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COMPLETE SINGULAR COLLINEATIONS AND QUADRICS

ALEX CASAROTTI, ELSA CORNIANI, AND ALEX MASSARENTI

ABsTRACT. We construct wonderful compactifications of the spaces of linear maps, and symmetric linear
maps of a given rank as blow-ups of secant varieties of Segre and Veronese varieties. Furthermore, we
investigate their birational geometry and their relations with some spaces of degree two stable maps.
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1. INTRODUCTION

We construct the wonderful compactification of the space of linear maps of rank h, between two vector
spaces of dimensions n + 1 and m + 1, as a sequence of blow-ups of secant varieties of Segre varieties.
This generalizes a construction, due to I. Vainsencher, for complete collineations that is maps of maximal
rank Theorem 1].

Complete collineations have been widely studied from the algebraic, enumerative and birational view-
point since the 19th-century [Cha64], [Gia03|, [Hir75|, [Hir77], [Sch86], [Seg84], [Sem4s], [Sem51], [Sem52],

Spaces of complete collineations are examples of wonderful compactifications. The wonderful compact-
ification of a symmetric space was introduced by C. De Concini and C. Procesi in [DCP83|. Later on,
D. Luna gave a more general definition of wonderful variety and then he proved that, according to his
definition, all wonderful varieties are spherical [Lun96].

Let ¢ be a reductive group, and Z < ¢ a Borel subgroup. A spherical variety is a variety admitting
an action of ¢4 with an open dense %B-orbit. For wonderful varieties we require in addition the existence
of an open orbit whose complementary set is a simple normal crossing divisor, F1 U --- U F,., where the
E; are the ¢-invariant prime divisors in the variety X.

Let S™™ be the image of the Segre embedding P* x P™ — PV and Secy,(S™™) the h-secant variety of
S™™ . that is the subvariety of PV obtained as the closure of the union of all (h — 1)-planes spanned by h
general points of S™™. We summarize the main results in Theorem 2.14] and Propositions [3.4] 310l

Theorem 1.1. Consider the following sequence of blow-ups

C(n,m,h) := Secglhfl)(S"’m) — Secgh%) (™M) > > Secg)(S"’m) — Secgo) (8™™) := Secp(8™™)
where Secgk)(S”’m) — Secgkfl)(S”’m) is the blow-up of Secgkfl)(S”’m) along the strict transform of
Seci(S™™) for k = 1,...,h — 1. Denote by Ex, < C(n,m,h) the exceptional divisor over Secy(S™™)
fork=1,...,h—1.
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The (SL(n + 1) x SL(m + 1))-action
(SL(n+1) x SL(m + 1)) x PN — PV

((A,B),2) — AZB?
induces an (SL(n + 1) x SL(m + 1))-action on C(n,m,h), and C(n,m,h) is wonderful.
Assume that h < n + 1 and fix homogeneous coordinates [zo0 : -+ : Znn| 0N PN. Fori=1,...,h we

define the divisors Df as the strict transforms in C(n,m, h) of the divisor given by the intersection of

200 - 2041
det : : =0
2i-1,0 --- Zi-1,i-1

with C(n,m,h). The divisor Dg in C(n,m,h) has two irreducible components HE HS, and the Picard
rank of C(n,m,h) is p(C(n,m,h)) = h + 1. Moreover, the effective cone Eff(C(n,m,h)) is generated by
By, ...,En_1,H{ HS and the nef cone Nef(C(n,m,h)) is generated by DS, ... ,Dgfl,ch,Hg,

In the case h = n + 1 we present similar results. Furthermore, we extend the construction in Theorem
[L1] by replacing ™™ with the Veronese variety V", to the space Q(n,h) of rank h symmetric complete
collineations.

Note that both Secy,(S™™) and Secy, (V") are singular, the wonderful varieties C(n,m,h) and Q(n,h)
are examples of the process producing a wonderful compactification from a conical one in [MP9§].

Spherical varieties are Mori dream spaces. Roughly, a Mori dream space is a projective variety X
whose cone of effective divisors Eff (X)) admits a well-behaved decomposition into convex sets, called Mori
chamber decomposition, and these chambers are the nef cones of the birational models of X [HKO0O].

In Propositions 317 and 318 we give a detailed description of the Mori chamber decompositions of
C(n,m,h) and Q(n,h) when their Picard rank is at most three. Moreover, in Section [] we investigate the
connection of C(n, m,h) and Q(n,h) with some Kontsevich spaces of degree two maps.

Kontsevich moduli spaces are denoted by Mgm(X , B) where X is a projective scheme and € Ho(X,Z)
is the homology class of a curve in X. A point in Mg,n(X ,B) corresponds to a holomorphic map «
from an n-pointed genus g curve C' to X such that a,([C]) = . When X is a projective space or a
Grassmannians the class 8 is completely determined by its degree, similarly when X is the product of
two projective spaces we identify the class 8 with its the bidegree. By Propositions [4.1], [£.6], E.8] E.12]
and Corollary 1Tl we have the following;:

Theorem 1.2. There are isomorphisms
C(n,m,2) = Mo o(P" x P, (1,1))
and
Secgl) (V") = Moo (P™,2).
Furthermore, there is a 2-to-1 morphism
Mo,0(G(1,n),2) — Sect? (V™).
For the automorphism groups we have that

PGL(n+1) x PGL(m + 1) if n<m;

Aut(Moo(F" x B™, (1,1))) = { So x (PGL(n+ 1) x PGL(n+1)) ifn=mz=>2;

and Aut(Moo(P* x PL,(1,1))) =~ PGL(4).

Furthermore, Aut(Moo(P",2)) =~ PGL(n + 1) for n > 3, Aut(Mo(P?,2)) =~ PGL(3) x Sz, and
Aut(ﬁop(]}]’l, 2)) = PGL(3)

Finally,
Sa x PGL(n + 1) if n>3;

Aue(FTon(G(1n).2) = { 2 X (TGN ) un
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The Mori theory of the spaces Mom(X ,3), especially when the target variety is a projective space or
a Grassmannian, has been widely investigated in a series of papers [CS06], [Che08], [CHSO08|, [CHS09),
[CC10], [CC11], [CMI7]. As an application of Theorem [[21we recover some of these results in Propositions
M2 4.6l and Remark 44l In particular, Theorem gives an explicit description of the birational

contraction of M o(P",2) in [CHS09, Theorem 1.2] as the blow-down Secgl)(V”) — Secz (V™).

Organization of the paper. Throughout the paper we work over an algebraically closed field K of
characteristic zero. In Section 2, we construct the spaces of complete singular collineations and quadrics,
C(n,m,h) and Q(n,h). In Section Bl we study their Picard rank, their effective and nef cones, and
compute the Mori chamber decomposition of C(n,m,2) and Q(n,3). Finally, in Section [l we investigate
the relation of the space of complete singular collineations and quadrics with Kontsevich moduli spaces
of conics.

Acknowledgments. The first and the third named authors are members of the Gruppo Nazionale per
le Strutture Algebriche, Geometriche e le loro Applicazioni of the Istituto Nazionale di Alta Matematica
"F. Severi" (GNSAGA-INDAM). The first named author is supported by Fondo PRIN-MIUR "Moduli
Theory and Birational Classification" 2017. We thank the referee for many helpful comments that allowed
us to improve the paper.

2. COMPLETE RANK h COLLINEATIONS

Let V, W be K-vector spaces of dimension respectively n + 1 and m + 1 with n < m, and let PV with
N = nm +n+ m be the projective space parametrizing collineations from V' to W that is non-zero linear
maps V — W up to a scalar multiple.

The line bundle Opnxpn(1,1) = Op(y)(1) X Opyy(1) induces an embedding

o: P(V)xP(W) — PVW)=PV
([ul,[v])  +— [u®v].

The image S™™ = o(P" x P™) < PV is the Segre variety. Let [zq,..., 2], [¥0,--.,Ym] be homogeneous
coordinates respectively on P and P™. Then the morphism o can be written as

O’([.Z'(), s 7xn]7 [y07 oo 7ym]) = [xOyO Pl TYm P T1Yo o0 xnym]’
We will denote by [z00 : -+ : zn,m| the homogeneous coordinates on PN where z;; corresponds to the
product ;y;.

A point p € PV = P(Hom(W, V')) can be represented by an (n+1) x (m+1) matrix Z. The Segre variety
S™™ is the locus of rank one matrices. More generally, p € Sec, (S™™) if and only if Z can be written as
a linear combination of h rank one matrices that is if and only if rank(Z) < h. If p = [200 -+ : 2 m]
then we may write

200 .- Z0m
(2.1) Z =

Zn0 .- Znm
Therefore, the ideal of Secy,(S™™) is generated by the (h + 1) x (h + 1) minors of Z.

2.1. Spherical and Wonderful varieties. Let X be a normal projective Q-factorial variety. We denote
by N'(X) the real vector space of R-Cartier divisors modulo numerical equivalence. The nef cone of X
is the closed convex cone Nef(X) c N!(X) generated by classes of nef divisors.

The stable base locus B(D) of a Q-divisor D is the set-theoretic intersection of the base loci of the
complete linear systems |sD| for all positive integers s such that sD is integral

(2.2) B(D) = (] B(sD).
s>0

The mowvable cone of X is the convex cone Mov(X) < N'(X) generated by classes of movable divisors.
These are Cartier divisors whose stable base locus has codimension at least two in X. The effective cone
of X is the convex cone Eff(X) = N'(X) generated by classes of effective divisors. We have inclusions
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Nef(X) < Mov(X) < Eff(X). We refer to [Deb01l, Chapter 1] for a comprehensive treatment of these
topics.

