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1 Introduction

The generalized inverted exponential distribution (GIED) was first proposed by Abouam-
moh and Alshingiti (2009) using a shape parameter in inverted exponential distribution.
The IED is a continuous transformation of the reciprocal of exponential distribution.
Specifically, if a random variable X follows an exponential distribution, then X = 1

Y
follows an IED with c.d.f. and p.d.f. given by

F (y) = e−λ/y, y > 0, λ > 0

f(y) =
λ

y2
e−λ/y, y > 0, λ > 0,

respectively. The IED was investigated by many authors, see for example, Prakash
(2012) and Singh et al. (2013). A random variable X of the GIED with shape parameter
α and scale parameter λ has the following expressions of c.d.f. and p.d.f.

F (x) = 1− (1− e−λ/x)α, x > 0, α > 0, λ > 0 (1)

f(x) =
αλ

x2
e−λ/x (1− e−λ/x)α−1, x > 0, α > 0, λ > 0, (2)

respectively. It can be seen that the hazard function of GIED distribution

f(x)

1− F (x)
=

αλ

x2(eλ/x − 1)

can be increasing or decreasing, depending on the shape parameter, α. Abouammoh and
Alshingiti (2009) observed that in many situations this distribution may provide a better
fit than gamma, Weibull, and generalized exponential distributions. GIED can be used
in many applications, for instance; in horse racing, supermarkets queue, sea currents,
wind speeds (see Kotz and Nadarajah (2000)).
For more properties an applications of GIED, one can refer to Krishna and Kumar

(2013), Dey and Dey (2014a), Dey and Dey (2014b), Singh et al. (2015), and Dube et al.
(2016).
The problem of estimating the parameters of GIED under different sampling schemes

was considered by many authors. Krishna et al. (2017) estimated of the stress–strength
parameter P (Y < X) based on progressively first-failure-censored samples, when X and
Y both follow two-parameter generalized inverted exponential distribution with different
and unknown shape and scale parameters. Dey and Nassar (2020) estimated the param-
eters of generalized inverted exponential distribution under constant stress accelerated
life test.Hassan et al. (2021) studied the estimation of the reliability of stress–strength re-
liability model via median ranked set sampling (MRSS) when the stress and the strength
variables are modeled by two independent but not identically distributed random vari-
ables from the generalized inverted exponential distributions. Garg and Kumar (2021)
dealt with the problem of estimation of the stress-strength reliability P (Y < X) when X
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and Y both have independent generalized inverted exponential distributions with differ-
ent shape and common scale parameters based on the hybrid censored samples. Kumari
et al. (2022) computed the classical and Bayesian estimates of multicomponent stress-
strength reliability from generalized inverted exponential lifetime distributions under a
progressively first failure censoring scheme.
In life-testing and reliability studies, the most common censoring schemes are type I

and type II censoring. However, it is of great importance in some of these studies that
a specific fraction of individuals may be removed from the experiment at each of several
ordered failure times (see Cheng et al. (2010)). Clearly, type I and type II schemes do
not have the ability of allowing removal of units at points other than the terminal point
of the experiment. Aggarwala (2001) proposed the progressive type I interval censored
scheme which can be described as follows. Assume n units are put on test at time t0 = 0
and each unit is followed until it fails or is censored. Units are observed at preset times
t1 < t2 < · · · < tm, where m is the pre-specified time to the end of the experiment. That
is, the time axis is partitioned into intervals Ij = [tj−1, tj), j = 1, · · · ,m, with tm, is the
time at which the experimentation ends. Let dj denote the number of units which are
failed in Ij and rj denote the number of units which are removed from experiment at
time tj . In specific, if n units are put on test at time t0 and d1 are observed at time t1,
at this time r1 unfailed units are removed from experiment leaving n − d1 − r1 items
still present. At time t2 when another d2 items have failed, r2 of the unfailed items
are removed from experiment leaving n − d1 − r1 − d2 − r2 items still present and so
on. The experiment terminates after m number of repetitions. Finally, at time tm, the
number of removed unfailed items is rm. Note that n =

∑m
i=1(ri + di). Figure 1 shows a

representation of a progressive type I interval censored.

t0 t1 t2 · · · tm−1 tm

I1 I2 Im

d1 d2 dm

r1 r2 rm−1 rm

Time

No. of failures

No. of removals

Figure 1: Progressive type I Interval Censored Scheme

Hence our observations consist of D = {(ti, di, ri); i = 1, · · · , m}. The numbers of re-
moval items r1, · · · , rm are expressed as nonnegative integers. Alternatively, the removal
numbers may determined by pre-specified percentages of the remaining surviving units
as follows. Let p = (p1, p2, · · · , pm) be pre-specified percentages with pm = 1. At time
ti, ⌈pi × (number of surviving units at time ti)⌉ from the remaining surviving units are
removed from the experiment where ⌈w⌉ denotes the largest integer, which is smaller
than or equal to w.

In this paper, we utilized different estimation procedures for estimating the parame-
ters of GIED under progressive type I interval censored. The remainder of this paper is
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organized as follows. In Section 2, we obtain the maximum likelihood function estima-
tors (MLEs) of the unknown parameters α and λ. The standard errors for the MLEs and
approximated 95% confidence intervals for the parameters are computed as well using
the inverse of the observed information matrix. Further, computing the MLE using EM
algorithm and stochastic EM algorithm are also investigated. Nonparametric bootstrap
percentile technique is utilized to construct 95% confidence intervals of the unknown
parameters. Midpoint approximation method, the probability plot and method of mo-
ments are studied in Sections 3, 4 and 5, respectively. A Monte Carlo simulation study is
presented in Section 6, which provides a comparison of all the estimation procedures in
terms of their biases, mean square errors, estimated standard errors, sampled standard
error, lengths of 95% confidence intervals and empirical 95% coverage probabilities. An
analysis of real data set is presented in Section 7. Inspection times and optimal censoring
schemes are studied in Sections 8 and Section 9, respectively. Finally, a conclusion is
given in Section 10.

2 Maximum likelihood estimation

Based on the observed progressive type I interval censored sample D = {(ti, di, ri); i =
1, · · · ,m}, the likelihood function of α and λ can be written as

L(α, λ|D) ∝
m∏
i=1

[F (ti)− F (ti−1)]
di [1− F (ti)]

ri

=
m∏
i=1

[(1− e−λ/ti−1)α − (1− e−λ/ti)α]di(1− e−λ/ti)αri , (3)

with corresponding log-likelihood function

l(α, λ|D) ∝
m∑
i=1

di log
(
(1− e−λ/ti−1)α − (1− e−λ/ti)α

)
+ α

m∑
i=1

ri log(1− e−λ/ti). (4)

Theorem 1 The MLEs of α and λ for α > 0 and λ > 0 exist and unique.

Proof : The detailed proof of the theorem is deferred in the appendix.

Let, for i = 1, · · · ,m,

Ai =(1− e−λ/ti−1)α − (1− e−λ/ti)α (5)

Bi =1− e−λ/ti . (6)

Then the log-likelihood (4) can be expressed as

l(α, λ|D) =

m∑
i=1

di log(Ai) + α

m∑
i=1

ri log(Bi). (7)
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The first order partial derivatives of Ai and Bi with respect to α and λ are given by

Ai,α :=
∂Ai

∂α
= (1− e−λ/ti−1)α log(1− e−λ/ti−1)− (1− e−λ/ti)α log(1− e−λ/ti) (8)

Ai,λ :=
∂Ai

∂λ
=

α

ti−1
e−λ/ti−1(1− e−λ/ti−1)α−1 − α

ti
e−λ/ti(1− e−λ/ti)α−1 (9)

Bi,λ :=
∂Bi

∂λ
=

1

ti
e−λ/ti (10)

and the second order partial derivatives are given by

Ai,αα :=
∂2Ai

∂α2
=
(
log(1− e−λ/ti−1)

)2
(1− e−λ/ti−1)α −

(
log(1− e−λ/ti)

)2
(1− e−λ/ti)α

(11)

Ai,αλ :=
∂2Ai

∂α∂λ
=

1

ti−1
e−λ/ti−1(1− e−λ/ti−1)α−1

[
1 + α log(1− e−λ/ti−1)

]
− 1

ti
e−λ/ti(1− e−λ/ti)α−1

[
1 + α log(1− e−λ/ti)

]
(12)

Ai,λλ :=
∂2Ai

∂λ2
=

α

ti−1

(α− 1

ti−1
(e−λ/ti−1)2(1− e−λ/ti−1)α−2 − 1

ti−1
e−λ/ti−1(1− e−λ/ti−1)α−1

)
−α
ti

(α− 1

ti
(e−λ/ti)2(1− e−λ/ti)α−2 − 1

ti
e−λ/ti(1− e−λ/ti)α−1

)
(13)

Bi,λλ :=
∂2Bi

∂λ2
=− 1

t2i
e−λ/ti . (14)

Hence the first and the second order partial derivatives of the log-likelihood function (7)
with respect to α and λ can be computed by

lα :=
∂l(α, λ|D)

∂α
=

m∑
i=1

di
Ai,α

Ai
+

m∑
i=1

ri log(Bi). (15)

lλ :=
∂l(α, λ|D)

∂λ
=

m∑
i=1

di
Ai,λ

Ai
+ α

m∑
i=1

ri
Bi,λ

Bi
. (16)

lαα :=
∂2l(α, λ|D)

∂α2
=

m∑
i=1

di
AiAi,αα −A2

i,α

A2
i

(17)

lαλ :=
∂2l(α, λ|D)

∂αλ
=

m∑
i=1

di
AiAi,αλ −Ai,αAi,λ

A2
i

+
m∑
i=1

ri
Bi,λ

Bi
. (18)

lλλ :=
∂2l(α, λ|D)

∂λ2
=

m∑
i=1

di
AiAi,λλ −A2

i,λ

A2
i

+ α

m∑
i=1

ri
BiBi,λλ −B2

i,λ

B2
i

. (19)

To compute the MLEs, α̂ and λ̂, of the unknown parameters, α and λ, we need to solve
the normal equations lα = 0 and lλ = 0, where lα and lλ are given in (15) and (16). It
can be seen that there is no closed from of the MLEs. Hence, to obtain the MLEs of α
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and λ, we may use a simple numerical procedure like Newton-Raphson method whose
iterative equation is given by(

α(k+1)

λ(k+1)

)
=

(
α(k)

λ(k)

)
−

(
lαα lαλ

lλα lλλ

)−1(
lα

lλ

)∣∣∣∣∣
α=α(k),λ=λ(k)

or equivalently

α(k+1) =α(k) − lαlλλ − lλlαλ
lααlλλ − l2αλ

∣∣∣
α=α(k),λ=λ(k)

(20)

λ(k+1) =λ(k) − lλlαα − lαlαλ
lααlλλ − l2αλ

∣∣∣
α=α(k),λ=λ(k)

, (21)

where α(k) and λ(k) are the values of α and λ at k-th iteration and lα, lλ, lαα, lαλ and lλλ
are given in (15),(16),(17),(18) and (19). The iteration process continues until conver-
gence , i.e., |α(k+1) − α(k)|+ |λ(k+1) − λ(k)| < ε, for some pre-specified ε > 0.

