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 Abstract. Protein detection is paramount across various scientific, 
clinical, and industrial domains. Accurate and sensitive detection of 
proteins is pivotal for understanding biological processes, diagnosing 
diseases, drug development, environmental monitoring, and ensuring food 
safety. Traditional protein detection methods encounter sensitivity, 
specificity, and ease of use challenges. Molecularly imprinted polymers 
(MIPs), with their tailored molecular recognition sites, offer a novel 
approach to address these limitations. When combined with 
electrochemical techniques, MIP-based electrochemical methods have 
emerged as a revolutionary technology, showcasing enhanced sensitivity 
and selectivity. This article provides a comprehensive overview of MIP-
based electrochemical methods for protein detection, including the 
principles, engineering aspects, advantages, and potential applications. 
The aim is to elucidate the potential of this cutting-edge technology in 
reshaping protein detection and its promising role in advancing 
biosensing technologies. 

Keywords: proteins; biomolecular recognition; analytical methods; 
sensitivity; specificity. 

 

INTRODUCTION 

In the expansive landscape of biotechnology and 
biosensing, the accurate detection and analysis of 
proteins stand as a foundational pillar, wielding 
immense significance across scientific, clinical, 
and industrial domains. Proteins, as fundamental 
biomolecules, play a critical role in various bio-
logical processes and are integral to disease di-
agnosis and therapeutic interventions [1, 2]. Ac-
curate protein detection is essential for decipher-
ing complex biological mechanisms and identify-
ing potential disease biomarkers. Traditional 
protein detection methodologies, such as en-
zyme-linked immunosorbent assays (ELISAs) 
and mass spectrometry, have limitations related 
to sensitivity, specificity, and complexity of oper-

ation [3]. MIPs offer a viable alternative with 
their ability to provide high specificity and bind-
ing affinity towards target proteins. When inte-
grated with electrochemical techniques, MIP-
based electrochemical sensors provide a potent 
platform for precise and reliable protein detec-
tion [4, 5]. 

Traditional protein detection methods, while in-
valuable, encounter persistent challenges, rang-
ing from sensitivity limitations to cross-reactivity 
issues and the need for complex protocols. Ad-
dressing these challenges head-on, molecularly 
imprinted polymers (MIPs) have emerged as a 
revolutionary technology in analytical chemistry, 
offering a new dimension to biosensing [6]. 
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MIPs, synthetic polymers with particular molecu-
lar recognition sites, have been intricately de-
signed to selectively bind with target proteins, 
providing a robust foundation for developing so-
phisticated protein sensors. When coupled with 
electrochemical techniques, these MIP-based 
electrochemical methods usher in a new era of 
protein detection characterised by enhanced 
sensitivity, selectivity, and ease of use [7]. 

This article will explore protein detection, focus-
ing on the innovative utilisation of MIP-based 
electrochemical methods. We will delve into the 
foundational principles and intricate mecha-
nisms that govern MIP-based electrochemical 
sensing, illuminating the science behind the pre-
cise engineering of these polymers to recognise 
and bind a diverse range of proteins [8, 9]. 

Furthermore, we will unravel the multitude of 
advantages that MIP-based electrochemical sen-
sors bring to the fore, including heightened sensi-
tivity, exceptional selectivity, and the potential 
for miniaturisation, positioning them as promis-
ing candidates for applications in point-of-care 
diagnostics and field-based monitoring [10–12]. 

Through this comprehensive journey, our objec-
tive is to showcase the expansive potential of 
MIP-based electrochemical methods in revolu-
tionising protein detection. By highlighting their 
capacity to push the boundaries of biosensing 
technologies, we envision a future where these 
innovative techniques significantly impact di-
verse domains, paving the way for advancements 
that rely on precise protein analysis [13–15]. 

In doing so, we anticipate a world where health, 
safety, and quality are underpinned by accurate 
biomolecular scrutiny. This will empower us to 
forge ahead into a future of remarkable scientific 
discoveries and societal well-being. As we delve 
deeper, we will unfold the intricacies of MIP-
based electrochemical sensing, elucidating real-
world applications, foreseeing the trajectory of 
this promising field in the years to come, and dis-
cussing the challenges that lie ahead. 

