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Multivariate ranking problems are characterized by the need of ordering
C different items according to several different features. The multivariate
nature of these problems makes them quite challenging and flexible multi-
variate statistical techniques are therefore required. In this study we focus
on two different scenarios, where we need to rank C different populations.
Under the first scenario, preliminary knowledge about the order of the pop-
ulations is available, while under the second one no information is available.
Two solutions, based on the Nonparametric combination (NPC) technique,
are proposed to deal with these scenarios and two case studies are adopted
to facilitate the comprehension of the methods and to highlights the main
differences between the two considered multivariate ranking problems.

keywords: multivariate ranking, multivariate stochastic ordering, nonpara-
metric combination, permutation test.

1 Introduction

The term ranking problem is used to refer to a wide variety of situations characterized
by the need of ordering C different items according to one or more features and which
are quite common in many industrial fields. For example, let us consider a new prod-
uct development process and suppose that a company is interested in launching a new
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product with four different available configurations. For the product to be successful,
they essentially need to rank the configurations according to their performances in order
to understand which configurations should be prioritized. Appropriate statistical tech-
niques need therefore to be applied in such situations, so that the first ranking position
can be assigned to the item which significantly outperforms the others, the second one
to the second best item and so on. However, the performance of a product is rarely
defined in terms of a single feature or variable. The term multivariate ranking problem
refers to such situations, in which multiple relevant features need to be considered to
determine a global ranking of the items.
Given the multivariate nature of the problem, multivariate statistical techniques are

required to solve it. Let us consider the basic scenario where we need to order N units
within a sample according to V different features. When V = 1, a ranking can be simply
derived by computing

∑N
i=1 I(Xj ≥ Xi) for each unit j. When V > 1, the task becomes

more challenging.
Several visual techniques have been proposed to deal with multivariate scenarios.

Ordination methods (Syms, 2008), which are widely adopted in ecology, have been pro-
posed to display units along a reduced number (commonly lower than 4) of dimensions
(or axes), representing the existing differences between items. The basic idea is to sum-
marize multivariate data by proposing an adequate low-dimensional ordination space
onto which data are projected. The inspection of the resulting plot allows us to study
the relative positions of units in a reduced space. Principal Component Analysis, Prin-
cipal Coordinate Analysis, and Multidimensional Scaling are some popular ordination
techniques (Gower, 1987).
According to Li and Liu (2004), the notion of data depth can also be used to introduce

a natural center-outward ordering of the units in a multivariate sample. A depth value
indeed measure the centrality or the outlyingness of an observed unit x ∈ RV with
respect to its underlying multivariate distribution F. It is therefore possible to associate
a depth value to each sample point and order units accordingly. Data depth is also used
to construct multivariate nonparametric tests (Li and Liu, 2004; Chenouri and Small,
2012; Chenouri et al., 2020).
A different and quite challenging ranking task consists in ordering multivariate pop-

ulations. Corain et al. (2017) widely investigated the problem and identified several
different families of statistical methods proposed to deal with it and among them:

� multiple comparison procedures,

� stochastic ordering techniques,

� selection and ranking methods,

� ranking models.

In this paper we decided to focus on multiple comparison procedures and stochastic or-
dering techniques and highlight similarities and dissimilarities between these approaches.
In particular, we show how multiple comparison procedures rely on the idea of perform-
ing all the possible pair-wise comparisons between populations in order to identify their
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existing order, while stochastic ordering techniques are intended to test a specific or-
der suggested by some a-priori knowledge. In both cases however comparisons between
multivariate samples need to be performed and for this reason the adoption of the Non-
parametric combination (NPC) methodology (Pesarin and Salmaso, 2010; Corain and
Salmaso, 2013; Corain et al., 2014) represents a suitable solution as we are going to show
in this paper.
Section 2 is dedicated to the introduction of the stochastic ordering problem and

the related NPC-based solution. Then, Section 3 provides a solution to the generic
multivariate ranking problem (when no preliminary knowledge is available), based on
the conduction of multiple comparisons through the NPC methodology. Section 4 is
dedicated to a couple of case studies, where the previously introduced techniques are
adopted. Finally, Section 5 is devoted to conclusions and final remarks.

2 Stochastic ordering

Stochastic ordering refers to the specific scenario in which we are interested in evaluating
the existing order among C different populations, but prior-knowledge is available. In
other words, a specific stochastic order is considered and tested by means of appropriate
statistical techniques.
Let us consider two multivariate variables X1 and X2 with distribution function F1

and F2 respectively. Let V be the number of components of each multivariate variable.

