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Università di Ferrara, Ferrara, Italy

damiano.azzolini@unife.it
2 Dipartimento di Ingegneria, Università di Ferrara, Ferrara, Italy
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Abstract. Reasoning with uncertain data is a central task in artificial
intelligence. In some cases, the goal is to find the most likely assign-
ment to a subset of random variables, named query variables, while
some other variables are observed. This task is called Maximum a Pos-
teriori (MAP). When the set of query variables is the complement of
the observed variables, the task goes under the name of Most Proba-
ble Explanation (MPE). In this paper, we introduce the definitions of
cautious and brave MAP and MPE tasks in the context of Probabilis-
tic Answer Set Programming under the credal semantics and provide an
algorithm to solve them. Empirical results show that the brave version
of both tasks is usually faster to compute. On the brave MPE task, the
adoption of a state-of-the-art ASP solver makes the computation much
faster than a naive approach based on the enumeration of all the worlds.

Keywords: Probabilistic answer set programming · MAP inference ·
Statistical relational artificial intelligence

1 Introduction

The research field of Probabilistic Logic Programming (PLP) [20] aims to reason
with logic programs where some of the facts, called probabilistic facts, are con-
sidered uncertain [11]. One of the most adopted semantics for these programs,
the Distribution Semantics (DS) [21], assigns a meaning to probabilistic logic
programs where every world, i.e., a logic program identified by the truth values
of probabilistic facts, is required to have a total well-founded model [25].

Probabilistic Answer Set Programming (PASP) [10,19] extends the capabili-
ties of Answer Set Programming (ASP) [9] and allows, as PLP, the definition of
probabilistic facts. With PASP, however, every world is an answer set program
and thus may have multiple answer sets. In this case, a semantics that can be
adopted is the credal semantics, which assigns a probability range rather than
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a sharp probability value, as happens with the DS, to a query. This range is
defined by a lower and an upper probability.

Maximum-a-Posteriori (MAP) inference is a central topic in machine learn-
ing, where the goal is to find, given a set of evidence variables, the most probable
value to a subset of the random variables (called query variables). If the set of
query variables is the complement of the set of evidence variables, the problem
is called Most Probable Explanation (MPE).

In this paper, we propose an algorithm to perform both cautious MAP/MPE
and brave MAP/MPE inference in probabilistic answer set programs, where
we consider respectively the lower and the upper probability bound induced
by the query variables. We test this algorithm on two datasets with different
configurations. Moreover, we also compare our algorithm with the clingo’s [13]
#maximize statement for the brave MPE task.

The paper is structured as follows: in Sect. 2, we discuss some related works.
Section 3 introduces the main concepts of PLP and PASP. Section 4 describes our
algorithm to perform brave and cautious MAP/MPE inference in PASP and in
Sect. 5 we discuss some experiments to test its performance. Section 6 concludes
the paper with some final remarks and possible future works.

2 Related Work

The MAP/MPE task has received relatively small attention in PLP: in [22],
the authors introduced an algorithm to compute the MAP/MPE for a given
LPAD [26]. The program is converted into a compact form and then the result
is computed by analysing it. Similar work can be found in [8]. However, both
consider programs where every world has a unique model, so they cannot deal
with probabilistic ASP programs, where every world may have multiple models.

The authors of [16] propose a tool to perform inference in ASP programs
following the LPMLN [17] semantics. Differently from them, we adopt a different
semantics, the credal semantics [10], that we believe being more general and
intuitive for PASP. Moreover, we consider the MAP/MPE task, not discussed
in their work.

Inference in PASP has been considered in [24], where the authors introduced
the PASOCS solver, but they do not explore the MAP/MPE task. Similar con-
siderations can be applied to [23], where the authors discussed how to perform
inference in ProbLog [11] programs under the stable model semantics, but still
ignoring MAP/MPE.

3 Background

We assume that the reader is familiar with the basic concepts of Logic Pro-
gramming [18]. Here we consider the Answer Set Programming (ASP) syntax [9]
enriched with aggregate atoms [3]. An aggregate atom is composed by two guards
that can be either constants or variables, denoted with g0 and g1, two compari-
son arithmetic operators, δ0 and δ1, an aggregate function symbol ϕ, and a set
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of expressions ε0, . . . , εn where each εi has the form t1, . . . , tn : F and each ti is a
term whose variables appear in the conjunction of literals F . Given the previous
elements, the syntax of an aggregate atom is g0δ0 #ϕ{ε0; . . . ; εn : F} δ1g1. An
example of aggregate atom is 0 <= #sum{A : p(A)} <= 2.