 

RESULTS AND DISCUSSION 
 

MIP-Based Electrochemical Sensors: 
Principles and Mechanisms 

Molecular Imprinting Process. The molecular im-
printing process involves arranging molecules 
within a reaction vessel to create a polymer ma-
trix. The functional monomer is responsible for 

specificity and reactivity, the cross-linking agent 
provides stability and structure, and the target 
protein contributes its form and characteristics. 
Chemical reactions result in a polymer matrix of 
intricate patterns and connections [16, 17]. 

The functional monomer conforms to the target 
protein's shape and chemical properties, creating 
precise binding sites. The cross-linking agent re-
inforces the polymer structure[18,19]. The result-
ing polymer matrix accurately replicates the tar-
get protein's structure and behaviour. 

Molecular imprinting finds applications in drug 
delivery, biosensors, and environmental moni-
toring. It enables precise molecular recognition 
and promises scientific exploration and techno-
logical advancement [20–22]. 

Electrochemical Transduction. Electrochemical 
transduction is a pivotal link between the molec-
ular recognition capabilities of MIP-based sen-
sors and the ability to interpret these interac-
tions in terms of electrical response. The founda-
tion of this process lies in the precise molecular 
imprinting technique, where the polymer matrix 
is strategically designed to contain cavities or 
imprinted sites that possess a solid binding affini-
ty for the target analyte, often a specific protein 
[23]. 

Upon exposure to the target protein, the imprint-
ed sites within the polymer undergo a binding 
event, creating a unique interaction that alters 
the electronic properties of the polymer. This in-
teraction can affect the flow of electrons, mani-
festing as current, voltage, or impedance changes. 
More specifically, the binding event can either 
hinder or enhance the movement of charge carri-
ers, thereby modifying the electrical conductivity 
or resistance of the polymer. These alterations in 
electrical parameters are directly proportional to 
the concentration of the target protein in the 
sample [20, 21, 23–25]. 

The electrochemical signal generated by these 
changes is then meticulously measured and ana-
lysed. The distinct signal patterns provide valua-
ble insights into the target protein's presence, 
concentration, or structural changes. Advanced 
electrochemical techniques, such as cyclic volt-
ammetry [26, 27], electrochemical impedance 
spectroscopy, or chronoamperometry, character-
ise and quantify these electrical changes precise-
ly. 
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In practical applications, this electrochemical 
transduction process offers numerous ad-
vantages. It enables real-time and rapid detection 
of target analytes with high sensitivity and selec-
tivity, making it ideal for applications in 
healthcare [28–30], environmental monitoring 
[31–41], food safety [42–49], and pharmaceutical 
research [50–55]. This field's continuous re-
search and development strives to further opti-
mise the electrochemical transduction process, 
aiming for enhanced performance, increased ver-
satility and expanded applications across a broad 
spectrum of analytical domains. 

Engineering MIPs for Protein Detection 

Rational Design and Synthesis. Crafting the prop-
erties of a MIP involves a comprehensive and 
strategic design approach encompassing several 
vital elements. The choice of monomers, pivotal 
building blocks of the polymer, is a critical aspect, 
as it dictates the structure, functional groups, and 
rigidity of the resulting polymer network. The 
selection of monomers is influenced by their abil-
ity to interact with the template molecules and 
form complementary binding sites. These bind-
ing sites are carefully orchestrated to mimic the 
template proteins' specific spatial and chemical 
arrangement, optimising binding affinity and en-
suring high selectivity for the target molecules 
[56, 57]. 

Template proteins play a crucial role in guiding 
the imprinting process. They act as molecular 
templates around which the polymer forms, im-
parting their unique structure and molecular in-
formation to the monomers. This molecular 
memory then guides the creation of complemen-
tary binding sites within the polymer, ensuring it 
can selectively recognise and bind to the target 
molecules of interest [58]. 

Incorporating suitable cross-linkers is another 
essential aspect of tailoring MIP properties. 
Cross-linkers link the monomers, forming a 
three-dimensional network that gives the poly-
mer stability and structural integrity. The choice 
of cross-linkers influences the polymer's porosi-
ty, flexibility, and overall mechanical properties. 
A reasonable selection ensures that the resulting 
MIP exhibits the desired stability and robustness, 
making it suitable for various applications [59]. 

Integrating these components using a rational 
design approach achieves a Molecularly Imprint-
ed Polymer with finely tuned properties. This tai-
lored MIP exhibits exceptional binding affinity 

and specificity for the target molecules and en-
hanced stability, ensuring its effectiveness and 
reliability in diverse applications such as molecu-
lar recognition, drug delivery, environmental 
remediation, and biosensing [60, 61]. 

