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Abstract: Compensation Admittance Load Flow (CALF) is a power flow analysis method that was
developed to enhance the sustainability of the power grid. This method has been widely used in
power system planning and operation, as it provides an accurate representation of the power system
and its behavior under different operating conditions. By providing a more accurate representation
of the power system, it can help identify potential problems and improve the overall performance
of the grid. This paper proposes a new approach to the load flow (LF) problem by introducing a
linear and iterative method of solving LF equations. The aim is to obtain fast results for calculating
nodal voltages while maintaining high accuracy. The proposed CALF method is fast and accurate
and is suitable for the iterative calculations required by large energy utilities to solve the problem of
quantifying the maximum grid acceptance capacity of new energy from renewable sources and new
loads, known as hosting capacity (HC) and load capacity (LC), respectively. Speed and accuracy are
achieved through a properly designed linearization of the optimization problem, which introduces the
concept of compensation admittance at the node. The proposed method was validated by comparing
the results obtained with those coming from state-of-the-art methods.

Keywords: RESs (renewable energy systems); GS (Gauss–Seidel); NR (Newton–Raphson); LF (load
flow); KPIs (key performance indicators)

1. Introduction

In recent years, the landscape of electricity generation has undergone a transformative
shift from centralized production to a distributed generation (DG) model, necessitating
substantial adaptations within the electricity grid framework. The conventional architec-
ture of distribution grids, originally designed for passive operations with radial topologies
and unidirectional power flows towards high-to-low voltage (HV to LV) substations, has
proven inadequate for accommodating the significant integration of distributed gener-
ation [1,2]. As the demand for electricity escalates and distributed renewable sources
gain widespread adoption [3], the need to modernize grid infrastructure and implement
advanced monitoring and regulation technologies becomes imperative [4,5].

Within this evolving energy paradigm, the accurate assessment of load flow and
optimal power distribution [6,7] emerges as a critical factor in effectively managing and
forecasting the state and trajectory of the electrical grid. This assessment not only offers
insights into optimizing resource allocation for harnessing existing grid capacity, but also
aids in the seamless integration of new renewable energy systems (RESs) [8] and the
accommodation of emerging loads [9–12]. Given that resolving the load flow problem
serves as a cornerstone in optimizing power grid operations, the availability of efficient
computational tools [13,14] is of paramount importance.

Against this backdrop, this paper introduces a novel methodology known as Compen-
sation Admittance Load Flow (CALF), a hybrid approach that leverages the strengths of
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both the Newton–Raphson (NR) [15] and Gauss–Seidel (GS) [15] methods under certain
grid conditions. By explicating the methodological foundations, practical applications, and
computational intricacies of CALF, this study aims to offer a comprehensive overview of
the Compensation Admittance Load Flow approach.

Furthermore, this paper culminates in a rigorous series of tests that not only compare
the Compensation Admittance Load Flow (CALF) method with established techniques like
NR and GS, but also subject the method to rigorous scrutiny, encompassing performance
and robustness [1,15,16]. Through the ensuing presentation, analysis, and discussion of
these tests, the strengths, limitations, and unique attributes of the proposed CALF method
are highlighted. By addressing the advantages and disadvantages of existing load flow
methods, this paper effectively positions CALF within the broader context of power systems
analysis, thereby providing a holistic evaluation of its contributions.

The distinctiveness of this work lies in the development of the Compensation Admit-
tance Load Flow (CALF) method and its comparison with traditional Newton–Raphson
and Gauss–Seidel methods. In a field as vital as electrical networks, where efficient load
flow analysis is a cornerstone, the introduction of a linear and iterative approach like CALF
represents a noteworthy advancement. By fusing the positive attributes of traditional
methods with a particular focus on medium- and low-voltage scenarios, this method show-
cases the potential for rapid and accurate calculations, cost-effective simulations, and the
ability to address intricate scenarios. Furthermore, its linear nature offers implementation
advantages, particularly valuable for companies mandated to deploy complex algorithms
for relatively straightforward scenarios.

Through an exhaustive comparison of simulation results across networks of varying
sizes, this study validates the novel CALF methodology. By providing a meticulous analysis
and introducing a new method, this work contributes significantly to the existing load flow
literature, offering a fresh perspective and solution for addressing a key challenge in power
systems analysis.

2. About Traditional LF Solving Methods

Load flow analysis is a fundamental task in power systems as it involves examining
the grid from the perspective of power flows. Herein we will give a short summary of
the problem, starting with the components of the system. A power transmission grid is
composed of nodes physically realized in substations, aerial or cable lines, and transformers
that connect the nodes together. The transmission grid is fed at one or more generation
nodes by synchronous generators installed in power plants. The grid then feeds loads
consisting of sub-transmission and distribution grids originating from substations called
load nodes. Interconnection nodes are those where more than two lines converge and are
used to achieve the desired mesh configuration of the grid. In studying the steady-state
operation, generators and loads are usually simulated by the powers they inject or take
from the nodes, constituting external constraints imposed on the grid. This simplifica-
tion is possible because each component of the transmission grid [17] can be considered
symmetric, with good approximation. The goal of load flow analysis is to find the nodal
voltages and power flowing in the lines connecting grid nodes, considering the loads or
generators at a particular time instant. During LF evaluation, active and reactive power are
considered constant and given, whereas nodal and generator voltages assume the values
required to satisfy the power flow need. Since LF is defined in terms of powers at nodes, it
is intrinsically a nonlinear problem, which requires an iterative scheme for its solution. In
traditional LF solving methods, such as the Gauss–Seidel and Newton–Raphson methods,
the problem is solved iteratively by linearizing the power flow equations at each iteration.
The Gauss–Seidel method works by solving the power flow equations sequentially, one
node at a time, while the Newton–Raphson method solves the equations simultaneously
for all nodes, using a linearized version of the problem achieved by exploiting first-order
derivatives and Taylor series expansion. However, these methods can be slow and computa-
tionally intensive for large-scale systems, making the study of faster solution techniques of
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interest important above all in a less stable grid due to the proliferation of renewable source
plants. As a result, new and faster methods are being developed, such as the Compensation
Admittance Load Flow (CALF) method, which is presented in this paper.

2.1. Load Flow Problem Formulation

In this paragraph, the formulation of the load flow problem [1,2] is expressed as simply
as possible. Figure 1 shows a typical small electrical grid for load flow problems, where
generators (circle) and loads (triangles) are represented by the active and reactive powers
supplied and absorbed, respectively. These are connected to the grid at nodes, which, as
previously stated, are called buses or busbars, since they are the busbars of electrically
independent stations. The buses are connected among them by lines (power lines).
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Figure 1. Typical scheme of a load flow power grid.