X1 stochastically dominates X2, written X1
d
> X2, if and only if E[g(X1)] > E[g(X2)

for each increasing function g : RV → R such that the expectation E[·] exists. It follows
that X1 stochastically dominates X2 if and only if F1v(x) ≤ F2v(x),∀x ∈ R, v = 1, . . . , V
and ∃I : F1v(x) < F2v(x), x ∈ I for at least one v (Scarsini and Shaked, 1990; Corain
et al., 2017).

Let us now consider C multivariate variables Xc, c = 1, . . . , C. In a stochastic ordering
problem we are interested in investigating the following system of hypotheses:{

H0 : F1 = F2 = . . . = F(C−1) = FC

H1 : F1 ≤ F2 ≤ . . . ≤ F(C−1) ≤ FC
and at least one strict inequality, (1)

where Fj ≤ Fk means that Xj stochastically dominates Xk for each j < k. It is worth
noting that H0 implies exchangeability of the data between groups. Under H0 the C-
level treatment yields no effects, so leaving unaffected the distributions (i.e. Fc = F, c =
1, . . . , C), whereas under H1 it can yield non-decreasing non-negative effects.

For the univariate scenario (i.e. V = 1), several different solutions have been proposed
in the literature, such as the Jonckheere-Terpstra test (Jonckheere, 1954; Terpstra, 1952)
and Cuzick’s test (Cuzick, 1985).

The first one is a non-parametric test which involves the conduction of multiple pair-
wise comparisons using the Mann-Whitney test statistic:

MWjk =

nj∑
i=1

nk∑
l=1

[I(Xji < Xkl) + 0.5I(Xji = Xkl)], j, k = 1, . . . , C, j ̸= k
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where I(·) is 1 if condition · is satisfied and 0 otherwise, and nj and nk are the sample sizes

of group j and k respectively. T JT =
∑(C−1)

j=1

∑C
k=j+1MWjk is finally used to evaluate

the stochastic ordering problem, adopting critical values provided in the literature for
small sample sizes and a normal approximation for large samples (Jonckheere, 1954).

Cuzick’s test (Cuzick, 1985) firstly assign scores wc to the C groups according to
their ordering: 1 to the first group, 2 to the second, and so on. The test statistic
TC =

∑C
c=1wcSc is then retrieved, where Sc is the sum of the ranks calculated within

group c. Finally, the test statistic is commonly standardized so that the distribution of
ZC = (TC − µC)/σC can be approximated to a standard normal distribution.

Finally, permutation-based solutions involving the Nonparametric combination (NPC)
methodology (Pesarin and Salmaso, 2010) have been proposed in the literature. The
most appealing characteristic of these solutions is that they can be easily extended to
multivariate scenarios, introducing an appropriate decomposition of the hypotheses and
a further combination step.

Let us therefore focus directly on the comparison of multivariate populations. A two-
step decomposition must be applied, with the first split of the hypotheses which is made
in order to test each of the V different variables marginally (see system of hypotheses 2)
and then the second split which is performed to recreate the conditions of a two-sample
problem (see system of hypotheses 3).

{
H0 :

⋂V
v=1H0v =

⋂V
v=1[F1v = F2v = · · · = F(C−1)v = FCv]

H1 :
⋃V
v=1H1v =

⋃V
v=1[F1v ≥ F2v ≥ · · · ≥ F(C−1)v ≥ FCv]

(2)

{
Hv0 :

⋂C
c=2H0cv =

⋂C
c=2[(F1v = · · · = F(c−1)v) = (Fcv = · · · = FCv)]

Hv1 :
⋃C
c=2H1cv =

⋃C
c=2[(F1v = · · · = F(c−1)v) > (Fcv = · · · = FCv)]

(3)

For each sub-hypothesis H0cv, the first (c − 1) and the last (C − c + 1) samples are
pooled into two new samples Zc1v and Zc2v of size N and M respectively, so that a basic
two-sample problem can be addressed:

Hnew
0cv : Zc1v

d
= Zc2v

Hnew
1cv : Zc1v

d
< Zc2v.