The standard error of the MLEs are computed using the inverse of the observed
information matrix. Hence the estimated standard error of α and λ can be calculated by
square root of the diagonal elements of the inverting of the observed information matrix
evaluated at (α̂, λ̂) as follows

se(α̂) =

√
− l̂λλ

l̂αα l̂λλ − l̂2αλ
and se(λ̂) =

√
− l̂αα

l̂αα l̂λλ − l̂2αλ
,

where l̂αα, l̂αλ and l̂λλ are given in (17),(18) and (19) with α and λ are replaced by α̂
and λ̂, respectively. The asymptotic normality of the MLE can be used to compute the
approximate confidence intervals for parameters α and λ. Therefore,100(1 − γ)% Wald
confidence intervals for λ and α are computed by

(α̂− zγ/2se(α̂), α̂+ zγ/2se(α̂)) and (λ̂− zγ/2se(λ̂), λ̂+ zγ/2se(λ̂)),

respectively, where zγ is the upper γ-th percentile of the standard normal distribution.
Next, we compute 95% confidence interval for α and λ using nonparametric percentile

bootstrap (Boot-p) method. Bootstrap methods are widely used to obtain confidence
intervals for the parameters. Boot-p method, proposed by Efron and Tibshirani (1986),
is used to construct confidence intervals for the parameters as well as the reliability and
hazard functions. To construct the Boot-p confidence interval, we follow the following
steps.

Step(1): Compute the MLEs, α̂ and λ̂, based on the original progressively type I interval
censored sample D = {(ti, di, ri); i = 1, · · · ,m}

Step(2): Based on the computed MLEs in Step(1), α̂ and β̂, generate a bootstrap
sample D∗ of size m consists of D∗ = {(ti, d∗i , r∗i ); i = 1, · · · ,m} using α̂ and λ̂.
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Step(3): Compute the MLEs, α̂∗ and β̂∗, based on the generated bootstrap sample in
Step(2).

Step(4): Repeat Step(2) and Step(3), for B times, where B is a pre-specified quantity.

Define α̂B(x) = G∗−1
α (x), where G∗

α(x)is the empirical cumulative distribution of α̂∗.
Similarly, define λ̂B(x) = G∗−1

λ (x), where G∗
λ(x) is the empirical cumulative distribution

of λ̂∗. Now, compute the approximate 100(1− γ)% bootstrap-p confidence interval of α
and λ as follows

(α̂B(γ/2), α̂B(1− γ/2)) and (λ̂B(γ/2), λ̂B(1− γ/2)),

respectively.

2.1 EM Algorithm

It can be seen that utilizing Newton-Raphson method to compute the MLEs requires
the computation of the second derivatives of the associated log-likelihood function. In
this subsection, we propose EM algorithm to avoid such computations for obtaining the
MLEs of α and λ. EM algorithm proposed by Dempster et al. (1977) is a very powerful
technique used in parameter estimation based on incomplete or missing information
data. The EM algorithm consists of two main steps; Expectation step (E-step) and
Maximization step (M-step). In E-step, we compute the conditional expectation of the
complete log-likelihood function condition on the observed values and in M-step, we
maximize the resulted function with respect to the unknown parameters. Now define
Zij , j = 1, · · · , di to represent the complete survival times within subintervals Ii =
[ti−1, ti) and define Wik, k = 1, · · · , ri to represent the complete survival times of those
withdrawn items at ti where i = 1, · · · ,m. Using Z = (Z11, · · · , Zm,dm) and W =
(W11, · · · ,Wm,rm), the complete log-likelihood function can be expressed by

lc(α, λ|Z,W) ∝
m∑
i=1

( di∑
j=1

log(f(zij)) +

ri∑
k=1

log(f(wik))
)

=n log(α) + n log(λ)− 2

m∑
i=1

di∑
j=1

log(zij)− 2

m∑
i=1

ri∑
k=1

log(wik)

− λ
m∑
i=1

di∑
j=1

(1/zij)− λ
m∑
i=1

ri∑
k=1

(1/wik)

+ (α− 1)
m∑
i=1

di∑
j=1

log(1− e−λ/zij ) + (α− 1)
m∑
i=1

ri∑
k=1

log(1− e−λ/wik).

(22)
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Now, define, for i = 1, 2, · · · ,m, the following conditional expectations

E11i(α, λ) = E(log(X)|ti−1 < X ≤ ti) =
αλ
∫ ti
ti−1

log(x)x−2e−λ/x(1− e−λ/x)α−1dx

(1− e−λ/ti−1)α − (1− e−λ/ti)α

(23)

E21i(α, λ) = E(log(X)|ti < X) =
αλ
∫∞
ti

log(x)x−2e−λx(1− e−λx)α−1dx

(1− e−λ/ti)α
(24)

E12i(α, λ) = E(X−1|ti−1 < X ≤ ti) =
αλ
∫ ti
ti−1

x−3e−λx(1− e−λx)α−1dx

(1− e−λ/ti−1)α − (1− e−λ/ti)α
(25)

E22i(α, λ) = E(X−1|ti < X) =
αλ
∫∞
ti
x−3e−λx(1− e−λx)α−1dx

(1− e−λ/ti)α
(26)

E13i(α, λ) = E(log(1− e−λ/X)|ti−1 < X ≤ ti)

=
αλ
∫ ti
ti−1

log(1− e−λ/x)x−2e−λx(1− e−λx)α−1dx

(1− e−λ/ti−1)α − (1− e−λ/ti)α
(27)

E23i(α, λ) = E(log(1− e−λ/X)|ti < X) =
αλ
∫∞
ti

log(1− e−λ/x)x−2e−λx(1− e−λx)α−1dx

(1− e−λ/ti)α
.

(28)

Then the conditional expectation of the complete log-likelihood function, lc, given the
observed values, D, can be written as

E(lc(α, λ|Z,W)|D) =n log(α) + n log(λ)− 2
m∑
i=1

diE11i(α, λ)− 2
m∑
i=1

riE21i(α, λ)

− λ
m∑
i=1

diE12i(α, λ)− λ
m∑
i=1

riE22i(α, λ) + (α− 1)
m∑
i=1

diE13i(α, λ)

+ (α− 1)
m∑
i=1

riE23i(α, λ). (29)

By computing the first partial derivatives of the log-likelihood function with respect to
the unknown parameters, α and λ, and equating the resulted equations with zero, we
get

α =− n∑m
i=1 diE13i(α, λ) +

∑m
i=1 riE23i(α, λ)

(30)

λ =
n∑m

i=1 diE12i(α, λ) +
∑m

i=1 riE22i(α, λ)
. (31)

Therefore the EM algorithm works as follows. Set initial values of α and λ as α(0) and
λ(0).

Step(i) At k-th iteration, let (α(k), λ(k)) be an estimate of (α, λ).
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Step(ii) Using the expressions (25)-(28), compute E12(α
(k), λ(k)), E22(α

(k), λ(k)),
E13(α

(k), λ(k)) and E23(α
(k), λ(k)), where α and λ are replaced by α(k) and λ(k),

respectively.

Step(iii) Compute α(k+1) and λ(k+1) using (30) and (31).

Step(iv) If |α(k+1) − α(k)| + |λ(k+1) − λ(k)| < ϵ, for some pre-specified quantity ϵ, then
set α(k+1) and λ(k+1), as the MLEs of α and β, otherwise, set k = k+ 1 and go to
Step(ii).

2.2 Stochastic EM Algorithm

The Stochastic EM (SEM) algorithm is an alternative method of the EM algorithm where
the expectation in the E-step is calculated using Monte Carlo simulations. It is useful
for the cases when the E-step is hard to calculate exactly. The idea of approximating
the E-step in EM algorithm by the Monte-Carlo technique, was first proposed by Wei
and Tanner (1990). As mentioned by Wang and Cheng (2010), the approximation have
more time-consuming. Later Diebolt and Celeux (1993) modified their idea by replacing
the E-step with stochastic step through simulation technique. For more information
about SEM, see for example, Tregouet et al. (2004), Zhang and Haenggi (2014) and
Arabi Belaghi et al. (2017).

The main idea of SEM method can be described as follows. Observe that the condi-
tional survival functions of X given a < X ≤ b can be written as

S(t|a < t ≤ b) = P (X > t|a < X ≤ b) =
S(t)− S(b)

S(a)− S(b)
. (32)

Now, we state the procedure for simulate random variate from the GIED in the interval
[a, b]. Let u ∼ U(0, 1). Observe that, by solving the expression

(1− e−λ/t)α − (1− e−λ/b)α

(1− e−λ/a)α − (1− e−λ/b)α
= u

with respect to t, we obtain

t =
−λ

log
[
1− [u

(
(1− e−λ/a)α − (1− e−λ/b)α

)
+ (1− e−λ/b)α]

1
α

] (33)

Note that, when b approaches to ∞, the above expression reduces to

t =
−λ

log
(
1−

[
u
(
(1− e−λ/a)α

)]1/α) . (34)

Now, we first generate independent di number of samples zij , i = 1, 2, · · · ,m; j =
1, · · · , di from the conditional survival function given in (32) with a and b are re-
placed by ti−1 and ti, respectively. Next, we generate ri number of samples of wij , i =
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1, 2, · · · ,m; j = 1, · · · , ri from the conditional survival function given in (32) with a is
replaced by ti. Using these simulated samples, Equations (30) and (31) reduce to

α =− n∑m
i=1

∑di
j=1 log(1− e−λ/zij ) +

∑m
i=1

∑ri
j=1 log(1− e−λ/wij )

(35)

λ =
n∑m

i=1

∑di
j=1(1/zij) +

∑m
i=1

∑ri
j=1(1/wij)

. (36)

Therefore the SEM algorithm works as follows. Set initial values of α and λ as α(0) and
λ(0).

Step(i) At k-th iteration, let (α(k), λ(k)) be the estimate of (α, λ).

Step(ii) Using the expression (33), simulate zij ≡ zij(α
(k), λ(k)), i = 1, · · · ,m; j =

1, · · · , di and using the expression (34), simulate wij ≡ wij(α
(k), λ(k)), i = 1, · · · ,m; j =

1, · · · , ri where α and λ are replaced by α(k) and λ(k), respectively.

Step(iii) Compute α(k+1) and λ(k+1) using (35) and (36).

Step(iv) If |α(k+1) − α(k)| + |λ(k+1) − λ(k)| < ϵ, for some pre-specified quantity ϵ, then
set α(k+1) and λ(k+1), as the MLEs of α and β, otherwise, set k = k+ 1 and go to
Step(ii).

2.3 Midpoint Approximation Method

In this subsection, we estimate unknown parameters of a GIED using the mid point
approximation method. The main idea of this method is to approximate the progressive
type I interval censored data by type I censored data. We assume that di number of
failures is observed at the center ai = (ti−1 + ti)/2 of i-th interval (ti−1, ti] and also ri
number of units are censored at the inspection time ti, i = 1, 2, · · · ,m. The log-likelihood
function of α and λ based the this type of observations can be written as

lm(α, λ|data) =
m∑
i=1

[
di log[f(ai)] + ri log[1− F (ti)]

]
= log(α)

m∑
i=1

di + log(λ)
m∑
i=1

di − 2
m∑
i=1

di log(ai)− λ
m∑
i=1

di/ai

+ (α− 1)
m∑
i=1

di log(1− e−λ/ai) + α
m∑
i=1

ri log(1− e−λ/ti). (37)

Subsequently, we need to solve the following system of equations to obtain the midpoint
estimates of unknown parameters

m∑
i=1

di
α

+

m∑
i=1

di log(1− e−λ/ai) +

m∑
i=1

ri log(1− e−λ/ti) = 0 (38)
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and

m∑
i=1

di
λ

−
m∑
i=1

di/ai + (α− 1)
m∑
i=1

die
−λ/ai/ai

1− e−λ/ai
+ α

m∑
i=1

rie
−λ/ti/ti

1− e−λ/ti
= 0. (39)

Likelihood Equations (38) and (39) cannot be solved analytically due to their nonlinear
nature. Here we may adopt a numerical method like Newton-Raphson method to obtain
the estimates of α and λ.