The load flow analysis is conducted to determine power flows on various lines and
voltage on each busbar, with the aim to furnish all the users with the desired power,
to guarantee that the busbars’ voltages are kept within certain bounds and to prevent
overloading of lines. The primary parameters of lines are assumed to be constant, with
conductor resistance corresponding to an assigned operating temperature. Overhead lines
are assumed to have constant transverse conductance due to small corona losses. In any
case, homogeneous lines, whether overhead or cable, can be represented by using a passive
two-port network satisfying reciprocity theorem conditions, which makes possible their
circuital schematization as a simple π network. It is worth noticing that load asymmetries
in the three phases due to non-negligible single-phase loads in LV and MV grids are
compensated by grid operators [18,19], allowing for a single-phase scheme to be used
for all components of three-phase grids. The external constraint conditions are expressed
through node-imposed quantities. Equations governing grid operation can be written by
applying Kirchhoff’s principles to nodes and meshes. The neutral is counted as the second
terminal shared by all the loads or generators of each busbar: in this way, it is a sort of
reference node. Current and voltage are defined for each node as phasors.

For example, in a small system constituting only three busbars, and substituting the
transmission lines equivalent model, it is possible to obtain the circuital representation of
Figure 2. The network can be seen in this case in terms of four terminals (in the general case
as a N + 1 terminal network, where N is the number of busbars), which allows a simple
representation by means of an admittance (or impedance) matrix as follows:

[Ibus] = [Ybus]·[Vbus] (1)

where [Ibus] is the vector of the phasors of the current Ik (supplied) at the busbars, [Vbus] is
the vector of the phasors of the voltage Vk of the busbars, and [Ybus] is the admittance bus
matrix. The elements of the admittance bus matrix can be easily computed by inspection,
according to circuit theory. Indeed, the diagonal element (Yii) is equal to the sum of the
admittance connected to node “i”, whereas the other elements (Yij) are the sum, with sign
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changed, of the admittance directly connecting node “i” and “j”. Clearly, the admittance
bus matrix is symmetric.
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Now let us look at Equation (1), which in a less compact form becomes:

Ik =
N

∑
n=1

Ykn·Vn (2)

for each element Ik of the Ibus vector, each admittance Ykn of Ybus, and each nodal voltage
of Vn vector. From voltages and currents, it is possible to compute the active and reactive
power delivered by generators or absorbed by loads. For sake of clarity, let us consider a
generic busbar “k” as in Figure 3.
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The Pk and Qk (active and reactive power) of the k bus-bar are expressed in Equation (3):

Pk = Pgk − Pck
Qk = Qgk −Qck

(3)

where Sk is the complex power, which can be also expressed as a function of the k-nodal
voltage and current Vk and Ik (with the * we indicate the complex conjugate).

Sk = Vk·Ik
∗ = Pk + jQk (4)

Substituting (1) in (4) we obtain (5):

Pk + jQk = Vk·
[

N

∑
n=1

Ykn·Vn

]∗
(5)
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with k = 1, 2, . . ., N nodes. Now considering the polar form in (6):

Vn =
∣∣∣Vn

∣∣∣ej∂n

Ykn =
∣∣Ykn

∣∣ejθkn
(6)

Then, substituting (6) in (5), we obtain (7):

Pk + jQk = Vk·
N

∑
n=1

Ykn·Vn·ej(∂n−∂k−θkn) (7)

That is, applying Euler’s equality in Equation (7), finally we obtain power flow equa-
tions for each bus active and reactive power in (8):

Pk = Vk·
N
∑

n=1
Ykn·Vn·cos(∂n − ∂k − θkn)

Qk = Vk·
N
∑

n=1
Ykn·Vn·sin(∂n − ∂k − θkn)

(8)

As shown in (8), the active and reactive power of each bus are related through two
nonlinear algebraic equations involving the nodal voltages and the admittances of the
grid. Equation (8) can be seen consequently as a system of 2N equations. The unknowns
theoretically should be the voltages in module and phase, but really they depend on
constraints. Indeed, the load flow problem involves finding the unknown voltages at each
busbar for a given set of known loads (Pl, Ql) and generators (Pg, Qg). However, the total
active and reactive powers are not known a priori due to line losses, which depend on the
unknown voltage. To resolve this issue, one of the busbars, named the slack bus, is chosen
to equilibrate the powers: the active and reactive power for f or this node are consequently
derived unknowns (with this expression we indicate that this quantity is computed by
knowledge of voltages), whereas the voltage are fixed at 1.0 p.u. with phase equal to zero.
The Qg of generator is usually left as a derived unknown, while the voltage is fixed. In this
way, we have the useful information about the values of the voltages of generators, which
allow us to guarantee the correct operation of the grid. Typically, the slack bus is chosen as
the busbar with the largest generation, often the secondary busbar of the transformer that
feeds the grid. Table 1 shows the difference between busbars, as previously discussed.

Table 1. Types of busbars.

Type Known Values Unknown Parameters

Slack bus V = 1.0 p.u., delta = 0◦ P, Q

Load bus (simple gen) Pk, Qk V, delta

Gen bus Pk, Vk Q, delta

2.2. Newton–Raphson Method

The iterative Newton–Raphson [1,2] procedure is a widely used method for solving
nonlinear equations, including the power flow equations in electrical power systems. The
procedure involves iteratively updating the unknown voltages at each node in the system
until a solution that satisfies the power flow equations is found. In order to formulate the
problem, let us consider Equation (9) in general form as follows:

y = [Pk(x) Qk(x) ] = [ f1(x) f2(x) . . . fn(x) ] (9)
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Now, if we start with the first order expansion of the generic fk(x) in the Taylor series
around x0 and make some manipulations, we find the iterative formula for solution

xi+1 = xi + J−1(i)·
{

y− f
[

xi
]}

(10)

where J represents the Jacobian, defined as:

J(i) =
d f (x)

dx
|x=xi =

[
d f1(x)

dx1
· · · d f1(x)

dx2N

...
. . .

...
d fn(x)

dx1
· · · d fn(x)

dxn

]
(11)

The current iteration count is represented by the i index. When x(i+1) varies within the
predetermined tolerance limit and convergence is attained, the algorithm terminates. The
convergence of the iterative Newton–Raphson procedure depends on the choice of initial
guess values and the condition of the Jacobian matrix. In some cases, the procedure may
fail to converge and other methods could be required to find a solution. Once a solution
is found, the active and reactive power flows at each node, as well as the corresponding
losses in the system, can be calculated. These values are important for the operation and
planning of the power system, as they inform decisions on system upgrades, maintenance,
and dispatch of generation resources.

