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The occurrence of missing observations is nearly unavoidable in longitudi-
nal studies where repeated measurements are taken over time on the same
subject who may miss appointments or drop out during the study period.
In this article, we use the Gaussian estimating objective function to esti-
mate the regression and correlation parameters and handle missing data
using multiple imputation. The estimation of these parameters is carried
out simultaneously using the iterative Newton-Raphson algorithm and the
expectation-maximization algorithm. These ideas are implemented using two
real data sets and both algorithms showed comparable results with respect
to the standard errors of the parameters of interest.
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1 Introduction

Longitudinal studies are prevalent in many areas including biological, medical and so-
cial studies where subjects are measured repeatedly over time. In addition, modeling
the covariance matrix and handling missing data are among the most challenging prob-
lems that may encounter such analysis. The basic goal is to model and describe the
mean response as a function of time as well as other related explanatory variables in the
presence of missing values. One of the common techniques adopted for estimating the
regression and covariance parameters is the Gaussian estimation (GE) that requires no
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distributional assumptions. It uses the normal log-likelihood as the estimation objective
function without assuming the data to be normally distributed. The GE procedure has
been shown to have good properties in a number of applications. For example, Crowder
(1985) showed by simulation that a Gaussian estimate of the correlation parameter of
equi-correlated clustered binary data has high efficiency. In another direction, Chaganty
and Shults (1999) proposed their own approach to estimate the mean and correlation
parameters based on a specific objective function that ensure both estimators to be unbi-
ased. GE was introduced and discussed in several articles to estimate the mean response
and correlation parameters ((Crowder, 2001); (Al-Rawwash, 2005a) and (Al-Rawwash
and Pourahmadi, 2006)). In this work, we use the Gaussian function as an objective
function for the estimation of the regression, correlation and dispersion parameters and
attempt to obtain the minimizers of the Gaussian function with respect to the parame-
ters of interest. The idea will handle all types of data sets even when the observations are
not normally distributed. Ignoring the correlation structure and parameters may cause
a severe loss of efficiency. It is vital to model the correlation among the measurements
in time series, spatial data and longitudinal data which is considered as significant as
modeling the mean ((Diggle et al., 1994); (Seif and Rawwash, 2006) and (Elashoff et al.,
2016)).
The problem of missing observations while collecting data sets is common in clinical

trials, biological studies in addition to many research areas including panel data and
longitudinal data studies. The loss of information due to the missing values is crucial
and it is unacceptable in certain cases to ignore such problems. One of the methods
used to treat the missing values in longitudinal data analysis is the case deletion which
basically allows the analyst to drop the individual records completely from analysis once
we notice the missing values in that record. This method may work well if the sample
size is large and dropping one individual’s record will be insignificant. The framework
for missing data, introduced by Rubin (2004), consists of three missing data mechanisms
that describe the relationships between measured variables and the probability of missing
data: missing completely at random (MCAR), missing at random (MAR) and missing
not at random (MNAR). MCAR is very strict and uncommon in research while MAR
assumes that the missing values depend on the observed values which makes it a realis-
tic and flexible assumption. It was reported that, under certain circumstances, missing
data may cause some bias and thereby increasing the chance of misleading inferences
about changes in the mean response ((Rubin, 2004)). Many imputation techniques have
been proposed to compensate for the nonresponse in surveys and to handle the miss-
ing values problem in clinical trials. Bootstrap technique was also proposed to treat
the nonresponse and missing values cases by using the bootstrap sample as if they are
the original sample values ((Shao and Sitter, 1996)). Many sample-based imputation
techniques commonly used in the literature including mean imputation, last observa-
tion carried forward, multiple imputation (see (Rubin, 2004) and (Raghunathan, 2015)).
Eventually dealing with missing or incomplete data is a common problem in many areas
of applied statistics and it is common to handle the missing values in the study rather
than excluding any case that shows some missing values. The imputation of the missing
values has been studied extensively in the literature and researchers concluded that the
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multiple imputation method handles the missing values better than other imputation
techniques. The multiple imputation is one of the most common methods used to over-
come this problem ((Rubin, 2004) and (Li et al., 2015)). In another direction, Garcia
et al. (2012) proposed a data driven and graphical method to handle the missing values
problem and they incorporated the EM algorithm in the analysis to obtain the estimates
of the mean and covariance parameters.