Surface Modification and Immobilisation. Achiev-
ing the optimal performance of MIPs in protein 
sensors and biosensing platforms necessitates a 
thorough understanding of the significance of 
surface modification and immobilisation tech-
niques. The surface modification involves alter-
ing the electrode surface's physical and chemical 
properties to create a favourable substrate for 
MIP attachment. This alteration is crucial to en-
sure a robust interface between the electrode 
and the MIP, enhancing the stability and durabil-
ity of the MIP structure [62, 63]. 

Various surface modification techniques can be 
employed to facilitate the effective immobilisa-
tion of MIPs. Physical adsorption involves the ad-
sorption of MIPs onto the electrode surface 
through van der Waals forces, hydrogen bonding, 
or electrostatic interactions. Conversely, covalent 
bonding entails forming strong chemical bonds 
between the functional groups of the MIP and the 
modified electrode surface, resulting in a more 
secure and lasting attachment. Layer-by-layer 
deposition involves the sequential deposition of 
alternating layers of oppositely charged materi-
als onto the electrode surface, providing a struc-
tured and organised platform for MIP immobili-
sation [64, 65]. 

Proper immobilisation of MIPs ensures their ori-
entation and accessibility, allowing efficient bind-
ing interactions with the target proteins. It pre-
vents random exposure or aggregation of the 
MIPs, thus maintaining their structural integrity 
and, consequently, their recognition capabilities. 
The oriented and stable MIPs on the electrode 
surface are poised to exhibit a high affinity and 
specificity toward the target proteins, enhancing 
the overall binding efficiency and sensitivity of 
the biosensing platform [66, 67]. 

In summary, meticulous surface modification and 
immobilisation of MIPs are fundamental steps in 
harnessing their potential for protein sensing 
applications. These processes contribute to the 
stability and structural integrity of MIPs, paving 
the way for particular and efficient protein 
recognition – an essential aspect in the design 
and development of advanced biosensing tech-
nologies [68, 69]. 
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Advantages of MIP-Based Electrochemical 
Sensors for Protein Detection 

Enhanced Sensitivity and Selectivity. MIP-based 
electrochemical sensors represent a ground-
breaking advancement in sensing technology, 
showcasing exceptional sensitivity and selectivi-
ty. The distinct advantage of MIPs lies in their 
ability to meticulously engineer specific and 
high-affinity binding sites during the imprinting 
process, which involves carefully selecting func-
tional monomers and cross-linkers [70]. This 
strategic selection allows for the creation a mo-
lecular framework with precisely tailored recog-
nition sites that mimic the target analyte's mo-
lecular structure. These sophisticated imprinted 
sites possess high specificity and selectivity, en-
suring optimal binding affinity for the target 
molecules, even in complex sample matrices [71]. 

MIP-based electrochemical sensors' precise and 
deliberate design involves intricate steps, includ-
ing forming a template-analyte complex, 
polymerisation, and subsequent template re-
moval, leaving behind complementary binding 
sites [72]. The resulting MIPs boast an impres-
sive level of molecular recognition, enabling 
them to selectively capture the target analytes, 
even amidst many potentially interfering com-
pounds. This targeted selectivity significantly 
minimises false positives and negatives, enhanc-
ing the accuracy and reliability of the sensor's 
output [73]. 

MIP-based electrochemical sensors find exten-
sive use in practical applications across various 
fields. In environmental monitoring, these sen-
sors detect pollutants, toxins, and heavy metals 
in air, water, and soil samples. Their outstanding 
selectivity ensures precise measurements, allow-
ing for timely and informed environmental man-
agement and preservation decision-making [74]. 
Moreover, these sensors are vital in medical di-
agnostics, facilitating the early detection of bi-
omarkers associated with various diseases, such 
as cancer, diabetes, and cardiovascular disorders. 
The tailored imprinting process enables the sen-
sors to identify subtle changes in analyte concen-
trations, aiding in early intervention and im-
proved patient outcomes [75]. 