We denote a disjunctive rule (or simply rule) with the syntax

h1 ; ... ; hm :- b1, ..., bm.

where each hi is an atom and each bi is a literal. The disjunction of atoms at
the left of the neck operator (:-) is called head while the conjunction of literals
at its right is called body. If the head is empty and the body is not, the rule is
called a constraint and if the body is empty and the head is not, the rule is a
fact. We restrict ourselves to safe rules, i.e., rules where every variable in the
head also appears in a positive literal in the body. Finally, if a rule does not
contain variables it is called ground. A program is a finite set of rules.

To provide the definition of answer set, we need to introduce some more
concepts. If we consider an answer set program P, with BP we denote the set
of ground atoms that can be constructed with the symbols in P. BP is also
called Herbrand base. An interpretation I of P is such that I ⊂ BP . I satisfies
a ground rule if at least one head atom is true in it when all the literals in the
body are true in it, and it is called a model if it satisfies all the groundings of
the rules of P. The reduct [12] of a ground program Pg w.r.t. an interpretation
I is obtained by removing from Pg the rules where at least one literal in the
body is false in I. Finally, an answer set (or stable model) for a program P is
defined as an interpretation that is a minimal (under set inclusion) model of Pg.
We indicate with AS(P) the set of all the answer sets of a program P. Finally,
the projective solutions [14] onto a set of ground atoms B are given by the set
ASB(P) = {A ∩ B | A ∈ AS(P)}.

Probabilistic Logic Programming [20] allows the definition of uncertain data
in logic programs. For example, ProbLog [11] allows probabilistic facts. Each
probabilistic fact has the form Π :: f where Π ∈]0, 1] and f is an atom. According
to the Distribution Semantics [21], an assignment of truth value, true (�) or false
(⊥), for every probabilistic fact fi in the program identifies a world w whose
probability P (w) can be computed as

P (w) =
∏

i|fi=�
Πi ·

∏

i|fi=⊥
(1 − Πi) (1)

If we are given a query q, i.e., a conjunction of ground literals, its probability is
the sum of the probability of the worlds where the query is true:

P (q) =
∑

w|=q

P (w) (2)

The Distribution Semantics assumes that all the probabilistic facts are indepen-
dent and that every world is a logic program with a two-valued well-founded
model [25]. However, when we consider Probabilistic Answer Set Programming,
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the latter condition usually does not hold. For PASP, we consider here the credal
semantics (CS) [10,19]. Under the CS, every query q is associated with a proba-
bility interval defined by a lower bound P(q) and an upper bound P(q). A world
contributes to the upper probability if the query is present in at least one of its
answer sets and contributes to the lower probability if the query is present in all
its answer sets. In formulas,

P(q) =
∑

wi|∃m∈AS(wi), m|=q

P (wi)

P(q) =
∑

wi||AS(wi)|>0 ∧ m∈AS(wi), m|=q

P (wi)

These formulas are valid only if every world has at least one answer set, so in this
paper we consider only programs that satisfy this requirement. If every world
has exactly one answer set, the CS coincides with the DS and the query has a
sharp probability value. Consider the following program.

Example 1. Gold example

1 0.2:: gold (1).
2 0.3:: gold (2).
3 0.7:: gold (3).
4 valuable(X) ; not_valuable(X):- gold(X).
5 :- #count{X:valuable(X), gold(X)} = VG ,
6 #count{X:gold(X)} = G, 10*VG < 6*G.

The first three lines introduce three probabilistic facts gold/1 indicating that
the objects identified with 1, 2, and 3 could be made of gold with different
probabilities. Line 4 states that an object made of gold may be valuable or not.
Line 5 represents a constraint saying that 60% of the objects made of gold are
valuable. This program has 23 = 8 worlds listed in Table 1. If we consider the
query q valuable(1), P(q) = 0.158 (corresponding to P (w4) + P (w5) + P (w6))
and P(q) = 0.2 (corresponding to P (w4) + P (w5) + P (w6) + P (w7)).