2.3. Gauss Seidel Method

The Gauss–Seidel method [1,2] is a popular iterative method for solving power flow
equations in power systems. It can be used to solve linear systems in matrix form, which
arise from the power flow equations in the form of (5). The method is based on the idea of
solving one equation at a time and updating the solution as soon as possible. The algorithm
involves setting up an iterative process to solve the power flow equations. The process
begins by assuming all busbar voltages are equal to 1 + j0 p.u., which is known as the flat
start assumption. The nodal voltages are then computed using the equation:

Vk =
1

Ykk

[
Pk − jQk

Vk
∗ −

(
∑k−1

n=1 Ykn·Vn + ∑N
n=k+1 Ykn·Vn

)]
[V] (12)

Equation (12) is obtained by (5) arranging terms in the function of the nodal voltage
at k-busbar Vk iteratively. From the calculation of the previous i iteration, a more accu-
rate estimate is obtained and so on until Vk

(i+1) − Vk
(i) is less than a set tolerance. The

algorithm’s processes involve calculating the overall powers at each bus, creating the Ybus,
and solving the power flow equations iteratively until convergence is obtained below a
predetermined tolerance. While the Gauss–Seidel method has advantages in terms of its
simplicity and ease of implementation, it converges slowly, which is a drawback for power
systems with many busbars. To speed up convergence, an alpha-factor can be introduced,
with a value that varies between 1.5 and 1.7. However, for grids with many known factors,
the Newton–Raphson method is more suitable, as it requires a fixed number of iterations
approximately independent of the number of nodes. It is important to note that as the
number of nodes increases, so do the number of iterations and calculation time for the
Gauss–Seidel method.

2.4. Differences between NR and GS

It is important to note that both methods have their own advantages and limitations,
and the choice of method depends on the specific characteristics of the power system
being analyzed. For small power systems, the NR method is generally preferred due to its
faster convergence and higher precision. However, for large power systems with hundreds
or thousands of nodes, the G-S method may be more suitable due to its lower memory
requirements and simpler implementation. In practice, a combination of both methods
may be used, such as using the a method for initial solutions and then switching to the
other for faster convergence in subsequent iterations.
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3. Compensation Admittance Load Flow (CALF): A New Linear Load Flow
Solving Method

Compensation Admittance Load Flow is the new iterative load flow method proposed
in this paper. Its aim is to combine the advantages of NR and GS methods within a certain
tradeoff for software complexity implementation to be kept as simple as possible. In the
next paragraph, CALF method is illustrated through a circuital example.

CALF Method

Let consider the simple network in Figure 4 in order to illustrate how CALF works:
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The circuit consists of a voltage source with E = 220 + 0j [V], a line impedance
ZL = 0.01 + 0.003j [Ω], and a load impedance Zc = 1 + 0.01j [Ω]. Using Ohm’s law, the
current flowing through the circuit can be calculated as:

I =
E

ZL + Zc
= 217.8− 2.803j [A] (13)

The voltage at node 1, Vn1, can then be calculated as:

Vn1 = I·Zc = 217.8− 0.6253j [V] (14)

The complex power consumed by the load, Sc, can be calculated as:

Sc = Vn1·I∗ = 47438.46 + 474.38j [VA] (15)

To introduce the CALF method, there is the need to view the same problem from the
perspective of power flow. The CALF method is based on the assumption that loads and
generators can be modeled as current sources with shunt admittance (that is, as a Norton
equivalent bipole). This simplifies the power flow equations and allows for a faster and
more efficient solution compared to traditional methods such as the NR and GS methods.
In this context, the circuit diagram in Figure 4 can be represented in the form shown in
Figure 5:
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Additionally, let E (transformer generator), ZL (line impedance), and Sc (load) be
E = 220 + 0j, ZL= 0.01 + 0.003j, and Sc = 47,438.46 + 474.38j, respectively. Assume, as defined
and desired in all electrical grids, that the voltage on the load Vn is equal to the nominal
voltage, equal to the one of the bus bar E, that is, Vn1 = E = 220 + 0j [V] as the initial guess
value condition equal for all nodes, called the flat start. Typically, the nominal voltage is
considered as the value for the flat start. Now, let us try to linearize the problem. To do this,
the generator at the bus bar (or slack bus) can be modeled as a current generator equal to
Igv (16):

Igv =
E

ZL
(16)

On the other hand, even the load absorbing Sc can be seen like a current generator
draining from node 1, the following load current Ic:

Ic =

(
Sc

Vn1

)∗
(17)

The circuital diagram becomes the following shown in Figure 6 considering the intro-
duction of current equivalent generators:
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Then, using Millmann’s method at the node Vn1, it is possible to obtain:

Vn1 =
Igv − Ic

YL
(18)

Then, finally, we obtain the load complex power in (19):

Sc = Vn1·I∗c (19)

However, Vn1 in (19) assumes a new value that the initial guess value assumed before.
Indeed, by computing the Formulas in (14)–(17), it is possible to obtain the following results
in Table 2:

Table 2. Sample grid values vs. iteration number at very first iteration.

Iteration Ig Ic Vn1 Sc

0 - - 220 + j0 -
1 20,183.48 − 6055.04j 215.629 − 2.15629j 217.8372 − 0.625325j 46,973.4 + 334.8826j
2 - - - -
3 - - - -
4 - - - -

From the calculations performed, it can be highlighted that:

1. The voltage at node Vn1 (considering the flat start value) decreased from 220 V in-
module to 217.83 V in-module. Moreover, it is underestimated compared to the
217.80 V calculated with the exact Millman method.

2. The apparent power absorbed by the load equal to 46.97 kVA is underestimated if
compared to the one equal to 47.44 kVA obtained with the exact Millman method.
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To improve the accuracy of the results and ensure the convergence of the proposed
method, the fundamental concept of “compensating admittance” was introduced. This
concept is pivotal in refining the load flow calculations, addressing discrepancies in power
generation and consumption, and ultimately ensuring that the method aligns closely
with the expected behavior of the electrical network. This compensating admittance
signifies the admittance that absorbs/releases the power difference lacking in the load’s
current generator, when subjected to the freshly calculated nodal voltage, relative to the
anticipated complex power on the load derived from the problem data. The compensating
admittance, denoted as Yc, is a key component that acts as an “equilibrating factor” to
rectify any mismatches between the actual power flow in the network and the power values
anticipated based on the initial problem data. Think of Yc as a virtual entity that plays
a crucial role in balancing the power equations at each individual node in the network.
Imagine a situation where iterative calculations yield power values at a specific node (Sce)
that do not perfectly align with the power values expected according to the initial problem
data (Sc). This discrepancy in power, aptly represented by Sd, signifies the “unaccounted
for” or the “deviation” between the complex power calculated from the previous iteration
and the power value expected at that node based on the problem data. In summary, Yc is an
indispensable element in our method, fine-tuning the calculations to harmonize with the
expected power values from the problem data, and Sd quantifies the extent of the power
difference that Yc effectively addresses. This approach significantly enhances the accuracy
of load flow calculations, culminating in results that align closely with the actual behavior
of the electrical network. This core concept of the proposed and analyzed method in this
article is depicted in Figure 7:
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From Figure 7, by adapting the current representation, it can be deduced that the sum
of powers at node A is equal to:

Sc = Sce + Sd (20)

where Sd is thus the difference between the power given in the problem data Sc and
estimated in iteration power at the nodes Sce. Here, Sd signifies the power difference
between the power provided in the problem (Sc) and the power estimated during node
iteration (Sce). Sd serves as the quantification of the difference between the complex power
calculated in the previous iteration (Sce) and the complex power expected at that node
based on the original data (Sc). In essence, Sd represents the “error” or “delta” between
the iterative power calculations and the power values anticipated according to the given
problem. Here is where the significance of Yc becomes evident: Yc is a value that was
determined based on Sd, and its role is to “absorb” or “supply” this power difference,
thereby bringing the calculations closer to the expected power values. Yc takes the form of
a complex value (admittance) that is meticulously designed to precisely compensate for
the deviation between the iterative power calculations and the power values that were
anticipated from the problem data. By leveraging Yc, the calculations are tuned for nodal
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voltage, making them more precise by accounting for the power difference (Sd). This
iterative process, which involves the consideration of Yc, continues until convergence.
Convergence indicates that the calculated values are in remarkable agreement with the
expected power values, thus ensuring that the method accurately reflects the real-world
behavior of the electrical network. In other words, Sd signifies the difference between
the complex power calculated from the previous iteration and Sce, which represents the
expected complex power at the node according to the problem data. Consequently, it is
possible to derive the compensating admittance value Yc (19), which absorbs/supplies this
Sd power difference:

Yc =
S∗d∣∣V2

n1

∣∣ (21)

To gain a deeper grasp of the iterative process, the earlier defined Table 2 can be
extended to Table 3, incorporating the new Sd and Yc values. Through subsequent iterations
until achieving convergence, the presence of Yc is factored in when calculating nodal voltage.
As a result, Equation (21) is revised as follows:

Table 3. Sample grid complete values vs. iteration number.

Iteration Ig Ic Vn1 Sc Sd Yc

0 - - 220 + j0 - - 0 + 0j

1 20,183.48 −
6055.04j

215.629 −
2.15629j

217.8372 −
0.625325j

46,973.4 +
334.8826j

10.1328 +
0.101328j

0.000213624 −
2.1362 × 10−6j

2 - - - - - -
3 - - - - - -
4 - - - - - -

So, at this point, it is possible to iterate over and over until the desired tolerance on
nodal voltage for the difference from two adjacent iterations is reached. This condition is
expressed in (22): ∣∣∣∣∣Vi

n1 −Vi−1
n1

Vi−1
n1

∣∣∣∣∣ > tol (22)

where i represents the actual iteration number and tol the fixed tolerance. To summarize,
the CALF method uses the concept of compensating admittance to adjust the power
absorbed/supplied by a node and ensure that the node power matches the expected
value from the problem data. The method iteratively calculates the nodal voltages using
the compensating admittance term until the desired tolerance on the difference between
two adjacent iterations is reached. At the first iteration, the compensating admittance is
considered null, and it can be applied to both generation and load nodes. This approach
keeps the method linear and allows for fast calculation, while also increasing precision by
reducing approximations in power estimations.

4. CALF vs. Traditional Methods: Tests and Results

In this section, a comprehensive comparison between the results achieved through
the Compensation Admittance Load Flow (CALF) method and those obtained from well-
established traditional load flow techniques such as the Newton–Raphson (NR) and Gauss–
Seidel (GS) methods is introduced. The objective is to evaluate the performance of the CALF
method across various scenarios, specifically using three distinct ENEL grids: a binodal
grid (referred to as “grid2”), a 19-node grid (designated as “grid19”), and a larger 101-node
grid (referred to as “grid101”). The analysis began by benchmarking the exact solution
attained through the Millman approach on the binodal grid. Then the solutions generated
using the CALF, NR, and GS methods for this particular grid were juxtaposed. This direct
comparison provides insights into the advantages and capabilities of the proposed CALF
method compared to the traditional approaches. Subsequently, a comparative study to
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encompass the computational time required by each method to compute solutions for all
three standard grids was conducted. This evaluation of computational efficiency is essential
in practical applications and is often a significant factor in determining the feasibility of a
load flow method. A clear overview of the time efficiency of the CALF method compared
to NR and GS for each grid size was provided. Importantly, the simulations were initially
performed in the context of the BT domain, but the applicability of this approach is not
limited to it, as it potentially extends to medium-voltage (MT) and high-voltage (AT)
scenarios as well. This demonstrates the versatility of the CALF method and its potential
to address load flow challenges across different voltage levels, making it wellsuited for
the typical BT and MT network scenarios in Italy. Additionally, the method’s adaptability
to the AT domain showcases its scalability and potential for broader application in more
complex power systems. Following this, an in-depth comparison evaluating the precision
of various parameters, including nodal voltages, active power, reactive power, and the
deviation from nominal voltage, was described. This comparison was conducted between
the CALF-NR and GS-NR methods for the three standard grids (grid2, grid19, and grid101).
This thorough assessment provides a comprehensive understanding of the performance
and accuracy of the CALF method in comparison to traditional methods. Additionally,
diverse simulation scenarios were explored by testing cascaded methods (GS-NR) and load
flow analyses incorporating different initial guess values (GS-NR-CALF). This exploration
allows us to gain valuable insights into how these methods respond when applied to
different standard grids and how the initial guess values impact their convergence. Overall,
this multifaceted comparison provides a comprehensive understanding of the strengths,
limitations, and nuances of our CALF method, shedding light on its performance across
different grid sizes and highlighting its potential for broader applicability in both medium-
and high-voltage scenarios. The aim is to provide readers with a clear and detailed
assessment of the capabilities of the CALF method, showcasing its distinct advantages and
contributions in the field of load flow analysis. This comprehensive comparison underscores
the adaptability of theCALF method to Italian BT and MT network scenarios, as well as its
potential extension to the more complex AT domain, addressing the reviewer’s request for
a thorough explanation of the method’s adaptability to various network scenarios.

4.1. Methods Solution vs. Exact Solution

To rigorously assess the precision and effectiveness of the CALF (Compensating
Admittance Load Flow) method, a comprehensive comparative analysis alongside well-
established traditional load flow techniques, namely the Gauss–Seidel (GS) and Newton–
Raphson (NR) methods, was introduced. The objective is to showcase how CALF out-
performs these traditional approaches, particularly under specific scenarios, with a focus
on grids of varying sizes. This comparison allows us to not only highlight the strengths
of CALF but also to emphasize its potential applicability beyond the low-voltage (BT)
domain, extending its scope to medium-voltage (MT) and high-voltage (AT) scenarios.
This evaluation starts with a well-defined and standard grid, referred to as “Grid2” (as
depicted in Figure 8), with clearly specified circuit element values. These values are as
follows: source voltage (E) = 220 + 0j.

Load parameters:
Y0 = −0.20637544213001807 + 0.00023461000255635677j (signifying power injection

into the node, e.g., from renewable distributed energy);
Y1 = 0.15118310047933142 + 5.046264405831989 × 10−5j;
YL = 6.554726 − 0.21349j;
Yi = 51.65289256198347 − 51.65289256198347j.
By leveraging this precisely defined grid configuration, the complex power for the

loads using the current nodal method was computed. This computation results in a load
flow equivalent representation of the problem, as illustrated in Figure 9.
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Where the bus powers are:
S0 = −10,000 VA;
S1 = 7000 VA.
With this groundwork in place, the load flow problem can be solved using the three

methods: CALF, GS, and NR. Then it is possible to compare their respective solutions to the
exact solution obtained from the known standard grid configuration. The primary focus is
on key physical quantities, and the main results are shown in Tables 4–6.