In this article, data analysis will be conducted to investigate the efficiency of the GE
approach compared to other methods of estimation in the presence of missing data. The
EMmethod is proved to be efficient in the presence of missing values and it will iteratively
obtain the maximum likelihood estimates of the parameter of interest ((Dempster et al.,
1977) and (Lindstrom and Bates, 1988)). The iterative Newton-Raphson method as well
as the EM method will be used in this article to obtain the parameters estimates in the
presence of missing values.

The paper is structured as follows. In section 2, we setup the notation and review
some estimation approaches using the framework of GE. In section 3, we discuss the
model, the estimation equations as well as the imputation techniques in the longitudinal
data setup. The methodology will be illustrated using two real data sets in section 4 and
a comparison will be conducted using different strategies. Finally, section 5 provides a
discussion on the merits of imputation and modeling of correlation matrix in longitudinal
data analysis.

2 The objective function

To setup the notation, we assume having m different subjects each of which has ni re-
peated measurements. Also, we consider Yi = (yi1, yi2, . . . , yini)

′ to be the measurements
for the ith subject taken at times ti = (ti1, ti2, . . . , tini)

′ where i = 1, 2, . . . ,m and yij
is the repeated measurement of subject i on time j. Moreover, we assume that there is
a covariate Xij = (xij1, xij2, . . . , xijp)

′ associated with each repeated measurement. In
this article, no distributional assumptions are available except for those about the first
two moments where µi(β) = (µi1, µi2, . . . , µini)

′ is the expected value of Yi and Σi is the
(ni × ni) covariance matrix of Yi. In certain cases where ni = n, the data set will be
balanced and there will be no missing values.

The mean vector µ = µ(β) = (µ1, · · · , µn)
′ will be modeled assuming a relation

with the associated covariate via a link function such that g(µi) = Xiβ where g is
an invertible link function, β = (β1, · · · , βp)′ is a (p × 1) unknown regression param-
eters of primary interest. The variance of the repeated measurements is modeled as
var(yj) = ϕjv(µj), j = 1, 2, · · · , n, where v(·) is a known variance function and ϕ1, · · · , ϕn

are dispersion parameters that does not depend on β. Note that the variance of yj is
the product of two components; v(µj) expresses the part of the variance functionally
dependent on the mean µj , while ϕj expresses the variability beyond the mean. The
correlation matrix R = R(α) is introduced to model the correlations between the mea-
surements on the same subject assuming that the correlation and regression parameters
(α, β) will not depend on each other, where α = (α1, α2, . . . , αq) is a (q × 1) vector of
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unknown correlation parameters. The correlation structure might be selected from a
wide range of possible structures and models available in the literature including some
well-known parsimonious structures such as the autoregressive, moving average and com-
pound symmetry. In addition, data driven techniques that involves nonparametric or
Bayesian approaches are considered as strong competitors to be used while finding the
best way to model the variances and correlation in repeated measures scenarios ((Al-
Rawwash, 2005b) and (Al-Rawwash and Pourahmadi, 2013)). Graphical methods such
as regressograms introduced by Pourahmadi (1999) may be considered as another way
to model the components of the covariance matrix via meaningful and unconstraint set
of parameters. This is, in fact, a generalization of the Yule’s correlogram for station-
ary data setup. The covariance matrix of Yi will be decomposed in order to view the
correlation matrix, the variance components and the dispersion parameters as separate
components which will be modeled based on the associated covariates. We write the
covariance matrix as follows:

Σi = V
1
2
i RV

1
2
i . (1)

where Vi = diag (ϕ1v(µ1), · · · , ϕnv(µn)), i = 1, 2, . . . ,m.