Furthermore, MIP-based electrochemical sensors 
play a pivotal role in the pharmaceutical indus-
try, assisting in drug development, quality con-
trol, and pharmacokinetic studies. The high-
affinity binding sites allow for accurate quantifi-
cation of pharmaceutical compounds in complex 

matrices, ensuring compliance with regulatory 
standards and guaranteeing the safety and effica-
cy of medicinal products [76, 77]. As technology 
evolves, ongoing research and advancements in 
molecular imprinting techniques promise even 
greater precision and efficiency in designing MIP-
based electrochemical sensors, further propelling 
their application and impact across diverse scien-
tific and industrial domains [78, 79]. 

Potential for Miniaturization and Portability. The 
advent of these sophisticated sensors, designed 
with a focus on miniaturisation and precision, 
heralds a transformative wave in medical diag-
nostics. Their compact form factor and efficiency 
empower healthcare professionals to perform 
tests at the bedside, in rural or underserved are-
as, and even in resource-constrained environ-
ments. This decentralisation of diagnostic capa-
bilities ensures quicker results, enabling imme-
diate intervention and personalised patient care 
[80–83]. 

In a scenario where time is of the essence, such 
as during a medical emergency or disease out-
break, these sensors prove invaluable. A 
healthcare worker can swiftly obtain vital pro-
tein-level data without needing a specialised la-
boratory, leading to timely diagnoses and tai-
lored treatment strategies. Furthermore, these 
sensors' ease of use and rapid results make them 
indispensable in the arsenal against emerging 
infectious diseases and other health crises [84]. 

Beyond healthcare, these sensors offer game-
changing potential in environmental monitoring. 
They can be deployed in various locations, in-
cluding remote ecosystems or urban centres, 
providing real-time monitoring of protein mark-
ers relevant to ecological health. This real-time 
data collection not only aids in detecting envi-
ronmental pollutants but also supports research 
and policy decisions to preserve our ecosystems 
and public health [85, 86]. 

As research continues to refine and expand the 
capabilities of these sensors, we anticipate a cas-
cade of innovations. These innovations could in-
clude enhanced multiplexing capabilities, allow-
ing for the simultaneous detection of a broader 
range of proteins, thus amplifying the scope and 
applications of these sensors. Integrating these 
advanced sensors in diagnostics epitomises a 
new paradigm in healthcare and scientific ad-
vancements, promising a brighter and more effi-
cient future [85–87]. 
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Applications and Future Prospects. MIP-based 
electrochemical sensors have showcased sub-
stantial promise across a spectrum of crucial ap-
plications, underpinning pivotal areas such as 
clinical diagnostics, environmental monitoring, 
and food safety – their potential lies in their abil-
ity to detect specific target molecules with high 
sensitivity and precision selectively. In clinical 
diagnostics, MIP-based sensors show promise for 
revolutionising disease detection by enabling 
multi-target detection, allowing for a compre-
hensive analysis of biomarkers associated with 
various diseases. This capability is crucial for ear-
ly disease identification and monitoring complex 
conditions, enhancing the effectiveness and effi-
ciency of healthcare systems [88]. 

In environmental monitoring, MIP-based electro-
chemical sensors demonstrate their versatility by 
enabling the detection of pollutants, toxins, and 
hazardous substances in air, water, and soil. 
Their high selectivity allows for precise meas-
urements, aiding in enforcing environmental 
regulations and policies. Moreover, the potential 
integration of these sensors with remote moni-
toring systems can provide real-time data, facili-
tating rapid response and mitigation strategies in 
environmental emergencies [89]. 

In the context of food safety, MIP-based electro-
chemical sensors offer a reliable means to detect 
contaminants, pollutants, and pathogens in food 
products. This is essential for maintaining food 
quality and safety standards ensuring consumer 
well-being. With the advancements in nanotech-
nology, these sensors could become even more 
sensitive and selective, paving the way for better 
traceability and control throughout the food sup-
ply chain [90, 91]. 

Future advancements in MIP-based electrochem-
ical sensors are anticipated to drive their capabil-
ities further. Multi-target detection, where a sin-
gle sensor can detect multiple analytes simulta-
neously, is an area of active research and holds 
immense promise for enhancing sensing efficien-
cy and reducing overall costs. Real-time monitor-
ing capabilities will evolve, enabling continuous 
data collection and analysis, thereby supporting 
timely decision-making and intervention [92-93]. 