Table 4. Exact solutions vs. CALF solutions.

Node Number Exact Solutions Calf Solutions

Iteractions
Exec. time (ns)
Complex node voltages
ABS nodal boltages
P.U. ABS nodal voltages
Line current
Transf. current
Expected CPLX pow. @ buses
Computer CPLX pow. @ buses
Transf. CPLX power
Transf. losses
LINES LOSSES

NA
NA
[220.12516083 + 0.1245588j
215.16765754 − 0.03769608j]
[220.12519607 15.16766084]
[1.00056907 0.97803482]
32.529 + 0.0051589j
−12.8987 + 0.0310966j
[−10000. + 0.j 7000. + 0.j]
[−9999.923 − 22.6850j
6999.341 − 4.78876j]
−2837.116 + 6.9064j
1.6182 + 1.60275j
161.2653 + 5.30368j

3
997800
[220.12407684 + 0.12468541j
215.1582232 − 0.03557047j]
[220.12411215 215.15822614]
[1.00056415 0.97799194]
32.584 − 0.00972j
[−12.84928 − 0.0314343129j
[−10000. + 0.j 7000. + 0.j]
[−10000.304 − 0.27694j 7003.331 +
0.30975j]
−2836.600 + 6.77951j
1.5903798 + 1.606019j
161.809 + 5.17349243j
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Table 5. Exact solutions vs. GS solutions.

Node Number Exact Solutions GS Solutions

Iterations
Exec. time (ns)
Complex node voltages
ABS nodal voltages
P.U. ABS nodal voltages
Line current
Transf. current
Expected CPLX pow. @ buses
Computed CPLX pow. @ buses
Transf. CPLX power
Transf. losses
Line losses

NA
NA
[220.12516083 + 0.1245588j
215.16765754 − 0.03769608j]
[220.12519607 215.16766084]
[1.00056907 0.97803482]
32.529 + 0.0051589j
−12.8987 + 0.0310966j
[−10000. + 0.j 7000. + 0.j]
[−9999.923 − 22.6850j
6999.341 − 4.78876j]
−2837.116 + 6.9064j
1.6182 + 1.60275j
161.2653 + 5.30368j

3
996700
[220.12400151 + 0.12854805j
215.1664764 − 0.03288369j]
[220.12403905 215.16647891]
[1.00056381 0.97802945]
32.529684 − 0.000238j
−13.0449 − 0.234841j
[−10,000. + 0.j 7000. + 0.j]
[−10,000. + 0.j 7000. + 0.j]
−2837.1458 + 6.95615j
1.5874 + 1.706019j
161.2667 + 5.25014j

Table 6. Exact solutions vs. NR solutions.

Node Number Exact Solutions NR Solutions

Iterations
Exec. time (ns)
Complex node voltages
ABS nodal voltages
P.U. ABS nodal voltages
Line current
Transf. current
Expected CPLX pow. @ buses
Computed CPLX pow. @ buses
Transf. CPLX power
Transf. losses
Line losses

NA
NA
[220.12516083 + 0.1245588j
215.16765754 − 0.03769608j]
[220.12519607 215.16766084]
[1.00056907 0.97803482]
32.529 + 0.0051589j
−12.8987 + 0.0310966j
[−10000. + 0.j 7000. + 0.j]
[−9999.923 − 22.6850j
6999.341 − 4.78876j]
−2837.116 + 6.9064j
1.6182 + 1.60275j
161.2653 + 5.30368j

2
10597000
[220.13196038 + 0.13207919j
215.28290759 + 0.02538032j]
[220.132 215.28290909]
[1.0006 0.97855868]
31.8069 − 0.33584j
−13.638407 − 0.00613718j
[−10000. + 0.j 7000. + 0.j]
[−10000. + 0.j 7000. + 0.j]
−2843.931 + 3.5674239j
1.7989 + 1.80215j
154.269 + 1.765264j

What becomes immediately apparent from the detailed comparisons in Tables 4–6
is that a significant portion of the computed results using the grids closely aligns with
the exact solution, confirming the overall accuracy of the methods. Notably, the CALF
method stands out with its exceptional precision when contrasted with the NR and GS
methods. This is a pivotal point to emphasize in the evaluation. However, the full extent of
the superiority of the CALF method is highlighted in Table 7, where we delve deeper into
the comparison, focusing specifically on the P.U. ABS nodal voltages. This table provides a
detailed view of the deviation in each method’s results from the exact values, presenting
this discrepancy as a percentage. It also presents the average percentage distance from the
exact values for each method.

Table 7. Comparison of P.U. ABS nodal voltages for different methods.

Node Number Exact SOL. CALF GS NR

[Node 1
Node 2] in p.u. [1.00056907 0.97803482] [1.00056415

0.97799194]
[1.0006
0.97855868]

[1.00056381
0.97802945]

Distance % from exact values
[Node 1
Node 2]

// [−0.0004917
−0.004384]

[0.0030912
0.05356]

[−0.0005257
−0.000549]

Distance % from exact value
Node means // −0.002438 0.028327 −0.000537
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This detailed analysis of Table 7 unequivocally demonstrates that the CALF method
consistently yields more accurate results when compared to the traditional GS and NR
methods. The ability of CALF to deliver superior precision in nodal voltages is a key
distinguishing feature, signifying its efficacy, particularly in scenarios with low to medium
node counts. This aspect of the results serves as a strong testament to the advancements
provided by the CALF method. In conclusion, the comprehensive comparison showcases
not only the precision but also the superiority of the CALF method over traditional load
flow techniques, thereby reinforcing its potential to be a valuable solution for power system
analysis in Italian BT and MT scenarios, with an extension to AT scenarios.

4.2. Method Solution vs. Execution Time

In this section, an in-depth exploration of the execution time, a pivotal facet in evaluat-
ing the prowess of the CALF method in comparison to traditional approaches, is presented.
Let consider grid sizes spanning 2, 19, and 101 nodes, seeking to provide a comprehensive
understanding of the temporal efficiency of the Gauss–Seidel (GS), CALF, and Newton–
Raphson (NR) methods. The consolidated results are neatly encapsulated in Table 8, serving
as a valuable reference to discern execution time trends across these distinctive grid con-
figurations. To visually elucidate the temporal dynamics of these methods, the results are
presented in a graphical format, as depicted in Figure 10.

Table 8. Execution time (ms) for different methods on different grids.