3 Estimation using Probability Plot

Let (ri, di, ti), i = 1, · · · ,m, with n =
∑m

i=1(di + ri) denote a progressive type I interval
censored sample from a GIED distribution. The cumulative distribution function at
time ti can be estimated based on this sample as

F̂ (ti) = 1−
i∏

j=1

(1− p̂j), (40)

where

p̂j =
dj

n−
∑j−1

k=0(dk + rk)
; j = 1, · · · ,m.

Estimating the parameters using probability plot method can be performed by finding
the values of α and λ that minimize the function

S =
m∑
i=1

(F (ti)− F̂ (ti))
2

=
m∑
i=1

(
1− (1− e−λ/ti)α − F̂ (ti)

)2
.

So, we need to solve the following system of equations ∂S
∂α = 0 and ∂S

∂λ = 0 where

∂S

∂α
= −2

m∑
i=1

(1− (1− e−λ/ti)α − F̂ (ti))(1− e−λ/ti)α log(1− e−λ/ti)

∂S

∂λ
= −2α

m∑
i=1

(1− (1− e−λ/ti)α − F̂ (ti))(1− e−λ/ti)α−1 1

ti
e−λ/ti .

These estimates can be computed numerically using some nonlinear optimization tech-
nique.
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4 Method of moments estimation

The kth population moment of a GIED distribution with pdf given in (2) has not an
explicit form and can be computed by

Eα,λ(X
k) =αλ

∫ ∞

0
xk−2e−λ/x(1− e−λ/x)α−1dx

=k

∫ ∞

0
xk−1(1− e−λ/x)αdx, k ∈ I+,

where I+ is the set of positive integers. Substituting w = e−λ/x in the above integral
gives us

Eα,λ(X
k) =αλk(−1)k

∫ 1

0

(1− w)α−1

(logw)k
dw.

Clearly the above integral converges if α > k. Therefore, we consider the moments with
negative integer powers. Let Y = 1/X. Then Y follows general exponential distribution
and consequently

Eα,λ(X
−1) =Eα,λ(Y ) = (ψ(α+ 1)− ψ(1))/λ

Eα,λ(X
−2) =Eα,λ(Y

2) = (ψ′(1)− ψ′(α+ 1)− (ψ(α+ 1)− ψ(1))2)/λ2,

where ψ is the digamma function and ψ′ is its derivative (see Gupta and Kundu (1999)).
Now, the kth negative population moment of a doubly truncated GIED distribution in
the interval [a, b), 0 < a < b is given by

Eα,λ[X
−k|X ∈ [a, b]] =

∫ b
a x

−kf(x;α, λ)

F (b;α, λ)− F (a;α, λ)

=
αλ
∫ b
a x

−k−2e−λ/x(1− e−λ/x)α−1dx

(1− e−λ/a)α − (1− e−λ/b)α
. (41)

By equating the first and the second negative sample moments to the corresponding
population moments, we obtain the following two equations

(ψ(α+ 1)− ψ(1))

λ
=

1

n

[
m∑
i=1

diEα,λ[X
−1|X ∈ [ti−1, ti]] +

m∑
i=1

riEα,λ[X
−1|X ∈ [ti,∞)]

]
(42)

and

ψ′(1)− ψ′(α+ 1)− (ψ(α+ 1)− ψ(1))2

λ2
=

1

n

[ m∑
i=1

diEα,λ[X
−2|X ∈ [ti−1, ti]]

+
m∑
i=1

riEα,λ[X
−2|X ∈ [ti,∞]]

]
(43)

Since the closed form of the solution to (42) and (43) could not be obtained, iterative
procedure can be employed as follows. Set α(0) and λ(0) as initial values of α and λ.
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Step(i) At k-th iteration, let (α(k), λ(k)) be an estimate of (α, λ).

Step(ii) Compute α(k+1) by solving the following equation for α

n(ψ(α+ 1)− ψ(1))2

ψ′(1)− ψ′(α+ 1)− (ψ(α+ 1)− ψ(1))2

=

(∑m
i=1 diEα(k),λ(k) [X−1|X ∈ [ti−1, ti]] +

∑m
i=1 riEα(k),λ(k) [X−1|X ∈ [ti,∞)]

)2∑m
i=1 diEα(k),λ(k) [X−2|X ∈ [ti−1, ti]] +

∑m
i=1 riEα(k),λ(k) [X−2|X ∈ [ti,∞)]

Step(iii) Compute λ(k+1), using

λ(k+1) =
n(ψ(α(k+1) + 1)− ψ(1))∑m

i=1 diEα(k+1),λ(k) [X−1|X ∈ [ti−1, ti]] +
∑m

i=1 riEα(k+1),λ(k) [X−1|X ∈ [ti,∞)]
.

Step(iv) If |α(k)−α(k+1)|+ |λ(k)−λ(k+1)| < ϵ, for ϵ pre-specified quantity, set α(k+1) and
λ(k+1) as the method of moments estimators of α and λ. Otherwise, set k = k + 1
and go to Steps(ii).

5 Simulation

In this section, a simulation study is conducted in order to explore the performance of
the proposed methods to estimate the GIED parameters under progressive type I inter-
val censored data. We considered the parameter values and sample sizes, respectively,
as (α, λ) = (0.5, 0.5), (1.5, 1) and n = 25, 50, 100 and we consider m = 5 for all the cases.
Four different progressive type I interval censored schemes are adopted here, namely
p1 = (0.25, 0.25, 0.5, 0.5, 1)
p2 = (0.5, 0.5, 0.25, 0.25, 1)
p3 = (0, 0, 0, 0, 1)
p4 = (0.25, 0, 0, 0, 1).
The above schemes are chosen to specify the percentage of surviving units to be with-
drawn at the 5 censoring and monitoring points. Observe that, in Scheme 1, the first
two intervals the removal is lighter as compared to the last two intervals and the Scheme
2, is the reverse scenario of Scheme 1. Moreover, in Scheme 3, no removal is done prior
to termination which is a case similar to conventional type I interval censored and in
Scheme 4, removal is conducted at the left-most and right-most ends.

Data is simulated by employing an algorithm proposed by Aggarwal and Jacques
(2001) to generate number of failures d1, d2, · · · , dm in each interval (ti−1, ti], for i =
1, · · · ,m from sample of size n. The data generation algorithm is described as follows.
Given n,m and p = (p1, · · · , pm) where 0 ≤ pi ≤ 1 and pm = 1.

Step (i) Generate t∗1, · · · , t∗m from GIED(α, λ) using t∗i = −λ/ log(1 − U
1/α
i ), where

Ui ∼ U(0, 1).

Step(ii) Arrange t∗1, · · · , t∗m as t1 < t2 < · · · < tm.
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Step(iii) Compute Fi = F (ti), i = 1, · · · ,m using (1).

Step(iv) Set d0 = r0 = F0 = 0 and i = 1.

Step(v) Generate

di|(d0, · · · , di−1, r0, · · · , ri−1) ∼ binomial
(
n−

i−1∑
j=0

(dj + rj), qi

)
,

where qi =
Fi−Fi−1

1−Fi−1
.

Step(vi) Compute

ri =
⌈
pi

(
n−

i∑
j=0

dj −
i−1∑
j=0

rj

)⌉
,

where ⌈x⌉ denotes the largest integer not greater than x.

Step(vii) If i < m, replace i by i+ 1 and go to Step(v), otherwise stop.

For the bootstrap confidence intervals, the size of the bootstrap samples is taken to be
5000.
At each iteration, we estimate the parameters using the MLE via Newton-Raphson,

EM and SEM, probability plot (PP), mid-point (MP) and method of moments (MM)
methods. For each of these methods, we have computed the absolute average bias
(Bias), the root mean square error (RMSE), the sample standard deviation (SSE), the
estimated standard deviation (ESE) via the observed information matrix. Moreover, we
have evaluated the widths (Len) of 95% Wald’s confidence intervals using the observed
information matrix (CI) and 95% Boot-p (BT) confidence intervals with their empirical
coverage probabilities (CP). The process for the estimation is replicated 1000 times and
the results of estimation are reported in Tables 1-7.
From Tables 1-6, it is observed that the Bias for all the estimators, in general, are

reasonably small which indicates that the estimated values are close to the true parameter
values. However the MP method, as expected, presents more bias estimates than the
other methods. In addition, the SEM algorithm performs worse than NR and EM based
on this aspect. Clearly, the RMSE of MP is higher than that of the other methods.
Moreover, the values of SSE and ESE of NR and EM methods are close, especially for
large n. This indicates that ESE based on the inverse of the observed information matrix
can be considered as a reasonable estimate of the SSE. As expected, the Bias, RMSE,
SSE an ESE of all estimators are decreasing when sample sizes are increasing for all
the cases. With respect to 95% confidence interval, from Table 7, the length of the
confidence intervals is decreasing when the value of sample size is increasing. Moreover,
the empirical coverage probabilities of 95% confidence intervals (CP) are very close to the
nominal level for all the cases. Hence, the performances of the all proposed methods are
satisfactory in terms of the biases, RMSE, standard errors and 95% confidence intervals
of the estimates.
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With respect to the censoring scheme, selecting a censoring scheme has a considerable
effect on the simulation results. It is easy to see that, based on bias, RMSE, ESE,
and confidence intervals, the censoring scheme p3 which is the traditional right-censored
scheme shows better performance among the proposed schemes while scheme p2 has the
worst performance.

Table 1: Simulation results of the proposed methods of estimation for n = 25

α = 1.5 λ = 1

Method Bias RMSE ESE SSE Bias RMSE ESE SSE

p1

NR 0.459 1.717 1.026 1.228 0.162 0.277 0.501 0.501

EM 0.460 1.713 1.027 1.226 0.163 0.276 0.502 0.499

SEM 0.685 1.734 1.201 1.125 0.317 0.255 0.571 0.394

PP 0.406 1.661 - - 0.142 0.272 - -

MM 0.369 1.495 - - 0.117 0.264 - -

MP 2.287 10.578 - - 0.195 0.078 - -

p2

NR 0.782 3.768 1.622 1.778 0.222 0.417 0.619 0.607

EM 0.784 3.745 1.623 1.770 0.225 0.411 0.622 0.601

SEM 1.067 3.795 1.623 1.631 0.400 0.391 0.601 0.480

PP 0.726 4.450 - - 0.189 0.448 - -

MM 0.639 3.100 - - 0.162 0.388 - -

MP 1.842 7.026 - - 0.209 0.071 - -

p3

NR 0.387 1.269 0.817 1.059 0.132 0.244 0.439 0.476

EM 0.387 1.267 0.817 1.058 0.132 0.244 0.439 0.476

SEM 0.592 1.361 0.926 1.006 0.275 0.219 0.487 0.379

PP 0.384 1.507 - - 0.119 0.266 - -

MM 0.349 1.268 - - 0.104 0.259 - -

MP 1.669 6.731 - - 0.114 0.069 - -

p4

NR 0.453 1.777 0.970 1.254 0.160 0.268 0.477 0.493

EM 0.453 1.774 0.971 1.253 0.160 0.267 0.478 0.492

SEM 0.675 1.878 1.113 1.193 0.313 0.254 0.532 0.396

PP 0.386 1.824 - - 0.127 0.273 - -

MM 0.339 1.343 - - 0.106 0.256 - -

MP 2.642 12.356 - - 0.247 0.103 - -
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Table 2: Simulation results of the proposed methods of estimation for n = 50

