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A B S T R A C T   

Understanding the impacts of climate change on plant phenology is crucial for predicting ecosystem responses. 
However, accurately tracking the flowering phenology of individual plant species in grassland species mixtures is 
challenging, hindering our ability to study the impacts of biotic and abiotic factors on plant reproduction and 
plant-pollinator interactions. Here, we present a workflow for extracting flowering phenology from grassland 
species mixtures using near-surface time-lapse cameras. We used 89 image series acquired in plots with known 
species composition at the Jena trait-based experiment (Germany) to develop random forest classifiers, which 
were used to classify images and compute time series of flower cover for each species. The high temporal res-
olution of time-lapse cameras allowed to select images in proper light conditions, and to extract vegetation 
indices and texture metrics to improve discrimination among flowering species. The random forest classifiers 
showed a high accuracy in predicting the cover of Leucanthemum vulgare, Ranunculus acris, and Knautia arvensis 
flowers, whereas graminoid flowers were harder to predict due to their green-to-brownish colours. The proposed 
workflow can be applied in climate change studies, ecosystem functioning, plant community ecology, and 
biodiversity change research, including the investigation of effects of species richness on individual species' 
flowering phenology. Our method could be a valuable tool for understanding the impacts of climate change on 
plant reproduction and ecosystem dynamics.   

1. Introduction 

Global change affects plant communities and their functioning in 
various ways. Consistent changes in the timing of phenological events 
are clear indicators of the impact of global change on plant life cycles 
(Piao et al., 2008; Schwartz, 2013). For instance, warming tends to 
advance the green-up and to delay the end of the vegetation growing 
season (Estiarte and Peñuelas, 2015; Liu et al., 2020; Menzel et al., 2006; 
Shen et al., 2011). However, recent studies revealed that the analysis of 

phenology at whole-ecosystem scale is not always suitable for describing 
the effect of global change on individual plant species, because pheno-
logical responses to climate change can differ among species of the same 
ecosystem (Thackeray et al., 2016). Furthermore, Collins et al. (2021) 
challenged the expectation that all phenological events will advance in 
unison to warming. Instead, they observed that vegetative and repro-
ductive phenology are differentially affected by experimental warming, 
suggesting that different aspects of phenology should be separately 
investigated. Moreover, it was observed that many plant species 
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flowered earlier in response to reductions in diversity, so that declining 
diversity could exacerbate phenological changes attributed to rising 
global temperatures (Wolf et al., 2017). To further investigate these 
multifaceted processes, there is an increasing need for effective methods 
to track single species flowering phenology in species mixtures. 

Thanks to their planetary-scale analysis capabilities and short 
revisiting time, remote sensing (RS) and proximal sensing are opening 
new possibilities for phenological studies, overcoming laborious and 
time-consuming ground-based vegetation observations (Szigeti et al., 
2016). The large-scale observation potential of RS has been applied to 
track vegetation reproductive phenology (Gonzales et al., 2022), but the 
coarse spatial resolution of satellite images restricts flowering estima-
tion to massive homogeneous flowering events in rather homogeneous 
ecosystems such as of eucalypt species (Dixon et al., 2021), oil seed rape 
fields (d'Andrimont et al., 2020), almond (Chen et al., 2019) and pear 
plantations (Wouters et al., 2013). Flowers of different functional groups 
were mapped for the first time by Landmann et al. (2015), in African 
savannas using hyperspectral imagery. Images at finer spatial resolution 
captured by drones recently allowed Gallmann et al. (2022) to recognize 
flower species in permanent grasslands, a task that would not have been 
possible with satellite-resolution images. Frequent (sub-weekly) drones 
flights, however, are usually too expensive for agricultural and ecolog-
ical phenological studies, and other technologies are therefore needed. 

PhenoCams (PCs), i.e., digital cameras configured to capture time- 
lapse images, can bridge the gap between satellite monitoring and 
traditional ground-based vegetation observations (Brown et al., 2016; 
D'Odorico et al., 2015; Richardson et al., 2010). Compared to RS, PC 
imagery can provide a very fine temporal and spatial resolution, 
allowing to explore the inter- and intraspecific variability in plant 
phenology at a sub-daily scale to a much lower cost than repeated drone 
flights. However, only in 2022, PC images were used for the first time to 
map flowering phenology of two Arctic species, the mountain avens 
Dryas octopetala and Dryas integrifolia (Mann et al., 2022). For more 
complex ecosystems, such as multi-species and multi-layered grasslands, 
different automation routines and analysis processes still need to be 
developed. 