Table 1. Worlds for Example 1. Predicate ‘g’ stands for gold. Column ‘mq’ indicates
whether there is at least one model of the world where the query valuable(1) is true
and column ‘mnq’ indicates whether there is at least one model of the world where the
query is false.

world g(1) g(2) g(3) P (w) mq mnq

0 0 0 0 0.168 F T

1 0 0 1 0.392 F T

2 0 1 0 0.392 F T

3 0 1 1 0.168 F T

4 1 0 0 0.042 T F

5 1 0 1 0.098 T F

6 1 1 0 0.018 T F

7 1 1 1 0.042 T T
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4 MAP Inference in Probabilistic Answer Set
Programming

In PLP, the MAP task [8,22] consists in finding a possible truth value assignment
to a subset of probabilistic facts such that a given evidence is satisfied and the
sum of the probabilities of the possible worlds identified by the truth values’
choices is maximized. More formally, given a probabilistic logic program, a set of
ground atoms e, and a set of query random variables (also called query variables)
Q, the goal is to solve

arg maxqP (Q = q | e)

If all the program variables are query variables, the task is called MPE.
If we consider PASP, every world may have multiple models so the previous

definition must be extended. We now introduce the cautious MAP and brave
MAP tasks:

Definition 1. Cautious and brave MAP/MPE. Given a PASP program P, a
set of ground atoms e (call it evidence), and a set of query probabilistic facts Q:

– the cautious MAP problem consists in finding a truth assignment q to query
facts Q such that P(q | e) is maximized, i.e., in solving:

MAP(e) = arg maxqP(Q = q | e) = arg maxq

∑

wi|∀m∈AS(wi),m|=q∧m|=e

P (wi)

– the brave MAP problem consists in finding a truth assignment q to query facts
Q such that P(q | e) is maximized, i.e., in solving:

MAP(e) = arg maxqP(Q = q | e) = arg maxq

∑

wi|∃m∈AS(wi),m|=q∧m|=e

P (wi)

The definition of cautious and brave MPE inference for a query e, denoted with
MPE(e) and MPE(e) respectively, is similar.

Note that this task is different from computing the conditional probability of a
query given evidence. Given the previous definitions, for a query e we have that
P (MAP(e)) ≤ P (MAP(e)) and P (MPE(e)) ≤ P (MPE(e)).

If we consider all the three probabilistic facts gold/1 of Example 1 as query
variables (denoted by prepending the functor map), the cautious MPE state (all
the probabilistic facts are query variables) for the query valuable(1) is given
by {gold(1), not gold(2), gold(3)} with an associated probability of 0.098
(world 5 of Table 1). With not gold(2) we indicate that the probabilistic fact
gold(2) should be false. The same state is also the brave MPE state. The cau-
tious MAP/MPE and the brave MAP/MPE state do not necessarily coincide.
For example, if we consider gold(1) and gold(3) as query variables, the cautious
MAP state for the evidence valuable(1) is {gold(1), not gold(3)} with a
probability of 0.06 (sum of the probabilities of the worlds 4 and 6 of Table 1) while
the brave MAP state is {gold(1), gold(3)} with a probability of 0.14 (sum of
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the probabilities of the worlds 5 and 7 of Table 1). Finally, there can be multiple
cautious/brave MAP/MPE states. If we consider again Example 1 but with all
the probabilities set to 0.5 and all the three probabilistic facts as query variables,
there are 3 cautious MPE states for the query valuable(1), all with an associ-
ated probability of 0.125: {gold(1), gold(2), not gold(3)}, {gold(1), not
gold(2), gold(3)}, and {gold(1), not gold(2), not gold(3)}.

4.1 Algorithm

To solve the cautious/brave MAP/MPE task1, we developed an algorithm that
works in two steps: first, it translates the PASP program into an ASP program
by rewriting probabilistic facts and query variables into ASP choice rules. It
is shown in Algorithm 1 and it proceeds as follows: first, the function Con-
vertVariables converts probabilistic facts and query variables into an ASP
representation. Every probabilistic fact p::f and every query variable map p::f
(note that f may also have arguments) is transformed into 0{f}1. Moreover,
we add the rule not f:- not f. Function ComputeMinimalSet [5] extracts
the minimal set of probabilistic facts by computing the cautious consequences
(intersection of all models). The facts in this set must always be true, so we
can remove the choices for them and fix their value. For every element in this
set, we add a constraint imposing that it must be true (line 5). This is possible
since every world is required to have at least one answer set. Now, if we want to
perform brave MAP (i.e., considering the upper probability) given an evidence
e, we insert the rule :- not e (a constraint imposing that the evidence must
always be true) to the program and project the solutions on the probabilistic
facts (line 9). Otherwise, if we consider cautious MAP (lower probability), we
add the rules q:- e and nq:- not e and still project the solutions on the atoms
q/0 and nq/0 (line 12). Finally, we extract every world and its contribution to the
probability with the function ComputeContribution and identify the MAP
state (function ComputeMAPState).