To obtain the estimates of the parameters (β, α, ϕ), we minimize the Gaussian ob-
jective function proposed by Al-Rawwash and Pourahmadi (2006) with respect to the
parameters of interest. The objective function is

G(β, α, ϕ|Y ) =

m∑
i=1

[log|V
1
2
i RV

1
2
i |+ Zi

′(β)R−1Zi(β)], (2)

where Zi(β) = V
− 1

2
i (Yi − µi(β)), i = 1, 2, . . . ,m.

3 Estimation

Many researchers proposed estimating the parameters of interest via different approach
including but not limited to parametric, nonparametric methods and entropy approach
(see (Diggle et al., 1994); (Al-Rawwash, 2005a); (Al-Rawwash, 2005b); (Al-Rawwash and
Al-Nasser, 2011) and (Al-Rawwash and Al-Nasser, 2013)). The problem of obtaining the
minimizers of the Gaussian objective function in a closed form solution is not attainable
for general choice of correlation structure and unfortunately there is no analytical solu-
tion of this objective function. Consequently, numerical computation is usually used to
carry out the estimation process. This section paves the way to obtain (numerically) the
minimizers of this objective function and obtain the parameters estimates without any
distributional assumptions except for the first two moments. Two well known methods
will be adopted to iteratively reach to the minimizers of the objective function, namely
the Newton-Raphson method and the EM algorithm. These methods will be compared
via two data sets analysis and the results will be presented in the sequel.
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3.1 The Newton-Raphson Algorithm

The iterative Newton-Raphson algorithm is one of the most common methods used to
find the optimizers of the Gaussian objective function. Although the differentiation
of this objective function with respect to β is complicated since β appears in Vi(β),
Al-Rawwash and Pourahmadi (2006) proposed avoiding this problem by assuming that

V
−1/2
i does not depend on β. Accordingly, differentiating the objective function with

respect to the parameters of interest give the following:

D′(β)V −1/2(β)R̃−1(α)Z = 0, (3)

∂

∂α
log |R̃(α)|+ Z ′∂R̃

−1(α)

∂α
Z = 0. (4)

where D(β) = diag(D1, D2, · · · , Dm), Di = Di(β) =
∂µi

∂β′ for 1 ≤ i ≤ m, R̃ = Im ⊗R(α),

V (β) = diag(V1(β), V2(β), · · · , Vm(β)), Z = (Z ′
1, . . . , Z

′
m)′ and ⊗ is the kronecker prod-

uct. Following Al-Rawwash (2001) the Newton-Raphson iterative algorithm is carried
out as follows:
Step 1: Select and initial value of β say β̃.

Step 2: Evaluate the following quantities at β̃: Ṽi = Vi(β̃), µ̃i = µi(β̃), Z̃i = Ṽ
−1/2
i (Yi−

µ̃i) and D̃i = Di(β̃).
Step 3: Solve equation (4) for α̃,

Step 4: Evaluate R̃ = R(α̃) and Σ̃i = Ṽ
1/2
i R̃Ṽ

1/2
i for i = 1, 2, . . . ,m and construct the

covariance matrix Σ̃ = diag(Σ̃1, Σ̃2, · · · , Σ̃m) as well as D(µ̃) and µ(β̃).
Step 5 Update the value β̂ using β̂ = β̃ + (D̃′Σ̃−1D̃)−1D̃′Σ̃−1(Y − µ̃) and the iterative
process will stop once β̂ ≃ β̃.
The least squares estimates β̃ = (X ′X)−1X ′Y of β is a good candidate for the initial
value of β, while estimates of α must be chosen so that the positive definiteness of the
correlation matrix is guaranteed. The estimate of ϕ depends on the GE results of β and α
obtained using Newton-Raphson iterative method which is reduced to ϕ̂ = 1

mn

∑m
i=1 Ẑ

′
iẐi

3.2 The EM algorithm

Following the notation setup in Section 2, we assume that Yi,ob is the vector of observed
repeated measurements of the ith subject and the missing values for this subject will be
denoted by Yi,ms. Accordingly, we define Ỹi

