anodal tDCS 

(MD: 5.23; 95%CI (2.45, 8.01, 16 studies, 514 participants) and reported that anodal tDCS is 

more effective than cathodal or dual tDCS in improving upper limb motor function after 

stroke
1
. Our result contradicts the analysis of Elsner et al., including 16 studies with 302 

participants, who reported that active tDCS is not effective in improving upper limb motor 

function after stroke 
44

. One reason for the discrepancy between their results and ours might 

be that the authors included few RCTs and the majority of the participants were treated with 

cathodal tDCS, therefore, masking the possible effect of anodal tDCS. 
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 According to the stage of stroke, P-score revealed that taVNS and iTBS are most 

effective in improving upper limb motor function in acute/sub-acute and chronic stroke, 

respectively. In addition to taVNS and iTBS, excitatory stimulations (Hf-rTMS and anodal 

tDCS) are also effective in improving upper limb motor function in acute/sub-acute and 

chronic stroke. Dual tDCS is more effective than anodal tDCS in chronic stroke. The results 

are in line with previous meta-analysis which reported a large effect size for dual tDCS 

((Hedge's g = 1.30, 95% CI = [−0.14,2.75]) as compared to anodal (Hedge's g = 0.21, 95% 

CI = [−0.72,1.14]) or cathodal tDCS (Hedge's g = 0.43, 95% CI = [−0.23,1.08]) in chronic 

stroke
149

. The reason for this might be that bi-hemispheric stimulation may cause 

downregulation of neural activity on the non-lesioned hemisphere and upregulation of neural 

activity on the lesioned hemisphere by cathodal and anodal stimulation, respectively
37, 149

. 

The re-balancing of inter-hemispheric competition may promote motor recovery after stroke. 

 Considering performance in ADLs, NMA revealed that taVNS and anodal tDCS are 

the best-ranked treatments with almost equal P-score in acute/sub-acute stroke. Our results are 

in line with previous review assessing the effect of VNS in improving the ADL
140

. Liu et al., 

reported that VNS is effective in improving upper limb ADLs (MD = 0.36; 95% CI, 0.02-

0.70, 2 studies, 118 participants). Our result contradicts with previous analyses conducted by 

Elsner et al., which suggested a favorable effect of cathodal tDCS for improving upper limb 

ADLs after stroke (Elsner (2017); SMD: 0.42; 95%CI (0.15-0.69, 12 studies, 284 

participants); Elsner (2016); SMD: 0.33; 95%CI (0.10-0.57, 6 studies, 301 participants)) 
14, 44

. 

One reason for the discrepancy between their results and ours might be that the authors 

included few RCTs and the majority of the participants were treated with cathodal tDCS, 

therefore, masking the possible effect of anodal tDCS. The sensitivity analysis after removing 

taVNS and TBS revealed that anodal tDCS is the best-ranked treatment for improving upper 

limb performance in ADLs in stroke. The reason for this might be that tDCS can modulate 

                  



22 
 

neuronal inhibitory and excitatory networks of the affected and the non-affected hemisphere 

post-stroke to enhance upper limb motor recovery resulting in improvement of ADL 

performance 
44, 150

. It can also be hypothesized that tDCS might improve gait and balance 

disorders by modulating motor excitability 
151

, which leads to improvement in ADL 

performance. Since there is only a weak association between paresis of one upper limb after 

stroke and ADL scores 
44

, one could argue that the improvement in ADL performance maybe 

not be based on an improvement of the paretic arm itself, but rather on a generalized treatment 

effect, or on chance. Both low and high frequency were also effective in improving upper 

limb performance in ADLs in acute/sub-acute stroke. The results are in line with previous 

analysis which reported that rTMS is more effective in improving upper limb  ADLs 

compared to sham rTMS (MD 5.13 [95% CI, 2.60 to 7.67, 2 studies, 128 participants)
39

. 