To better understand how the algorithm works, consider the program shown
in Example 1 with gold(1) and gold(3) as query variables and valuable(1)
as evidence. After the execution of function ConvertVariables, the proba-
bilistic fact and the two query variables become 0{gold(2)}1, 0{gold(1)}1,
and 0{gold(3)}1. The minimal set of atoms, obtained by computing the cau-
tious consequences on the converted program with an additional rule :- not
valuable(1), contains gold(1), so we add the constraint :- not gold(1) to
the program. If we consider brave MAP, by adding again :- not valuable(1)
to the program and projecting the solutions on the probabilistic facts (function
ProjectSolutions, line 9), we get 4 answer sets:

AS1 = {gold(1) not gold(2) not gold(3)},
AS2 = {gold(1) not gold(2) gold(3)},

1 We will usually only write MAP to simplify the notation, since MPE is a special
case of MAP.
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AS3 = {gold(1) gold(2) not gold(3)}, and
AS4 = {gold(1) gold(2) gold(3)},

where with not gold(i) we indicate that the probabilistic fact or query vari-
able is not selected. These four answer sets (worlds) have respectively probability
0.2·(1−0.3)·(1−0.7) = 0.042, 0.2·(1−0.3)·0.7 = 0.098, 0.2·0.3·(1−0.7) = 0.018,
and 0.2·0.3·0.7 = 0.042, that are computed with the function ComputeContri-
bution. Finally, if we group these answer sets by query variables (function Com-
puteMAPState), we get two sets representing two different MAP states: MAP1
= {AS1, AS3} (gold(1) and not gold(3)) and MAP2 = {AS2, AS4} (gold(1)
and gold(3)). MAP1 has probability 0.042 + 0.018 = 0.06 while MAP2 has prob-
ability 0.098 + 0.042 = 0.14 so MAP2 is selected as MAP state since it gives the
highest upper probability for the evidence valuable(1).

If we consider instead cautious MAP, the process in analogous, but we can-
not add the constraint :- not valuable(1) since we need to consider the lower
probability: in this case, a world contributes to the lower probability if the evi-
dence is true in every answer set. If we add the constraint imposing that the
evidence must be true in every answer set, we cannot identify the worlds that
have at least one answer set where the evidence is false (and thus do not con-
tribute to the lower probability). We now get 5 answer sets:

{gold(1) gold(2) gold(3) nq},
{gold(1) gold(2) gold(3) q},
{gold(1) gold(2) not gold(3) q},
{gold(1) not gold(2) gold(3) q}, and
{gold(1) not gold(2) not gold(3) q}.

The world identified by the first two answer sets is the same (all the three
variables true) but in the first there is nq and in the second q. Thus, the
first answer set indicates that there is at least one answer set of this world
where the query is false, so it does not contribute to the lower probabil-
ity (and can be discarded). For the remaining three worlds there is only one
answer set each and it has q inside, so they contribute to both the lower
and the upper probability. By applying, as before, functions ComputeCon-
tribution and then ComputeMAPState, we get {gold(1), not gold(3)}
as MAP state (third and fifth answer set) with an associated probability of
0.2 · 0.3 · (1 − 0.7) + 0.2 · (1 − 0.3) · (1 − 0.7) = 0.06.

For both brave and cautious MAP tasks we need to generate at worst 2n

answer sets, where n is the number of probabilistic facts, thus the algorithm is
exponential in n. The reason is that we need to know if there is at least one
answer set for every world where the query is true for the brave MAP and if in
all the models for every world the query is true for cautious MAP. However, the
number of generated models for brave MAP is usually smaller than the number of
generated models for cautious MAP, due to the additional constraint removing
the models where the query is false. However, this additional constraint plus
possibly the constraints given by the elements in the minimal set of atoms does
not reduce the complexity of the task.
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Algorithm 1. Function ComputeMAPState: computation of the MAP/MPE
state given a query e in a PASP program P.
1: function ComputeMAPState(e, P,mode)
2: PASPp , mapV ariables ← ConvertVariables(P)
3: minSet ← ComputeMinimalSet(PASPp ∪ {: − not e.})
4: for all a ∈ minSet do � a represents a probabilistic fact
5: PASPp ← PASPp ∪ {: − not a.}
6: end for
7: if mode is brave then � Brave MAP
8: PASPp ← PASPp ∪ {: − not e.}
9: AS ← ProjectSolutions(PASPp , probFacts)
10: else � Cautious MAP
11: PASPp ← PASPp ∪ {q : − e.,nq : − not e.}
12: AS ← ProjectSolutions(PASPp , probFacts, q ∪ nq)
13: end if
14: worldsList ← ComputeContribution(AS)
15: return ComputeMAPState(worldsList, mapV ariables)
16: end function