Integrating MIP-based electrochemical sensors 
with emerging technologies such as wearable 
devices is a frontier with great potential. This in-
tegration could lead to wearable sensors capable 
of real-time monitoring of various biomarkers, 
providing individuals with personalised health 

insights and enabling proactive healthcare man-
agement. The resulting data could be seamlessly 
integrated into healthcare systems, empowering 
individuals and healthcare professionals with a 
comprehensive view of health status and trends 
[92, 93]. 

In summary, the trajectory of MIP-based electro-
chemical sensors is on the cusp of a transforma-
tive phase, moving towards a more sophisticated, 
integrated, and impactful future. These sensors 
are set to play a pivotal role in revolutionising 
how we perceive and interact with critical as-
pects of our lives, health, environment, and over-
all well-being. 

Protein detection through MIP-based 
electrochemical sensors 

Monomer and template mixture. The develop-
ment of MIP for the electrochemical sensing of 
proteins has been achieved through several 
methods, such as in situ bulk polymerisation of 
monomer-template mixtures andol-gel; precipi-
tation, emulsion and suspension chaining of 
monomers [94]. Although each of these ap-
proaches targets specific goals, such as improved 
electrostatic interactions between templates and 
the MIP, it is acknowledged that the susceptibility 
of proteins to denaturation upon sudden shifts of 
pH and temperature hinders some polymerisa-
tion strategies [95, 96]. Therefore, several au-
thors relied on the bulk electro-polymerisation of 
monomer-template mixtures to assemble MIPs 
for protein electroanalysis to keep the conforma-
tional integrity of peptide chains [97]. 

Figure 1 showcases the basic outline of bulk 
polymerisation of a monomer-template mixture 
on the surface of an electrode. 

 

 

Figure 1 – Schematic of the bulk polymerisation of a 
monomer-template mixture 

A – wherein the embedding of the protein template is 
promoted by the polymerisation of monomers (or-
ange); 
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B – followed by the removal of the template, thereby 
yielding the cavities 

C – the protein structure is lysozyme, stored under 
the code 4LZM at the Protein Data Bank. 

 

The versatility of bulk electro-polymerisation al-
lows this method to be used in the facile modifi-
cation of working electrodes. Several electrode 
platforms based on carbon and gold were proven 
modifiable through this technology. For instance, 
in a particularly recent outreach, a screen-
printed carbon electrode was quickly and relia-
bly modified through bulk electro-
polymerisation with pyrrole as functional mon-
omer and interleukin-6 as template, thence yield-
ing a sensor with a meagre limit of detection of 
0.02 pg ml-1 [98]. Similarly, other authors used a 
screen-printed gold electrode which had its sur-
face modified by bulk electro-polymerisation 
with phenol and human epidermal growth factor 
to develop an MIP-based electrochemical sensor 
for breast cancer, which yielded a detection limit 
that rivalled that of standard techniques, being 
the sensibility of the sensor of 1.6 ng l-1 [99]. 

Nonetheless, the success of bulk electro-
polymerisation in protein electroanalysis is at-
tributed to the possibility of crafting and tuning 
the sensitivity and selectivity of sensors by opti-
mising the electrostatic interactions between the 
MIP and the template. In this regard, it has been 
reported that the biomimetic properties of MIP 
allow interaction sites that mimic the behaviour 
of natural ligand-macromolecule systems, there-
by involving Van der Walls and π-π stacking in-
teractions [100]. These hydrophobic sites seal off 
water molecules in the interaction site and lead 
to a solventless environment of low dielectric 
constant, which promotes a strong bond effect 
[100], such as showcased in a recently published 
MIP-based sensor for prostate-specific antigen 
that achieved an optimal equilibrium dissociation 
constant of about 1.02 ± 0.54 10-14 mol l-1. This 
sensor yielded a detection limit that surpassed 
the golden standard methods for this cancer bi-
omarker, reaching as low as 3.0 10-8 ng ml-1 

[101]. At the same time, the exploitation of elec-
trostatic interactions between MIP-template was 
used to craft highly sensible sensors for cancer-
related inflammatory biomarkers such as inter-
leukin-8. In a particularly recent outreach, this 
biomarker was determined through a poly (3,4-
ethylenedioxythiophene) polystyrene sulfonate/ 

4-aminothiophenol/ eriochrome black T ensem-
ble, which led to a limit of detection of 1.5 pmol l-

1 [102]. 