α = 1.5 λ = 1

Method Bias RMSE ESE SSE Bias RMSE ESE SSE

p1

NR 0.228 0.543 0.620 0.701 0.088 0.139 0.349 0.363

EM 0.229 0.542 0.621 0.700 0.088 0.138 0.349 0.361

SEM 0.427 0.532 0.621 0.592 0.219 0.118 0.349 0.265

PP 0.199 0.565 - - 0.073 0.141 - -

MM 0.204 0.556 - - 0.071 0.149 - -

MP 1.673 4.714 - - 0.143 0.040 - -

p2

NR 0.311 1.042 0.860 0.973 0.093 0.188 0.420 0.424

EM 0.312 1.031 0.860 0.967 0.094 0.186 0.421 0.421

SEM 0.555 1.010 0.860 0.838 0.246 0.157 0.421 0.311

PP 0.253 1.001 - - - - 0.069 0.186

MM 0.259 1.020 - - 0.063 0.193 - -

MP 1.340 2.827 - - 0.167 0.041 - -

p3

NR 0.156 0.305 0.468 0.530 0.069 0.100 0.299 0.309

EM 0.156 0.304 0.468 0.530 0.069 0.100 0.299 0.309

SEM 0.311 0.288 0.522 0.438 0.183 0.086 0.324 0.230

PP 0.139 0.355 - - 0.057 0.106 - -

MM 0.133 0.339 - - 0.051 0.112 - -

MP 1.255 2.432 - - 0.138 0.030 - -

p4

NR 0.188 0.504 0.553 0.685 0.061 0.117 0.322 0.336

EM 0.188 0.503 0.553 0.684 0.062 0.116 0.322 0.336

SEM 0.385 0.505 0.635 0.598 0.195 0.097 0.354 0.243

PP 0.181 0.638 - - 0.052 0.128 - -

MM 0.169 0.546 - - 0.045 0.129 - -

MP 2.118 6.760 - - 0.203 0.065 - -
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Table 3: Simulation results of the proposed methods of estimation for n = 100

α = 1.5 λ = 1

Method Bias RMSE ESE SSE Bias RMSE ESE SSE

p1

NR 0.087 0.171 0.397 0.404 0.033 0.064 0.244 0.251

EM 0.087 0.170 0.397 0.403 0.034 0.064 0.244 0.250

SEM 0.268 0.168 0.461 0.311 0.153 0.053 0.267 0.172

PP 0.076 0.190 - - 0.027 0.065 - -

MM 0.088 0.208 - - 0.029 0.073 - -

MP 1.326 2.250 - - 0.110 0.020 - -

p2

NR 0.145 0.393 0.540 0.610 0.044 0.088 0.294 0.294

EM 0.146 0.388 0.540 0.606 0.045 0.087 0.295 0.291

SEM 0.354 0.378 0.661 0.503 0.177 0.075 0.338 0.210

PP 0.111 0.390 - - 0.028 0.087 - -

MM 0.121 0.417 - - 0.028 0.097 - -

MP 1.162 1.824 - - 0.148 0.029 - -

p3

NR 0.065 0.108 0.304 0.322 0.034 0.045 0.208 0.210

EM 0.065 0.107 0.303 0.321 0.034 0.045 0.208 0.210

SEM 0.196 0.104 0.336 0.257 0.127 0.040 0.222 0.156

PP 0.060 0.128 - - 0.030 0.049 - -

MM 0.056 0.134 - - 0.025 0.053 - -

MP 1.029 1.510 - - 0.102 0.020 - -

p4

NR 0.093 0.156 0.357 0.384 0.036 0.057 0.225 0.236

EM 0.093 0.156 0.357 0.384 0.036 0.057 0.225 0.236

SEM 0.241 0.150 0.399 0.303 0.138 0.050 0.241 0.178

PP 0.077 0.171 - - 0.027 0.058 - -

MM 0.073 0.174 - - 0.021 0.062 - -

MP 1.848 4.199 - - 0.187 0.047 - -
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Table 4: Simulation results of the proposed methods of estimation for n = 25

α = 0.5 λ = 0.5

Method Bias RMSE ESE SSE Bias RMSE ESE SSE

p1

NR 0.086 0.089 0.269 0.286 0.104 0.152 0.374 0.376

EM 0.090 0.089 0.271 0.284 0.108 0.151 0.377 0.373

SEM 0.178 0.095 0.269 0.252 0.229 0.151 0.374 0.315

PP 0.103 0.110 - - 0.136 0.207 - -

MM 0.087 0.111 - - 0.095 0.158 - -

MP 0.416 0.361 - - 0.285 0.100 - -

p2

NR 0.197 0.352 0.411 0.560 0.190 0.271 0.449 0.485

EM 0.207 0.351 0.417 0.555 0.202 0.269 0.457 0.478

SEM 0.292 0.372 0.417 0.536 0.312 0.275 0.457 0.422

PP 0.216 0.807 - - 0.240 1.016 - -

MM 0.180 0.321 - - 0.171 0.264 - -

MP 0.542 0.613 - - 0.382 0.174 - -

p3

NR 0.049 0.038 0.183 0.189 0.078 0.109 0.312 0.321

EM 0.049 0.038 0.183 0.189 0.078 0.109 0.312 0.320

SEM 0.114 0.040 0.212 0.165 0.178 0.097 0.368 0.255

PP 0.051 0.043 - - 0.085 0.123 - -

MM 0.051 0.053 - - 0.072 0.122 - -

MP 0.367 0.272 - - 0.227 0.068 - -

p4

NR 0.064 0.058 0.213 0.233 0.102 0.127 0.336 0.341

EM 0.066 0.058 0.214 0.232 0.104 0.126 0.337 0.340

SEM 0.140 0.061 0.253 0.203 0.210 0.124 0.397 0.283

PP 0.069 0.063 - - 0.115 0.145 - -

MM 0.075 0.082 - - 0.104 0.146 - -

MP 0.398 0.359 - - 0.274 0.097 - -
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Table 5: Simulation results of the proposed methods of estimation for n = 50

α = 0.5 λ = 0.5

Method Bias RMSE ESE SSE Bias RMSE ESE SSE

p1

NR 0.032 0.034 0.177 0.181 0.050 0.075 0.262 0.269

EM 0.034 0.033 0.178 0.179 0.052 0.074 0.263 0.267

SEM 0.105 0.031 0.214 0.143 0.153 0.065 0.313 0.203

PP 0.035 0.037 - - 0.058 0.094 - -

MM 0.038 0.042 - - 0.052 0.083 - -

MP 0.318 0.162 - - 0.258 0.074 - -

p2

NR 0.071 0.071 0.239 0.258 0.079 0.105 0.307 0.315

EM 0.076 0.069 0.242 0.252 0.085 0.102 0.312 0.307

SEM 0.158 0.073 0.239 0.220 0.195 0.101 0.307 0.250

PP 0.083 0.082 - - 0.104 0.134 - -

MM 0.071 0.081 - - 0.075 0.117 - -

MP 0.427 0.297 - - 0.348 0.133 - -

p3

NR 0.019 0.016 0.121 0.127 0.022 0.043 0.211 0.207

EM 0.019 0.016 0.122 0.126 0.022 0.043 0.212 0.207

SEM 0.071 0.015 0.138 0.101 0.113 0.034 0.246 0.147

PP 0.019 0.017 - - 0.025 0.047 - -

MM 0.020 0.023 - - 0.020 0.053 - -

MP 0.299 0.136 - - 0.201 0.048 - -

p4

NR 0.035 0.025 0.143 0.155 0.049 0.057 0.230 0.234

EM 0.036 0.025 0.143 0.155 0.049 0.057 0.230 0.233

SEM 0.091 0.025 0.162 0.130 0.131 0.047 0.262 0.174

PP 0.036 0.027 - - 0.053 0.061 - -

MM 0.041 0.038 - - 0.049 0.072 - -

MP 0.342 0.182 - - 0.256 0.075 - -
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Table 6: Simulation results of the proposed methods of estimation for n = 100

α = 0.5 λ = 0.5

Method Bias RMSE ESE SSE Bias RMSE ESE SSE

p1

NR 0.022 0.017 0.124 0.129 0.029 0.036 0.186 0.187

EM 0.022 0.017 0.124 0.128 0.030 0.035 0.186 0.185

SEM 0.080 0.017 0.144 0.104 0.113 0.032 0.212 0.140

PP 0.028 0.020 - - 0.041 0.046 - -

MM 0.020 0.020 - - 0.026 0.040 - -

MP 0.305 0.123 - - 0.256 0.070 - -

p2

NR 0.018 0.023 0.158 0.152 0.043 0.216 0.206 0.206

EM 0.019 0.022 0.159 0.149 0.020 0.041 0.217 0.201

SEM 0.094 0.025 0.193 0.126 0.119 0.038 0.254 0.155

PP 0.021 0.029 - - 0.024 0.058 - -

MM 0.026 0.031 - - 0.024 0.051 - -

MP 0.364 0.169 - - 0.327 0.111 - -

p3

NR 0.009 0.007 0.084 0.086 0.018 0.023 0.150 0.151

EM 0.009 0.007 0.084 0.086 0.018 0.023 0.150 0.150

SEM 0.052 0.007 0.093 0.066 0.092 0.022 0.168 0.115

PP 0.009 0.008 - - 0.019 0.024 - -

MM 0.012 0.011 - - 0.020 0.029 - -

MP 0.269 0.093 - - 0.192 0.040 - -

p4

NR 0.016 0.011 0.098 0.104 0.025 0.030 0.161 0.172

EM 0.016 0.011 0.098 0.104 0.025 0.030 0.161 0.172

SEM 0.062 0.010 0.109 0.079 0.094 0.024 0.179 0.122

PP 0.017 0.012 - - 0.027 0.032 - -

MM 0.023 0.016 - - 0.031 0.038 - -

MP 0.303 0.118 - - 0.243 0.064 - -
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Table 7: Widths of 95% confidence interval of α and λ and their coverage probabilities.