Limitations 

 There were several limitations to our study that need to be considered. First, this study 

cannot draw conclusions about the mechanisms underpinning motor recovery of these 

stimulation modalities because there was methodological and clinical heterogeneity among 

the included studies regarding the dosage of stimulation, concurrent rehabilitation treatment, 

level of initial severity, and presence/absence of concomitant aphasia. This may be due to the 

fact that the optimal stimulation paradigm still has to be established and different methods and 

treatment duration of rehabilitation may produce some bias. Second, some unpublished and 

missing data may lead to some bias for the pooled effect. Third, although this NMA suggests 

that taVNS is the best possible treatment for promoting upper limb motor function and 

performance in ADLs, an NMA is not adequate to inform treatment and further larger 

multicenter clinical trials need to be conducted to determine the effect of taVNS on upper 

limb motor function in stroke. Finally, this NMA could not include all NiBS protocols because no 
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studies were found investigating the effects of tRNS and tACS on upper extremity motor function and 

performance in ADLs in stroke patients. 

Conclusions 

 This systematic review with NMA revealed that taVNS is the most effective 

intervention in improving upper limb motor function and performance in ADLs after 

acute/sub-acute stroke whereas, iTBS is most effective in improving upper limb motor 

function in chronic stroke. After taVNS, excitatory stimulation protocols (iTBS, anodal tDCS, 

and HF-rTMS) are most effective in improving upper limb motor function and performance in 

ADLs after acute/sub-acute and chronic stroke. The taVNS has the good effect on upper limb 

stroke rehabilitation, but the taVNS is comparatively new investigational treatment and early-

phase positive findings of studies may likely to be biased in favor of pilot interventions. 

Therefore, giving precise recommendation/conclusion seems difficult. Our NMA analysis 

provided favorable evidence for taVNS, and further large sample, multi-center clinical trials 

are needed in future to confirm the relative superiority of taVNS. 
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Tables and figures 

Table captions 

Table 1: League table showing the result of network meta-analysis comparing the effect of all 

intervention on motor function including standard mean difference (SMD) and 95% CI. Comparisons 

between treatments should be read from left to right. Their SMD and corresponding 95% CI can be 

obtained from the cell shared by the column defining treatment and the row defining treatment. The 

direct estimates are reported in the upper right portion of the table, while the network estimates 

(indirect and mixed) are shown in lower left portion. Moving along the diagonal line from upper left to 

bottom right, the green cells contain all possible intervention procedure. Anodal, Cathodal and Dual 

tDCS. tDCS: transcranial Direct Current Stimulation; taVNS: transcutaneous Vagus Nerve 

Stimulation; HF-rTMS: High Frequency repetitive Transcranial Magnetic Stimulation; LF-rTMS: Low 

Frequency repetitive Transcranial Magnetic Stimulation; iTBS: intermittent Theta Burst Stimulation; 

cTBS: continuous Theta Burst Stimulation. Bold denotes significance. 

 

Table 2: League table showing the result of network meta-analysis comparing the effect of all 

intervention on performance in activity of daily livings including standard mean difference (SMD) and 

95% CI. Comparisons between treatments should be read from left to right. Their SMD and 

corresponding 95% CI can be obtained from the cell shared by the column defining treatment and the 

row defining treatment. The direct estimates are reported in the upper right portion of the table, while 

the network estimates (indirect and mixed) are shown in lower left portion. Moving along the diagonal 

line from upper left to bottom right, the blue cells contain all possible intervention procedure. Anodal, 

Cathodal and Dual tDCS. tDCS: transcranial Direct Current Stimulation; taVNS: transcutaneous 

Vagus Nerve Stimulation; HF-rTMS: High Frequency repetitive Transcranial Magnetic Stimulation; 

LF-rTMS: Low Frequency repetitive Transcranial Magnetic Stimulation; iTBS: intermittent Theta 

Burst Stimulation; cTBS: continuous Theta Burst Stimulation. Bold denotes significance. 
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Figure legends 

 

Figure 1: PRISMA flow diagram demonstrating the search process and study selection 

through the review. 
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Figure 2: Network graph of NiBS for improving upper limb motor function (FMA-UL) after 

stroke.  