Notwithstanding, bulk electro-polymerisation is 
known to have limitations regarding the imprint-
ing of more significant and less flexible proteins 
due to the difficulty in controlling the orientation 
of the template during MIP formation, which, 
therefore, can also impair selectivity and sensibil-
ity for sensing applications [103]. It is known that 
binding sites for protein recognition occur in de-
fined contact points which cover surfaces be-
tween 500 and 3500 Å2 [100]. In this regard, 
more homogenous binding sites in the MIP in-
crease the contact area, decreasing the free ener-
gy change by a measurement unit, culminating in 
stronger interactions and higher stability [100]. 
As such, alternative methods like surface im-
printing have been used to improve the selectivi-
ty and sensibility of MIP-sensors for protein de-
tection to address the need to establish more 
controlled imprinting. 

Overall, bulk polymerisation is advantageous be-
cause it usually requiresess strenuous protocols 
to develop electroanalytical sensors for protein 
detection whilst yielding adequate performance 
for a wide range of templates [104]. Neverthe-
less, alternatives to bulk electro-polymerisation, 
such as surface imprinting technologies, are be-
coming more common due to the need for more 
control of the imprinting process and more selec-
tive and sensible platforms for protein electroa-
nalysis. 

Surface imprinting of proteins. The surface im-
printing approach for MIP synthesis relies on 
embedding the template on the working elec-
trode surface. This process can be achieved by 
anchoring agents that showcase terminal moie-
ties with affinity to the electrode surface and the 
template [105]. The functionalisation of elec-
trode surfaces with anchoring agents before MIP 
assembly is frequently achieved through chemo-
adsorption, with self-assembled monolayer 
(SAM) formation being the most common ap-
proach [106]. 

The anchoring of the template on the electrode 
surface allows better control of the imprinting 
process, as the template orientation can be opti-
mised according to the anchoring protocol used 
to develop the sensor. In fact, as aforementioned, 
several researchers have proven that surface im-
printing leads to more homogenous binding sites 
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[107, 108]. For instance, a recent report com-
pared the analytical performance of sensors built 
through bulk electro-polymerisation or surface 
imprinting of lysozyme with scopoletin as a 
monomer. The results evidenced that the surface 
functionalisation with the template before MIP 
assembly led to an increase in the imprinting fac-
tor of almost 3-fold, thereby leading to a more 
reliable quantification [109]. 

The most common material for surface imprint-
ing in MIP-sensor development is gold due to the 
possibility of spontaneous SAM formation, which 
leads to simpler surface modification protocols 
and more straightforward manufacturing of 
highly sensible sensing platforms. For instance, a 
recent work reported the facile anchoring of 
SARS-CoV-2 nucleoprotein onto a thin-film-based 
gold electrode through a self-assembled 4-amino 
thiophenol monolayer, thereby yielding a meagre 
limit of detection of 15 fmol l-1 [110]. 

On the other hand, although not providing spon-
taneous monolayer formation, carbon materials 
have also been used in the surface imprinting of 
proteins by exploiting π-π stacking interactions 
between anchoring agents bearing aromatic 
moieties or by forcing the genesis of polar an-
choring sites through oxidative treatments such 
as electrochemical activation [111]. For instance, 
the surface imprinting of troponin T was report-
ed on electrodeposited polyethene blue at multi-
walled carbon nanotubes, whilst Dengue virus 
non-structural protein was surface-imprinted on 
screen-printed carbon electrodes coated with 
electrospun nanofibers of polysulfone to develop 
MIP-based electrochemical sensors for biomedi-
cal applications which yielded limits of detection 
of 0.04 pg ml-1 for troponin T and 0.30 ng ml-1 for 
Dengue virus protein, respectively [112, 113]. 

Regarding the surface imprinting of proteins on 
gold electrodes, it is well reported that anchoring 
agents bearing hydroxyl, thiol, and amino motifs 
allow the spontaneous formation of monolayers 
of conserved geometric orientation that favour 
biosensing design. For instance, a recent out-
reach described the quick and easy functionalisa-
tion of gold electrodes with prostate-specific an-
tigen, followed by the polymerisation of dopa-
mine for MIP formation. The resulting electro-
chemical sensor was very sensible, with a detec-
tion limitf 1.0 pg ml-1, and showcased a highly 
ordered topology, which contributed to an opti-

mal selectivity towards the antigenic analyte 
[114]. 