Definition 2.3. A spherical variety is a normal variety X together with an action of a connected reductive
affine algebraic group ¢, a Borel subgroup 4 < ¢, and a base point zg € X such that the Z-orbit of zq
in X is a dense open subset of X.

Let (X,¥9,%,x0) be a spherical variety. We distinguish two types of %-invariant prime divisors: a
boundary divisor of X is a ¥-invariant prime divisor on X, a color of X is a %B-invariant prime divisor
that is not ¢¥-invariant. We will denote by B(X) and C(X) respectively the set of boundary divisors and
colors of X.

Definition 2.4. A wonderful variety is a smooth projective variety X with the action of a semi-simple
simply connected group ¢ such that:

- there is a point xg € X with open ¢ orbit and such that the complement X\¥ - x( is a union of prime
divisors E1,- - , B, having simple normal crossing;
- the closures of the @-orbits in X are the intersections [),.; E; where I is a subset of {1,...,7}.

As proven by D. Luna in [Lun96] wonderful varieties are in particular spherical.

2.4. Complete singular forms. For n = m, let PY+ < PV be the subspace of symmetric matrices.
Then Secy(S™™) n PN+ = Secp, (V) for any h > 1, where V* < P¥+ is the image of the degree two
Veronese embedding of P”.

Definition 2.5. The space of complete rank h collineations is the variety C(n, m, h) obtained by blowing-
up Secy, (S™™) along the strict transforms of the secant varieties Secy (S™™) for k < h in order of increasing
dimension. When n = m we will denote C(n,n,h) simply by C(n,h). Furthermore, we will denote by
FEq, ..., E,_1 the exceptional divisors.

Similarly, for n = m the space of complete rank h quadrics is the variety Q(n,h) obtained by blowing-
up Secy, (V") along the strict transforms of the secant varieties Sec, (V") for k < h in order of increasing
dimension. We will denote by ES, ... 7EhQ_1 its exceptional divisors.

Remark 2.6. The case C(n,m,n+ 1) and Q(n,n+ 1) are respectively the space of complete collineations
from V' to W and the space of complete quadrics of V. By [Vai84, Theorem 1| and [Vai82, Theorem 6.3]
they are wonderful varieties and their birational geometry has been studied in [Mas20a].

Notation 2.7. For k < h, we will denote by Secg )(S" ™) the blow-up of Sec;(S™") along the strict

transforms of the secant varieties Sec;(S™™) for ¢ = 1,...,k, and by Sec% )(V") the blow-up of Secy, (V™)
along the strict transforms of the secant varieties Seci(V") for 1=1,...,k.

Note that there is an embedding
(2.8) i:Q(n,h)— C(n,h).
The following (SL(n + 1) x SL(m + 1))-action

(SL(n+1) x SL(m + 1)) x PNV — PV
((A,B), Z) — AZDB!

induces an (SL(n + 1) x SL(m + 1))-action on C(n, m, k). Similarly, when n = m the SL(n + 1)-action

SL(n+1) x PN+ — PN+
(A, 2) — AZA!

(2.9)

(2.10)

induces an SL(n + 1)-action on Q(n,h).

Remark 2.11. Since Secy,(S™") can be identified with the variety of (n + 1) x (m + 1) matrices modulo
scalar of rank at most h, [Har95, Example 12.1], [HT84) Proposition 12(a)] give

— m+l+z)

dim(Secy(8™™)) = h(m +n+2—h) —1, deg(Secy(S™™)) H (T h-H)

n—h—1i
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Similarly, Secy, (V") identifies with the variety parametrizing (n+ 1) x (n + 1) symmetric matrices modulo
scalar of rank at most h and
, o 2nh—h2 4 3h—2 =
dim(Sec, (V")) = 5 , deg(Sec,(V")) = H %
i=0 '

(2

Proposition 2.12. The tangent cone of Secp,(S™™) at a point p € Secy(S™"™)\Seck_1(S™™) for k < h
is a cone with vertex of dimension nm +mn+m — (m +1—k)(n + 1 — k) over Secy_j(S"Fm=F).
The tangent cone of Secy, (V") at a point p € Secy,(V™)\Seck—1 (V") for k < h is a cone with vertex of

dimension (";2) -1- %W over Secy,_(V"7F).

Proof. We compute the tangent cones of Sec,(S™™). The symmetric case can be worked out similarly.
It is enough to compute the tangent cone of Secy,(S™™) at

B Iy Ok,m+1—k
Pr =
Ont1-kk Ont1—kmi1—k
where Iy, i, is the k x k identity matrix. Consider the affine chart zpo # 0 and the change of coordinates

zij— ziy—1fori=1,...,k—1, 2z — 2z ; otherwise. Then the matrix Z in (21I)) takes the following
form

1 20,1 . 20,k—1 20,k . 20,m
21,0 21,1 — 1 ... 21,k—1 21,k . Z1,m
2k-1,0 Zk-11 -+ Zk—1k—1—1 Zk—1k -+ Zk—1,m
?k,0 %k,1 oo Rk,k—1 %k,k oo Zk,m
Zn,0 Zn,1 e “n,k—1 Znk -+ Anm

Recall that Secy,(S™™) < PV is cut out by the (h + 1) x (h + 1) minors of Z. Now, the lowest degree
terms of these minors are given by the (h + 1 — k) x (h + 1 — k) minors of the following matrix

Zng e Zk,m

Znk  --- Rn,m
Therefore, the tangent cone T'Cp, Secy,(S™™) is contained in the cone C over Secj_(S"~%™~F) with
vertex the linear subspace of PV given by {zp k= - = Zhm = Zhtlh = = Zhtlm = = Znk = =
Zn,m = 0}. Finally, by Remark 211 we conclude that T'Cy, Secy,(S™™) = C. O

We will need the following result on fibrations with smooth fibers on a smooth base.

Proposition 2.13. Let f: X — Y be a surjective morphism of varieties over an algebraically closed field
with equidimensional smooth fibers. If Y is smooth then X is smooth as well.

Proof. By [Sch10, Theorem 3.3.27| the morphism f : X — Y is flat. Finally, since all the fibers of
f: X — Y are smooth and of the same dimension [Mum99, Theorem 3’, Chapter III, Section 10] yields
that X is smooth. O

Theorem 2.14. The variety C(n,m,h) is smooth and the divisors E1, ..., Ey_1 are smooth and intersect
transversally. The closures of the orbits of the SL(n + 1) x SL(m + 1)-action on C(n,m,h) induced by
(2:9) are given by all the possible intersections of En, ..., En_1 and C(n,m,h). Furthermore, the analogous
statements hold for Q(n,h). Hence C(n,m,h) and Q(n,h) are wonderful.

Proof. We will proceed as follows. For h = 1 we will prove the statement for any n and m. Then we will
prove that if for A < j the statement holds for any n and m then it also holds for A = j and any n and
m. This will prove the statement for any n,m and h =0,...,n + 1.

For h = 1 we have C(n,m,1) = 8™™. Hence, the statements holds for any n and m. Assume that for
any h < j the statement holds for any n and m and consider C(n,m, j).
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In order to understand the geometry of our construction it is more useful to focus on a specific case.
For instance take n = m = 3. We have 833 < Secy(S%3) < Secs3(83?) = P, Let X; be the blow-up
of P15 along 833 with exceptional divisor E;. Then E; is a P’-bundle over S*3. The strict transform
Secgl)(S?”?’) intersects the fiber Eq, of B over a point p € $*3 along the base of the tangent cone of
Secy(S33) at p which by Proposition is §%2. Similarly, Secs3(S*3) intersects E1, along Seca(S*?).
Hence, the fibers of B — 833 are secant varieties 8662(82’2). Now, let X5 be the blow-up of X;
along Secgl)(S?”?’) with exceptional divisor Ep. Then Ey — Secgl)(S?”?’) is a P3-bundle. Fix a point
pE Secél)(Sg’?’)\(El N Secgl)(Sg”?’)). By Proposition Sec§2) (8%3) intersects Es, along St If p e

Secgl) (833) N By then the projective tangent cone of Secgl) (S33) at p coincides with the projective tangent

cone of Secél)(S?”?’) N E1p = Seca(S8%?) at p € Secél)(S?”?’) N By, = 8*? which in turn by Proposition
is SU1. Hence, the fibers of Fy — Secgl)(S?”?’) are isomorphic to S"''. Summing up after the two
blow-ups the fibers of Ey — S are isomorphic to C(2,2,2), that is the blow-up of Secy(§%*?) along S?2,
and the fibers of Ey — Secgl)(S?”?’) are isomorphic to C(1,1,1) that is St:1.

Arguing in the same way we see that for any ¢ = 1,...,j — 1, Proposition gives a fibration
E; — Secglfl)(S"’m) = C(n,m,i) whose fibers are isomorphic to Secg-J_;Z*l)(S"_"’m_i) =C(n—1i,m—
i,j —1). Then, by the induction hypothesis and Proposition .13 the exceptional divisors Ey,..., E;_1
in C(n,m, j) are smooth. Moreover, by Proposition 212] C(n,m,j) is smooth away from FEi,...,E;_;
and for i = 1,...,7 — 1 there is a fibration C(n,m,j) n E; — C(n,m,i) whose fibers are isomorphic to
C(n—1i,m —1i,j —1i). Hence, by induction and Proposition .13 we get that C(n,m, j) n E; is smooth and

dim(C(n,m,j) n E;)) =iln+m—i)—1+(j—i)n—i+m—i—j+1) —1=dim(C(n,m,j)) — 1.
So C(n,m,j) is smooth and the intersection C(n,m,j) N E; is transversal for any i = 1,...,5 — 1.