α = 1.5 λ = 1 α = 0.5 λ = 0.5
n Len CP Len CP Len CP Len CP

25

p1
CI 4.830 97.0 2.265 93.0 1.204 96.0 2.080 94.0
BT 5.973 92.8 2.081 94.3 1.440 95.5 1.605 95.7

p2
CI 8.774 96.0 3.010 92.0 2.008 95.0 2.768 93.0
BT 7.248 93.3 2.317 93.5 2.911 92.5 2.035 92.1

p3
CI 3.649 94.0 1.925 92.0 0.770 96.0 1.529 94.0
BT 4.908 92.5 1.863 92.9 0.892 95.5 1.335 95.0

p4
CI 4.517 96.0 2.122 93.0 0.914 95.0 1.692 93.0
BT 5.756 92.0 2.013 93.6 1.139 94.0 1.458 95.0

50

p1
CI 2.644 95.0 1.473 93.0 0.744 96.0 1.226 94.0
BT 3.294 93.0 1.438 94.0 0.778 96.1 1.050 95.6

p2
CI 3.897 96.0 1.837 92.0 1.049 95.0 1.546 92.0
BT 4.900 93.0 1.716 94.0 1.230 94.2 1.270 94.7

p3
CI 1.930 95.0 1.239 93.0 0.493 96.0 0.931 96.0
BT 2.373 93.0 1.237 93.0 0.517 94.9 0.853 95.9

p4
CI 2.327 95.0 1.346 94.0 0.586 95.0 1.025 94.0
BT 3.031 93.0 1.354 95.0 0.630 94.6 0.930 95.5

100

p1
CI 1.618 95.0 0.992 95.0 0.504 96.0 0.797 95.0
BT 1.780 94.0 0.979 94.6 0.512 95.4 0.732 96.0

p2
CI 2.270 95.0 1.219 94.0 0.656 96.0 0.961 95.0
BT 2.632 93.6 1.192 95.0 0.678 96.4 0.847 96.3

p3
CI 1.219 95.0 0.837 95.0 0.334 94.0 0.624 96.0
BT 1.331 94.1 0.835 94.2 0.342 94.0 0.596 95.8

p4
CI 1.445 95.0 0.912 94.0 0.392 94.0 0.673 94.0
BT 1.627 94.0 0.912 94.3 0.402 94.0 0.639 94.4
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6 Application

In this section, we analyze a data set as a real life application of the GIED under
progressive type I interval censored observations. The data set is provided by Bjerkedal
et al. (1960), and it represents the survival times (in days) of guinea pigs injected with
different doses of tubercle bacilli. It is known that guinea pigs have a high susceptibility
to human tuberculosis and that is why they were used in this particular study. The
regimen number is the common logarithm of the number of bacillary units in 0.5ml. of
challenge solution; i.e., regimen 6.6 corresponds to 4.0× 10.6 bacillary units per 0.5 ml.
is (log(4.0 × 106) = 6.6). Kundu and Howlader (2010) used this data to fit the inverse
Weibull distribution. Corresponding to regimen 6.6, there were 72 observations listed
below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60,

60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99,

109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

First, we check whether the GIED is suitable for the data set based on the complete data
set. We propose three measures for fitting the data set with GIED and these measure
are Akaike’s information criterion (AIC), the Bayesian information criterion (BIC) and
the minimum distance of Kolmogorov-Simrnov (KS). These measures are defined by

AIC =− 2l(α̂, λ̂|D) + 4

BIC =− 2l(α̂, λ̂|D) + 2 log(n)

and
KS(F ) = sup

0≤t<∞
|F̂ (t)− F (t; α̂, λ̂)|,

where α̂ and λ̂ are the MLEs of α and λ, l is the log-likelihood function given in (4), F̂ is
the empirical c.d.f. and F is the population c.d.f. given in (1). The values AIC, BIC and
KS of some two-parameter lifetimes distributions, namely; GIED, BurrXII, generalized
exponential (GExp), Weibull and inverse Weibull (Iweibull) are reported in Table 9. In
addition, the curves of the population c.d.f. of GIED, F (t; α̂, λ̂), and the empirical c.d.f.
data set, F̂ , is depicted in Figure 2. Clearly, from Table 9 and Figure 2, it is shown
that the GIED is the best fitted distribution the data comparing with BurrXII, GExp,
Weibull and Iweibull distributions.
Next, we estimate α and λ of GIED based on the real data set using the proposed

methodology. For analyzing the above data set, we take m = 5 and inspection times
t = (40, 90, 150, 190, 220). In addition, we consider the same censoring schemes presented
in the simulation section, namely p1,p2,p3 and p4. According to the censoring schemes,
the values of (di, ri) within the intervals I0 = (0, t1] and Ii = (ti−1, ti], i = 1, 2, · · · ,m
are reported in Table 8. To propose initial values of the parameters, Cantor plot of
the log-likelihood function based on the real data set is plotted and is presented in
Figure 3. Table 10 presents the estimates and standard errors while Table 11 presents
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Table 8: Values of (ri, di) within each interval Ii for the data set

p1 p2 p3 p4

I d r d r d r d r

(0,40] 11 16 11 31 11 0 11 16

(40,90] 20 7 5 13 36 0 20 0

(90,150] 7 6 1 3 14 0 14 0

(150,190] 0 3 0 2 2 0 2 0

(190,220] 0 2 0 6 1 8 1 8

the confidence intervals of the parameters, α and β, for the real data sets. From the
obtained results, one can see that the values of the MLEs computed using NR and EM
methods are very close except for the censoring scheme p2. Similar conclusion can be
observed for the ESE values. With respect to the length of the confidence intervals, both
methods; CI and BT have introduced almost the same lengths except for the scheme p2.

Table 9: The values of MLEs, AIC, BIC and KS of real data set

Distribution MLEs (α, λ) AIC BIC KS

GIED (1.435207,86.308831) 155.063097 159.616430 0.088796

BurrXII (1.37295,0.1) 221.50750 226.06083 0.24498

GExp (152.39614,0.1) 454.18751 458.74084 0.45205

Weibull (0.197891,28.571845) 163.320348 167.873680 0.089201

IWeibull (1.244539,182.158051) 154.737928 159.291260 0.089019

7 Inspection times

We usually, in progressive type I interval censored, identified inspection times by fixed
quantities before the start of the experiment. However, it is important to investigate
the effect of different inspection times on the efficiency of obtained estimators. This
problem under progressive interval censored observations has not received much attention
in the literature. Lin et al. (2009) determined optimally spaced inspection times for the
two-parameter lognormal distribution under progressive type I interval censored plan.
Recently,Arabi Belaghi et al. (2017), Singh and Tripathi (2018) and Lodhi and Tripathi
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Figure 2: represents the population CDF and Empirical c.d.f. of GIED. Solid line: pop-
ulation c.d.f and dashed lines: empirical c.d.f

Figure 3: The log-likelihood contour plot of the GIED
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Table 10: Estimates of α and λ of the real data set

α λ

Method Estim ESE Estim ESE

p1

NR 1.435 0.438 86.309 18.439
EM 1.432 0.437 86.162 18.419
SEM 1.273 0.372 80.390 17.299
PP 1.126 - 71.319 -
MM 1.629 - 92.913 -
MP 0.869 - 36.566 -

p2

NR 0.229 0.119 26.146 17.041
EM 0.298 0.169 34.587 20.960
SEM 0.277 0.149 32.967 19.815
PP 0.186 - 18.252 -
MM 0.266 - 30.645 -
MP 0.254 - 27.562 -

p3

NR 2.560 0.582 105.410 16.231
EM 2.557 0.581 105.330 16.218
SEM 2.329 0.515 99.172 15.406
PP 2.647 - 106.016 -
MM 3.085 - 116.689 -
MP 2.528 - 44.583 -

p4

NR 1.969 0.507 100.692 17.731
EM 1.969 0.507 100.659 17.726
SEM 1.972 0.614 89.278 18.562
PP 2.070 - 103.790 -
MM 1.996 - 101.449 -
MP 1.574 - 42.313 -
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Table 11: 95% Wald’s confidence intervals and 95%Boot-p confidence intervals α and λ

of the real data set.

Method α λ

p1
CI (0.789,2.610) (56.781,131.192)
BT (0.775,2.588) (53.878,130.019)

p2
CI (0.083,0.632) (7.288,93.800)
BT (0.100,0.569) (4.087,65.316)

p3
CI (1.639,3.998) (77.949,142.546)
BT (1.644,4.201) (75.553,142.914)

p4
CI (1.189,3.263) (71.302,142.195)
BT (1.213,3.306) (68.215,140.461)

(2020) obtained various inspection times by using the expected Fisher information matrix
for Burr XII, inverse Weibull and truncated normal distributions, respectively.

In the following, we study four different approaches to determine of the inspection
times, namely; pre-specified (PS), equally spaced (ES), optimally spaced (OS) and equal
probability (EP). In PS approach, time points are commonly pre-determined on the basis
of the available knowledge about the experiment. ES inspection times are identified by
constructing inspection intervals of equal length in which times points to be included
are considered. In specific, if tm is the termination time of the experiment, time points
can be obtained by ti =

i
m tm,i = 1, · · · ,m. Singh and Tripathi (2018) mentioned that,

when units on the test has a decreasing failure rate the ES inspection times may provide
efficient estimates. In OS approach, time points are obtained in order to achieve some
optimality criteria. To study the problem of selecting the inspection times, we consider
the following optimality criteria:
Criterion I: Minimizing the trace of the expected variance covariance matrix of the
MLEs.
Criterion II: Maximizing the determinant of the expected Fisher information matrix
of the MLEs.
It is known that the expected variance covariance matrix of the MLEs can be obtained
by inverting expected Fisher information matrix. Let p = (p1, · · · , pm) be a censoring
scheme. Observe that the probability that a unit fails in the interval (0, t1] is

P (0 < T ≤ t1|T > 0) =
F (t1)− F (0)

1− F (0)
= F (t1).

Then D1 ∼ Binomial(n, F (t1)) and R1|D1 ∼ Binomial(n−D1, p1). Consequently, the
expected number of failures in the interval (0, t1] is ζ1 = E(D1) = nF (t1) and the
expected number of removed units is τ1 = E(R1|D1)|ζ1 = (n− ζ1)p1. Subsequently, the
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probability that a unit fails in the interval (ti−1, ti]

P (ti−1 < T ≤ ti|T > ti−1) =
F (ti)− F (ti−1)

1− F (ti−1)
, i = 1, 2, · · · ,m.

Then the conditional distributions of Di and Ri are given by

Di|(Di−1, Ri−1, · · · , D1, R1) ∼ Binomial
(
n−

i−1∑
j=1

(Dj +Rj),
F (ti)− F (ti−1)

1− F (ti−1)

)
(44)

Ri|(Di, Di−1, Ri−1, · · · , D1, r1) = Ri ∼ Binomial
(
n−

i∑
j=1

Dj −
i−1∑
j=1

Rj , pi

)
(45)

and expected number of failures and the expected number of removed items are respec-
tively computed by

ζi =E(Di|Di−1, Ri−1, · · · , D1, R1)|(ζi−1,τi−1,··· ,ζ1,τ1)

=
(
n−

i−1∑
j=1

(ζj + τj)
)F (ti)− F (ti−1)

1− F (ti−1)
(46)

τi =E(Ri|Di, Di−1, Ri−1, · · · , D1, R1)|(ζi,ζi−1,τi−1,··· ,ζ1,τ1)

=
(
n−

i−1∑
j=1

(ζj + τj)− ζi

)
pi. (47)

Therefore, the expected Fisher information matrix can be obtained from expressions
17,18 and 19 by replacing Di with ζi and Ri with τi, see, for example Singh and Tripathi
(2018). It is easy to observe that computing OS inspection times is a constraint optimiza-
tion problem due to the condition ti > ti−1, i = 1, 2, · · · ,m. Hence in order to remove
the monotonicity constraints, we consider the transformation of ti’s as ti =

∑i
k=1 e

sk .
With the use of new variables si’s, genetic algorithm is used for the determination the
OS inspection times via GA() package.
In the last approach, EP, we may interest to obtain inspection times for a pre-specified

percentage of censoring observations quantity h satisfying the expression
∑m

i=1 τi = nh.
Note that

∑m
i=1 ζi = n(1 − h) since

∑m
i=1 ζi +

∑m
i=1 τi = n. Furthermore, we consider

the probability of expected number of failures in each inspection interval is considered
to be the same. As a consequence, the problem of finding EP inspection times reduces
to compute ti’s such that ζ1 = ζ2 = · · · = ζm and

∑m
i=1 ζi = n(1− h). Observe that, by

solving (46) for ti we obtain

ti = F−1
[ ζi[1− F (ti−1)]

n−
∑i−1

j=1(ζj + τj)
+ F (ti−1)

]
, i = 1, 2, · · · ,m.

Hence, we propose the following algorithm to obtain EP inspection times (see for example
Singh and Tripathi (2018)).
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Input: Choose n ∈ Z+,m ∈ Z+,m ≤ n, h ∈ [0, 1] and p = (p1, p2, · · · , pm), where Z+

is the set of positive integers and pi ∈ [0, 1].