Each sub-hypothesis Hnew
0cv is tested marginally by means of appropriate permutation

tests. It is worth noting that the NPC methodology, due to its conditioning on the whole
sample data X considered as a set of sufficient statistics for the underlying common V -
dimensional distribution F, allows us to implicitly take into account dependency between
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the V components of the multivariate outcome, permuting rows of the matrix:

Zc111 Zc112 . . . Zc11(V−1) Zc11V

. . . . . . . . . . . . . . .

ZcN11 ZcN12 . . . ZcN1(V−1) ZcN1V

Zc121 Zc122 . . . Zc12(V−1) Zc12V

. . . . . . . . . . . . . . .

ZcM21 ZcM22 . . . ZcM2(V−1) ZcM2V


A two-step combination is then performed. Firstly, for each v = 1, · · · , V , the p-values

related to the C − 1 sub-problems {H0cv vs H1cv}, c = 2, . . . , C are combined using an
appropriate combining function ψ(·). Secondly, the V combined p-value vectors just
obtained are combined using a combining function θ(·), in order to achieve a global p-
value λ′′ which can be compared with the desired significance level α to address system
of hypotheses 1.
The main steps of this approach are summarized by the following algorithm:

1. For c = 2, . . . , C:

a) Pool the first (c−1) and the last (C−c+1) samples. Zc1 and Zc2 are retrieved.

b) Apply the test statistic to the pooled sample Zc = {Zc1,Zc2}. The vector
To = T(Zc) is retrieved.

c) For b = 1, . . . , B, retrieve Tb∗ = T(Zc∗), where Zc∗ is random permutation of
Zc. Tb∗, b = 1, . . . , B is a random sampling from the permutation V -variate
distribution of T.

d) Estimate marginal p-values as λ̂cv = L̂v(T
o
v |Z⌋

/Zc) =
[ 12+

∑
b I(T b∗

v ≥T o
v )]

(B+1) , v =
1, . . . , V and simulate the permutation distributions

λ̂r∗cv = L̂v(T
r∗
v |Z⌋

/Zc) =
[ 12+

∑
b I(T b∗

v ≥T r∗
v )]

(B+1) , v = 1, . . . , V, r = 1, . . . , B.

2. Compute the combined second-order tests as T oψv = ψ(λ̂1v, . . . , λ̂Cv), v = 1, . . . , V

and simulate their permutation distribution as T b∗ψv = ψ(λ̂b∗1v, . . . , λ̂
b∗
Cv), b = 1, . . . , B,

v = 1, . . . , V .

3. Calculate the combined p-values as λ̂ψv =
∑

b I(T b∗ψ ≥ T oψ)/B, v = 1, . . . , V and sim-

ulate their distribution as λ̂rψv =
∑

b I(T b∗ψ ≥ T r∗ψ )/B, r = 1, . . . , B, v = 1, . . . , V .

4. Achieve the third-order test as T oθ = θ(λ̂ψ1 , . . . , λ̂
ψ
V ) and simulate its permutation

distribution as T b∗θ = θ(λ̂bψ1 , . . . , λ̂bψV ), b = 1, . . . , B.

5. Compute the global p-value as λ̂θ =
∑

b I(T b∗θ ≥ T oθ )/B.

When applying such a procedure, the user needs to make three fundamental choices
of:
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� the test statistics Tv(·), v = 1, . . . , V

� the first combining function ψ(·)

� the second combining function θ(·)

With regard to the test statistic, a popular solution is the modified Anderson-Darling
test statistic proposed in Arboretti et al. (2021) and Pesarin and Salmaso (2010). It is
important to highlight that the combining functions must have the following properties:

� be non-increasing in each argument

� attain their supremum when at least one of their arguments attains 0

� provide a critical value which is finite and strictly smaller than the aforementioned
supremum value

� have convex rejection regions (Birnbaum, 1954; Birnbaum et al., 1955)

Widely investigated combining functions satisfying all the previous conditions are in
particular Fisher’s −2 ·

∑
v log(λv) and Tippett’s max1≤v≤V (1 − λv) where λv, v =

1, . . . , V is the vector of p-values to be combined.