Now, consider an intersection of the following form E;, n---n Ej;,. By Proposition the restriction
of the blow-down morphism

Ejn---nEj, >Ejn---nEj  nC(n,m,j)
has fibers isomorphic to C(n — ji,m — ji, 7 — j¢). Again by the induction hypothesis and Proposition 2.13]
Ej n---n Ej, is smooth of dimension
G—d)n—j+m—j—j+j)—1+jn+m=—j)—1—(t—1)=dim(C(n,m,j)) —t

and hence the intersection is transversal.

The claim about the orbit closures follows from [Vai84, Theorem 1| and the fact that the SL(n + 1) x
SL(m + 1) action on C(n,m,h) is given by the restriction of the action (2.9) on the space of complete
collineations. With an analogous proof we get the result for Q(n, h). U

3. D1visOors ON C(n,m,h) AND Q(n,h)

In the section we study the Picard groups and the cones of effective and nef divisors of the wonderful
varieties introduces in Section 2l We will denote by C(n, m, h)° and Q(n,h)° the orbits of the matrix

(3.1) I = < I’Sh 8 )

where I, j, is the h x h identity matrix, under the actions (2.9) and (2.I0) respectively.
Proposition 3.2. The Picard groups of C(n,m,h)° and Q(n,h)° are given by

Z ifh=n+1<m+1;
Pic(C(n,m,h)°) =< Z®Z ifh<n+1;

L ifh=n+1l=m+]1;

(n+1)Z if n )
and

if h <n+1 s odd,

®Z if h<n+1 is even;
Z

ifh=n+1.

o 9

Pic(Q(n,h)°) = 5
n+1)Z

N

—~
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Proof. Let G}, be the stabilizer of the matrix Jj, in ([BI) under the action ([2:9). Since the Picard group
and the character group of SL(n + 1) x SL(m + 1) are trivial [ADHLI5] Theorem 4.5.1.2] yields that
Pic(C(n, m, h)°) is isomorphic to the character group X(Gj) of Gp. Write an element (A4, B) € SL(n +
1) x SL(m + 1) as

Ann Apnyi—n By p, Bhm+1-n
3.3 A= : : . B-= : : .
(3:3) ( Apntionh  Anti—hn+i—n Brii—nh Bmti-hm+i-h

Then (A,B) € Gy, if and only if A,41-pn = 0, Bypg1-pn = 0 and Ah,hB{h = A}, 5. Assume that
h <n+1and h <m+ 1. Then X(G},) is generated by the characters

da, = det(Ah,h),ch = det(Bh7h)’dAn+1—h = det(An+l—h,n+1—h),dBmH,h = det(Bm+1_h,m+1_h), A
with the following relations

dAh, + dA = ch + dBm+17h = 07 dAh + ch = h)\

n+1l—h
Hence, X(Gyp,) is the free abelian group generated by d4, and .

Now, assume that h =n+1 <m+1. Thendy,,, , =0 and so da, = 0. Therefore, X(G},) is the free
abelian group generated by A.

Ifh=n+1=m+1thenda,, , =dp, ., , =0 Sods, =dp, =0, and hence X(G}) is the abelian
group generated by A with the relation (n + 1)\ = 0.

Now, we consider the symmetric case. We will keep denoting by G}, the stabilizer of the matrix Jj in
(3J) under the action ([2I0). Write an element A € SL(n + 1) as in (B.3)). Then A € Gy, if and only if
Apti-np =0 and Ah,hA;{,h = M}, 5. Therefore, X(G},) is generated by

dAh = det(AhJL), A

with the relation 2d4, — hA = 0.

Assume h < n+1. If h = 2k+1 then (2, —h) € Z? is primitive. Considering the basis u = 2d g, —hA\,v =
da, — kX of Z? we get that X(Gy,) = Z?/{u) =~ Z. If h = 2k then (2, —h) = 2(1, —k), and considering the
basis u = 2da, — kA, v = X of Z* we get that X(Gp,) =~ Z?/{2u) =~ Z/2Z @ Z. Finally, if h = n + 1 we
have da, = 0, and hence (n + 1)A = 0. So X(G},) = Z/(n + 1)Z. O

Proposition 3.4. The Picard rank of C(n,m,h) and Q(n,h) is given by

h—1 ifh=n+1=m=+1;
p(C(n,m,h)) =< h+1 ifh<n+1,;
h ifh=n+1<m+1;

and
h f h L
p<Q<n,h))—{ ho1 Z:h:ZLf

Proof. Assume that h < n + 1. Since, by Theorem 2.14] the variety C(n, m, h) is wonderful with boundary
divisors Ejy, ..., Ey_1, [Bri07, Proposition 2.2.1] yields an exact sequence

0 — 2"~ — Pic(C(n,m, h)) — Pic(C(n,m, h)°) — 0

where Z"~! is the free abelian group generated by the boundary divisors. To conclude it is enough to use
Proposition The proof in the symmetric case is similar. O

For i = 1,...,h, we define the divisor DZ-C in C(n,m,h) as the strict transform of the divisor given by
the intersection of Secy,(S™™) with

20,0 .-+ 2041
det = 0.

Zi-1,0 .- Zi—li-1

We will keep the same notation for the corresponding divisors in the intermediate blow-ups Secgk) (S™™).
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Similarly, for ¢ = 1,...,h we define the divisor DiQ in Q(n,h) as the strict transform of the divisor
given by the intersection of Secy, (V™) with

200 ... 20,i—1
det : : =0.
205i—1 -+ Ri—1ji-1
Again we will keep the same notation for the corresponding divisors in the intermediate blow-ups Secgﬂ) (vm).

Lemma 3.5. Let Z be an (n+1) x (m+1) matriz of rank k < min{n+1, m+1} such that the determinant
of the top left k x k minor Zy of Z vanishes. Then, either the first k rows of Z are linearly dependent or
the the first k columns of Z are linearly dependent.

Proof. Assume that both the first k rows and the first £ columns of Z are linearly independent. We
will then prove that either det(Z;) # 0 or rank(Z) > k. If det(Z) # 0 the claim follows. So, assume

det(Zx) = 0. We will write eq, ..., en41 for the canonical basis of K™+1 and €, ..&,41 for the canonical
basis of K"*1. Since the first k columns of Z are linearly independent, up to a change of coordinates, we
may assume that these columns are the vectors é1,€s,...,€x_1,€r+1. The first k + 1 rows of the matrix
Z are of the following form
_ ot 0t 0t .
Zo~ = €1 By €y Tt 1 g
21— =eptap €yt Q€
— ot k—2 ¢t k—2 t .
T2~ = k-1 R R W T e S R
— k1t -1t .
Zg-1,- = U 1% 11 t et U1t
U Zk— =€t g€y T T A€

for some a? € K. By assumption, the first k£ rows are linearly independent and so we must have affl # 0
for at least one i € {k+1,...m + 1}. Hence, the k + 1 rows Zy _,..., Zj _ are linearly independent, and
rank(Z) = k + 1. O

Corollary 3.6. For k < min{n + 1,m + 1}, the divisor cut out on Seci(S™™) by the top left k x k minor
of the matriz in (211) has two components Hy and Ha, where Hy is cut out by the k x k minors of the
first k rows of Z, and Hs is cut out by the k x k minors of the first k columns of Z.

Proof. The claim follows immediately from Lemma O

Remark 3.7. In Seci (V") the divisor associated to Dy is irreducible. Indeed, in the symmetric case the
divisors Hy, Hy in Corollary coincide.
In order to further clarify this we explicitly work out the case of 3 x 3 matrices. The hypersurface
Dy = {20,021,1 — 20,121,0 = 0} cuts out on 8602(82’2) c P8 a divisor with two irreducible components:
Hy = {z0121,0 — 20,0%1,1 = 20,2%1,1 — 20,1212 = 20,2%1,0 — 20,0212 = 0};
Hy = {20,121,0 — 20,0%1,1 = 20,122,0 — 20,0%2,1 = 21,1%2,0 — 21,0%2,1 = 0}.
In the symmetric case the divisor {20211 — 2371 = 0} cuts out on Secz(V2) c P® the irreducible divisor
{202211 — 20,1212 = 20,1202 — 20,021,2 = 2871 — 20,0211 = 0}
with multiplicity two.
Notation 3.8. We will denote by HY, HS the strict transforms of Hy, Ho in C(n,m, h).

Proposition 3.9. The set of colors of C(n,m,h) is given by
(DY,..., DS} ifh=n+1=m+1;
{H, HS,DS,....,DS |} ifh<n+1;
{DC,...,DgH} ifh=n+1<m+1;
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while for Q(n, h) the set of colors is given by

{D2,...,D2} ifh<n+1;
(DR,...,D2} ifh=n+1.

Proof. The claim for C(n,m) and Q(n) follows from [Mas20a, Proposition 3.6]. In particular, the divisors
listed in the statement are stabilized by the action of the Borel subgroups in (2.9) and (ZI0) respectively.
Moreover, Secy(S™™) and Sec,(V") are stabilized respectively by the action (2.9) and (ZI0). Then,
Df, . ,Dg are stabilized by the restriction of the action (2.9), and similarly the strict transform in
Q(n, h) of DL, ..., D2 are stabilized by the restriction of the action (ZI0).