We propose another possible encoding for the brave MPE task. For each
query variable map p::f, we add: a rule 0{f}1, a rule f(lp):- f and a rule
not f(nlp):- not f. lp is given by 10n·log(p) and nlp is given by 10n·log(1−p),
where n is an integer that denotes its scale. The multiplications by 10n are needed
since ASP does not handle floating points. For example, if we set n to 3, the fact
0.2::gold(1) of Example 1 is expanded in: 0{gold(1)}1, gold(1,-1609):-
gold(1), and not gold(1,-223):- not gold(1), where 103 · log(0.2) = −1609
and 103 · log(0.8) = −223. With this log-encoding, we can leverage the property
log(a · b) = log(a) + log(b) and thus use the #sum aggregate. By multiplying by
10n, it is not straightforward to obtain the original probabilities once we have
the brave MPE state. However, once we get the combination of variables in this
state, we can simply look up the initial probabilities in the program. Finally,
since we have the (converted) probability as argument of the atoms, we can use
the clingo [13] #maximize to find the combination of query variables resulting in
the brave MPE state. If we consider again Example 1, with all the probabilistic
facts converted as previously described, we can compute the brave MPE state
with #maximize{ P : wp(P) } where wp/1 is defined as

1 wp(P):-
2 PS = #sum{X,Y : gold(Y,X)},
3 PNS = #sum{X,Y : not_gold(Y,X)},
4 P = PS + PNS.

This is a naive encoding that requires the enumeration of all the answer sets.
An alternative ASP encoding, we call it improved, for the solution of the brave
MPE task for the same example, that does not require the enumeration of all
the answer sets, is #maximize{X,Y:gold(Y,X); X,Y:not gold(Y,X)}. In the
next section, we test our algorithm for cautious and brave MAP and MPE and
compare the execution time between our brave MPE proposal and the clingo
#maximize statement.
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5 Experiments

We implemented the algorithm in Python and we used the clingo APIs [13] to
compute the answer sets2. To test the performance, we ran some experiments
on a computer with Intel R© Xeon R© E5-2630v3 running at 2.40 GHz with 8 Gb
of RAM and a time limit of 8 h. Execution times are computed with the bash
command time. The reported values are from the real field.

The first dataset, gold, contains a set of programs with the structure of
Example 1. The size of a program is given by the number of probabilistic facts
gold/1. Example 1 has size 3. For the MAP task, 50% of the gold/1 facts
are considered query variables. We randomly set the probability of probabilistic
facts. The query is valuable(1). Results are shown in Fig. 1a. We removed
the results for size less than 19 since their execution times were negligible. The
computation of the brave MAP state seems the fastest one, followed by the brave
MPE state. This is due to the additional constraint inserted into the program,
which removes some of the possible answer sets. Cautious MAP and cautious
MPE have comparable execution times. In all the cases, for size greater than 25
we get a memory error.

The second dataset, smoke, describes a network of friends where some of
them smoke. An example of program of size (number of people) 4 is:

1 0.73::e(0,1). 0.59::e(0,2).
2 0.08::e(0,3). 0.19::e(2,3).
3
4 smokes (0). smokes (2).
5 friend(X,Y):- e(X,Y). friend(X,Y):- e(Y,X).
6 smokes(X); no_smokes(X):- friend(X,Y),smokes(Y).
7
8 :- #count{X:no_smokes(X)} = N,
9 #count{X:smokes(X)} = S, 10*S < 8*(N+S).

A person X smokes if she has at least one friend Y that smokes. The constraint
imposes that at least 80% of the people smoke. The goal is to compute the
MAP/MPE state for the query smokes(n) where n is the number of people
involved (here 4). Half of the people of the network certainly smoke. If the
number of people is odd, we round the result to the next integer. As before, for
the MAP experiments, 50% of e/2 facts are query The number of probabilistic
facts follows a Barabási-Albert preferential attachment model generated with
the networkx [15] Python package. We set as initial number of nodes of the
graph (n) the size of the instance and as the number of edges that connect a
new node to an existing one (m) 2. Results are shown in Fig. 1b. As for the
gold dataset, also here brave MAP and brave MPE seem the fastest, and their
execution times are similar (the red and black curves in the plot overlap). In all
cases, for size greater than 14 we get a memory error.