3 Ranking of multiple populations

In this section we focus on a scenario in which we are interested in ranking C dif-
ferent multivariate populations with respect to V marginal variables when C samples
X1, ..,XC are drawn from C populations and no preliminary knowledge on underlying
distribution F is available. In other words, we want to estimate the relative ordering
of each population when compared among all other populations which is defined as

rj = r(X) = 1+
∑

k ̸=j I(Xj
d
< Xk), j = 1, . . . , C where I(·) is 1 if condition · is satisfied

and 0 otherwise. This definition (Gupta and Panchapakesan, 2002) of rank recalls the
concept of stochastic dominance and is based on the idea of pairwise counting how many
populations are stochastically larger than that a specific population. An alternative

definition proposed in Corain et al. (2017) is rj = 1 + #{(C −
∑

k ̸=j I(Xj
d
> Xk)) >

(C −
∑

k ̸=j′ I(Xj′
d
> Xk)), j

′ = 1, . . . , C, j ̸= j′}, j = 1, . . . , C, where #{·} counts the
number of times · is true. In this case we simply pairwise count how many populations
are stochastically smaller than a given population. The same ranking is achieved inde-
pendently of the chosen definition of rank, but the first one involves moving from from
the best to the worst population in a downward fashion while the second one from worst
to best in an upward fashion. To distinguish the two different definitions, we are now
going to use rDj for the first one and rUj for the second one.
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Let us consider a dummy example. Let Γ be the matrix in which each cell Γjk contains

the result of I(Xj
d
> Xk) and be: • 1 1

0 • 0

0 0 •

 .
It is immediate to see that rDj are essentially found as 1 plus the column-wise sums of

Γ, so that rD1 = 1 + 0 + 0, rD2 = 1 + 1 + 0, and rD3 = 1 + 1 + 0 (bullets are ignored).
The downward ranking is therefore (1, 2, 2). On the other hand, according to Corain
et al. (2017) rUj can be estimated by subtracting the row-wise sums of Γ to C, so that

rD1 = 3 − 1 − 1, rD2 = 3 − 0 − 0, and rD3 = 3 − 0 − 0, and the upward ranking is again
(1, 2, 2).

Multivariate directional pairwise comparisons need to be performed to estimate pop-

ulation ranks and in particular to assess I(Xj
d
< Xk), j ̸= k, j, k = 1 . . . , C. It is worth

noting that in this case we do not have any a priori knowledge about the real ordering
among the C multivariate populations, differently from the typical stochastic ordering
problem.

For each pair (Xj ,Xk), we need therefore to evaluate the following system of hypothe-
ses: H

(j,k)
0 : Xj

d
= Xk

H
(j,k)
1 : Xj

d
> Xk

j, k = 1, . . . , C, j ̸= k (4)

To do that, the NPC methodology could again represent a useful solution. We start
by decomposing system of hypotheses 4 as follows:H

(j,k)
0v :

⋂V
v=1(Xjv

d
= Xkv)

H
(j,k)
1v :

⋃V
v=1(Xjv

d
> Xkv)

j, k = 1, . . . , C, j ̸= k, v = 1, . . . , V (5)

For each pair (Xj ,Xk), we then apply the following algorithm:

1. Apply the test statistic to the pooled sample Z = {Xj ,Xk} and achieve the vector
To = T(Z).

2. For b = 1, . . . , B, retrieve Tb∗ = T(Z∗), where Z∗ is random permutation of Z,
so that a random sampling from the permutation V -variate distribution of T is
obtained.

3. Compute λ̂v =
[ 12+

∑
b I(T b∗

v ≥T o
v )]

(B+1) , v = 1, . . . , V and simulate their permutation

distribution λ̂r∗v =
[ 12+

∑
b I(T b∗

v ≥T r∗
v )]

(B+1) , v = 1, . . . , V, r = 1, . . . , B.

4. Combine p-values to achieve a second-order test T oψ = ψ(λ̂1, . . . , λ̂V ) and simulate

its permutation distribution as T b∗ψ = ψ(λ̂b∗1 , . . . , λ̂
b∗
V ), b = 1, . . . , B.
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5. Achieve the global p-value as λ̂(j,k) =
∑

b I(T b∗ψ ≥ T oψ)/B.

Again, key aspects are the choices of appropriate test statistics and combining function.

A matrix of p-values Λ can therefore be achieved:

Λ =


• λ̂(1,2) . . . λ̂(1,C−1) λ̂(1,C)

λ̂(2,1) • . . . λ̂(2,C−1) λ̂(2,C)

. . . . . . . . . . . . . . .