Abbreviations: Anodal, Cathodal and Dual tDCS. tDCS: transcranial Direct Current Stimulation; 

taVNS: transcutaneous Vagus Nerve Stimulation; HF-rTMS: High Frequency repetitive Transcranial 

Magnetic Stimulation; LF-rTMS: Low Frequency repetitive Transcranial Magnetic Stimulation; iTBS: 

intermittent Theta Burst Stimulation; cTBS: continuous Theta Burst Stimulation. 

                  



36 
 

 

Figure 3: Network graph of NiBS for improving upper limb upper limb performance in 

activity of daily livings (ADLs) after stroke.  

Abbreviations: Anodal, Cathodal and Dual tDCS. tDCS: transcranial Direct Current Stimulation; 

taVNS: transcutaneous Vagus Nerve Stimulation; HF-rTMS: High Frequency repetitive Transcranial 

Magnetic Stimulation; LF-rTMS: Low Frequency repetitive Transcranial Magnetic Stimulation; iTBS: 

intermittent Theta Burst Stimulation; cTBS: continuous Theta Burst Stimulation. 

 

Figure 4: Forest plot of NiBS for improving upper limb motor function (FMA-UL) after 

stroke. Treatments are listed in order of relative ranking. The P-Score, ranging from 0 to 1, 

describes the mean degree of certainty about a particular treatment being better than another 

treatment  
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Abbreviations: SMD = standardized mean difference, CI = confidence interval. Sham 

stimulation is the reference treatment.  

 

Figure 5: Forest plot of NiBS for improving upper limb limb performance in activity of daily 

livings (ADLs) after stroke. Treatments are listed in order of relative ranking. The P-Score, 

ranging from 0 to 1, describes the mean degree of certainty about a particular treatment being 

better than another treatment  

Abbreviations: SMD = standardized mean difference, CI = confidence interval. Sham 

stimulation is the reference treatment.  
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taVNS        1.20 ( 0.46 -  1.95)  

0.48 (-0.51 -  1.47) iTBS       0.72 ( 0.07 -  1.37)  

0.56 (-0.27 -  1.40) 0.08 (-0.68 -  0.84) HF-rTMS  0.01 (-0.62 -  0.64)    0.75 ( 0.32 -  1.17) 0.84 (-0.10 -  1.79) 

0.67 (-0.12 -  1.46) 0.18 (-0.52 -  0.89) 0.10 (-0.35 -  0.56) Anodal tDCS  0.12 (-0.61 -  0.85)  0.12 (-0.55 -  0.79) 0.50 ( 0.21 -  0.78) 1.03 ( 0.26 -  1.79) 

0.71 (-0.09 -  1.50) 0.22 (-0.48 -  0.93) 0.14 (-0.28 -  0.56) 0.04 (-0.33 -  0.40) LF-rTMS  0.17 (-0.99 -  1.33) -0.08 (-1.26 -  1.10) 0.51 ( 0.22 -  0.81) 0.96 ( 0.08 -  1.83) 

0.78 (-0.04 -  1.60) 0.29 (-0.44 -  1.03) 0.21 (-0.30 -  0.72) 0.11 (-0.29 -  0.51) 0.07 (-0.36 -  0.50) Dual tDCS  0.06 (-1.16 -  1.28) 0.42 ( 0.04 -  0.80) 0.60 (-0.79 -  1.99) 

1.00 (-0.02 -  2.02) 0.52 (-0.44 -  1.47) 0.44 (-0.35 -  1.22) 0.33 (-0.40 -  1.07) 0.29 (-0.41 -  1.00) 0.22 (-0.55 -  1.00) cTBS 0.12 (-1.16 -  1.40) 0.13 (-0.79 -  1.05)  