Tracking floral phenology using time-lapse camera in grasslands is 
challenging due to many reasons: i) images are acquired under various 
light conditions, ii) sensors usually measure reflectance values only in 
the visible spectral region, iii) flower structures are relatively small and 
only cover a few pixels, iv) flowers might be occluded by vegetative 
plant parts, and v) grasslands are biodiversity rich compared to other 
ecosystems, to name a few (Andrew and Ustin, 2008; Gallmann et al., 
2022; Mann et al., 2022). Even though PC imagery has been used in 
phenological studies at whole-ecosystem scale to track greenness, and 
despite floral phenology (typically determined manually) being a key 
trait of grasslands ecosystems, no processing workflow to track flower-
ing phenology in grasslands has been proposed so far. Nevertheless, a 
workflow to extract flower cover time series (FCTS) from PC imagery is 
urgently needed to, for example, study the response of reproductive 
phenology to environmental and biotic drivers. Moreover, such a 
workflow could easily be applied to different questions of biodiversity 
and climate impact research as well as land management to assess plant- 
pollinator interactions, grasslands cultural services evaluation, and 
grassland productivity monitoring, providing important inputs to 
vegetation and biogeochemical models (Inouye, 2020; Richardson et al., 
2012; Wolf et al., 2017). 

Here, we suggest a processing workflow to extract FCTS from RGB 
time-lapse cameras (RGB as Red, Green, Blue digital numbers). To 
address the aforementioned challenges, we i) leveraged the high tem-
poral resolution of PC imagery by selecting only images in proper light 
condition, ii) based our classification on vegetation indices derived from 
RGB reflectance, iii) included texture metrics to improve discrimination 
among flower species by their shapes. More specifically, we applied 
image filtering, calculated features of selected pixels (vegetation indices 
and texture metrics), and then used the subset of features with highest 

accuracy to train random forest classifiers. Finally, we extracted FCTS 
and derived phenological metrics for single or groups of plant species. 
We present an example application on experimental grassland plots of 
different diversity levels. 

2. Materials and methods 

2.1. Study site 

Images used in this study were acquired in 2014 within the Trait- 
Based Biodiversity Experiment (TBE; Ebeling et al., 2014) at the field 
site of the Jena Experiment (Thuringia, Germany; 50◦55 N, 11◦35 E, 
130 m a.s.l.) (Roscher et al., 2005). The TBE was established in 2010 
following a design which covers gradients in plant species and func-
tional richness, ranging from 1 to 8 species in 138 plots (3.5 m × 3.5 m). 
Species not belonging to the initially sown species pool were weeded 
every year in April, July and October to maintain the species richness 
gradient. Grasslands were mowed two times per year to mimic local 
traditional management. We included 89 plots, covering the whole 
species richness gradient. Selected plots were sown with a combination 
of 13 species, of which seven were grasses: Anthoxanthum odoratum, 
Avenula pubescens, Dactylis glomerata, Festuca rubra, Holcus lanatus, 
Phleum pratense, Poa pratensis; and six were forbs: Centaurea jacea, 
Geranium pratense, Knautia arvensis, Leucanthemum vulgare, Plantago 
lanceolata, and Ranunculus acris. Selected species were cultivated as 
monocultures (14 plots), in 2-species mixtures (32 plots), in 3-species 
mixtures (23 plots), in 4-species mixtures (18 plots), and in 8-species 
mixtures (2 plots). 

2.2. Image acquisition 

In spring 2014, 92 time-lapse cameras (TLC 100, Brinno) were 
installed on 1.5 m poles pointing north at 60◦ angle from horizontal, 
capturing an area of 3.5 m2 in each frame. Images were recorded hourly 
during daylight according to the automatic mode of the cameras from 
April 12th through August 22th, 2014 (Fig. 1). Here, we focus on the 
spring growing period, i.e., between the spring weeding (April 24th) and 
the first mowing (May 29th). Plots 20, 27 and 33 of the TBE plots were 
discarded because of failure in image collection. A total of 52′678 images 
stored in jpg format (1280 × 1040 pixels) were considered in the study. 

2.3. Workflow for data processing 

The proposed workflow (Fig. 2) can be divided in four main phases: 
1) image selection and pixel labelling, 2) feature computation, 3) feature 
selection and final classifier compilation, 4) FCTS extraction, smoothing 
and calculation of phenological metrics. All analyses were performed 
with the R version 4.3.0 (R Core Team, 2023). 