Initialize: Set ζi =
n(1−h)

m , i = 1, · · · ,m. Compute t1 = F−1( ζ1n ) and τ1 = (n− ζ1)p1.
Repeat Step 1 to Step 3 for i = 2, · · · ,m.

Step 1: Obtain

ti = F−1
( ζi(1− F (ti−1))

n−
∑i−1

j=1(ζj + τj)
+ F (ti−1)

)
Step 2: Compute

τi =
⌈
n− i ∗ n(1− h)

m
−

i−1∑
j=1

τj

⌉
pi.

Step 3: If
∑i

j=1 τj > nh then set τi = nh−
∑i

j=1 τj , τk = 0 for k = i+ 1, · · · ,m and
stop.

Here ⌈x⌉ denotes the greatest integer less than or equal to x.
Numerical results concern with different inspection times are reported in Tables 12-

18. Some items of these tables are presented as - which represent the situations that
experiment can be terminated only after the failure of all remaining units. In Tables 12
and 13, we compare the performance of the MLEs based on PS with the MLEs based
ES inspection times in terms on Bias and RMSE. In Tables 14 and 15, we obtain the EP
inspection times for h = 0.3, 0.5, 0.8 and m = 5, 10. For m = 5, we consider the schemes
pi,i=1,2,3,4, proposed in the simulation section and for m = 10, we adopt the following
censoring schemes
p5 = (0.25, 0.25, 0.25, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 1)
p6 = (0.5, 0.5, 0.5, 0.5, 0.5, 0.25, 0.25, 0.25, 0.25, 1)
p7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
p8 = c(0.25, 0, 0, 0, 0, 0, 0, 0, 0, 1).
It can be seen that some EP inspection times are not available for censoring schemes

p1 and p2 (or p5 and p6 for m = 10) and h ≤ 0.5. Moreover, the first EP inspection
times, t1 is the same for all the censoring schemes and the scheme p4 has the largest
values of EP inspection times among the other scheme for a fixed value of h. Clearly, the
values of inspection times are decreasing with the values of the percentage of censoring,
h. Tables 16-18 includes the OS inspection times based on criteria I and II for m = 5, 10
and n = 25, 50, 100. The main observation from these tables, the first inspection times
for criterion I is less than that of criterion II for all the cases.
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Table 12: Bias and RMSE of α and λ using PS and ES for m = 5

α=0.5 λ=0.5

PS ES PS ES
n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

25

p1 0.032 0.403 0.010 0.402 0.028 0.393 0.017 0.410
p2 0.002 0.377 0.019 0.382 0.019 0.354 0.021 0.387
p3 0.005 0.308 0.014 0.326 0.018 0.344 0.005 0.373
p4 0.008 0.341 0.003 0.362 0.020 0.355 0.011 0.384

50

p1 0.013 0.294 0.022 0.286 0.014 0.295 0.019 0.298
p2 0.024 0.352 0.004 0.351 0.003 0.308 0.007 0.343
p3 0.027 0.236 0.034 0.245 0.014 0.259 0.023 0.276
p4 0.024 0.256 0.029 0.264 0.016 0.269 0.024 0.288

100

p1 0.024 0.221 0.036 0.227 0.026 0.226 0.034 0.241
p2 0.002 0.245 0.016 0.251 0.017 0.228 0.020 0.255
p3 0.034 0.195 0.038 0.201 0.027 0.210 0.034 0.221
p4 0.030 0.203 0.036 0.211 0.026 0.214 0.034 0.229

α=1.5 λ=1

25

p1 0.277 1.151 0.318 1.294 0.057 0.440 0.054 0.506
p2 0.207 0.997 0.171 1.046 0.011 0.427 0.006 0.506
p3 0.206 0.726 0.218 0.912 0.059 0.356 0.061 0.428
p4 0.262 0.958 0.512 8.706 0.088 0.385 0.067 0.455

50

p1 0.122 0.721 0.109 0.649 0.020 0.299 0.017 0.323
p2 0.296 1.089 0.193 0.994 0.055 0.373 0.018 0.401
p3 0.073 0.456 0.087 0.479 0.026 0.238 0.021 0.261
p4 0.010 0.522 0.110 0.567 0.032 0.243 0.022 0.285

100

p1 0.070 0.414 0.107 0.469 0.019 0.188 0.0277 0.224
p2 0.111 0.571 0.097 0.568 0.021 0.233 0.018 0.270
p3 0.051 0.300 0.042 0.330 0.018 0.166 0.009 0.192
p4 0.049 0.353 0.073 0.387 0.008 0.178 0.022 0.207
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Table 13: Bias and RMSE of α and λ using PS and ES for m = 10

α=0.5 λ=0.5

PS ES PS ES
n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

25

p5 0.078 0.540 0.036 0.418 0.026 0.425 0.013 0.388
p6 0.066 0.412 0.008 0.395 0.094 0.387 0.025 0.339
p7 0.008 0.316 0.009 0.285 0.022 0.363 0.010 0.326
p8 0.003 0.338 0.003 0.316 0.027 0.369 0.009 0.351

50

p5 0.001 0.338 0.001 0.290 0.020 0.310 0.010 0.272
p6 0.015 0.380 0.028 0.354 0.053 0.332 0.010 0.297
p7 0.028 0.237 0.032 0.226 0.009 0.266 0.024 0.249
p8 0.017 0.250 0.023 0.239 0.005 0.272 0.019 0.253

100

p5 0.010 0.256 0.020 0.230 0.021 0.242 0.030 0.222
p6 0.032 0.343 0.006 0.294 0.010 0.268 0.034 0.240
p7 0.036 0.198 0.042 0.199 0.026 0.215 0.038 0.211
p8 0.029 0.202 0.035 0.198 0.022 0.215 0.033 0.207

α=1.5 λ=1

25

p5 0.265 1.152 0.372 1.351 0.027 0.447 0.067 0.452
p6 0.036 1.136 0.117 1.090 0.149 0.563 0.055 0.487
p7 0.197 0.742 0.245 0.766 0.059 0.350 0.099 0.337
p8 0.251 0.864 0.255 0.861 0.070 0.388 0.085 0.355

50

p5 0.130 0.769 0.127 0.662 0.004 0.315 0.024 0.289
p6 0.447 1.756 0.369 1.246 0.016 0.483 0.059 0.380
p7 0.091 0.449 0.088 0.425 0.038 0.242 0.031 0.227
p8 0.102 0.518 0.107 0.492 0.033 0.248 0.033 0.239

100

p5 0.082 0.533 0.089 0.455 0.016 0.240 0.024 0.194
p6 0.162 0.893 0.166 0.698 0.014 0.337 0.028 0.251
p7 0.040 0.310 0.025 0.310 0.017 0.177 0.003 0.181
p8 0.049 0.346 0.038 0.345 0.019 0.182 0.008 0.187
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Table 14: EP inspection times for m = 5

(α, λ) = (0.5, 0.5)

h t1 t2 t3 t4 t5

0.3

p1 0.372 0.828 - - -
p2 0.372 1.219 - - -
p3 0.372 0.684 1.219 2.324 5.302
p4 0.372 0.828 1.85 5.302 38.677

0.5

p1 0.301 0.564 1.174 - -
p2 0.301 0.743 - - -
p3 0.301 0.489 0.743 1.12 1.738
p4 0.301 0.564 0.975 1.738 3.463

0.8

p1 0.196 0.290 0.417 0.763 2.733
p2 0.196 0.336 0.684 1.685 9.873
p3 0.196 0.267 0.336 0.409 0.489
p4 0.196 0.290 0.384 0.489 0.613

(α, λ) = (1.5, 1)

0.3

p1 0.426 0.684 - - -
p2 0.426 0.841 - - -
p3 0.426 0.615 0.841 1.158 1.682
p4 0.426 0.684 1.037 1.682 3.748

0.5

p1 0.372 0.55 0.825 1.448 8.166
p2 0.372 0.644 - - -
p3 0.372 0.505 0.644 0.805 1.006
p4 0.372 0.550 0.748 1.006 1.393

0.8

p1 0.276 0.362 0.458 0.586 0.779
p2 0.276 0.399 0.615 1.277 -
p3 0.276 0.343 0.399 0.453 0.505
p4 0.276 0.362 0.435 0.505 0.577
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Table 15: EP inspection times for m = 10

(α, λ) = (0.5, 0.5)

h t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0.3

p5 0.250 0.415 - - - - - - - -
p6 0.250 0.511 - - - - - - - -
p7 0.250 0.372 0.511 0.684 0.911 1.219 1.66 2.324 3.396 5.302
p8 0.250 0.415 0.622 0.911 1.348 2.069 3.396 6.279 14.625 61.478

0.5

p5 0.215 0.330 0.501 - - - - - - -
p6 0.215 0.390 - - - - - - - -
p7 0.215 0.301 0.390 0.489 0.605 0.743 0.911 1.12 1.388 1.738
p8 0.215 0.330 0.455 0.605 0.795 1.045 1.388 1.879 2.622 3.826

0.8

p5 0.155 0.209 0.271 0.353 0.474 0.675 1.340 - - -
p6 0.155 0.232 0.372 - - - - - - -
p7 0.155 0.196 0.232 0.267 0.301 0.336 0.372 0.409 0.448 0.489
p8 0.155 0.209 0.255 0.301 0.348 0.396 0.448 0.504 0.564 0.630

(α, λ) = (1.5, 1)

0.3

p5 0.328 0.457 - - - - - - - -
p6 0.328 0.519 - - - - - - - -
p7 0.328 0.426 0.519 0.615 0.721 0.841 0.983 1.158 1.38 1.682
p8 0.328 0.457 0.582 0.721 0.886 1.095 1.38 1.809 2.566 4.461

0.5

p5 0.295 0.395 0.513 - - - - - - -
p6 0.295 0.439 - - - - - - - -
p7 0.295 0.372 0.439 0.505 0.573 0.644 0.721 0.805 0.899 1.006
p8 0.295 0.395 0.483 0.573 0.669 0.776 0.899 1.045 1.225 1.457

0.8

p5 0.232 0.289 0.346 0.412 0.496 0.61 0.883 - - -
p6 0.232 0.312 0.426 - - - - - - -
p7 0.232 0.276 0.312 0.343 0.372 0.399 0.426 0.453 0.479 0.505
p8 0.232 0.289 0.333 0.372 0.408 0.444 0.479 0.514 0.55 0.587
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Table 16: OS Inspection times for m = 5

(α, λ) n Crit.I Crit.II

(0.5, 0.5)

25

p1 1.7 3.8 7.0 10.4 14.1 1.8 4.7 8.7 12.4 15.2
p2 0.4 2.9 4.9 5.6 7.9 2.1 5.2 8.7 12.4 16.0
p3 1.1 1.8 3.3 5.9 9.4 1.5 3.2 6.0 9.9 13.6
p4 1.5 2.7 4.7 7.5 11.3 1.7 3.4 5.8 9.2 13.2

50

p1 1.7 3.8 7.1 10.8 14.0 1.9 4.8 8.7 12.5 16.1
p2 0.3 1.3 3.4 5.0 6.4 2.0 5.1 8.8 12.5 16.3
p3 1.0 1.7 3.0 5.3 9.0 1.5 3.3 6.0 9.9 13.7
p4 0.2 4.0 6.5 9.0 10.0 1.8 3.4 5.9 9.5 13.5

100

p1 1.7 3.9 7.2 11.0 14.8 1.8 4.5 8.5 11.7 15.5
p2 0.4 2.9 4.8 6.7 8.6 2.1 5.1 8.9 12.8 16.8
p3 1.0 1.7 3.1 5.4 9.2 1.4 3.0 5.6 9.4 13.3
p4 0.2 3.2 6.0 9.7 12.4 1.7 3.5 6.2 9.8 13.7