The groups acting are connected, so any reducible divisor which is stabilized must be stabilized com-
ponent wise. In particular, since by Corollary B.6lin C(n,m, h) for h < n+1 we have D¢ = H 1C U HQC and
since DY is stabilized, we have that both H{ and HS are stabilized.

As noticed in [ADHLI5l Remark 4.5.5.3], if (X,¥,%,x¢) is a spherical wonderful variety with colors
Dy, ..., D; the big cell X\(Dy u---u Dy) is an affine space. Therefore, it admits only constant invertible
global functions and Pic(X) = Z[Dy,..., D].

Now, for h < n + 1 in C(n,m,h) we have h + 1 colors and since by Proposition B.4] the Picard
rank of C(n,m,h) is h + 1, these divisors Dy, ... ,Dh_l,ch,HQC must be all the colors. Similarly, for
h=n+1<m+1 we found the divisors DY, ... ,Dgﬂ, and since in this case p(C(n,m,h)) = h, they are
all the colors. Note that when h =n+1 = m + 1, the divisor D¢, is not a color, since it is stabilized by
the whole group. In this case p(C(n,m,h)) = h — 1 and then DS,... DS are the colors. With a similar
argument we can compute the colors of Q(n,h). O

Proposition 3.10. For the effective and the nef cone of C(n,m,h) we have
CES,...,ES ifh=n+1=m+1;

Eff(C(n,m,h)) = { (ES,...,ES | H{ HS) ifh<n+1;
(ES,...,ES | ,D¢. > ifh=n+1<m+]1;

(DS,...,DS ifh=n+1=m+1;
Nef(C(n,m,h)) = 3 (D$,...,DS | HS HS) if h<n+1;
(D§,...,DE > ifh=n+1<m+1,

and for the effective and the nef cone of Q(n,h) we have

(BR,...,ER ,D2 ifh<n+1;
(BR,...,E2 ) ifh=mn+1;

(DE,...,D2 ifh<n+1;
(DE,...,DS) ifh=mn+1.

Proof. The statement for C(n,m) and Q(n) follows from [Mas20a, Theorem 3.13]. We consider now the
case h <n + 1.

Consider C(n,m, h). By [ADHLI5L Proposition 4.5.4.4], Theorem 2.T4]and Proposition B.I0the effective
cone of C(n,m, h) is generated by E¢, . .. ,Eﬁ_l, DS, ... ,Dg_l, HS, HS. By [Mas20al, Section 5] the divisor
DZ-C induces a birational morphism that contracts the exceptional divisor EZC . Therefore DZ-C lies in the
interior of the effective cone for any i = 1,..., h—1. In particular, since by Proposition B4 p(C(n, m, h)) =

BR(Q(n. 1) - {

Nef(Q(n, h)) = {

h + 1, we conclude that the extremal rays of the effective cone are Ef, ... ,Eﬁ_l, H 1C, H2C
Furthermore, by [Bri89, Section 2.6] the nef cone is generated by Df, . ,Dgfl,H 1C,HZC . A similar
argument gives the generators for the effective and nef cone of Q(n,h). O

3.10. Birational geometry of C(n,m,h) and Q(n,h). Let X be a normal Q-factorial variety. We say
that a birational map f : X --» X’ to a normal projective variety X’ is a birational contraction if its
inverse does not contract any divisor. We say that it is a small Q-factorial modification if X' is Q-factorial
and f is an isomorphism in codimension one. If f : X --+ X’ is a small Q-factorial modification then the
natural pullback map f* : N'(X’) — N'(X) sends Mov(X’) and Eff(X’) isomorphically onto Mov(X)
and Eff(X) respectively. In particular, we have f*(Nef(X')) € Mov(X).
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Now, assume that the divisor class group Cl(X) is free and finitely generated, and fix a subgroup G of
the group of Weil divisors on X such that the canonical map G — Cl(X), mapping a divisor D € G to
its class [D], is an isomorphism. The Cozx ring of X is defined as

Cox(X)= P H'(X,0x(D))
[D]eCl(X)

where D € G represents [D] € Cl(X), and the multiplication in Cox(X) is defined by the standard
multiplication of homogeneous sections in the field of rational functions on X.

Definition 3.11. A normal projective Q-factorial variety X is called a Mori dream space if the following
conditions hold:

- Pic (X) is finitely generated, or equivalently h!(X,Ox) = 0,
- Nef (X) is generated by the classes of finitely many semi-ample divisors,

- there is a finite collection of small Q-factorial modifications f; : X --+ X;, such that each Xj
satisfies the second condition above, and Mov (X) = J; f*(Nef (X;)).

The collection of all faces of all cones f*(Nef (X;)) above forms a fan which is supported on Mov(X).
If two maximal cones of this fan, say f(Nef (X;)) and f(Nef (X)), meet along a facet, then there exist
a normal projective variety Y, a small modification ¢ : X; --» X;, and h; : X; — Y, h; : X; — Y small
birational morphisms of relative Picard number one such that hj o ¢ = h;. The fan structure on Mov(X)
can be extended to a fan supported on Eff(X) as follows.

Definition 3.12. Let X be a Mori dream space. We describe a fan structure on the effective cone Eff (X)),
called the Mori chamber decomposition. There are finitely many birational contractions from X to Mori
dream spaces, denoted by g; : X --» Y;. The set Exc(g;) of exceptional prime divisors of g; has cardinality
p(X/Y;) = p(X) — p(Y;). The maximal cones C of the Mori chamber decomposition of Eff(X) are of the
form C; = {g¥(Nef(Y;)),Exc(g;)). We call C; or its interior C; a mazimal chamber of Eff(X). We refer
to [HKO00), Proposition 1.11] and [Okal6 Section 2.2] for details.

Remark 3.13. By the work of M. Brion [Bri93| we have that Q-factorial spherical varieties are Mori
dream spaces. An alternative proof of this result can be found in [Perl4l Section 4]. In particular, by
Theorem 2141 C(n, m, h) and Q(n,h) are Mori dream spaces.

Remark 3.14. Recall that by [HK00, Proposition 2.11] given a Mori Dream Space X there is an em-
bedding i : X — Tx into a simplicial projective toric variety Tx such that i* : Pic(7Tx) — Pic(X) is an
isomorphism inducing an isomorphism Eff(7x) — Eff(X). Furthermore, the Mori chamber decomposition
of Eff(Tx) is a refinement of the Mori chamber decomposition of Eff(X). Indeed, if Cox(X) =~ M
where the T; are homogeneous generators with non-trivial effective Pic(X)-degrees then Cox(7Tx) =
K[T,...,Ts].

Since the variety Tx is toric, the Mori chamber decomposition of Eff(7x) can be computed by means
of the Gelfand—Kapranov—Zelevinsky, GKZ for short, decomposition [ADHL15, Section 2.2.2|. Let us
consider the family W of vectors in Pic(7Tx) given by the generators of Cox(Tx), and let Q(W) be the
set of all convex polyhedral cones generated by some of the vectors in W. By [ADHL15, Construction
2.2.2.1] the GKZ chambers of Eff(Tx) are given by the intersections of all the cones in Q(W) containing
a fixed divisor in Eff (7).

Remark 3.15. Let (X,¥9, %, z() be a projective spherical variety. Consider a divisor D on X, and let fp
be the, unique up to constants, section of Ox (D) associated to D. We will denote by ling (¢-D) < Cox(X)
the finite-dimensional vector subspace of Cox(X) spanned by the orbit of fp under the action of 4 that
is the smallest linear subspace of Cox(X) containing the ¢-orbit of fp.

By [ADHLI5, Theorem 4.5.4.6] if ¢ is a semi-simple and simply connected algebraic group and
(X,9, A, ) is a spherical variety with boundary divisors Ey, ..., E,. and colors Dy, ..., Dy then Cox(X)
is generated as a K-algebra by the canonical sections of the E; and the finite dimensional vector subspaces
ling (¥ - D;) < Cox(X) for 1 <i <s.
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Next, we study the birational geometry of C(n,m,h) and Q(n,h) when the Picard rank is small. We
begin with Q(n,h). The varieties Q(1,2) and Q(2,3) are covered by [Mas20a, Section 6]. So, the first
case to consider is that of Q(n,3) for n > 3.

Lemma 3.16. For the variety Q(n,3) we have that DIQ ~ H, DQQ ~2H — EIQ, Dgg ~3H — 2E1Q — EQQ

Proof. Consider the strict transform L = Q(n,3) of the line L,y = {uz? + A(z} + 23) = 0}. This line
intersects V" at a point p, Seco(V™)\V" at a point ¢, and it is not contained neither in the tangent cone
of Seca(V™) at p nor in the tangent space of Hy = {29021,1 — 2871 = 0} at p.

First, consider the blow-up Secgl)(V”) of Sec3(V") along V" and keep the same notation for the push-

forward to Secél)(V”) of L, Dlg, DQQ, D3Q. Recall that Secgl)(vn) is singular along the strict transform of
Seca (V™). However, DE, DS are Cartier on Secgl)(V”) since they are restrictions to Secgl)(V”) of divisors
in the blow-up of PN+ along V™.