2.3.1. Image selection and pixel labelling (phase 1) 
In Phase 1, image selection phase aimed at increasing the spectral 

separability between six pixel classes. C. jacea and G. pratense did not 
flower during the spring and could therefore not be considered in the 
analyses, while the green-greyish P. lanceolata flowers were not big 
enough to be labelled separately from “Green vegetation”. The grami-
noid species were combined for the flower identification because their 
flowers were not distinguishable, whereas the other three flowering 
species (R. acris, K. arvensis, and L. vulgare) were considered separately. 
The resulting classes used for labelling elements inside the plots were: 
“Green vegetation”, “Soil”, “Graminoids flowers”, “K. arvensis flowers”, 
“L. vulgare flowers”, “R. acris flowers”. Light conditions heavily affect 
pixel colours: images with high brightness were usually foggy, and im-
ages with high contrast were usually acquired in direct sunlight condi-
tions. We calculated brightness and contrast for all images using the 
“extractVIs” function of the R package “Phenopix” (Filippa et al., 2016) 
and tested which brightness and contrast combinations allow the 
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Fig. 1. Examples of analysed images. Left: Plot where G. pratense, H. lanatus, P. pratense and P. lanceolata were sown; image acquired May 27th, 2014. Right: Plot 
where C. jacea, K. arvensis and L. vulgare were sown; image acquired May 23th, 2014. 

Fig. 2. Structure of the proposed workflow with four phases to extract flower phenology from PhenoCam pictures of a grassland biodiversity experiment. Abbre-
viations are as follows: RF = Random Forest; SFFS = Sequential Floating Forward Selection; FCTS = Flower Cover Time Series. 
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selection of images acquired in homogeneous light conditions. Images 
with uniform light conditions were retrieved by selecting brightness and 
contrast between the 10th and the 40th percentile within a 3-day win-
dow. The selection of the best images within this 3-day window avoided 
including images taken on days with sub-optimal observations (e.g., all 
foggy or high contrast images). 

To develop a labelled dataset, 300 images were randomly selected 
(60 images in the period between Apr 24 and May 5; 60 images between 
May 6 and May 18; 180 images between May 19 and May 29, 2014). For 
each image, a 200 pixels × 200 pixels image patch was randomly 
selected and plotted in RGB colours using the “plotRGB” function of the 
“raster” package (Hijmans, 2022). Around 30 pixels per image were 
labelled by clicking on the image to retrieve the x and y coordinates 
using the “locator” function of the “graphics” package and assigning to 
each pixel the class to which it belongs (see subsection 2.1). To prevent 
duplicated pixels after downscaling the images (see the subsequent 
section for downscaling details), any labelled pixels that were within a 
distance of eight pixels from one another were removed from the data-
set. The labelling phase resulted in a table where the class and pixel 
coordinates were stored. 

2.3.2. Feature computation (phase 2) 
To increase the spectral separability of pixels between different 

classes, we computed RGB-based features: vegetation indices and 
texture metrics, described in detail in Table 1. We selected four vege-
tation indices well established in colour analysis literature (Lussem 
et al., 2018; Zhao, 2021). For pixels with a specific shade of purple 
colour, the calculation of the Visible Atmospherically Resistant Index 
(VARI) resulted in infinite values (for definition, see Table 1). Since only 

finite values can be used for classifier development, infinite VARI values 
were replaced with the highest finite value sampled (or lowest in case of 
negative infinite values), which occurred in <0.1% of the labelled pixels. 
The image textures were derived from co-occurrence matrices for each 
colour band, since we expected that the flower colours differed from the 
background (green vegetation or soil) surfaces (Guru et al., 2010), using 
the “glcm” package in R Studio (Zvoleff, 2020; Haralick et al., 1973). 
Homogeneity, Contrast, Dissimilarity, Entropy, Second Moment, Mean, 
and Variance were computed in four directions (0◦, 45◦, 90◦ and 135◦) 
and then averaged to one rotation-invariant texture as commonly used 
in texture analysis (e.g., Guru et al., 2010). For the computation of 
texture metrics, we needed to define the size of the window used for co- 
occurrence matrices. Moreover, downscaling the images to a lower 
resolution before feature extraction can give the best detection accuracy 
while also vastly increasing processing speed compared to higher reso-
lution images (Mann et al., 2022). We tested the influence of window 
size and downscaling factor on classification accuracy and processing 
time, and found that a downscaling factor equal to four and a window 
size equal to eleven resulted in the highest accuracy (Fig. S1). Processing 
time of the downscaled image (4 × 4 pixels) was 16 times shorter than 
the processing time of the full resolution image (24 s per image vs. 395 s 
per image, respectively). The feature values of the labelled pixels were 
then extracted. The feature computation phase resulted in a table where 
class, and features values of the labelled pixels were stored. 