(1.5, 1)

25

p1 0.9 3.3 4.4 5.7 6.1 1.5 2.4 3.8 5.5 7.8
p2 1.2 3.6 5.7 8.2 8.8 1.7 2.8 3.9 5.4 7.4
p3 0.6 2.8 4.6 5.9 7.7 1.2 1.7 2.3 3.5 5.6
p4 0.9 2.6 4.3 6.1 6.4 1.5 1.7 2.6 4.0 5.8

50

p1 0.9 1.2 4.1 4.7 5.6 1.5 2.5 3.8 5.6 7.8
p2 1.2 3.1 5.9 8.4 9.9 1.7 2.8 3.9 5.4 7.6
p3 0.6 3.3 4.2 5.5 7.3 1.2 1.6 2.3 3.6 5.6
p4 0.9 2.7 4.5 7.6 9.9 1.5 1.8 2.7 4.1 6.3

100

p1 0.9 2.3 4.6 6.9 8.0 1.5 2.4 3.8 5.5 7.5
p2 1.2 3.4 4.4 5.7 7.4 1.7 2.7 3.9 5.2 7.2
p3 0.6 3.3 4.3 5.6 7.3 1.2 1.8 2.4 3.8 5.8
p4 0.9 2.9 4.3 6.4 8.7 1.5 2.0 2.7 4.3 6.4
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Table 17: OS Inspection times for (α, λ) = (0.5, 0.5) and m = 10

n Crit t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

25

p5 I 1.6 3.7 6.6 10.0 13.8 17.7 21.0 23.0 25.1 26.8
II 1.8 4.6 8.2 12.2 15.9 19.5 22.4 25.0 26.6 28.9

p6 I 0.4 3.0 3.9 5.8 7.2 8.8 10.2 11.5 12.6 13.9
II 2.0 5.1 9.0 12.6 16.2 19.8 21.7 24.2 25.9 27.9

p7 I 1.0 1.5 2.2 3.7 5.6 7.3 9.7 12.9 16.6 19.9
II 1.5 2.7 4.2 6.3 8.7 12.0 15.7 19.2 23.1 26.3

p8 I 0.2 3.9 5.9 7.7 9.9 12.4 15.6 18.5 21.7 25.3
II 1.8 3.1 4.8 6.6 9.3 12.7 16.2 20.1 23.8 27.4

50

p5 I 1.6 3.7 6.6 10.0 13.8 17.7 21.0 23.0 25.1 26.8
II 1.8 4.6 8.2 12.2 15.9 19.5 22.4 25.0 26.6 28.9

p6 I 0.4 3.0 3.9 5.8 7.2 8.8 10.2 11.5 12.6 13.9
II 2.0 5.1 9.0 12.6 16.1 19.8 21.7 24.2 25.9 27.9

p7 I 1.0 1.5 2.2 3.7 5.6 7.3 9.7 12.9 16.6 19.9
II 1.5 2.7 4.2 6.3 8.7 12.0 15.7 19.2 23.1 26.3

p8 I 0.2 3.9 5.9 7.7 9.9 12.4 15.7 18.5 21.7 25.3
II 1.8 3.1 4.8 6.6 9.3 12.7 16.2 20.1 23.8 27.4

100

p5 I 1.6 3.6 6.3 9.6 13.3 17.0 19.9 22.2 24.3 25.9
II 1.8 4.4 7.9 11.6 15.5 19.0 22.3 23.9 26.9 29.2

p6 I 0.4 3.1 4.8 6.7 9.2 10.3 12.3 12.6 13.6 14.3
II 2.0 5.1 8.8 12.3 16.0 19.4 21.0 22.4 25.3 27.4

p7 I 1.0 1.5 2.2 3.5 5.4 7.7 10.3 13.5 16.9 20.7
II 1.4 2.4 3.8 5.8 8.1 11.1 14.7 18.4 21.6 25.5

p8 I 1.5 2.2 3.2 4.7 6.5 8.7 11.6 15.1 18.8 22.4
II 1.8 2.8 4.2 6.0 8.5 11.2 14.4 18.0 22.0 25.8
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Table 18: OS Inspection times for (α, λ) = (1.5, 1) and m = 10

n Crit t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

25

p5 I 0.9 3.9 4.7 6.4 7.5 8.3 8.8 10.9 13.2 15.8
II 1.5 2.3 3.4 4.7 6.3 8.4 10.7 13.4 15.7 17.4

p6 I 1.2 3.3 5.2 7.5 10.0 10.1 11.3 12.8 14.0 14.6
II 1.7 2.8 4.3 5.9 8.0 9.1 10.9 13.1 14.8 16.8

p7 I 0.5 2.3 5.5 7.4 8.7 10.9 12.4 14.2 15.1 18.4
II 1.2 1.5 2.1 2.9 4.2 5.9 7.9 9.5 11.6 13.9

p8 I 0.9 2.7 5.2 8.9 11.8 14.7 18.2 19.8 21.6 23.5
II 1.5 1.9 2.1 2.8 3.8 5.0 6.4 7.5 9.0 11.5

50

p5 I 0.9 2.8 4.8 7.0 9.0 10.5 11.9 13.1 15.1 18.1
II 1.5 2.4 3.6 5.1 6.7 8.6 10.2 12.9 14.8 16.6

p6 I 1.2 4.3 4.6 5.0 5.7 7.1 8.2 9.6 11.6 13.9
II 1.7 2.8 4.1 5.7 7.7 9.3 11.6 12.9 14.4 16.0

p7 I 0.6 3.6 5.2 7.3 8.9 11.3 12.8 14.6 15.8 17.6
II 1.2 1.4 2.0 2.7 3.8 5.4 7.3 9.3 11.5 13.9

p8 I 0.9 3.7 5.9 7.7 9.9 12.0 14.8 15.6 16.3 18.4
II 1.5 1.8 2.6 3.5 4.6 6.3 7.9 9.9 11.8 14.5

100

p5 I 0.9 2.8 3.6 6.4 7.7 10.2 11.0 11.5 12.3 12.9
II 1.5 2.3 3.5 4.9 6.8 8.9 10.8 13.1 15.3 17.0

p6 I 1.2 2.6 4.2 6.6 8.4 9.9 11.4 12.1 13.5 15.0
II 1.7 2.9 4.3 6.0 7.7 9.3 11.7 14.2 15.9 17.6

p7 I 0.6 3.0 5.6 6.7 9.1 11.2 13.5 14.3 17.0 17.2
II 1.2 1.8 2.3 2.9 3.7 5.2 6.6 8.3 10.6 11.9

p8 I 0.9 3.0 4.2 6.5 9.7 11.9 13.5 15.0 16.4 18.6
II 1.5 1.7 2.3 3.2 4.6 6.2 8.2 10.3 12.6 14.4
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8 Optimal censoring

It is common in the analysis of real life experiment to consider the censoring scheme
as a fixed and pre-specified. However, in the estimation problem, we may choose the
censoring scheme among a set of possible schemes in order to improve the estimations
of parameters. It is known that, under progressive type I interval censored, the number
of units removed, Ri, at each inspection time, ti, can be a constant number or a pre-
specified proportion, pi, of surviving units. Optimal censoring can be described as finding
the expected numbersR = (R1, R2, · · · , Rm) (or proportions p = (p1, p2, · · · , pm)) which
attain to a specific optimality criterion. The issue of identifying the optimal censoring
scheme for different distributions under progressive type I interval censored has received
little attention in the statistical literature. See Arabi Belaghi et al. (2017) for Burr XII
and Singh and Tripathi (2018) for inverse Weibull distribution.
The problem of selecting the optimal censoring method under progressive type I in-

terval censored observation can be described as follows. For given n and h, the optimal
censoring scheme is the one among all possible censoring schemes which satisfies the
conditions

∑m
i Ri = ⌈nh⌉ and

∑m
i=1(ζi+ τi) = n, where ζi and τi are defined in (46) and

(47). Recall that the number of all possible censoring schemes satisfying the relation∑m
i Ri = ⌈nh⌉ is (⌈nh⌉+m−1)!

(m−1)!⌈nh⌉! . First, we consider optimal censoring with PS inspection

times, i.e. t includes pre-specified quantities. Assume that ψ(ζ, τ, t) is the objective
function that needs to be minimized (or maximized). Following Singh and Tripathi
(2018), we make use the following algorithm to get the optimal censoring scheme based
on PS inspection times.

Step 1. Set the values of n,m, h, and t=(t1, t2, · · · , tm).

Step 2. Calculate W = (⌈nh⌉+m−1)!
(m−1)!⌈nh⌉! and set c = 0 and k = 1.

Step 3. Generate
∑m

i=1Ri = ⌈nh⌉ and consider τi = Ri.

Step 4. Compute the ζi, i = 1, 2, · · · ,m using (46).

Step 5. If
∑m

i=1 ζi−n+⌈nh⌉ ≤ ϵ, set c = c+1 and compute ψk(ζ, τ, t) else set k = k+1
and go to Step 3.

Step 6. If ψk(ζ, τ, t) > ( or <) ψk−1(ζ, τ, t), update the optimal censoring scheme
(R1, R2, · · · , Rm) and go to Step 3 with k = k + 1 until k =W.

Here, ϵ is a pre-specified quantity and ψk(.) is the value of ψ(.) at the k-th iteration.
Next, we utilize the following algorithm to obtain the optimal censoring scheme based
on EP inspection times (see, Singh and Tripathi (2018)).

Step 1. Select the values of n,m, and h.

Step 2. Set ζi =
n−⌈nh⌉

m , i = 1, 2, · · · ,m.

Step 3. Calculate W = (⌈nh⌉+m−1)!
(m−1)!⌈nh⌉! and set k = 1.
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Step 4. Generate (R1, · · · , Rm) such that
∑m

i=1Ri = ⌈nh⌉ and consider τi = Ri, i =
1, 2, · · · ,m.

Step 5. Compute

ti = F−1
( ζi(1− F (ti − 1)

n−
∑i−1

j=1(ζi + τi)
+ F (ti − 1)

)
, i = 2, 3, · · · ,m,

where t0 = 0.

Step 6. Given the values of τi, ζi and ti, i = 1, 2, · · · ,m, compute ψk(ζ, τ,t).

Step 7. If ψk(ζ, τ,t) > ( or <)ψk−1(ζ, τ,t) then update the optimal censoring scheme
(R1, R2, · · · , Rm) and EP inspection times (t1, t2, · · · , tm). Further set k = k + 1
and go to Step 4 until k =W .

Based on the above algorithms, we suggest to consider the following two criteria.

Criterion(I): Minimizing the objective function ψ(.) which is the trace of the expected
variance covariance matrix of the MLEs.

Criterion(II): Maximizing the objective function ψ(.) which is the determinant of the
expected Fisher information matrix of the MLEs.

It is clear that for a large value of m, the total number of sampling schemes can be quite
large. For example when n = 25,m = 10 and h = 0.3 the possible number of censoring
schemes is

(⌈nh⌉+m−1
m−1

)
=
(
29
9

)
= 10015005. Following Pradhan and Kundu (2013), we

propose to use a sub-optimal censoring problem in which the optimal censoring scheme
belongs to the convex hull generated by the points (⌈nh⌉, 0, · · · , 0), (0, ⌈nh⌉, 0, · · · , 0)
, · · · , (0, · · · , 0, ⌈nh⌉). Therefore, the sub-optimal censoring scheme can be obtained
by choosing the optimal censoring scheme among these extreme points on the convex
hull. In addition, for generating censoring schemes (R1, · · · , Rm) satisfies the condition∑m

i=1Ri = ⌈nh⌉, we may utilize the function compositions() from partition package in
R language.