Write ng = 2H—aFE,. Note that H intersect L, x at p. Since L, ) is not contained in the tangent space
of Hy at pin Secél) (V") the strict transforms L and ng intersect just in one point. Then 1 = DQQ'L =2—a
yields a = 1.

Similarly, L, » intersects the cubic hypersurface Hj given be the top left 3 x 3 minor of (2.1)) at p with
multiplicity two and at q. Moreover, L, ) is not contained in the tangent cone of H3 at p and hence
in Secél)(l)”) the strict transforms L and D?,Q intersect just in one point. Then 1 = D3Q - L. Writing
D3Q~3H—bE1 we get 1:D3Q-L:3—bandhenceb:2.

Now, we consider Q(n,3). Since D2Q does not contain the strict transform of Seca(V™) its expression
remains unvaried after the last blow-up. On the other hand, Fo must appear in the expression of D:,)Q.
Let us write D3Q ~ 3H — 2E; — cE> and keep denoting by L its strict transform in Q(n,3). Note that

L, is not contained in the tangent space of Hsatq So0= D?,Q - L =3—2—cand hence c = 1. O

Proposition 3.17. For n > 3, the Mori chamber decomposition of Eff(Q(n,3)) has five chambers as
displayed in the following 2-dimension section of Eff(Q(n,3))

o)
D3

Q
B b B2

where Mov(Q(n, 3)) coincides with Nef(Q(n,3)) and is generated by D2, DS, DS.

Proof. By Theorem 2.14], Proposition 3.9 Remarks [3.14] B.15, and Lemma the Mori chamber decom-
position of Eff (Q(n,3)) is a possibly trivial coarsening of the decomposition in the statement.

Since by Proposition B0 Dlg, DQQ, D?,Q are the generators of the nef cone of Q(n, 3), these rays can not
be removed. Furthermore, since Mori chamber are convex the walls between EQQ,DQQ and Elg, Dlg can
not be removed. Finally, to see that the wall between E2Q, Dlg can not be removed it is enough to observe
that the stable base locus of a divisor in the chamber delimited by EQQ, DQQ, DIQ is EQQ, while the stable
base locus of a divisor in the chamber delimited by ES, Dlg, E1Q is Elg V) EQQ O

We will study the decomposition of the effective cone of C(n,m,2). For n = m = 1 we have C(1,1,2) =
P3. Hence, the first interesting cases occur for n = 1 and m > 1. The case C(1,m,2) is in [Mas20al Page
1606].
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Proposition 3.18. For n > 1 and m > 1 the Mori chamber decomposition of Eff(C(n,m,2)) has three
chambers as displayed in the following 2-dimensional section of Eff(C(n,m,2))

BY

HY H

where Mov(C(n,m,2)) coincides with Nef(C(n,m,2)) and is generated by HS, HS, DS.
Proof. Tt is enough to argue as in the proof of Proposition B.17] and to observe that since Mori chambers

are convex in the case n > 1,m > 1 the wall between E, D} can not be removed. 0

In the following we consider the spherical variety Secf) (V™) obtained by blowing-up Secs (V™) along

V" and then along the strict transform of Secy(V™). We will keep denoting by DZ-Q, EJQ the push-forward

of the corresponding divisors via the blow-down Q(n,4) — Sec‘(f) vm).

Proposition 3.19. The Mori chamber decomposition of Eﬂ“(Secf)(V”)) has nine chambers as displayed
in the following 2-dimensional section of Eff(Secf) vm)

EP Dy

where Nef(Secf) (V™)) is generated by DL, DS, DS, and the movable cone Mov(Secf) (V™)) is generated
by DL, D, DY, P with P ~ 6DP — 3EL — 2F5.

Proof. Note that the SL(n + 1)-actions on Secf) (V") and Q(n,4) are equivariant with respect to the
blow-down morphism Q(n,4) — Secff) (V™). Hence, by Proposition B9l the colors of Secf)(l}”) are
Dlg, DQQ, D3Q, D4Q, and its boundary divisors are Elg, EQQ Arguing as in the proof of Lemma B.16] we have
that D4Q ~4H — 3EIQ — QEQQ. Note that D49 is also a boundary divisor when n = 3. Now, the claim on
the movable cone follows from Remark and [ADHL15, Proposition 3.3.2.3|. Finally, to conclude it is
enough to argue as in the proof of Proposition B.17 O

We conclude this section by computing the automorphism groups of the varieties Secgk) (8™™) and
(k) (yn

Sec;, " (V™).

Proposition 3.20. For all h < n we have

PGL(n+1) x PGL(m + 1) if n<m;

Aut(Secy (S™™)) = { Sy x (PGL(n +1) x PGL(n+1)) if n=m;

and Aut(Sec, (V")) = PGL(n + 1).
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Proof. Let ¢ be an automorphism of Secy (S™™). By the stratification of the singular locus of Secy, (S™™)
described in Proposition ¢ must stabilize Secy(S™™) for all & < h. In particular, ¢ induces an
automorphism ¢jgnm € Aut(S™™), and by [Mas20a, Lemma 7.4] we have that Aut(S™"™) = PGL(n +
1) x PGL(m + 1) if n < m, and Aut(S™") = Sy x (PGL(n + 1) x PGL(n + 1)).

Note that in the case n = m also the involution in Sy switching the two factors comes from an
automorphism of the ambient projective space PV and so it induces an automorphism of Secy, (8™™). Let
us proceed by induction on h. So Aut(Sec,_1(S™™)) = Aut(S™™), and we have a surjective morphism
of groups

X Aut(Secp(8™™)) — Aut(Secp_1(S™™))
0 — PSech_1(Smm)-
Recall that Secy,(S™™) = Join(Sec,—1(S™™),S™™). Assume that ¢sec, ,(smm) = Idsec, ,(smm). Then
Plsee,_(smm) fixes Secp,_1(S™™) and hence S™™. Let p € Sec,(S™™) be a general point. By Remark 2.1T]
the actual dimension of Join(Secy,—1(S™™), S™™) is smaller than the expected one. So there are infinitely
many lines intersecting S™™ and Secy_1(S™™) through p. Any two of these lines are stabilized by ¢ and
intersect at p, so ¢(p) = p. Hence ¢ = I dsecy,(snm) and x is an isomorphism. The same proof, with the
obvious variations, works in the symmetric case as well. O

Theorem 3.21. For allh <n and k=1,...,h—1 we have

PGL(n +1) x PGL(m + 1) if n< m;

(k)  onymyy ~
Aut(Sec;,” (S™™)) = { So x (PGL(n + 1) x PGL(n+ 1)) if n=m;

Aut(Secglk) (V") =~ PGL(n + 1);
and for h =n + 1 we have

PGL(n+1) x PGL(m + 1) if n< m;

Aut(C(n,m,n + 1)) = { (Sy x (PGL(n +1) x PGL(n+1))) x Sy if n=m>2;

Aut(Q(n,n + 1)) = PGL(n + 1) x Sy;
Aut(C(1,1,2)) =~ PGL(4), and Aut(Q(1,2)) =~ PGL(3).

Proof. When h = n + 1 the statement follows from [Mas20al, Theorem 7.5|. Hence we consider the case

h < n. We will prove the claim for Secgk) (8™™). The argument in the symmetric case is completely
analogous.

First, take k = h — 1. Hence Sec%hil)(S"’m) =~ C(n,m,h). An automorphism ¢ € Aut(C(n,m,h)) acts
on the extremal rays of Eff(C(n,m,h)) as a permutation. If it acts non trivially then it must act non
trivially also on the generators of Nef(C(n,m,h)) in Proposition BI0l However, this is not possible since
for instance these nef divisors have spaces of global sections of different dimensions. Hence, ¢ stabilizes all
the exceptional divisors in Definition 275 and therefore it induces an automorphism ¢ € Aut(Secy (S™™)).
The morphism of groups

X: Aut(C(n,m,h)) — Aut(Sec,(S™™))
¢ — ¢
is clearly an isomorphism, and we conclude by Proposition B.201
Now, consider the case k < h — 1. Recall that C(n,m,h) is obtained from Secgk) (8™™) by blow-
ups centered at subvarieties of Secglk) (S8™"™) that are stabilized by all ¢ € Aut(SecELk) (8™™)). Hence,
Qe Aut(Sec%k) (S™™)) lifts two an automorphism ¢ of C(n,m, h), and we get a morphism of groups
X: Aut(Sec,(S™™)) — Aut(C(n,m,h))
¢ — ¢
which again is an isomorphism. Finally, we conclude by the computation of Aut(C(n,m,h)) in the first
part of the proof. O
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4. KONTSEVICH SPACES OF CONICS AND COMPLETE SINGULAR FORMS

An n-pointed rational pre-stable curve (C, (z1, ..., z,)) is a projective, connected, reduced curve with at
most nodal singularities of arithmetic genus zero, with n distinct and smooth marked points x4, ..., z, € C.
We will refer to the marked and the singular points of C as special points.

Let X be a homogeneous variety. A map (C, (1, ..., 2, ), ), where a : C' — X is a morphism from an
n-pointed rational pre-stable curve to X is stable if any component E =~ P! of C contracted by a contains
at least three special points.

Now, let us fix a class § € Ho(X,Z). By [FP97, Theorem 2| there exists a smooth, proper, and separated
Deligne-Mumford stack My (X, ) parametrizing isomorphism classes of stable maps [C, (x1, ..., Ty ), @]
such that a,[C] = .