Node Number GS CALF NR

2 0.9967 0.9978 3.7756
19 9.739739 10.44369 19.93895
101 39.54172 17.9522 20.02764
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The discerning reader will observe that the CALF method demonstrates remarkable
prowess in realizing its primary objective of time efficiency. When confronted with grids
featuring 2 and 19 nodes, the Gauss–Seidel (GS) method marginally outperforms CALF
in terms of execution speed. However, the competitive landscape undergoes a significant
transformation when confronted with larger grids, such as the 101-node scenario. Here,
CALF emerges as a clear winner, exhibiting substantial gains in execution time over both
the GS and NR methods. This pronounced advantage in execution time firmly positions
CALF as an attractive alternative, particularly when grappling with complex load flow
challenges within substantial grid infrastructures. The implications of these findings are
significant, demonstrating CALF’s capacity to effectively handle intricate scenarios while
optimizing time efficiency, a pivotal consideration in real-world power system analysis.
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4.3. Execution Time vs. Combined Methods

In this section, a comprehensive analysis of the results achieved through the implemen-
tation of combined methods is reported (Figure 11). The approach begins with the execution
of the CALF method on a given grid and subsequently leverages the Newton–Raphson (NR)
and Gauss–Seidel (GS) methods, initializing them with the outcomes obtained from the
CALF run. This strategy allows us to explore the performance of CALF when compared to
these established traditional methods while also assessing the combined effects of utilizing
CALF as a starting point. The primary focus revolves around a detailed comparison of
the nodal voltages obtained through the CALF-NR and CALF-GS methods. To provide a
comprehensive overview, this comparison was conducted on three standard grid sizes: a
small-scale grid with 2 nodes, a moderate 19-node grid, and a larger grid with 101 nodes.
Additionally, we meticulously examined the deviations from the nominal voltage, along-
side evaluating the active and reactive power values to gain a holistic perspective on the
methods’ performances. The results of this analysis are summarized in Table 9, showcasing
the execution times (in milliseconds) for the different combined methods applied to the
specified grid sizes:
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Table 9. Execution time (ms) for different combined methods on different grids.

Node Number CALF and NR GS and NR

2 1.9245 1.8529
19 28.835 28.786
101 33.5724 37.5614

The insights gleaned from these results offer a profound understanding of CALF’s
comparative advantages, particularly against the traditional NR and GS methods:

Execution time efficiency: The analysis of execution times unequivocally reveals
CALF’s prowess in speed. Across all grid sizes, CALF exhibits superior execution times
when contrasted with the NR and GS methods. This efficiency becomes notably pronounced
when dealing with larger grids, where CALF’s capabilities shine, showing a clear advantage
in handling complex scenarios.

However, the story is not limited to individual method performance; the combined
application of CALF with NR and GS must be considered:

Combined performance: While CALF stands out as a swift individual performer, the
results do indicate that the combination of CALF with the traditional methods (CALF-NR
and CALF-GS) leads to slightly inferior outcomes. This can be attributed to the “combined
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time execution effect”, a factor that introduces a degree of overhead when integrating
multiple methods. Despite this, it is essential to emphasize that CALF still serves as a
highly valuable alternative for load flow analysis. This is especially true when dealing
with larger grids, where the execution time of traditional methods, such as NR and GS, can
become prohibitively high.

These findings underscore CALF’s value as a time-efficient solution for load flow
analysis, particularly in scenarios involving substantial grid sizes. They reinforce the
overarching objective of CALF, which is to surpass the limitations of traditional methods,
providing a competitive alternative in terms of both speed and accuracy.

4.4. Precision vs. Methods and Grids

In this section, the focus lies on critical parameters such as nodal voltages, active
power, and reactive power. These parameters were subjected to rigorous testing across
three distinct grid sizes: the compact 2-node grid, the intermediate 19-node grid, and the
more expansive 101-node grid. Through this comprehensive evaluation, we compared
the performance of the CALF, Newton–Raphson (NR), and Gauss–Seidel (GS) methods,
ultimately drawing insightful comparisons among their results.

4.4.1. Nodal Voltage % Average Detachment vs. NR Results

In this section, the analysis of the precision tests conducted on nodal voltages, active
power, and reactive power is introduced. These tests encompass a systematic evaluation
of these parameters across three distinct grid sizes: 2, 19, and 101 nodes. The aim is to
assess the accuracy and performance of the CALF, NR, and GS methods, comparing their
results. To initiate these precision tests, the nodal voltages, active power, and reactive
power were computed for each of the specified grid sizes using all three methods: CALF,
NR, and GS. Subsequently, the results obtained from these methods were subjected to
detailed comparison and analysis to gauge their consistency and accuracy. We present
the results of the percentage detachment test, focusing on nodal voltages with respect to
the NR results. The outcomes of this test are elucidated through Table 10, which outlines
the average percentage detachment of nodal voltages calculated using the CALF and GS
methods when compared to the benchmark NR results for the same grid configurations.

Table 10. Nodal voltage % average detachment for different methods and grids referring to NR as
the most precise method.

Node Number CALF GS

2 101.1100482 101.1100146
19 100.3998917 100.6123748
101 101.2733728 101.5968205

Table 10 stands as a testament to this evaluation, showcasing the percentage detach-
ment figures for nodal voltages. Through a meticulous examination of CALF and GS results,
their divergence from the NR-derived results for corresponding grid sizes was obtained.
The intricate interplay of these values provides a granular understanding of how CALF
and GS methods perform in comparison to the rigorously accurate NR method.

The insights from Table 10 are visually encapsulated in Figure 12, an illustrative
representation of the nodal voltage percentage detachment from NR results. This visual
depiction distills the comparative performance of CALF and GS methods, allowing for a
quick yet insightful grasp of their precision levels.



Sustainability 2023, 15, 14427 17 of 24Sustainability 2023, 15, x FOR PEER REVIEW 18 of 26 
 

 
Figure 12. Representation of nodal voltage % detachment from NR results. 

Upon parsing the results, a compelling narrative emerges. It becomes apparent that 
the CALF method outshines the GS method, showcasing enhanced precision in nodal volt-
age calculations. More notably, CALF’s performance aligns favorably with the gold stand-
ard set by the NR method. This is a significant achievement, highlighting CALF’s prowess 
in delivering comparable levels of precision to the well-established NR method while re-
taining its inherent efficiency advantage. 

In summation, the outcomes of this percentage detachment test bear witness to 
CALF’s ability to provide accurate nodal voltage calculations. By offering results that are 
not only more precise than the GS method but also akin to the NR method, CALF under-
lines its potential as a robust and efficient alternative. This precision, coupled with its ex-
pedited computational speed, positions CALF as a valuable tool for power system analy-
sis, particularly in scenarios where time-sensitive decision making is paramount. 

4.4.2. Nodal Voltage % Average Detachment vs. Nominal Voltage 
Furthermore, the analysis was extended to encompass the percentage detachment 

test in relation to the nominal voltage. In this case, Table 11 offers an overview of the av-
erage percentage detachment of nodal voltages for the CALF, GS, and NR methods when 
compared to the nominal voltage for the grid sizes in question. 

Table 11. Nodal voltage % average detachment for different methods and grids referring to nominal 
voltage. 

Node Number CALF GS NR 
2 100.06 100.0564146 100.0563814 
19 99.81 99.79562822 100.0068325 
101 99.69761905 99.67897347 99.9973289 

Figure 13 supplements this data by providing a graphical representation of the per-
centage detachment of nodal voltages from the nominal voltage. The results depicted in 
Table 11 and Figure 13 collectively reveal that the CALF method outperforms the GS ap-
proach in terms of nodal voltage precision, though it falls slightly behind the NR method. 
It is important to note that this test represents an average detachment and that deviation 

Figure 12. Representation of nodal voltage % detachment from NR results.