The affinity of selected functional groups to gold 
surfaces allowed researchers to immobilise pro-
teins onto outer layers of electrode materials, 
promote the in vitro carbamylation of amino acid 
residues, and provide antifouling interfaces for 
MIP-based electrochemical biosensors [115]. 
Nonetheless, the versatile assembly of SAMs on 
gold electrodes for surface imprinting has also 
given rise to multi-analyte point-of-care biosen-
sors for healthcare applications, such as the con-
comitant use of prostate-specific antigen and 
myoglobin as surface imprinted templates for 
poly-acrylamide MIP assembly in a dual-sensing 
impedimetric biosensor; leading to detection lim-
its of 5.40 pg ml-1 and 0.83 ng ml−1, respective-
ly [116]. 

Concerning the length of SAM-forming anchoring 
agents, it has been shown that short-chained 
SAM-forming units allowed the development of 
highly sensible biosensors for the detection of 
peptides such as oxytocin, whose anchoring on a 
gold electrode surface was mediated by allyl 
mercaptan, followed by MIP synthesis through 2-
hydroxyethyl methacrylate-methacryloyl amido-
glutamic acid; which yielded the sensor with a 
limit of detection of 0.0030 ng ml-1 [117]. Never-
theless, the use of lengthier-chained thiol-bearing 
residues has also been reported to produce relia-
ble sensors, as evidenced by the use of 11-
mercaptoundecanoic in many sensing platforms, 
as well as the immobilisation of double-cysteine-
modified peptide nanofilms onto gold surfaces 
for neuron-specific enolase imprinting on poly-
scopoletin-based MIP, which yielded a detection 
limit of 0.25 μmol l-1 [118]. 

Overall, surface imprinting technology in protein 
electroanalysis is conditioned by the intrinsic fea-
tures of the electrode surface and those of the 
anchoring agent and the template. Therefore, the 
appropriate protocol must consider the surface 
material, the chemical structure and topology of 
the anchoring agent, and their compatibility with 
the template. Nevertheless, overly bulky tem-
plates may hinder the application of surface im-
printing for whole-protein sensing, which led to 
the development of alternative imprinting ap-
proaches such as epitope imprinting. 

Epitope Imprinting. The advance of imprinting 
techniques in biosensor development allowed 
researchers to standardise the topology of tem-
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plated cavities to tune sensor selectivity better 
and bypass the intrinsic limitations of whole pro-
tein imprinting. This, in turn, resulted in the pos-
sibility of developing precise sensors by solely 
imprinting the recognition motifs of proteins, 
known as epitopes, onto polymer struc-
tures [119]. 

The process of epitope imprinting for MIP-based 
electrochemical sensors has been extensively ex-
ploited in literature to use only the recognition 
sites of proteins as pseudo-templates. This by-
passes the hindrances of whole protein imprint-
ing due to bulkiness and the use of short and sta-
ble oligopeptide chains for imprinting purpos-
es [120]. 

Figure 2 depicts how epitope imprinting can se-
lectively detect proteins through their recogni-
tion motifs. 

 

 

Figure 2 – Schematic of epitope imprinting technique, 
wherein the epitope is imprinted in the polymer (or-
ange) A and then removed B. After that, recognising 
peptides and proteins (blue sphere) is feasible 
through rebinding the epitope motif C. The epitope 
structure depicted is the human immunodeficiency 
virus epitope scaffold, which is stored under the code 
3LHP at the Protein Data Bank 

 

Epitopes can be obtained through their extrac-
tion and isolation from their biological source 
and faster synthetic approaches, which produce 
only the peptide chain required for biosensor de-
velopment instead of the whole protein analyte 
[121]. Moreover, owing to their shorter length 
than entire proteins, epitopes have predictable 
primary and/or secondary conformation, unlike 
complete proteins' complex coiled tertiary struc-
tures whose recognition sites may not be ade-
quately exposed for molecular imprinting appli-
cations [122]. 

Nonetheless, epitope imprinting has allowed the 
development of tailored MIP-based sensors for 
considerably rare or hard-to-obtain biomarkers 

and bypassing the imprinting hindrances of 
whole proteins attributed to size and conforma-
tional flexibility [123]. In this sense, even when 
taking into consideration that the contact area 
required for low-energy binding of whole pro-
teins to receptor cavities ranges between 500-
3500 Å2 as previously commented[100], the bind-
ing of epitopes comprised of oligopeptide chains, 
short α-helixes and β-strands often exhibit opti-
mal values bellow 2000 Å2, thence contributing 
to their acknowledged selectivity[120]. Further-
more, given the sheer diversity of recognition 
motifs such as peptides, glycans, monosaccha-
rides, His and FLAG-tags, this technology is up-
and-coming for biosensing applications [124]. 