Furthermore, by [KP01, Corollary 1] the coarse moduli space MOW(X, B) associated to the stack
ﬂo,n(X ,B) is a normal, irreducible, projective variety with at most finite quotient singularities of di-
mension

dim(Mo (X, 8)) = dim(X) + f ca(Tx)+n—3.
B
The variety Mo,n(X,ﬂ) is called the moduli space of stable maps, or the Kontsevich moduli space of
stable maps of class 8 from a rational pre-stable n-pointed curve to X. The boundary (?Mom(X ,B) =
Moo (X, 8)\Mon(X,B) is a simple normal crossing divisor in Mg, (X, 3) whose points parametrize iso-
morphism classes of stable maps [C, (21, ..., &), @] where C is a reducible curve. When X = PV, we will
write Mo, (PY,d) for Mg ,(PV,d[L]), where L < P is a line.

For details on moduli spaces parametrizing curves in projective spaces, and in particular conics, we

refer to [EH16l Section 8.4].

4.0. Conics in P". Let Mg (P", 2) be the Kontsevich space of conics in P?. We will denote by A <
My o(P",2) the boundary divisor parametrizing maps with reducible domain, and by I' = M (P, 2)
the locus of maps of degree two onto a line. Note that I' is a P2-bundle over the Grassmannian G(1,n)
parametrizing lines in P". In M (P",2) we consider the following divisor classes:

- H of conics intersecting a fixed codimension two linear subspace of P";

- T of conics which are tangent to a fixed hyperplane in P";

- Dgeg of conics spanning a plane that intersects a fixed linear subspace of dimension n — 3 in P".

It is well-known that Mg o(P?,2) is isomorphic to the space of complete conics Q(2,3) [FP97, Section
0.4]. The following result generalizes this fact.

Proposition 4.1. The Kontsevich space Mg o(P",2) is isomorphic to the blow-up Secgl)(vn) of Secz (V™)
along V".

Proof. We may associate to a rank three quadric @ < P" its dual conic Cg < P™*. Conversely, given a
smooth conic Cg € Mg o(P",2) we can consider the cone swept by the duals of the tangent lines of Cg
and whose vertex is the dual of the plane spanned by Cg. This yields a morphism

¢°: Moo(P",2) —> Secs(V") c PN+

Co — Q.
Consider the hyperplane H = {2 = 0} = P+, The points of H nSec3(V") correspond to the rank three
quadrics @ < P™ passing through p =[1:0:---: 0]. These quadric in turn correspond via the morphism

¢° to the conics Cg < P™* that are tangent the the hyperplane H, < P"™* which is dual to p € P". Hence,
¢° is induced by the divisor class 7. Now, [CHS09, Theorem 1.2] yields that ¢° extends to a morphism

¢ : Moo(P",2) — Secs(V")

restricting to an isomorphism on M o(P", 2) and contracting the boundary divisor A.
Fix a rank two conic in Cg < P™. Up to an automorphism of P™* we may assume that Cg = {z¢ =
- = Tp-3 = Tz_2xp—1 = 0}. Consider the family of smooth conics Cg; = {9 = -+ = xp_3 =
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Ty oTp_1 — ta;fl = 0}, with ¢ # 0, degenerating to Cg. Then
$(Cq,) = {af, — dtwn_oy_1 = 0}

where we keep denoting by [zg : -+ : 2] the homogeneous coordinates on the dual projective space.
Hence

$(Cq) = lim ¢(Cqy) = {z;, = 0}

and so A gets contracted onto the Veronese variety V" < Secz(V™). Now, by [Har77, Proposition 7.14] ¢
yields a morphism

Wt Moo(P",2) — Secl (V™)
(

mapping A onto Elg Hence, 1 restricts to a morphism ¢ : I' — Sec21) (V™) associating to a double cover
P! — L ramified at p,q € L the rank two quadric H, v H,, where H,, H, are the hyperplanes dual to p
and ¢q. Moreover, associating to a rank two quadric H; u Hy the 2-to-1 cover P! — (Hy n Hg)* ramified
at Hf, H3 we get a birational inverse of 1. Note that ¢ can not contract any divisor in I since both I’

and Secgl) (V™) have Picard rank two. Furthermore, Yr can not contract any locus of codimension greater
than one in I' either since Secgl)(V") is smooth.

Hence, 1 : M o(P",2) — Secg) (V™) is a finite and birational morphism. Finally, since Mg o(P",2) and
Secgl)(V”) are normal [Mum99, Chapter 3, Section 9| yields that ¢ is an isomorphism. O

As an application of Proposition .1l we have the following result.

Proposition 4.2. The Kontsevich space M070(]P’”,2) s a spherical variety with respect to the following
SL(n + 1)-action:
SL(’I’L + 1) X MO,O(PH, 2) — MO,O(PH, 2)
(A, [C,a)) —  [C,Aocql.
The effective cone of Mo o(P",2) is generated by A and Dgeg, and the nef cone of Mo,o(P",2) is generated
by T and H. Furthermore, the following
A

(4.3)

Ddeg

is the Mori chamber decomposition of Eff(Mgo(P™,2)), where H ~ 2T — A and Dgey ~ 3T — 2A.

Proof. The effective and the nef cone of M (P",2) had already been computed in [CHS08, Theorem 1.5,
Corollary 1.6] and |[CHS09, Theorem 1.1] respectively.

The SL(n+1)-action on Mg o(P",2) in (@3] corresponds to the SL(n+1)-action on Secél) (V") induced
by (210) via the isomorphism in Proposition Il Note that with respect to this action Secgl)(V") is
spherical but not wonderful. However, we can deduce its boundary divisors and colors from those of
Q(n,3) via the blow-down Q(n,3) — Sec:(,)l)(V") of E5?. Since boundary divisors and colors of Secg) v
lift to boundary divisors and colors of Q(n,3) by Proposition B.9 we get that Elg is the only boundary

divisor of Secél) (V"), and that its colors are DIQ, D2Q, D??, where we kept the same notation for divisors on

Q(n,3) and Secg)(V"). Hence, arguing as in the proof of Proposition B.I7 we get that DIQ, DQQ generate

the nef cone of Secz(,)l)(V"), D:,)Q, E1Q generate it effective cone, and the Mori chamber decomposition of

Eff (Secg)(V")) has three chambers delimited respectively by the divisors D?)Q, DS, the divisors DS, D
and the divisors DIQ, E1Q
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Now, by the proof of Proposition 1] we have that EIQ gets mapped to A by the isomorphism ¢! :
Secg)(V") — Mo o(PP",2). Moreover, a straightforward computation shows that 1~ 1*7 = DIQ, YT =
DQQ and Y1 Dye, = %D?)Q Finally, the statement follows from Lemma [B.16] Proposition [£1] and the

description of the Mori chamber decomposition of Eff (Secgl)(V”)) in the first part of the proof. O
Remark 4.4. We sum up the birational models of Mg o(P",2) in the following diagram:

9Q(n,3)
/ \
SecS (V) = Mo (P",2) -------------=--- X s » Hilby (P")
X}
T Chowz(IP’”)/ Be
Secs(V") G(2,n)

where Hilbo(P") and Chows(P") are respectively the Hilbert scheme and the Chow variety of conics in
P", x is the flip of I' © M o(P",2), G(2,n) is the Grassmannians of planes in P", and Bdeg is the strict
transform of Dge, via x. The morphism induced by Bdeg associates to a conic in Hilbg(IP)™ the unique
plane of P" in which it is contained. We would like to stress that the modular interpretation of the flip
of Moo(P",2) as a Hilbert scheme was well-know, see for instance [Kielll Section 3.

4.4. Conics in P" x P™. Let M o(P" x P™,(1,1)) be the Kontsevich space parametrizing conics in
P" x P, Denote by 7 : Mo 1(P" x P™, (1,1)) — Mg o(P™ x P™,(1,1)) the forgetful morphism, and by
ev: Moy (P x P, (1,1)) — P x P™ the evaluation morphism.

Let H, and H,, be the hyperplane sections of P" and P™ respectively, and H,, ,, = Pl x Pl <
P™ x P™. Consider the divisors

K" := meev*H?, K™ := myev*H2,, K™ = €0 Hyym,
and let A be the boundary divisor of maps with reducible domain.

By the proof of [Opr05, Lemma 1, Section 2.1], the Picard group of Mg o(P™ x P™, (1,1)) is generated
by A, K", K™. In particular, since H? = 0, the Picard rank of M o(P™ x P™, (1,1)) is:

1 ifn=m=1;
(45) IO(MO,O(P” x ]P)m7 (17 1))) =142 if n = Lm =2
3 ifn,m=2.

Proposition 4.6. The Kontsevich space Mg o(P™ x P™, (1,1)) is isomorphic to the space C(n,m,2) of
rank two complete collineations on P™ x P™,

Proof. First consider the case n = m = 1. We have that M o(P! x P!, (1,1)) =~ P3. Indeed, we may
embed P! x P! in P3 as a smooth quadric @, and the conics in @Q are in bijection with the hyperplanes in
P3.
_ Furthermore, C(1,1,2) = P? as well, and we may write down explicitly as isomorphism C(1,1,2) —
Mo o(Ptx P! (1,1)) as follows: write a point of C(1,1,2) as a 2 x 2 matrix Z, fix homogeneous coordinates
([0 : 1], [0 : y1]) on P! x P!, and associate to Z the conic Cy = {(z9,71) - Z - (yo,y1)" = 0} = P! x PL.