In a second set of experiments we verified whether and how the execution time
of the algorithm varies when there is an increasing number of MAP/MPE states.
2 Source code and datasets available at https://github.com/damianoazzolini/pasta.

https://github.com/damianoazzolini/pasta
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To do this, we generated two versions of the gold dataset, one with random
probabilities and one with all the probabilities set to 0.5. The remaining parts of
the programs are equal to Example 1. Figure 2a shows the execution times of the
cautious and brave MAP and MPE task on the dataset with all the probabilities
set to 0.5. As before, brave MAP/MPE are the fastest. Also here, datasets with
size larger than 25 cause a memory error, except for brave MPE that stops at
size 23. Execution times for cautious MPE/MAP are almost identical. In Fig. 2b
we compare the two versions of the datasets on the brave MPE task. Brave MAP
with all probabilities set to 0.5 and brave MPE with random probabilities seem
to take the same time to complete. Execution times for random probabilities
are slightly smaller since there is usually only one MAP/MPE state in this case.
Moreover, the MAP/MPE task where all the probabilities are equal gives a
memory error starting from size 24, while, when the probabilities are all different,
we get a memory error starting from size 26. A similar trend (exponential) was
observed in the case of cautious MAP/MPE, but with the same differences found
in Fig. 2a.

Lastly, we compared our algorithm with the #maximize statement of clingo
on the brave MPE task for the gold dataset. As before, we generate a set of
programs with random probabilities and a set of programs with all the proba-
bilities set to 0.5. For a fair comparison, we set all the elements of the minimal
set of atoms to be true in the program that will use the clingo statement and
we add the constraint imposing that the query must be true. We ran two tests:
one that outputs only one brave MPE state (even if there may be more) and one
that outputs all the states, by using the flag --opt-mode=optN. We only con-
sidered the naive encoding, since the improved one is order of magnitude faster
than the other and than our tool. For example, with 30 probabilistic facts and
the improved encoding, the result is computed in a fraction of a second. Results
in Fig. 3a show that the execution time for the computation of the brave MPE
state oscillates when we want only one solution when probabilities are all equals.
The computation of all the solutions when the probabilities are all set to 0.5 is
the fastest one. For random probabilities, in both cases (the two curves overlap)
the programs of size larger than 12 give a memory error. Figure 3b shows that
clingo’s #maximize statement is slower than our algorithm but it can handle
larger instances when we want to compute all the solutions of the brave MPE
task when all the probabilities of the states are equal (red and yellow curves).
This may be due to a better memory management of the program and a possibly
better search strategy. Moreover, the computation of 1 MPE state in clingo (blue
curve) stops for the time limit, rather than the memory limit as the others.
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Fig. 1. Results for cautious and brave MAP and MPE tasks for the gold and smoke

datasets in terms of inference time as the program size (number of probabilistic facts)
increases.

Fig. 2. Comparisons between the two gold dataset versions.
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Fig. 3. Results for the brave MPE task computed with clingo’s #maximize statement
using the naive encoding and comparison with our algorithm. ‘1’ means that we com-
pute only 1 solution while ‘all’ means that we compute all the solutions.

6 Conclusions

In this paper, we proposed the concepts of cautious and brave MAP/MPE infer-
ence in probabilistic answer set programming and developed an algorithm to
solve these tasks. We ran some experiments on multiple datasets and we obtained
that, generally, cautious MAP/MPE is slower than brave MAP/MPE, due to the
necessity to enumerate all the possible answer sets needed to compute the lower
probability. We also proposed two alternative encodings for the brave MPE task
and compare the clingo #maximize statement with our approach. The encoding
that does not require the enumeration of all the answer sets is order of magnitude
faster than the other and than our tool. However, if we consider the naive encod-
ing, when all the probabilities are set to 0.5, clingo is slower than our algorithm
but it seems to be able to solve larger instances with less memory requirements.
In the future, we plan to test other ASP solvers such as WASP [1,2], adopt
approximate algorithms based on sampling [6,7], and consider the concept of
abduction [4] in PASP.
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