′
= (Y ′

i,ob, Y
′
i,ms) where the missing values on

certain occasions occur when the ith subject fails to report a response or the researcher
miss the record on that occasion. Hence, the mean vector will be given as µ̃′ = (µ′

ob, µ
′
ms)

and the covariance matrix will be partitioned as follows

Σ̃ =

(
Σob,ob Σob,ms

Σ′
ob,ms Σms,ms

)
,

and we use equation (1) to explain the decomposition of the covariance matrix into
the correlation matrix and the variance components. The EM algorithm ((Dempster
et al., 1977)) eventually leads to a competitive estimates of the parameters in spite
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of the slow rate of convergence. The score equations might be used (iteratively) to
obtain the estimates of the parameters noting that this procedure will eventually lead
to global convergence. Accordingly, the algorithm aims at finding the minimizers of
the GE which is equivalent to finding the zeros of (3) and (4). This works initially
by setting the correlation and dispersion parameters fixed and update the regression
parameter by minimizing the objective function with respect to β. The iterative EM
algorithm proceeds by updating the correlation and dispersion parameters depending
on the negative value of conditional expectation of objective function(G) assuming the
observed data to be given and depending on the updated parameter β which is denoted
by Q. The E-step allows us to write:

−Q = E(G(β, α, ϕ)|Y1,ob, · · · , Ym,ob) =
m∑
i=1

E[log|V
1
2
i RV

1
2
i |+ Z ′

i(β)R
−1Zi(β)], (5)

where Zi(β) = V
− 1

2
i (Yi − µi(β)) and V,R and µ are obtained based on the observed

values.
The M-step involves updating the parameters α and ϕ so that the conditional expectation
of objective function given the observed values is maximized at every iteration. The M-
step allows us to choose the correlation and dispersion parameters so that the quantity
Q increases, consequently we switch back to updating the parameter β and so on until
the parameters of interest converge.

Generally, we start with an initial value that is usually considered to be the least
square estimate β̂(1) = (X ′X)−1X ′Ỹ while the starting point of Σ is usually selected to
be the sample covariance matrix of the observed response. Finally we keep updating the
values of parameters of interest and the algorithm will stop when |β̂(k+1) − β̂(k)| ≈ 0.
It is noteworthy that the speed of convergence of the EM algorithm depends on the
quantity of the missing information in the data set. ((Dempster et al., 1977) and (Taisir
and Islam, 2014)). Moreover, Herzet et al. (2006) pointed out that the Newton-Raphson
method converges faster in some cases compared to the EM algorithm.

3.3 Imputation methods

As mention earlier, missing values may be encountered in real life data sets and re-
searchers introduced many ideas and solutions to overcome this problem, however im-
putation may act better if we use a proper method to replace the missing value. Some
imputation methods such as mean imputation and last observation carried forward may
produce biased results even though it may result in a small standard error of the param-
eter estimator. Among a variety of methods that have been developed in the literature
to overcome the missing values problem, we use in this article the multiple imputation
approach along with the Newton-Raphson method and the EM algorithm as iterative
methods to help finding the parameters estimates and overcome such kind of situations
((Rubin, 2004); (Li et al., 2015) and (Huque et al., 2018)). Multiple imputation basically
handles the missing values (Yms) by allowing different plausible values of these missing
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values to create imputed data sets and appropriately combining results obtained from
these setups. Once we create multiple copies of the data set with a proper imputed
values inserted to treat the missing values, we obtain the estimates of the parameters by
finding the minimizers of the objective function (2) using each of the imputed data sets
via Newton-Raphson method. The parameters estimates and their standard errors are
combined and formulated using Rubin’s rules ((Little and Rubin, 2019)). Multiple im-
putation method assume that observations are missed at random (MAR) and researchers
have reported some drawbacks of the imputation method, however it is still considered
as an important and popular method to treat the missing values problem.