Now, let Z € Seca(S™™)\S™™ an (n + 1) x (m + 1) matrix of rank two. The image of Z yields a line
Lz in P", and the dual of the kernel of Z gives a line Rz in P™*. Hence, we get a morphism

v°: C(n,m,2)° — G(1,n) x G(1,m)
Z —> (Lz,Rz).

The fiber of v° over (Lz,Rz) can be identified with the collineations on Lz x Ryz. To see this we
argue as follows. Acting with SL(n + 1) x SL(m + 1) on G(1,n) x G(1,m) we may assume that Ly =
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{ro = =2, =0} and Ry = {ys = .-+ = Y, = 0}. Hence, in (v°)"1(Lz, Rz) we have the matrices
annihilating the vectors (0,0,1,0,...,0),...,(0,0,...,0,1) and whose image is generated by the vectors
(1,0,0,...,0),(0,1,0,...,0) that is matrices of the following form

z=( 7 Omt ) Gz (00 F01)
On-12 On—1m-1 z210 21,1
By the first part of the proof the collineations on Ly x Rz are in bijection with Mo,o(LZ X Rz,(1,1))
My o(P"™ x P™, (1,1)). This yields an isomorphism

5 : C(n,m,2)° — Myo(P" xP™, (1,1))
zZ — Cy.

Now, consider the embedding Mg o(P™ x P™, (1,1)) © Moo(PV,2). We will show that the inverse of §° is
induced by the restriction to Mo o(P™ x P™, (1,1)) of the divisor 7 on Mg (PY,2). Since T restricts on
HO7O(L z X Rz,(1,1)) to the corresponding tangency divisor it is enough to show the claim for Mo,O(L 7 X
Ryz,(1,1)). By the first part of the proof the correspondence between C(1,1,2) and M o(P* x P!, (1,1))
is defined by mapping a matrix Z = (2; ;)o<ij<1 to the divisor Cz = {z00%0y0 + 20,1Z0Y1 + 21,0Z1Y0 +
211T1Y1} C P! x P! which in turn is mapped by the Segre embedding to the conic

Cy= {Z(],()X +201Y + 21024 + 210 W =XW -YZ = 0} < P?X,Y,Z,W)‘

Now, considering the intersection of C'z with the plane {W = 0} we get the points [z10 : 0 : —20 : 0]
and [201 : —200 : 0: 0]. Therefore C'z is tangent to {W = 0} if and only if 290 = 0 that is if only if the
matrix Z lies on the hyperplane section {29 = 0} of PV.

By [CHS09, Theorem 1.2] the divisor 7 is base point free and hence it restricts to a base point free
divisor on Mo o(P" x P™, (1,1). Therefore, the inverse of ¢° is indeed a morphism

n: M0,0(PnXPm,(l,l)) —> C(n,m,2)
Cy — A

mapping the boundary divisor A to E{. Moreover, by Propositions B4l and ([@3X) we get that  does not
contract any divisor. Finally, since C(n,m,2) is smooth we conclude, by [Mum99, Chapter 3, Section 9],
that 7 is an isomorphism. O

Remark 4.7. Via the isomorphism
n ' Cn,m,2) — Moo(P" x P™,(1,1))

we have

0~ (A) = EY, n(K") = HY, n” ' (K™) = Hg, ¥ (K™™) = DY,
These equalities together with Proposition BI8 give that for n = 1 < m, the Mori chamber decomposition
of Moo(P™ x P™,(1,1)) has two chambers delimited by A, K™™ and K™™, K™, while for 1 < n < m the
Mori chamber decomposition of Mg o(P™ x P™, (1,1)) has three chambers delimited respectively by the
divisors K™, K™, KK™™ the divisors K™, K™ A and the divisors K™, K™ A.

Recall that a divisor of class ™ parametrizes stable maps o : P! — P x P™ intersecting a codimension
two cycle of class H2. These curves are mapped via the projection onto P" to lines intersecting a fixed
codimension two linear subspace of P™. Call L, the line corresponding to the stable map «. Note
that these lines correspond in turn to a hyperplane section of the Grassmannian G(1,n) in its Pliicker
embedding. Hence, the semi-ample divisor K" induces a morphism Mg o(P" x P, (1,1)) — G(1,n)
associating to a map [P, a] € My o(P™ x P, (1,1)) the line L,. Then by the proof of Proposition L6 H{
yields a morphism C(n, m,2) — G(1,n) associating to a matrix Z € C(n,m,2)° the projectivization of its
image.

Similarly, K™ induces a morphism Mg o(P" x P™, (1,1)) — G(1,m) associating to a map [P, a] €
Mo o(P™ x P, (1,1)) the line R, given by projecting the image of o to P™, and HS yields a morphism
C(n,m,2) — G(1,m) associating to a matrix Z € C(n,m,2)° the projectivization of the dual of its kernel.
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4.7. Conics in G(1,n). Let G(1,n) be the Grassmannian of lines in P". Following [CCI10} Section 2| we
describe divisor classes on Mg o(G(1,n),2). Fix projective subspaces II" 71 II"™3 < P" of dimension n —1
and n — 3, and consider the Schubert cycles

1T = {WeG,n)| dim(W A1) > 1}
oy = {WeG(1,n)| dim(W nII"3) > 0}.

Let 7 : Mo1(G(1,n),2) — Mo o(G(1,n),2) be the forgetful morphism and ev : M 1(G(1,n),2) — G(1,n)
the evaluation morphism. We define

>1
>0

H(}.ffl = meev¥oy g, H(}.é" = m.evtoy.

Furthermore, we will denote by 7" the class of the divisor of conics that are tangent to a fixed hyperplane
section of G(1,n).
Let D;’er; be the class of the divisor of maps [C,a] € M o(G(1,n),2) such that the projection of the

span of the linear spaces parametrized by a(C) from a fixed subspace of dimension n — 4 has dimension
less than three.

Next we define the divisor class Di’:b. A stable map « : P! — G(1,n) induces a rank two subbundle
Eo € Opt @ C™L. We define Di’:b as the closure of the locus of maps [P!, a] € M(G(1,n),2) such that
Eq # Op1(—1)®2,

Finally, we denote by A*" the boundary divisor parametrizing stable maps with reducible domain.

Proposition 4.8. There is a finite 2-to-1 morphism
¢ Moo(G(1,n),2) —> SecP (V)

mapping a stable map [P',a] € Moo(G(1,n),2) to the rank four quadric Qf = UpeQC<TpQ)* c P,
where QC = U[L]Ea(]P’l) L.

Proof. By |[CM17, Proposition 4.10, Theorem 5.1, Corollary 5.4] there is a birational morphism f :
My o(G(1,n),2) — TJ*, contracting Dcll’g; and A" where 7" is the double symmetric determinantal
locus of rank at most four constructed in [HT15] Section 2.2|. By [HT15, Proposition 2.3] there is a finite
2-to-1 morphism p : TJ* — Secy (V™) branched along Secs(V").

Now, consider the morphism po f : Mg o(G(1,n),2) — Secs(V"). By [Har77, Proposition 7.14] there is
a morphism ¢ : M o(G(1,n),2) — Sec‘(f) (V") such that mo @ = po f, where 7 : Sec‘(f) (V") — Secq (V")
is the blow-down.

Hence ¢ is 2-to-1 and by [HT15, Theorem 1.1] on My 0(G(1,n),2) it is defined by

2) (yn
PIMoo(G(m)2) ¢ Moo(G(1,n),2) — Seci? (V)
[]P17 a] — Qz*
where Qf = UpEQc (T,Q)* < P™, and Q¢ = U[L]ea(]P’l) L. Note that Qf is indeed a quadric hypersurface
of rank four, and since Q¢ can be constructed from either of its two rulings ¢|z, oG (1,n),2) 18 2-to-1. U

Remark 4.9. For n = 3 the double cover in Proposition .8 had been constructed in [Huel5 Section 5.

Remark 4.10. As an application of Propositions [3.19] .8 we recover some results of [CCI0]. Indeed, on
Mo o(G(1,n),2) there is an SL(n + 1)-action given by

SL(” + 1) X MO,O(G(LTL)’Z) - MO O(G(lvn)v2)

(M, [C,«a]) — [C,AZM o]
inducing on Mg (G(1,n),2) a structure of spherical variety.

Considering the subspace H = {z4 = --- = x,, = 0} < P" we get an embedding i : G(1, H) — G(1,n)
which in turn induces an embedding j : Mg o(G(1,3),2) — Mo o(G(1,n),2). Furthermore, the pull-back
map j* : Pic(M,0(G(1,n),2)) — Pic(M0(G(1,3),2) is an isomorphism. This reduces the study of the
birational geometry of M o(G(1,n),2) to that of Mg o(G(1,3),2).
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By Proposition B.I9 and the 2-to-1 morphism in Proposition B8 we get that the divisor classes
Alvn,Dcll’eZ,Difb and the divisor classes H;’IZ,H;%",TL" are respectively the classes of the boundary
divisors and the colors of the spherical variety Mo o(G(1,n),2).