2.3.3. Feature selection and final classifier development (phase 3) 
In Phase 3, we selected a set of best suitable features to optimize 

processing time, and to reduce redundancy of highly correlated features. 
Decreasing the number of features typically increases the classifier 
generalisation capability, because it avoids overfitting (Ho, 1995). First, 
we randomly assigned 70% of images for training, and 30% of images for 
validation. Validating a classifier on a separate part of the dataset is a 
common technique used to evaluate the performance of the classifier 
and to avoid overfitting. For the feature selection, we used the training 
dataset and applied the “varSelSFFS” function from the “varSel” pack-
age, which performs feature selection using the Sequential Forward 
Floating Selection search strategy and the Jeffries-Matusita distance 
(Bruzzone et al., 1995; Dalponte and Ørka, 2021; Pudil et al., 1994). The 
Jeffries-Matusita distance saturates at square root of two, when 
including a new feature does not increase class separation. Thus, the 
number of features to select was defined according to the saturation, as 
described in Richards and Jia (2006). In addition, we investigated the 
capability of RGB bands, vegetation indices, and texture metrics to 
distinguish classes. For this, we compared the accuracies of RF models 
trained on different subsets of features from the training dataset, 
including: i) features selected by SFFS, ii) RGB bands alone, iii) RGB 
bands combined with vegetation indices, iv) RGB bands combined with 
texture metrics, and v) all features. The accuracies were measured on the 
validation dataset. 

To perform RF classifications, we used the “randomForest” function 
of the “randomForest” package (Liaw and Wiener, 2002). The metric to 
calculate the accuracy of the RF classifiers was the mean F1 score of the 
six classes. The F1 score is derived from precision and recall metrics as 
described in eq. 1. The precision is intuitively the ability of the classifier 
not to label a sampled pixel as positive when it is negative, whereas the 
recall is the ability of the classifier to find all the positive sampled pixels. 
Precision and recall are described in eqs. 2 and 3, where tp is the number 
of true positives, tn is the number of true negatives, fp the number of 
false positives, and fn the number of false negatives. All the described 
metrics have their best score at 1 and their worst score at 0 (Congalton 
and Green, 2009). 

F1 =
2*(precision*recall)

precision + recall
(1)  

Table 1 
Image features tested for Phase 2. Pi,j is the probability of values i and j occurring 
in adjacent pixels in the original image within the window defining the neigh-
bourhood. i and j are the labels of the columns and rows (respectively) of the co- 
occurrence matrixes. Because of the construction of the co-occurrence matrixes, i 
refers to the value of a target pixel, and j is the value of its immediate neighbour 
(Rook's case).  

Feature name Equation Reference 

Red Digital Number R  
Green Digital Number G  
Blue Digital Number B  
RGBVI (Red Green Blue Vegetation 

Index) 

( (
G2) − (R*B)

)

( (
G2

)
+ (R*B)

) Bendig et al. 
(2015) 

GLI (Green Leaf Index) (2*G − R − B)
(2*G + R + B) Louhaichi et al. 

(2001) 
VARI (Visible Atmospherically 

Resistant Index) 
(G − R)

(G + R − B) Gitelson et al. 
(2002) 

NGRDI (Normalised Green Red 
Difference Index) 

(G − R)
(G + R) Tucker (1979) 

Homogeneity ∑N− 1
i,j=0

Pi,j
(

1 + (i − j)2
) Haralick et al. 

(1973) 
Contrast ∑N− 1

i,j=0Pi,j(i − j)2 
Haralick et al. 
(1973) 

Dissimilarity ∑N− 1
i,j=0Pi,j ∣i − j∣ Haralick et al. 

(1973) 
Entropy ∑N− 1

i,j=0Pij
(
− lnPi,j

)

Haralick et al. 
(1973) 

Second Moment ∑N− 1
i,j=0P2

i,j Haralick et al. 
(1973) 

Mean μ =
∑N− 1

i,j=0i
(
Pi,j

)

Haralick et al. 
(1973) 

Variance σ2 =
∑N− 1

i,j=0Pi,j(1 − μ)2 Haralick et al. 
(1973)  
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precision =
tp

tp + fp
(2)  

recall =
tp

tp + fn
(3) 

We calculated the processing time for the calculation of all features 
and subsequent image classification for one image. For this, we used one 
core of an AMD Ryzen 73,700 U processor (CPU, 2300 MHz) with 16 GB 
RAM, and 500 GB solid-state drive storage device. The feature combi-
nation providing the best trade-off between accuracy and processing 
time was selected for the RF final classifier compilation. 