1.07 ( 0.21 -  1.92) 0.58 (-0.19 -  1.36) 0.50 (-0.05 -  1.05) 0.40 (-0.05 -  0.85) 0.36 (-0.10 -  0.83) 0.29 (-0.22 -  0.81) 0.07 (-0.70 -  0.83) Cathodal tDCS -0.05 (-0.67 -  0.56) 0.07 (-0.77 -  0.92) 

1.20 ( 0.46 -  1.95) 0.72 ( 0.07 -  1.37) 0.64 ( 0.25 -  1.02) 0.53 ( 0.27 -  0.79) 0.49 ( 0.23 -  0.76) 0.42 ( 0.08 -  0.77) 0.20 (-0.50 -  0.90) 0.13 (-0.29 -  0.55) Sham stimulation -0.88 (-2.23 -  0.46) 

1.46 ( 0.59 -  2.33) 0.97 ( 0.18 -  1.76) 0.89 ( 0.36 -  1.43) 0.79 ( 0.32 -  1.26) 0.75 ( 0.28 -  1.23) 0.68 ( 0.15 -  1.22) 0.46 (-0.35 -  1.27) 0.39 (-0.14 -  0.92) 0.26 (-0.19 -  0.71) Physical rehabilitation 

Table 1: League table showing the result of network meta-analysis comparing the effect of all intervention on motor function including standard mean difference (SMD) and 95% CI. Comparisons between treatments should be read from left to right. 

Their SMD and corresponding 95% CI can be obtained from the cell shared by the column defining treatment and the row defining treatment. The direct estimates are reported in the upper right portion of the table, while the network estimates (indirect 

and mixed) are shown in lower left portion. Moving along the diagonal line from upper left to bottom right, the green cells contain all possible intervention procedure. Anodal, Cathodal and Dual tDCS. tDCS: transcranial Direct Current Stimulation; 

taVNS: transcutaneous Vagus Nerve Stimulation; HF-rTMS: High Frequency repetitive Transcranial Magnetic Stimulation; LF-rTMS: Low Frequency repetitive Transcranial Magnetic Stimulation; iTBS: intermittent Theta Burst Stimulation; cTBS: 

continuous Theta Burst Stimulation. Bold denotes significance. 
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taVNS .       1.00 (-0.36 -  2.35)  

0.34 (-1.07 -  1.75) Anodal tDCS   -0.14 (-0.98 -  0.70)    0.69 ( 0.31 -  1.06)  

0.45 (-0.95 -  1.85) 0.11 (-0.38 -  0.60) LF-rTMS -0.12 (-0.83 -  0.59) -0.27 (-1.43 -  0.88)  0.34 (-0.79 -  1.48)  0.59 ( 0.23 -  0.96) 1.05 (-0.16 -  2.26) 

0.48 (-0.95 -  1.90) 0.13 (-0.42 -  0.69) 0.02 (-0.46 -  0.51) HF-rTMS     0.58 ( 0.12 -  1.05) 0.05 (-1.22 -  1.33) 

0.69 (-0.75 -  2.13) 0.35 (-0.21 -  0.91) 0.24 (-0.29 -  0.78) 0.22 (-0.41 -  0.84) Cathodal tDCS  0.17 (-1.08 -  1.43)  0.05 (-0.56 -  0.66) 0.28 (-0.91 -  1.46) 

0.78 (-0.73 -  2.29) 0.44 (-0.31 -  1.18) 0.33 (-0.39 -  1.05) 0.30 (-0.46 -  1.06) 0.09 (-0.70 -  0.88) iTBS   0.07 (-0.67 -  0.82) 0.80 (-0.40 -  2.00) 

0.82 (-0.76 -  2.40) 0.48 (-0.40 -  1.36) 0.37 (-0.44 -  1.18) 0.34 (-0.55 -  1.24) 0.13 (-0.73 -  0.99) 0.04 (-0.99 -  1.07) cTBS  0.17 (-1.09 -  1.43)  