Considering the exposed nature of the binding 
sites of epitopes and the possibility of achieving 
optimal electrostatic interactions between these 
small templates and MIPs, some researchers 
have exploited this technology to gain very low 
dissociation constants in protein electroanalysis. 
For instance, in a recent report, epitopes of hu-
man atrial natriuretic peptide underwent detec-
tion through a MIP-sensor with a dissociation 
constant as low as 5.3 μmol l-1, thereby suggest-
ing outstanding binding affinity and highlighting 
the possibility of using epitope imprinting for 
enhancing the sensor performance [125]. On the 
other hand, it must be noted that oligopeptides 
accounting for up to 30 amino acid units may not 
be compatible with all polymerisation strategies, 
and many epitope chains are known to undergo 
aggregation in aqueous environments. What 
must also be considered when using these bio-
materials in molecular imprinting technologies 
[120, 122]. 

Their use in crafting sensible and selective MIP-
based sensors for electroanalysis has been re-
ported in several fields, ranging from healthcare 
to foodstuff quality control. For instance, in a re-
cent report, ovalbumin was imprinted on a gold 
nanoparticle-coated carbon screen-printed elec-
trode, followed by dopamine electro-
polymerisation. The resulting sensor yielded a 
meagre detection limit of 10.76 nmol l-1, reaching 
a sensibility level of .46 parts per million in wine 
samples [126]. Other authors also achieved shal-
low detection limits by imprinting cytochrome c 
epitope on poly-3-aminopropyltriethoxysilane; 
which determinedinute concentrations of this 
biomarker (i.e., 3.6 ng ml−1). Nonetheless, these 
detection levels were among the lowest reported 
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in the literature, which highlights the effective-
ness of epitope imprinting in several applica-
tions [127]. 

Literature states that the imprinting of epitopes 
can be achieved through grafted or constrained 
approaches since grafted methodologies are of-
ten more reported in developing electrochemical 
immunosensors, the straightforward embedding 
of epitopes onto electrode surfaces [128]. Grafted 
epitope imprinting follows the direct modifica-
tion of the electrode surfaces with the epitope 
through direct chemisorption or anchoring 
agents such as SAM-forming units, followed by 
MIP formation and template removal [128]. 

On the other hand, constraint epitope imprinting 
requires the immobilisation of the template on a 
matrix, followed by MIP formation and removal 
of both template and matrix. Roving the sub-
strate with the template yields MIP nanoparti-
cles, which can be employed in electrochemical 
sensing using surface-functionalisation proto-
cols [120]. This technology has been used to craft 
MIP nanoparticles that dramatically enhance the 
analytical performance of immunosensors, and is 
a promising approach in protein electroanaly-
sis [129]. For instance, a recent report show-
cased the use of cysteine-modified epitopes of 
neuron-specific enolase as templates in the syn-
thesis of MIP nanoparticles onto gold nanoparti-
cles, thereby yielding an electrochemical sensor 
with an imprinting factor of 4.2 and a detection 

range in the picogram level of 25–4000 pg mL-1 

[130]. 

Although epitopes may have limitations for mo-
lecular imprinting applications due to possible 
compatibility issues with solvents and particular 
morphology, this technology is undeniably an 
intelligent approach to tackle molecular imprint-
ing while avoiding the drawbacks of whole-
protein imprinting. 

 

CONCLUSIONS 

Molecularly imprinted polymer-based electro-
chemical methods have emerged as a powerful 
tool for precise protein detection. The amalgama-
tion of molecular imprinting and electrochemical 
transduction provides a versatile platform with 
exceptional sensitivity, selectivity, and potential 
for miniaturisation. Future advancements in this 
field promise to revolutionise biosensing tech-
nologies and foster applications in diverse do-
mains, ultimately contributing to enhanced 
healthcare, environmental sustainability, and 
food security. Further research and development 
in this burgeoning field are imperative to unlock 
the full potential of MIP-based electrochemical 
sensors in protein detection. 
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