λ̂(C−1,1) λ̂(C−1,2) . . . • λ̂(C−1,C)

λ̂(C,1) λ̂(C,2) . . . λ̂(C,C−1) •


where λ̂(j,k) refers to the alternative hypothesis Xj

d
> Xk

Given that C × (C − 1) one-sided pairwise comparisons are performed via p-value
statistics, we need to properly control the global type I error. The multiplicity issue
indeed occurs in case of simultaneous testing when multiple statistical tests are jointly
considered. In particular, we need to apply appropriate techniques to control the family-
wise error rate, i.e. the probability of committing at least one type I error (Shaffer, 1995;
Pesarin and Salmaso, 2010). To this aim several methods have been proposed in the
literature, which are commonly grouped into single step (such as Bonferroni’s) and step-
down procedures (such as Holm’s) (Ge et al., 2003).

After applying one of these procedures, a matrix of adjusted p-values Λadj can be
achieved. Let α be the chosen significance level, then a matrix of significances Ω can be
computed:

Ω =


• ω(1,2) . . . ω(1,C−1) ω(1,C)

ω(2,1) • . . . ω(2,C−1) ω(2,C)

. . . . . . . . . . . . . . .

ω(C−1,1) ω(C−1,2) . . . • ω(C−1,C)

ω(C,1) ω(C,2) . . . ω(C,C−1) •


where ω(j,k) = I(λ̂(j,k) ≤ α

2 ). This matrix synthesize results from all multivariate direc-
tional pairwise comparisons and can be used to estimate rankings.

The downward ranks rDj can indeed be estimated by r̂Dj = 1+
∑C

k=1 ω
(k,j), j = 1, . . . , C

and the upward ranks rUj by r̂Uj = 1 +#{(C −
∑C

k=1 ω
(j,k)) > (C −

∑C
k=1 ω

(j′,k)), j′ =
1, . . . , C, j ̸= j′}, j = 1, . . . , C. These estimates are achieved by counting how many
times the jth population is significantly stochastically smaller (for downward ranks) or
larger (for upward ranks) than the other populations at the chosen significance level.

Although r̂Dj and r̂Uj lead to the same ranking under many scenarios, sometimes the
so called intransitivity issue occurs (Corain et al., 2017; Arboretti et al., 2014), with
possible inconsistencies arising from pairwise results which may pose serious problems
in the ranking estimation. This results in r̂Dj and r̂Uj not matching and to overcome this

issue Corain et al. (2017) suggests a revised ranking estimator r̄j = 1 +#{(r̂Dj + r̂Uj ) >

(r̂Dk + r̂Uk ), k = 1, . . . , C, j ̸= k}, j = 1, . . . , C, which essentially is an average rank from
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the ranks derived from the countings of the significant observed stochastic inferiorities
and superiorities.
r̄j can therefore be used to solve the problem of ranking C different multivariate

populations addressed in this section.

4 Explanatory case studies

A couple of case studies are considered in order to show potential applications of the
aforementioned techniques through real-world ranking problems.

4.1 Case 1

The first case refers to the analysis of customer satisfaction data. It is well known that
packaging plays a fundamental role in protecting and preserving the quality of the food
or beverage stored within it. Packages used to store wine can be made of different
materials such as glass, plastic, aluminum, and plastic covered paper. In this study we
wanted to evaluate customer satisfaction towards four types of packaging (i.e. Prod1,
Prod2, Prod3, Prod4), using a specific type of wine.
Several individuals were asked to answer an online questionnaire, with 517 of them

accepting this task. A selection-biased sample was therefore collected and the related
inferences are to be taken with some cautions. They were thereafter asked to rate a prod-
uct (randomly chosen among the four possible ones) from 1 (= bad) to 5 (= extremely
good) in terms of several key aspects. After receiving the product, the participant tested
and evaluated it and nine different key performance indicators (KPIs) were considered,
including purchase intention, overall quality, and specific evaluations of the color, the
flavor, and the taste of the wine. The company was then interested in ordering the four
types of packaging according to their global performances and this was non other than
a multivariate ranking problem.
To answer to this request, we decided to rely on the aforementioned NPC-based ap-

proach. We decided to adopt the modified Anderson-Darling test statistic to perform

each pair-wise comparison Xjv
d
> Xkv, j, k = 1, . . . , C, j ̸= k, v = . . . , V :

T (j,k)
v =

∑N

i=1
[F̂kv(Xikv)− F̂jv(Xijv)]/{F̄v(Ziv)[1− F̄v(Ziv)]}

1
2

where Zv = {Xjv, Xkv} is the pooled sample of size N = nj + nk, nj and nk are
sample sizes, F̂jv(t) =