4 Data analysis

In this section, two data sets will be considered to investigate the effect of missing data
and the imputation strategies explained earlier. Potthoff and Roy (1964) considered a
data set that consists of 27 children in a dental study where each individual was subject
to four measurements. The second data set is reported by Koziol et al. (1981) to study
the effects of three different immunotherapy regimens on colon carcinoma in mice. The
experiment was applied on 30 mice that have been randomly divided into three groups of
10 mice with eleven repeated measurement knowing that missing values occurred during
the data collection.

Table 1: Estimation results for the dental data set using different methods

GEE C-QLS GE

Est. St.Error Est. St.Error Est. St.Error

β1 16.5946 1.2788 16.5931 1.2781 16.5925 1.2778

β2 17.3213 0.7780 17.3215 0.7776 17.3216 0.7774

γ1 0.7965 0.1050 0.7695 0.1049 0.7696 0.1049

γ2 0.4838 0.0629 0.4837 0.0629 0.4837 0.0629

ϕ 4.9107 4.9106 4.9105

α 0.5997 0.6105 0.6082

4.1 Dental data

The data set consists of 27 subjects in a dental study (11 girls and 16 boys). The
response of the ith subject measured on the jth occasion (denoted by yij) is the distance
from center of pituitary to pterygomaxillary fissure. Each child has been examined and
the results are recorded at the ages of 8, 10, 12, and 14.
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We consider the model presented by Al-Rawwash and Pourahmadi (2013) which can
be written as

µ̃ij = β1xi1 + β2xi2 + γ1xi1 ∗ xi3 + γ2xi2 ∗ xi3, j = 1, 2, 3, 4 and i = 1, 2, · · · , 27. (6)

where xi1, xi2 are indicator variables for boys and girls, respectively. The covariate
xi3 is the subject’s age at the jth measurement time. The estimate of (β, α, ϕ) are
computed using Newton-Raphson method assuming working correlation structure to be
an autoregressive structure of order 1 (AR(1)). Al-Rawwash and Pourahmadi (2013)
reported the estimation results including the parameters estimates and their standard
error using three estimation strategies namely generalized estimation equations (GEE),
corrected quasi least squares method (C-QLS), and the GE method. Table 1 shows
the estimates of the regression parameters and their standard errors and we notice the
results using the three methods to be in a reasonable agreement.

Table 2: Estimated parameters and standard errors in the presence of missing data

Parameter 25% missing data Multiple imputation EM algorithm

β̂1 17.1006 16.3030 16.3952

(SE) 1.5004 1.1056 1.1095

β̂2 17.3799 15.8890 16.9125

(SE) 0.9339 0.7578 0.7557

γ̂1 0.7109 0.8054 0.7928

(SE) 0.1456 0.0962 0.0962

γ̂2 0.4772 0.6485 0.4388

(SE) 0.0862 0.0576 0.0579

ϕ̂ 4.9905 5.3395 5.0147

α̂ 0.5630 0.6051 0.5932

In order to investigate the effect of the previously mentioned optimization algorithms
and missing values treatments on the parameters estimates as well as their standard
errors, we will reanalyze the dental data set after randomly deleting 25% from the
observation and compare the imputation-based results using only the GE method. Table
2 shows the parameters estimates and the standard errors based on model (6) assuming
the AR(1) correlation structure and depending on the previously mentioned imputation
techniques. We notice that the standard error gets larger when we drop some of the
existing data elements while the multiple imputation technique and the Newton-Raphson
method reduce the standard errors of the parameters estimates. Also, the standard errors
of the parameter estimates using the EM method are comparable to those obtained
via multiple imputation method. The number of missing observation may affect the



418 Al-Rawwash and Alquran

speed of the algorithm and the rate of convergence during the optimization procedure
((Dempster et al., 1977) and (Herzet et al., 2006)). The results in Tables 1 and 2 show
the effectiveness of the algorithms used to treat the missing values problem.
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Figure 1: Log-tumor size of the colon carcinoma mice over time