In Table 19, we have reported the optimal censoring schemes form = 5 and in Table 20,
we have reported the sub-optimal censoring schemes form = 10. For both tables, we have
considered n = 25, 50, 50; h = 0.3, 0.5, 0.8 and parameters (α, λ) = (0.5, 0.5), (1.5, 1). It
can be seen that, for the both tables, by changing the sample size, the censoring scheme
patterns, in general, do not affected. However, from Table 19, the reported censoring
schemes for almost all the cases are same or very close to each other under criteria I
and II. Moreover, most of the unites are removed in the first and the last stages. From
Table 20, the censoring scheme patterns for both criteria are showed that the units are
removed in the i-th stage, i=1,2,3, except for few cases for h = 0.3. Furthermore, to
investigate the optimal proportion of the removed unites instead of optimal number, one
may consider the expression (47).
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Table 19: Optimal censoring schemes under PS and EP inspection times for m = 5

(α, λ) n h Crit.I=(R1, · · · , R5) Crit.II=(R1, · · · , R5)

(0.5, 0.5)

PS

25
0.3 (0,0,0,0,7) (0,0,0,0,7)
0.5 (7,0,0,0,5) (6,0,0,2,4)
0.8 (18,0,0,0,2) (17,1,0,0,2)

50
0.3 (1,0,0,0,14) (0,0,1,1,13)
0.5 (15,0,0,0,10) (14,1,0,0,10)
0.8 (36,0,0,0,4) (35,1,0,0,4)

100
0.3 (2,0,0,0,28) (2,0,0,0,28)
0.5 (30,0,0,0,20 ) (30,0,0,0,20)
0.8 (30,0,0,0,20) (30,0,0,0,20)

EP

25
0.3 (1,0,0,0,14) (0,0,1,1,13)
0.5 (15,0,0,0,10) (14,1,0,0,10)
0.8 (36,0,0,0,4) ( 35,1,0,0,4)

50
0.3 (1,0,0,0,14) (0,0,1,1,13)
0.5 (15,0,0,0,10) (14,1,0,0,10)
0.8 (36,0,0,0,4) (35,1,0,0,4)

100
0.3 (1,0,0,0,14) (0,0,1,1,13)
0.5 (15,0,0,0,10) (14,1,0,0,10)
0.8 (36,0,0,0,4) (35,1,0,0,4)

(1.5, 1)

PS

25
0.3 (6,0,0,0,1) (6,0,0,0,1)
0.5 (11,0,0,1,0) (11,0,0,1,0)
0.8 (15,4,1,0,0) (19,1,0,0,0)

50
0.3 (13,0,0,0,2) (13,0,0,0,2)
0.5 (1,21,3,0,0) (23,0,0,1,1)
0.8 (30,9,1,0,0) (39,0,0,1,0)

100
0.3 (25,0,1,0,4) (23,3,0,0,4)
0.5 (47,0,0,0,3) (47,0,0,0,3)
0.8 (60,18,2,0,0) (79,0,0,0,1)

EP

25
0.3 (6,0,0,0,1) (6,0,0,0,1)
0.5 (11,0,0,0,1) (11,0,0,0,1)
0.8 (19,0,0,0,1) (19,0,0,0,1)

50
0.3 (13,0,0,0,2) (12,0,0,0,3)
0.5 (23,0,0,0,2) (23,0,0,0,2)
0.8 (39,0,0,0,1) (39,0,0,0,1)

100
0.3 (26,0,0,0,4) (25,0,0,0,5)
0.5 (47,0,0,0,3) (46,0,0,0,4)
0.8 (57,0,0,0,3) (57,0,0,0,3)
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Table 20: Optimal censoring schemes under PS and EP inspection times for m = 10

(α, λ) n h Crit.I= (R1, · · · , R10) Crit.II=(R1, · · · , R10)

(0.5, 0.5)

PS

25
0.3 (0,0,0,0,0,0,0,0,7,0) (0,0,0,0,0,0,0,0,7,0)
0.5 (0,0,0,12,0,0,0,0,0,0) (0,0,0,12,0,0,0,0,0,0)
0.8 (0,20,0,0,0,0,0,0,0,0) (20,0,0,0,0,0,0,0,0,0)

50
0.3 (0,0,0,0,0,0,15,0,0,0) (0,0,0,0,0,0,15,0,0,0)
0.5 (0,25,0,0,0,0,0,0,0,0) (0,0,25,0,0,0,0,0,0,0)
0.8 (0,40,0,0,0,0,0,0,0,0) (40,0,0,0,0,0,0,0,0,0)

100
0.3 (0,30,0,0,0,0,0,0,0,0) ( 0,30,0,0,0,0,0,0,0,0)
0.5 (0,0,50,0,0,0,0,0,0,0) (0,50,0,0,0,0,0,0,0,0)
0.8 (0,80,0,0,0,0,0,0,0,0) (80,0,0,0,0,0,0,0,0,0)

EP

25
0.3 (7,0,0,0,0,0,0,0,0,0) (0,7,0,0,0,0,0,0,0,0)
0.5 (12,0,0,0,0,0,0,0,0,0) (0,12,0,0,0,0,0,0,0,0)
0.8 (20,0,0,0,0,0,0,0,0,0) (0,0,20,0,0,0,0,0,0,0)

50
0.3 (15,0,0,0,0,0,0,0,0,0) (0,15,0,0,0,0,0,0,0,0)
0.5 (25,0,0,0,0,0,0,0,0,0) (0,25,0,0,0,0,0,0,0,0)
0.8 (40,0,0,0,0,0,0,0,0,0) (0,0,40,0,0,0,0,0,0,0)

100
0.3 (30,0,0,0,0,0,0,0,0,0) (0,30,0,0,0,0,0,0,0,0)
0.5 (50,0,0,0,0,0,0,0,0,0) (0,50,0,0,0,0,0,0,0,0)
0.8 (80,0,0,0,0,0,0,0,0,0) (0,0,80,0,0,0,0,0,0,0)

(1.5, 1)

PS

25
0.3 (7,0,0,0,0,0,0,0,0,0) (7,0,0,0,0,0,0,0,0,0)
0.5 (0,0,12,0,0,0,0,0,0,0) (12,0,0,0,0,0,0,0,0,0)
0.8 (0,20,0,0,0,0,0,0,0,0) (20,0,0,0,0,0,0,0,0,0)

50
0.3 (15,0,0,0,0,0,0,0,0,0) (15,0,0,0,0,0,0,0,0,0)
0.5 (0,0,25,0,0,0,0,0,0,0) (25,0,0,0,0,0,0,0,0,0)
0.8 (0,40,0,0,0,0,0,0,0,0) (40,0,0,0,0,0,0,0,0,0)

100
0.3 (0,30,0,0,0,0,0,0,0,0) (0,30,0,0,0,0,0,0,0,0)
0.5 (0,0,50,0,0,0,0,0,0,0) (0,50,0,0,0,0,0,0,0,0)
0.8 (0,80,0,0,0,0,0,0,0,0) (0,80,0,0,0,0,0,0,0,0)

EP

25
0.3 (7,0,0,0,0,0,0,0,0,0) (0,7,0,0,0,0,0,0,0,0)
0.5 (12,0,0,0,0,0,0,0,0,0) (0,12,0,0,0,0,0,0,0,0)
0.8 (20,0,0,0,0,0,0,0,0,0) (0,0,20,0,0,0,0,0,0,0)

50
0.3 (15,0,0,0,0,0,0,0,0,0) (0,15,0,0,0,0,0,0,0,0)
0.5 (25,0,0,0,0,0,0,0,0,0) (25,0,0,0,0,0,0,0,0,0)
0.8 (40,0,0,0,0,0,0,0,0,0) (0,0,40,0,0,0,0,0,0,0)

100
0.3 (30,0,0,0,0,0,0,0,0,0) (0,30,0,0,0,0,0,0,0,0)
0.5 (50,0,0,0,0,0,0,0,0,0) (0,50,0,0,0,0,0,0,0,0)
0.8 (80,0,0,0,0,0,0,0,0,0) (0,0,80,0,0,0,0,0,0,0)



378 Hasan, Al-Mosawi and Qader

9 Concluding remarks

In this article, statistical inference of the unknown parameters of GIED based on progres-
sively type I interval censored data is considered. The MLEs, probability plot, mid-point
and method of moments as well as associated standard error, root mean square error
and confidence intervals are obtained. MLEs are obtained by using Netwon-Raphson
method, expectation minimization (EM) algorithm and stochastic expectation minimiza-
tion (SEM) algorithm. The Simulation results showed that all the estimators, except
MP method, present reasonably small amounts of biases and RMSEs. Moreover, the
ESE based on the inverse of the observed information matrix can be considered as a
reasonable estimate of the SSE for NR and EM methods, especially for large n. With
respect to 95% confidence interval, the length of the confidence intervals is decreasing
when the value of sample size is increasing and the estimated CP of 95% confidence
intervals are very close to the nominal level for all the cases.

In real data analysis, we analyze, based on the proposed methodology, the survival
times of guinea pigs injected with different doses of tubercle bacilli. Fitting the data set
with GIED is first implemented and then the GIED parameters are estimated based on
the proposed methods.

Selecting the inspection times is important practical issue to improve the efficiency
of the obtained estimators. By considering such an issue, we investigate pre-specified
(PS), equally spaced (ES), optimally spaced (OS) and equal probability (EP) methods
to determine the inspection times. In regard to optimal censoring, the censoring schemes
with most of the removal units are appeared in the first stages (at most the first three
stages) is the most preferred ones among the other schemes based on all criteria. How-
ever, the considered censoring schemes are almost the same under the criteria I and II
for almost the all cases.

We hope that the methodologies proposed in this work will be useful to applied statis-
ticians. It will be interesting to study the methods of estimation under hybrid censored
data. The work is in progress and it will be reported later.
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Appendix: Proof of Theorems 1

Proof : Observe that, for fixed λ > 0, we have

lim
α→0

l(α, λ|D) = lim
α→∞

l(α, λ|D) = −∞

and for fixed α > 0, we have

lim
λ→0

l(α, λ|D) = lim
λ→∞

l(α, λ|D) = −∞.

It is easy to see that

∂2l(α, λ|D)

∂α2
= −

m∑
i=1

di
(1− e−λ/ti−1)(1− e−λ/ti)

[
log((1− e−λ/ti)/(1− e−λ/ti−1))

]2[
(1− e−λ/ti−1)α − (1− e−λ/ti)α

]2 < 0

and

∂2l(α, λ|D)

∂λ2
=− α

m∑
i=1

di

{ 1
t2i−1

e−λ/ti−1(1− e−λ/ti−1)α−2 − 1
t2i
e−λ/ti(1− e−λ/ti)α−2

(1− e−λ/ti−1)α − (1− e−λ/ti)α

− (1− e−λ/ti−1)α−2(1− e−λ/ti)α−2[
(1− e−λ/ti−1)α − (1− e−λ/ti)α

]2
×
[

1

ti−1
e−λ/ti−1(1− e−λ/ti−1)− 1

ti
e−λ/ti(1− e−λ/ti)

]2}

− α
m∑
i=1

ri

1
ti
e−λ/ti

(1− e−λ/ti)2
< 0.

That is for fixed λ > 0, the log-likelihood function l(α, λ|D) is strictly log-concave in
α and for fixed α > 0, the log-likelihood function l(α, λ|D) is strictly log-concave in λ.
This completes the proof.