∑nj

i=1 I(Xijv ≤ t)/nj , F̂kv(t) =
∑nk

i=1 I(Xikv ≤ t)/nk, F̄v(t) =∑N
i=1 I(Ziv ≤ t)/N , and t ∈ R1. Fisher’s combining function was used, the Bonferroni-

Holm-Shaffer method (Shaffer, 1986) was adopted for multiplicity adjustment and the
number of permutations B was set to 2000.
The descriptive analysis showed that Prod1 appears to be substantially outperformed

by the others (see Figure 1). Additionally, Prod2 appears to have slightly better perfor-
mances than the remaining ones.
The adoption of the NPC-based ranking procedure provided us with the p-values re-

ported in Table 1 and the adoption of the Bonferroni-Holm-Shaffer adjustment produced
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the adjusted p-values in Table 2. We can see that Prod2 significantly outperforms all the
other products, while Prod3 and Prod4 perform better than Prod1. Estimating rankings
according to the aforementioned three different approaches (see Table 3), we can see that
they all agree and assign the first position to Prod2, the second position to Prod3 and
Prod4, and the last position to Prod1. In other words, the adoption of the multivariate
ranking procedure introduced in Section 3 allowed us to order the four types of packaging
according to their overall performances from best to worst. The company was therefore
able to choose the best innovative packaging to be launched into the marked.

Xj7 Xj8 Xj9

Xj4 Xj5 Xj6

Xj1 Xj2 Xj3

1

2

3

4

5

1

2

3

4

5
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2

3

4

5

V
a

lu
e

Product

Prod1

Prod2

Prod3

Prod4

Figure 1: Box-plots: case 1.

Supposing then that the order XProd1

d
≤ XProd3

d
≤ XProd4

d
≤ XProd2 (with at least one

strict inequality) was known a-priori, we applied the NPC-based procedure for stochastic
ordering problems.

To this purpose, we used again the aforementioned Anderson-Darling test statistic
and a number of permutation equal to 2000. The achieved p-value was smaller than
0.001 and therefore much smaller than the chosen significance level 0.05. Evidence was
found in favor of the proposed stochastic order.

It is worth noting that in this case we know that at least a strict inequality (i.e.

Xi
d
< Xj) holds, but we cannot exactly state which of the inequalities are strict. The
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Table 1: P -values table: case 1.

Prod1 Prod2 Prod3 Prod4

Prod1 • 1.000 1.000 1.000

Prod2 < 0.001 • 0.001 0.005

Prod3 < 0.001 0.996 • 0.457

Prod4 < 0.001 0.996 0.588 •

Table 2: Adjusted p-values table: case 1.

Prod1 Prod2 Prod3 Prod4

Prod1 • 1.000 1.000 1.000

Prod2 0.003 • 0.006 0.015

Prod3 0.001 0.996 • 1.000

Prod4 0.001 1.000 1.000 •

Table 3: Estimated ranking: case 1.

Prod1 Prod2 Prod3 Prod4

r̂Uj 4 1 2 2

r̂Dj 4 1 2 2

r̄j 4 1 2 2
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ranking procedure by Arboretti et al. (2014) on the other hand allowed us to describe
the existing relationships between samples in a more detailed way, showing which types
of packages were perceived in a similar way (i.e. Prod3 and Prod4) and which not.

4.2 Case 2

The second case study refers to the analysis of laboratory data. Four different formu-
lations of a pharmaceutical product were evaluated through multiple laboratory experi-
ments in terms of six different KPIs: three measures of its effectiveness on a scale from 1
(= totally ineffective) to 10 (= completely effective) and three measures of the severity
of three possible side effects on a scale from 10 (= low) to 1 (= critical) were considered.
The final data set contained twenty observations per formulation. The four formula-
tions were characterized by an increasing amount of a specific active ingredient which
was expected to have a positive impact on the global performances of the product, i.e.

X1

d
≤ X2

d
≤ X3

d
≤ X4 (with at least a strict inequality) was expected. In other words,

we had a typical stochastic ordering problem and we needed to confirm the expectations
of the company (i.e. we had a-priori knowledge about the ordering).