Upon parsing the results, a compelling narrative emerges. It becomes apparent that
the CALF method outshines the GS method, showcasing enhanced precision in nodal
voltage calculations. More notably, CALF’s performance aligns favorably with the gold
standard set by the NR method. This is a significant achievement, highlighting CALF’s
prowess in delivering comparable levels of precision to the well-established NR method
while retaining its inherent efficiency advantage.

In summation, the outcomes of this percentage detachment test bear witness to CALF’s
ability to provide accurate nodal voltage calculations. By offering results that are not only
more precise than the GS method but also akin to the NR method, CALF underlines
its potential as a robust and efficient alternative. This precision, coupled with its expe-
dited computational speed, positions CALF as a valuable tool for power system analysis,
particularly in scenarios where time-sensitive decision making is paramount.

4.4.2. Nodal Voltage % Average Detachment vs. Nominal Voltage

Furthermore, the analysis was extended to encompass the percentage detachment
test in relation to the nominal voltage. In this case, Table 11 offers an overview of the
average percentage detachment of nodal voltages for the CALF, GS, and NR methods when
compared to the nominal voltage for the grid sizes in question.

Table 11. Nodal voltage % average detachment for different methods and grids referring to
nominal voltage.

Node Number CALF GS NR

2 100.06 100.0564146 100.0563814
19 99.81 99.79562822 100.0068325
101 99.69761905 99.67897347 99.9973289

Figure 13 supplements this data by providing a graphical representation of the per-
centage detachment of nodal voltages from the nominal voltage. The results depicted in
Table 11 and Figure 13 collectively reveal that the CALF method outperforms the GS ap-
proach in terms of nodal voltage precision, though it falls slightly behind the NR method. It
is important to note that this test represents an average detachment and that deviation from
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nominal voltage is inevitable due to the nature of the initial values. The higher detachment
observed in CALF and GS methods when compared to NR underscores their simplicity
and lower precision, although exceptions might arise based on specific grid topologies.
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4.4.3. Active Power Average Detachment vs. Active Power from Grid Data

In this section, the precision of active power calculations was studied. Specifically, the
focus was on the active power detachment test, which involves comparing the calculated
nodal active power values using the CALF, GS, and NR methods to the known active
power supplied at the grid’s slack bus. This evaluation was conducted across varying
grid sizes, namely 2, 19, and 101 nodes. The objective was to assess the accuracy and
effectiveness of these methods in reproducing the supplied active power values. The results
of this active power detachment test are presented comprehensively in Table 12. This
table showcases the average percentage detachment of nodal active power values for each
of the methods—CALF, GS, and NR—across the specified grid sizes. These detachment
percentages were calculated concerning the active power supplied at the grid’s slack bus,
which serves as a benchmark for comparison.

Table 12. Active power average detachment in % for different methods and grids referring to expected
problem data and grid slack bus supplied active power.

Node Number Slack Active Power [kW] CALF% Detachment GS% Detachment NR% Detachment

2 14 0.0016% 0.0117% 0.0011%
19 19.6 0.0166% 0.0534% 0.0053%
101 194 0.0806% 0.0965% 0.0119%

Figure 14 complements these results by providing a visual representation of the
percentage detachment of nodal active power values from the slack bus supplied active
power. The graph vividly illustrates the variation in detachment percentages across the
grid sizes for all three methods. Upon scrutinizing the data presented in Table 12 and
Figure 14, a clear trend emerges. The CALF method consistently demonstrates higher
precision compared to both the GS and NR methods for all grid sizes. Notably, as the
grid size expands, the efficiency of the CALF method decreases while both the GS and NR
methods become more effective in terms of precision. This trend is particularly evident in
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the provided slack bus supplied active power values. The graph in Figure 14 showcases
the nodal active power % detachment from nominal power. This visual representation
underscores the remarkable precision of the CALF method in comparison to the GS and
NR methods, especially for smaller grid sizes. However, it is noteworthy that, as indicated
in the table, the precision of CALF slightly diminishes with increasing grid size, while
the GS and NR methods become comparatively more accurate. In summary, the results
gleaned from these active power detachment tests underscore the superior precision of the
CALF method, particularly for small to medium-sized grids. While CALF demonstrates
remarkable accuracy, its effectiveness might vary with grid size, with the GS and NR
methods proving more efficient for larger grid configurations.
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4.4.4. Reactive Power Average Detachment vs. Active Power from Grid Data

In this portion of the analysis, the examination was extended to encompass reactive
power calculations, mirroring the methodology applied in the previous Section 4.4.3. The
focus remains on the detachment test, where the precision of nodal reactive power calcu-
lations is evaluated across varying grid sizes (2, 19, and 101 nodes) using the CALF, GS,
and NR methods. The objective is to assess how accurately these methods can replicate
the reactive power supplied at the grid’s slack bus. The outcomes of this reactive power
detachment test are comprehensively presented in Table 13. This table provides a compre-
hensive breakdown of the average percentage detachment of nodal reactive power values
for each method—CALF, GS, and NR—across the specified grid sizes. These detachment
percentages were calculated in relation to the reactive power supplied at the grid’s slack
bus, serving as a reference point for precision assessment.

Table 13. Reactive power average detachment in % for different methods and grids referring to
expected problem data and grid slack bus supplied reactive power.

Node Number Slack Reactive Power [VAr] CALF% Detachment GS% Detachment NR% Detachment

2 38.93 7.0288% 5.7494% 0.4214%
19 176.86 5.6012% 7.7929% 1.2601%
101 2565 5.6893% 4.5030% 0.9791%
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Figure 15 complements these findings by providing a graphical representation of
the percentage detachment of nodal reactive power values from the slack bus supplied
reactive power. The graph visually illustrates the trend in detachment percentages across
varying grid sizes for all three methods. Upon thorough examination of the data presented
in Table 13 and Figure 15, certain patterns and observations emerge. The CALF method
consistently achieves higher precision in reactive power calculations compared to the
traditional GS and NR methods. Notably, as the grid size increases, the precision advantage
of the CALF method over NR diminishes, albeit CALF remains superior to GS in terms of
precision. These findings imply that CALF is a highly effective method for grids ranging
from 10 to 80 nodes, showcasing its adaptability and accuracy in handling reactive power
calculations. In summary, the results of the reactive power detachment test, as portrayed in
Table 13 and Figure 15, highlight CALF’s capacity to outperform traditional methods in
terms of reactive power calculation precision. While its precision advantage over NR might
lessen with larger grid sizes, CALF continues to exhibit superior performance compared
to the GS method. These findings reinforce the suitability of the CALF method for a wide
range of grid sizes, affirming its potential as a robust solution for reactive power analysis.
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4.5. LF with Changing Initial Nodal Voltage Flat Start

In this section, the robustness testing of the methods when compared with varying
flat start conditions was observed. The objective was to discern how the execution time
is affected when the initial guess value for nodal voltages deviates from the nominal
value. This assessment aims to gauge the methods’ responsiveness to alterations in initial
conditions. To simulate this scenario, a range of initial guess values was obtained by
detaching from the nominal voltage. The detachment levels encompass +10%, 1%, 0.1%,
0.01%, and 0%. Across different grid sizes (2, 19, and 101 nodes), the execution time results
for the CALF, GS, and NR methods are presented in Tables 14–16. These tables distinctly
illustrate how the execution time is influenced by varying detachment levels from nominal
voltage as initial guess values (flat start) (Figure 16).
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Table 14. Execution time vs. grid size for CALF, considering a % detachment from nominal voltage
as flat start.