4.2 Mice tumor data

In a study to test the efficiency of three therapies against colon carcinoma in mice, Koziol
et al. (1981) reported the study of immunotherapy regimens on colon carcinoma where
thirty mice have been injected with mouse colon carcinoma cells. They divided the 30
mice randomly into three equal groups such that repeated measurements were taken for
the size of the tumor on unequally spaced time span as follows, days 7, 11, 12, 13, 14,
15, 17, 18, 19, 20 and 21. Unfortunately, some mice did not survive until the end of
the experiment causing around 9% missing values in the final data set and therefore
contributed only partial information of growth study. The tumor size of the 26th mouse
was decreasing with time which is considered illogical and therefore removed from the
experiment. Figure 1 shows the tumor size measured over time and a general pattern
of the tumor size over time is clearly noticeable. It is noteworthy to mention that we
used the log-transformation of the tumor size to make patterns more visible. In fact,
the transformation is given as follows:
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y∗ij = ln(yij + 1), i = 1, 2, · · · , 29, j = 1, 2, · · · , ni.

Table 3: Estimated parameters and standard errors for the mice data

Parameter Incomplete data Multiple imputation EM algorithm

β̂1 1.6947 2.1386 2.1877

(SE) 0.1899 0.1699 0.1691

β̂2 0.2441 0.2127 0.2093

(SE) 0.0106 0.0105 0.0103

ϕ̂ 0.3936 0.2947 0.3154

α̂ 0.5106 0.5109 0.5110

Al-Rawwash (2005b) and the references therein discussed modeling longitudinal data
that exhibit some missing values. He analyzed the mice data set using parametric and
nonparametric methods. The components of the covariance matrix were estimated via
the variogram and variances using kernel smoothing. In this article, we treat the missing
value problem using the aforementioned methods and we suggest fitting the data set
using the model

y∗ij = β0 + β1t+ ϵij ,

where i = 1, 2, · · · , 29 and j = 1, 2, · · · , ni and t = 1, 2, · · · , 11. In addition, we assume
the correlation structure to be the first order autoregressive (AR) with parameter α
and we proceed in the estimation process using GE after repairing the missing values
through the imputation techniques. In addition, we carry out the estimation techniques
assuming that the data is missing completely at random (MCAR). In Table 3, we present
the estimates of the parameters as well as the standard errors for the mice data set using
the incomplete data in addition to the imputation techniques discussed earlier to adjust
the missing values assuming AR(1) correlation structures. The results in Table 3 indicate
that the imputation methods enhanced the estimation process and the standard errors
are smaller compared to the incomplete data set situation. Treating the missing values
and reaching to the parameters estimates is shown in Table 3 and the results therein
support the significance of the imputation strategies and both approaches perform well.

5 Discussion

We have indicated that the GE discussed by Al-Rawwash and Pourahmadi (2006) is a
practical method since it reduces to the maximum likelihood estimation in the presence
of the normal distribution assumption. It also subsumes the recent improvements of
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GEE designed to estimate the mean and covariance parameters efficiently. We consid-
ered treating the missing values using different imputation methods assuming the GE
approach. A first order autoregressive correlation structure is considered to handle the
correlation among the repeated measurements and to formulate the models for the mean
and correlations using two real data sets. The parsimonious correlation structure reduces
the number of parameters used to detect the correlation among the measurements in the
estimation process in order to model the specification of covariance matrices that are
closer to the unknown covariance and correlation matrices of the data. It is clear that
modeling correlation structure carefully and simultaneously with the mean usually leads
to improved model formulation and parameter estimation both for the mean and the
correlation in the presence of missing data. The Newton-Raphson method and the EM
algorithm exhibit comparable results in the presence of missing data and the standard er-
rors are comparable using both methods. The results confirm that the adopted methods
of treating the missing values are efficient choices for the incomplete data setups.
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