2.3.4. Extraction of flower cover time series and phenological metrics 
(phase 4) 

Once the final RF classifier had been trained, the percentage of pixels 

in each class was computed for each image. For this, images were selected 
(see section 2.3.1), for each image the selected features were computed, 
and percentages of each class within each image were calculated using the 
RF classifier developed in subsection 2.3.3. We identified and removed 
outliers from the derived flower cover time series using the “tsclean” 
function of the “forecast” R package which is based on Friedman's 
SuperSmoother for non-seasonal series (Hyndman and Khandakar, 2008). 
Values were aggregated at daily temporal resolution by taking the 
arithmetic mean. A Local Polynomial Regression function was fitted to 
smooth the time series using the “loess” function of the “stats” package (R 
Core Team, 2023). Time series calculated from nine TBE plots were dis-
played and analysed to show the potential applications and limitations of 
the proposed workflow. To obtain further insights into the reliability of 
FCTS, we conducted an analysis of flower cover of species that were not 
sown in each plot. For each image series (i.e., for each plot), we identified 
the predicted FCTS of unsown species, e.g., the predicted FCTS of L. 

Fig. 3. Identification of flowering phenological metrics based on time-lapse cameras. Panel a: Example of flower cover time series. Panel b: Flowering phenological 
metrics identification for the flower cover time series in panel a; onset was defined as the first day above 10% of the normalised cumulative sum of daily flower covers 
before the peak; end of the season was identified as the first day above 90% of the normalised cumulative sum of daily flower covers after the peak. Both approaches 
allow determination of onset and end of season when logistics or management prohibited recording the full flowering season (see main text). 
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vulgare in plots where L. vulgare was not sown. 
For each FCTS, onset, peak, and end of flowering were extracted. The 

peak was identified as the day of maximum in the FCTS, when the value 
was higher than the values before and after it. The onset of flowering 
was identified on the basis of the normalised cumulative sum of daily 
flower covers before the peak, whereas the end of flowering was iden-
tified on the basis of the normalised cumulative sum of daily flower 
covers after the peak. This allowed the identification of flowering onset 
in FCTS when the end of the flowering was not observable (e.g., because 
of mowing) as well as the identification of the end of flowering in FCTS 
when the onset of flowering was not observable (e.g. image acquisition 
started later). The cumulative sums were min-max normalised (0%– 
100%), and the onset was defined as the first day when the normalised 
cumulative sum of daily flower cover exceeded 10% (Fig. 3). Moreover, 
the end of the season was identified as the first day when the normalised 
cumulative sum of daily flower cover after the peak exceeds 90%. The 
10% and 90% thresholds were chosen as a compromise between 
robustness against outliers and timely identification of changes. The 
onset of flowering was determined exclusively for FCTS exhibiting a low 
flower cover (< 1%) at the start of the observation period to avoid errors 
in plots for which the observation period started after the onset of 
flowering. Similarly, the end of flowering was defined exclusively for 
FCTS with a low flower cover (< 1%) at the end of the observation 
period to prevent the mischaracterization of the end of flowering in plots 
for which the observation period ended prior to the end of flowering. We 
expected a flower cover of unsown species above 0% due to wrongly 
classified pixels and therefore did not extract phenological metrics from 
time series for which the peak of the sown species was lower than 1% to 
avoid potential misclassification. The phenological metrics of single 
species that were calculated with this approach can easily be compared 
between treatments (i.e., multiple image time-series), and summary 
statistics can be derived from multiple plots, such as mean and standard 
deviation as well as further statistical analyses. 

3. Results 

With the proposed workflow we were able to successfully develop a 
RF model tailored to the recorded PC images, and thereby extract flower 
cover time-series and flowering phenology metrics of single species or 
groups of species from 89 image series. After the image selection based 
on light conditions in Phase 1 (see Fig. 2), there were on average more 
than three valid images per day per plot. The median number of images 

per plot in the period of interest was thereby reduced from 592 to 137 
images per plot, leaving in total 11′472 images out of the originally 
52′678. Tables and figures showing image availability before and after 
image selection are available in the supplementary material (Fig. S2, 
Table S1, Table S2). 