0.89 (-0.55 -  2.33) 0.55 (-0.05 -  1.15) 0.44 (-0.13 -  1.01) 0.41 (-0.21 -  1.04) 0.20 (-0.47 -  0.86) 0.11 (-0.68 -  0.90) 0.07 (-0.87 -  1.01) Dual tDCS 0.07 (-0.42 -  0.57) 0.57 (-0.78 -  1.92) 

1.00 (-0.36 -  2.35) 0.65 ( 0.29 -  1.02) 0.55 ( 0.21 -  0.88) 0.52 ( 0.10 -  0.94) 0.30 (-0.18 -  0.79) 0.22 (-0.44 -  0.87) 0.18 (-0.64 -  0.99) 0.11 (-0.37 -  0.58) Sham stimulation  

1.21 (-0.27 -  2.70) 0.87 ( 0.17 -  1.57) 0.76 ( 0.13 -  1.39) 0.74 ( 0.06 -  1.41) 0.52 (-0.17 -  1.21) 0.43 (-0.34 -  1.20) 0.39 (-0.59 -  1.37) 0.32 (-0.39 -  1.03) 0.22 (-0.39 -  0.82) Physical rehabilitation 

Table 2: League table showing the result of network meta-analysis comparing the effect of all intervention on performance in activity of daily livings including standard mean difference (SMD) and 95% CI. Comparisons between treatments should be 

read from left to right. Their SMD and corresponding 95% CI can be obtained from the cell shared by the column defining treatment and the row defining treatment. The direct estimates are reported in the upper right portion of the table, while the 

network estimates (indirect and mixed) are shown in lower left portion. Moving along the diagonal line from upper left to bottom right, the blue cells contain all possible intervention procedure. Anodal, Cathodal and Dual tDCS. tDCS: transcranial Direct 

Current Stimulation; taVNS: transcutaneous Vagus Nerve Stimulation; HF-rTMS: High Frequency repetitive Transcranial Magnetic Stimulation; LF-rTMS: Low Frequency repetitive Transcranial Magnetic Stimulation; iTBS: intermittent Theta Burst 

Stimulation; cTBS: continuous Theta Burst Stimulation. Bold denotes significance. 
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Appendix 1 

Search Strategy 

The search of the databases was done by using the terms as follows: 

(1) “Stroke” [Mesh][tiab] 

(2) “Stroke” [tiab] 

(3) “Cerebrovascular Accident” [tiab] 

(4) “Brain Ischemia” [MESH][tiab] 

(5) or/1–4 

(6) “Transcutaneous Vagus Nerve Stimulation” [tiab] 

(7) “Transcutaneous Auricular Vagus Nerve Stimulation” [tiab] 

(8) “Non-invasive Vagus Nerve Stimulation” [tiab] 

(9) “Non-invasive Cervical Vagus Nerve Stimulation” [tiab] 

(10) “Transcranial Direct Current Stimulation” [MESH] [tiab] 

(11) “Transcranial Magnetic Stimulation” [MESH] [tiab] 

(12) “repetitive Transcranial Magnetic Stimulation” [MESH] [tiab] 

(13) “Theta Burst Stimulation” [MESH] [tiab] 

(14) “Transcranial Random Noise Stimulation” [MESH] [tiab] 

(15) “Transcranial Alternating Current Stimulation” [MESH] [tiab] 

(16) “Vagus Nerve Stimulation” [MESH] [tiab] 

(17) “Non-invasive brain stimulation” [tiab] 

(18) “Non-surgical brain stimulation” [tiab] 

(19) or/6–18 

(20) “upper extremity” [tiab] 

(21) “upper limb” [tiab] 

(22) or/20-21 
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(23) randomized controlled trial [pt] 

(24) controlled clinical trial [pt] 

(25) randomized controlled trials [mh] 

(26) random allocation [mh] 

(27) double-blind method [mh] 

(28) single-blind method [mh] 

(29) clinical trial [pt] 

(30) clinical trials [mh] 

(31) “clinical trial” [tw] 

(32) or/23–32 

(33) 5,19 and 22. 

 

 

                  