Furthermore, the divisors classes Di;?b, D;’ez, Al™ generate the effective cone of Mg o(G(1,n),2). The
Cox ring of Moo(G(1,n),2) is generated by the global sections of the divisors Al’”,D;’eZ,Di’sb and
1, 1,
Hp)',, Hy", TV
The nef cone of Myo(G(1,n),2) is generated by HCI,;TLI,HCI,’;L,TL". Moreover, the following is a 2-
dimensional section of the Mori chamber decomposition of Eff(Mq(G(1,n),2))

Al,n
Tl,n
1,n 1,n
Ho'l,l Hs,
Pl.'n,
1,n 1,n
unb DdEQ

where P1" ~ i(3H§-ﬂ +3Hy" — AY™), and Mov(Mo0(G(1,n),2)) is generated by Hyi", Hy)", TV", P17,
We have the following result on the automorphisms of Kontsevich spaces of conics.

Corollary 4.11. We have that

PGL(n+1) x PGL(m + 1) if n<m;

Aut(Moo(" x B™, (1,1))) = { So x (PGL(n+ 1) x PGL(n+ 1)) ifn=mz=>2;

and Aut(Moo(P* x PL,(1,1))) =~ PGL(4).
Furthermore, Aut(Moo(P",2)) =~ PGL(n + 1) for n > 3, Aut(Mo(P?,2)) =~ PGL(3) x Sz, and
Aut(ﬁop(]}]’l, 2)) = PGL(3)

Proof. The first claim on Aut(Mgo(P"™ x P™, (1,1))) follows from Proposition 26l and Theorem B:211 For
the second claim recall that Mo o(P! x P!, (1,1)) =~ P3 since curves of bidegree (1,1) in P! x P! are in
bijection with the hyperplane sections of a smooth quadric surface in P3.

The automorphism group of Mg o(P",2) for n > 3 follows from Proposition EIland Theorem B:2Tl The
automorphism group of Movo(]P’z, 2) has been computed in [Mas20a, Remark 7.6]. Finally, to get the claim
on Aut(Mo (P!, 2)) notice that Moo(P!,2) =~ P2. Indeed, a 2-to-1 morphism P! — P! is determined by
its branch locus, and so Movo(]P’l, 2) is isomorphic to P! x P! mod out by the involution switching the
factors. O

Finally, we compute the automorphism group of Mqo(G(1,n),2). Since the cases n = 2 has been
covered in Corollary A.11] we assume that n > 3.

Proposition 4.12. The automorphism group of Mo o(G(1,n),2) is given by

Sy x PGL(n + 1) if n > 3;

Aut(Moo(G(1,n),2)) = { Sp x (S2 x PGL(n +1)) ifn=3.

Proof. First, consider the case n = 3. An automorphism of Mg (G(1,3),2) must either preserve or
switch the extremal rays Diib and D;fg. Indeed, there is an automorphism 7 : Mg o(G(1,3),2) —
Mo,0(G(1,3),2) switching them, namely the automorphism induced by the involution of G(1,3) given by
projective duality. This yields a surjective morphism of groups
U Aut(Moo(G(1,3),2)) — 99
‘2 = Oy



20 ALEX CASAROTTI, ELSA CORNIANI, AND ALEX MASSARENTI

where o, is the permutation of the extremal rays of Eff(M(G(1,3),2)) induced by ¢. Now, assume
that o, is trivial. Then ¢ descends to an automorphism @ of the variety 7.2 in the proof of Proposition
18 By [HT15, Proposition 2.5 (3)] 73 is Fano and the morphism p : 72 — Secy(V?) = PY in the proof
of Proposition 4.8 is induced by a multiple of —KT43. Hence, @ in turn descends to an automorphism of
Secy(V?) = P stabilizing the branch locus Sec3(V?). Since the group of automorphisms of P? stabilizing
Secs(V3) is isomorphic to PGL(4) we get an exact sequence

1 — Sy — Aut(7}) — PGL(4) — 1.

Note that PGL(4) acts on Mg o(G(1,3),2) and hence on T2. So the last morphism in the sequence has
a section, and Aut(7}) = PGL(4) x Ss.

Now, the morphism ¥ yields the exact sequence
1 — Aut(71) — Aut(Mo(G(1,3),2)) —> Sz — 1

and since the last morphism in this sequence has a section we get the claim.
When n > 3 it is enough to argue as in the case n = 3 noticing that in this case Di;?b and Dcll’ez can
not be switched and applying Proposition [3.20

4.12. On the anti-canonical divisor. In this last section we study the positivity of the anti-canonical
divisor of the varieties in Propositions B.I7 B.I8 and B.19l Recall that a normal and Q-factorial projective
variety X is
- Fano if —Kx is ample;
- weak Fano if —Kx is nef and big;
- log Fano if there exists an effective divisor D — X such that —(Kx + D) is ample and the pair (X, D)
is Kawamata log terminal.

Clearly, Fano implies weak Fano which in turn implies log Fano. As a consequence of Kodaira’s lemma
|[Laz04l Proposition 2.2.6] X is log Fano if and only if there exists an effective divisor D < X such that
—(Kx + D) is nef and big and the pair (X, D) is Kawamata log terminal. Moreover, if X and Y are
normal and Q-factorial projective varieties which are isomorphic in codimension one then X is log Fano if
and only if Y is so. We refer to [GOST15| for further information on these notions. Finally, by [BCHM10,
Corollary 1.3.2] if X is log Fano then it is a Mori dream space.

4.12.1. The anti-canonical divisor of Q(n,3). If n = 2 then Sec:())l)(V") is the space of complete conics
that is the blow-up of P° along V2. So

~K = 6D2 —2E2 = 2(DE + D).

ecél)(Vz)
Assume n > 3. By |[dJS17, Theorem 1.1] we have that
3(n+1) n—"17

_KMO,O(Pn72) - 4 H-— 4 A
and hence Proposition 1] yields
3 1 7T — —1
—K. 1)y = MD% —(n—-1)ES = ""pL 4 (n—1)DY = 3D + L _-Dg.
Secy ' (V™) 2 2 9

Therefore, Secg)(V") is Fano if and only if 1 < n < 7, weak Fano for n = 7 and log Fano for n > 8.

Now, note that by Proposition 2.12]the tangent cone of Secél) (V™) at a point of Secgl) (V”)\(Secg) V")

Elg) is a cone with vertex of dimension 2n over V"*~2. Hence, Secél)(vn) looks, locally around a point

of Secgl)(V”)\(Secgl)(V“) A ER), as the weighted projective space P(17~!,22**+1). Therefore, Secél)(vn)
has quotient singularities of type £(1"!) along Secgl) (V”)\(Secgl) (V") n Ef) and the discrepancy of the
canonical divisor of Q(n,3) with respect to FS is n—3
7— -3 -3
(4.13) — Ko(n3) = T"D? +(n—1)DE-""°F2 —2pL 1 2DS + "TD??.

. Summing up we have

Hence, by Proposition B.I7 and ([4.I3) we get that Q(n,3) if Fano for n > 4 and weak Fano for n = 3.
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4.13.2. The anti-canonical divisor of C(n,m,2). The first two Chern classes of the tangent bundle Tpn xpm
of P™ x P™ are given by

n+1

cp=Mm+1)H,+ (m+1)Hpy,, cz—( 5

1
)H,% +(n+1)(m+1)H,H,, + <m; >H,2n

Hence, by [dJS17, Theorem 1.1] we have

K _(n+1)(2n+m+3)’cn (n+1)(m+1)lC"’m (m+1)(2m+n+3)lcm7nm73n73m77
Moo (P xP™,(1,1)) — 2n + 2m + 4 (n+m+2) 2n +2m + 4 2n + 2m + 4
and plugging in the relation A = 2K™™ — ™ — K™ from [Opr05] Section 2.2] we get

As a consequence of Propositions B.I8] and (@14 we see that C(n,m,2) is Fano for all n,m > 1.

4.14.3. The anti-canonical divisor of Secf)(l)”). By Proposition A.§] there is a 2-to-1 morphism

0 : Moo(G(1,n),2) — Sec (V")

branched along E2 and Seci(f)(l)”) Note that Secé )(V”) is a divisor in Secl(1 )(V”) if and only if n = 3.
(2 )

In this case Secy (V3) is the space of complete quadrics of P3. So its anti-canonical divisor is given by

— Ky, @) = 10D — 5ER — 2E5

and by Proposition [3 Sec (V?’) is Fano.

Assume that n > 4. Then Sec:(,) )(V") has codimension greater than one in Secé(1 )(V") and so it does
not play any role in the Riemann-Hurwitz formula relating the canonical divisors of M o(G(1,n),2) and

Secf) (V™). By [CC10, Remark 2.4] we have that

_KM()()(G(LH), ) = 4 I{a_ln1 4 Ho_én —+ —4—A 7".
Write _KSecf)(v") aD1 + bEQ + cEQQ Since @*DQ = H(,117 gp*DQQ =T, gO*D3Q = H(}_gl’ (p*Elg =
2D11L:bv *EQQ = AL™ we have that
4a +6b — 3 —2b de—2b+1
_ In _ 1 1 1,
_Kﬁoyo((}(l,n)ﬂ) = (_ngcf)(vn)) - Dunb - 4 Holnl 4 H . 4 AT
where we used the relation D}" = %(3H;fl — Hy" — Abn) in [CCI0, Section 3. Finally,
3n —2 6—n
(4.15) — Koo my = (20 + 2)DE — ER — (n—2)ES = 2D2 + TD2Q + (n—3)D$.

By Proposition B9 and (£I5]) we get that Secl(1 )(V") is Fano for 3 < n < 5 and weak Fano for n = 6.
Furthermore, writing

~K = (8—n)DL +3DL + (n—6)P

ecl® (vm)

we see that Secfl )(V") is log Fano for n < 8.
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