The dataset used for the RF classifiers training and validation con-
sisted of 9073 pixels. The “Green vegetation” class was the most rep-
resented, with 4281 pixels from 300 images. 1184 pixels were labelled 
as “Soil” from 139 images, 1570 pixels were labelled as “Graminoids 
flowers” from 115 images, 1160 as “L. vulgare flowers” from 65 images, 
506 as “K. arvensis flowers” from 36 images, and 372 as “R. acris flowers” 
from 40 images. The average number of labelled pixels per image was 
30. Labelling 9073 pixels in 300 images took around 300 min (labelled 
pixels highlighted on RGB images are available as supplementary ma-
terials in the ETH Zurich repository). 

The distribution of pixel classes in the RGB space (Fig. 4) suggested a 
good spectral separability of some classes (e. g., “R. acris flowers” vs. 
“K. arvensis flowers”; “Green vegetation” vs “R. acris flowers”), whereas 
some other spectral signatures were not easily distinguishable in the 
RGB space (e.g., “Soil” vs. “Graminoids flowers” vs. “K. arvensis 
flowers”). The classifier developed using RGB bands resulted in an ac-
curacy of 0.791 (Table 2). The addition of vegetation indices and texture 

Fig. 4. Spectral separability of the labelled pixels in the RGB space. Based on two digital numbers (R and B, R and G, B and G), the overlaps of the six classes are 
presented. R is the red band digital number, G is the green band digital number, B is the blue band digital number. Values were extracted from 300 pixels per class 
without downscaling. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Accuracy (mean F1 score of the six classes) and processing time (s image− 1) of 
random forest classifiers developed using different combinations of features 
(number of features in brackets). The set of eleven features selected using 
sequential floating forward selection (SFFS) gave a slightly lower accuracy 
compared to the model including all 28 features (0.888 vs. 0.905) but required 
less than half of the time for image processing (11 vs. 24 s). It was therefore 
chosen as the best feature set.   

RGB 
(3) 

RGB þ
vegetation 
indices 
(7) 

RGB þ
texture 
metrics 
(24) 

All 
features 
(28) 

Selected 
using SFFS 
(11) 

Mean F1 
score 0.791 0.800 0.883 0.905 0.888 

Processing 
time 
(s 
image− 1) 

4 4 23 24 11  
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metrics increased this accuracy up to 0.905. Sequential floating forward 
selection led to the identification of eleven features out of a total of 28 as 
the most informative (Phase 3). This reduction in feature number 
reduced the processing time from 24 s to 11 s per image, without 
remarkable changes in accuracy (mean F1 scores of the six classes were 
0.888 vs. 0.905). The eleven selected features were red, green and blue 
digital number, GLI, NGRDI, RGBVI, VARI, Second Moment computed 
on the red band, as well as Contrast, Second Moment, and Entropy 
computed on the blue band. 

The confusion matrix of the classification performed with the best RF 
classifiers gave insights into the quality of our proposed workflow 
(Table 3). All six classes had precisions above 0.78, indicating a low 
proportion of wrong pixels in the classified classes. “Graminoids 
flowers” were difficult to distinguish from “Soil”, and “K. arvensis 
flowers” were difficult to distinguish from “Graminoids flowers” (see 
also Fig. 4). The recall of “Graminoids flower” and “K. arvensis flowers” 
classes was therefore the lowest (0.79 and 0.76, respectively). 3.4% of 
the pixels labelled as “Soil” were classified as “Graminoids flower”. Even 
though this value appears to be low, it will result in a substantial 
overestimation of graminoids flowers, since a large number of the pixels 
in the images were classified as soil pixels at the start of the season. At 
the end of the season, conversely, “Graminoids flower” cover could be 
underestimated, since 9% of the pixels labelled as “Graminoids flower” 
were misclassified as soil. 

In Phase 4, we extracted time series of flower cover for all the plots, e. 
g., a plot where L. vulgare, R. acris, P. pratensis and G. pratense were sown 
(Fig. 5). In this example plot, we could observe that L. vulgare and 
R. acris were the dominant flowering species (left panel) and that clas-
sified images showed a good match with RGB images. Moreover, 
L. vulgare flowered later than R. acris, reaching its peak five days before 
mowing date (May 25th). Graminoids flower cover showed positive 
values around 1.5% in the fitted time series, even though the flowers of 
P. pratensis, the only graminoid species sown, were not present in the 
RGB images (Fig. 5, right panel). This indicated that in this case the 
graminoids flower cover was overestimated. 