To test the hypothesis of interest, we decided to rely on the aforementioned NPC-based
procedure for multivariate stochastic ordering problems. Again, a modified Anderson-
Darling test statistic was adopted, so that for each of the C − 1 iterations in the first
step of the algorithm presented in Section 2 we used:

T cv =
∑N+M

i=1
[F̂ c1v(Z

c
i1v)− F̂ c2v(Z

c
i2v)]/{F̄ cv (Zciv)[1− F̄ cv (Z

c
iv)]}

1
2 ,

where c = 2, . . . , C, Zcv = {Zc1v, Zc2v} is the pooled sample of size N +M , N and M
are sample sizes, F̂ c1v(t) =

∑N
i=1 I(Zci1v ≤ t)/N , F̂ c2v(t) =

∑M
i=1 I(Zci2v ≤ t)/M , F̄ cv (t) =∑N+M

i=1 I(Zciv ≤ t)/N +M , and t ∈ R1. Fisher’s combining function was used as θ(·) and
Tippett’s as ψ(·). The number of permutations B was set to 2000. In this case we decided
to report also the partial p-values (i.e. indications about the stochastic ordering are
provided for each single KPI) and for this reason we had to address the multiplicity issue
by applying the MinP Bonferroni-Holms adjustment described in Pesarin and Salmaso
(2010).

Figure 2 appears to confirm the expected order, with Form4 (i.e. the one with the
highest amount of the active ingredient) outperforming the others. The only exception
is Xj5 for which an odd behavior can be seen.

The application of the NPC-based technique provided the partial (adjusted) and global
p-values reported in Table 4. It is possible to see that the only non-significant p-value is
λ̂ψ5,adj , confirming the different order observed for Xj5, j = 1, . . . , 5. Overall, it appears

that data support the expected X1

d
≤ X2

d
≤ X3

d
≤ X4 (with at least a strict inequality)

and the positive impact of the active ingredient of interest.

Supposing then that we had no information about the expected order, we applied
the NPC-based multivariate ranking procedure. To this purpose, we used again the
aforementioned Anderson-Darling test statistic and a number of permutation equal to
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Figure 2: Box-plots: case 2.

Table 4: P-values table: case 2 - stochastic ordering.

λ̂ψ1,adj λ̂ψ2,adj λ̂ψ3,adj λ̂ψ4,adj λ̂ψ5,adj λ̂θ

< 0.001 < 0.001 < 0.001 < 0.001 0.241 < 0.001
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Table 5: Adjusted p-values table: case 2 - multiple comparisons.

Form1 Form2 Form3 Form4

Form1 • 1.000 0.998 1.000

Form2 0.154 • 1.000 1.000

Form3 0.003 0.015 • 0.831

Form4 0.001 0.001 0.099 •

Table 6: Estimated ranking: case 2.

Form1 Form2 Form3 Form4

r̂Uj 3 3 1 1

r̂Dj 3 3 1 1

r̄j 3 3 1 1

2000. Bonferroni-Holm-Shaffer adjustment was adopted to deal with the multiplicity
issue.

Adjusted p-values related to the performed multiple comparisons are reported in Table
5. The results of the estimation of rankings according to the presented three different
approaches are displayed in Table 6. It appears that the pair of formulations with
the highest concentration of the active ingredient (i.e. Form3 and Form4) significantly
outperformed the remaining formulations, while no significant differences were detected
between Form1 and Form2 and between Form3 and Form4.

Again, the NPC-based solution to the multivariate stochastic ordering problem al-
lowed us to confirm the supposed order, but the ranking procedure allowed us to better
appreciate pair-wise differences between formulations.

5 Conclusions

Multivariate ranking refers to problems where the main interest is to assess the existing
order among C different items in terms of multiple features. This is a quite common
task which is relevant in a wide variety of fields. Multivariate ranking however is a
generic term which includes many different scenarios and in this paper we decided to
consider two of them in which populations need to be ranked, highlighting differences
and similarities.

Under the first scenario we suppose to have preliminary knowledge about the ranking
of the populations and to be interested in testing this specific stochastic order. This
is called a stochastic ordering problem and a solution based on the NPC methodology
(Pesarin and Salmaso, 2010) was proposed.

The second considered problem was characterized by the absence of a-priori informa-
tion, so that the conduction of multiple pair-wise comparisons was required. To solve this
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challenge, we suggested the adoption of the NPC-based solution proposed by Arboretti
et al. (2014) and widely described in Corain et al. (2017).

The differences between these two multivariate ranking problems were then highlighted
by means of two different case studies. The analysis of real-world data allowed us to
better illustrate the proposed procedures and show how the use of the NPC methodology
should be considered to deal with such multivariate problems.
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