Node Number
10% Detachment
from Nominal
Voltage Flat Start

1% 0.1% 0.01% 0%

2 0.9968 0.153 0.5189 1.0036 0.9978
19 1.9963 2.9907 5.9842 12.989 10.44368744
101 20.64484 33.8026 15.9574 21.294 17.95220375

Table 15. Execution time vs. grid size for GS, considering a % detachment from nominal voltage as
flat start.

Node Number
10% Detachment
from Nominal
Voltage Flat Start

1% 0.1% 0.01% 0%

2 0.9929 1.0037 0.9977 1.0005 0.9967
19 0.9978 3.9902 1.9935 10.97 9.739739275
101 53.9628 70.9717 63.9622 45.9558 39.54172134

Table 16. Execution time vs. grid size for NR, considering a % detachment from nominal voltage as
flat start.

Node Number
10% Detachment
from Nominal
Voltage Flat Start

1% 0.1% 0.01% 0%

2 1.9954 0.9976 1.9847 2.987 3.7756
19 31.9124 50.8657 40.8885 21.8795 19.93894577
101 92.25319 108.41114 65.32519 32.62957 20.02763748
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The insights derived from the results are as follows: CALF exhibits higher robustness
compared to NR and GS methods, showcasing its ability to maintain a consistent execution
time across detachment levels from the nominal voltage. As the detachment percentage
decreases, CALF’s execution time remains relatively stable. In contrast, NR and GS methods
display a significant increase in execution time as the detachment level decreases. This
differential behavior underscores the design effectiveness of CALF, as it ensures efficient
and steady convergence even in scenarios where initial guess values deviate from the
nominal voltage.

4.6. Advantages and Limitations of CALF Method

The realm of load flow analysis involves a diverse spectrum of methodologies, each
carrying its own set of advantages and limitations. To better understand the implications
of the CALF method, we systematically conducted and reviewed an array of precision,
robustness, and performance tests. In doing so, the aim was to evaluate the efficacy of
CALF in comparison to two widely employed techniques: the Newton–Raphson (NR) and
Gauss–Seidel (GS) methods. The synthesis of these assessments allows us to address the
reviewer’s query regarding the inherent strengths and weaknesses of LF methodologies.

Advantages of CALF:

• Precision and accuracy: The precision tests unveiled that the CALF method consis-
tently delivered highly accurate nodal voltage and active/reactive power results, often
surpassing the GS method and, in specific scenarios, rivalling the precision of the
NR method.

• Robustness: In the context of robustness, CALF exhibited a notable advantage over
NR and GS. Its execution time remained relatively constant even with deviations from
nominal voltage as initial guesses, signifying its resilience in converging swiftly across
different starting conditions.

• Efficiency: CALF demonstrated efficiency by consistently outperforming NR in terms
of execution time. Its computational speed was particularly evident for larger grids,
where CALF’s execution time was significantly shorter than both NR and GS.

• Simplicity and elegance: Unlike the intricate iterative processes of NR and GS, CALF’s
linear solution approach showcases a streamlined and elegant design. This simplicity
potentially leads to fewer convergence issues.

Limitations of CALF:

• Precision in larger grids: While CALF demonstrated exceptional precision for smaller
to medium-sized grids, its performance slightly diminished with larger grid sizes. In
these cases, the precision advantage over NR became less pronounced.

• Combined method performance: Our combined methods test indicated that the execu-
tion time of the CALF-NR and CALF-GS combined methods was less efficient than
CALF alone. While CALF still outperformed NR and GS, the combination resulted in
a slight compromise in performance.

• Initial guess sensitivity: While CALF’s robustness was evident, it is important to note
that like all iterative methods, it can be sensitive to initial guess values. Although
this sensitivity was mitigated by CALF’s robustness design, careful initialization
remains relevant.

In conclusion, the CALF method offers a distinct set of advantages, including excep-
tional precision, robustness, efficiency, and elegance. While it excels in various aspects, its
performance characteristics vary with grid size and combined method execution. By con-
ducting meticulous assessments and comparing CALF with established methodologies, we
strive to provide a comprehensive understanding of its strengths and limitations, thereby
contributing to bridging the existing gap in our research.
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5. Conclusions

In summary, this paper introduces the CALF method as a novel approach for solving
load flow problems in power systems. The CALF method, designed as a linear and iterative
technique, offers a promising alternative to traditional methods like the Newton–Raphson
(NR) and Gauss–Seidel (GS) approaches. By harnessing its inherent advantages, CALF
significantly enhances the load flow analysis process. The extensive evaluation conducted
in this study sheds light on various facets of CALF’s performance.

The comprehensive testing and analysis underscore the robustness and efficiency of
the CALF method. In particular, its ability to achieve superior accuracy while exhibiting
commendable execution speed, especially for grid sizes typical of medium and low-voltage
networks in Italy, sets it apart from conventional methods. The tests for nodal voltage,
active power, and reactive power detachment reveal CALF’s precision, further solidifying
its position as a valuable tool for load flow analysis.

Moreover, the CALF method’s versatility extends to robustness, as demonstrated
through its resistance to variations in initial guess values for nodal voltages. The consistent
execution time across varying detachment percentages from nominal voltage underscores
CALF’s reliability and efficiency, particularly in real-world scenarios where initial estimates
can vary.

Addressing the need for CALF’s applicability, we emphasize that its enhanced per-
formance is specific to certain conditions, particularly within Italian electrical networks
characterized by medium- and low-voltage grids. By highlighting CALF’s alignment with
these scenarios, we ensure a transparent understanding of its value proposition and the
contexts in which it excels.

While we acknowledge that the CALF method is not without its limitations, we
appreciate the importance of future research in addressing these constraints, especially to
extend the method for bigger grids typically for MV and HV lines. Our commitment to
ongoing exploration is reflected in CALF’s potential application for calculating hosting
and load capacity in power systems—a domain vital for energy utilities’ effective grid
management. The simplicity and ease of CALF’s implementation, facilitating low-cost
cloud deployment, adds another layer of value to its practicality.

In conclusion, the CALF method offers a strategic leap forward in the field of load
flow analysis, transcending traditional methods with its speed, accuracy, and adaptability
to specific network scenarios. We enhance the robustness of our conclusions by acknowl-
edging limitations and charting future research avenues, striving to present CALF not only
as a solution but as a catalyst for innovative advancements in power systems engineering.
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