We applied the developed workflow and extracted time series for all 
plots. Here we show the result for nine exemplary plots, dominated by L. 
vulgare (Fig. 6 A, B, and C), by graminoids (Fig. 6 D, E, F), or by R. acris 
and K. arvensis (Fig. 6 G, H, I). L. vulgare and graminoid-dominated plots 
showed the highest maximum flower covers, whereas K. arvensis and 
R. acris showed lower flower covers. The peak day of flowering of each 
species differed among plots: graminoids started flowering more slowly 
compared to the other species, before developing faster than other 
species after mid-May. 

We further investigated the seasonal average of FCTS of species that 
were not sown in the plots (Figs. 7 and S3). Our findings showed that in 
four out of 89 plots, the flower cover of these unsown species exceeded 
10%, primarily due to the presence of pixels misclassified as graminoids 
flowers. However, the average flower cover for unsown species across all 
89 plots was relatively low with 2%. Furthermore, when the graminoids 

class was excluded, the error was almost negligible, being just 0.6%. In 
the experimental setting of the TBE, flowering started in some cases 
before the observation period had begun (i.e., before the spring weeding 
took place). These occurrences were identified (see Section 2.3.4) and 
the onset of flowering was not extracted for these cases. Similarly, in 
some cases flowering did not reach its peak before the end of the 
observation period (i.e., grassland mowing on May 30th) and conse-
quently the end of flowering was not extracted. Peak day was extracted 
from 33 time-series, onset day from 16 time-series, and end of flowering 
from eight time-series. 

4. Discussion 

We propose a workflow to efficiently track flowering phenology of 
individual plant species or groups of plant species in grasslands using 
time-lapse cameras, which are widely applied in ecological studies. 
Therefore, sensor availability and installation are no limiting factors for 
ecologists who can use the proposed workflow for various applications 
(Brown et al., 2016; see subsection 4.1). Specifically, we propose an 
automated selection of vegetation indices and texture metric features to 
enhance the accuracy and processing time of a random forest classifier. 
The workflow can easily be replicated following FAIR principles and can 
be applied to new case studies. The codes have been developed in the 
free software R (R Core Team, 2023, GNU General Public License), and a 
tutorial is provided (https://github.com/andreattad/Flower_covers_phe 
nocams). 

4.1. Possible applications of flower cover extraction workflow 

Multiple opportunities to apply the developed procedure in basic and 
applied ecological research exist. Fields of application span from climate 
change studies over ecosystem functioning to plant community ecology 
and biodiversity change research, with both experimental as well as 
observational settings. 

Application is possible in biodiversity research such as biodiversity- 
ecosystem functioning experiments. The experimental site where the 
current study was conducted was designed to investigate species in-
teractions and to mechanistically understand biodiversity-ecosystem 
functioning relationships (Ebeling et al., 2014). However, manual as-
sessments of flowering phenology are very labour-intensive and cannot 
be carried out regularly. In contrast, time-lapse cameras with the pro-
posed processing workflow can be applied to investigate if and how 
individual plant species change their flowering phenology. The pro-
posed workflow opens new possibilities in the study of flowering 
phenology of individual species in response to a wide range of biotic and 
abiotic drivers, for example to assess the effects of increased carbon 
dioxide concentrations and higher temperatures, heat and drought stress 
on reproductive phenology (Collins et al., 2021; Dorji et al., 2020; 
Fernández-Pascual et al., 2019). Pollinator ecology is another research 
field that could benefit strongly from the availability of the proposed 

Table 3 
Confusion matrix of the final random forest classifier on the validation dataset used in Phase 3. The mean F1 Score of the six classes was 0.888, the mean recall was 
0.888, and the mean precision was 0.888.    

Reference pixel class     

K. arvensis flowers L. vulgare flowers Graminoids 
flowers 

R. acris flowers Green 
vegetation 

Soil Total Precision 

Predicted pixel class 

K. arvensis flowers 117 21 12 0 0 0 150 0.78 
L. vulgare flowers 6 363 21 1 1 0 392 0.93 
Graminoids 
flowers 

28 11 334 0 12 14 399 0.84 

R. acris flowers 0 2 1 163 2 0 168 0.97 
Green vegetation 2 4 16 5 1157 7 1191 0.97 
Soil 0 1 38 0 34 394 467 0.84  
Total 153 402 422 169 1206 415 2767   
Recall 0.76 0.90 0.79 0.96 0.96 0.95   
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workflow, since plant-pollinator interactions are strongly time-sensitive 
(Byers, 2017; Dicks et al., 2021; Freimuth et al., 2022; Vasiliev and 
Greenwood, 2021; Vázquez et al., 2023). 

Grasslands do not only provide animal feed, pollen and nectar, but 
they also provide cultural services, which are relevant for tourism, 
recreation, mental and physical human health, aesthetically appreci-
ated, inspire art as well as design, and are considered a typical feature of 
cultural landscape in many world regions (Richter et al., 2021). Animal 
feed production could also benefit from the proposed workflow as 
grassland management requires accurate data on plant phenology in 
near real time as a predictor of forage quality. Flowering phenology is 
crucial also in plant breeding (Arzani et al., 2004; Jung and Müller, 
2009). 

4.2. Challenges in flower detection and limitations of the proposed 
workflow 

Classifier development for PC image classification is challenging 
since light conditions vary substantially during the recording times, and 
some classes are likely to be strongly underrepresented, for example 
flowers of rare species. Here we propose an efficient labelling phase with 
analyses of image patches from many images, allowing the representa-
tion of also rare species in the labelled sample. We aggregate all gra-
minoids flowers in a single pixel class, since taxonomically and 
phenotypically close plant species are often too similar to be distin-
guished reliably, especially in the case of sedge, rush and grass species. 
We expect that a similar aggregation of different species in one class 
might also be necessary in future applications in biodiversity-rich 
grasslands that include many closely-related species. 

Not all flower species can be spectrally easily distinguished. For 
example, young K. arvensis head colours are very similar to green- 
greyish graminoids flowers. On the other hand, D. glomerata mature 
flowerheads may be red- to purple‑tinged, very similar to K. arvensis 
flowers. Their classes were described by very similar feature charac-
teristics, which can result in lower classification accuracy (cf. Table 3 
and Fig. 4). Following these observations, we expect that with increasing 
complexity of the study system in terms of plant diversity, maintaining 

the accuracy of the method will become more challenging, even though 
texture metrics considerably increased the separability of different 
flower structures in our study. But in such very rich grasslands, plant 
biodiversity is then often described with plant functional types, e.g., 
grasses, forbs and legumes, instead of plant species, and their flower 
separation using time-lapse images could follow the presented, albeit 
further developed approach. However, low-diversity grasslands are 
common both in nature and as a research infrastructure, where sown 
swards are studied in field or pot experiments, typically to investigate 
the role of biodiversity and environmental factors on ecosystem func-
tioning (Jentsch et al., 2009; Roscher et al., 2005; Wolf et al., 2017). 

Phenological metrics that are automatically extracted through the 
proposed method can be related to metrics identified with traditional 
field methods. Field observation of plant flowering phenology is usually 
repeated at daily to weekly intervals and thus describes plant develop-
ment at various degrees of detail. Simple metrics such as the first and last 
day with flowering individuals in the plots, or the day with the highest 
number of flowering individuals per plot are frequently used in 
ecological studies dealing with the effect of global change on plant 
phenology (Cleland et al., 2006; Dorji et al., 2020; Wolf et al., 2017). 
They are conceptually similar to the metrics proposed here. However, 
very detailed scales for the description of plant development such as the 
BBCH scale (Meier et al., 2009) with >50 distinct plant development 
stages, separately determined for groups of species or single species, can 
be more difficult to relate to the metrics proposed here. The BBCH scale 
is not based on flower count or flower cover, but on the description of 
developmental characteristics, which currently cannot be derived from 
images through the proposed automated workflow. Thus, future 
research should attempt to implement pathways to measure more 
traditional plant phenology metrics that are currently not assessed via 
automated remote sensing techniques. 

When investigating plots with highest average seasonal flower cover 
of unsown species (i.e., the nine plots shown in Fig. S3), we found these 
had higher soil cover compared to the overall seasonal average (25% vs. 
10%). As already reported in the confusion matrix in Table 3, some soil 
pixels were misclassified as flowers, and the number of pixels in the 
flower classes were therefore overestimated. The image dataset we 

Fig. 5. Left panel: Time series of flower cover extracted from images from an example plot where L. vulgare, R. acris, P. pratensis and G. pratense were growing. Time 
series were fitted using Local Polynomial Regression, and 0.95 confidence intervals are displayed. Right panel: RGB and classified images acquired on the same 
example plot on May 5th, May 19th and May 26th, 2014 are presented. Green and brown pixels represent the “Green vegetation” and “Soil” classes, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

D. Andreatta et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 298 (2023) 113835

9

analysed in the current study captured an area of 3.5 m2, which resulted 
in a pixel size (ground sampling distance) lower than ¼ of the flower 
size. This ¼ is the suggested minimum ratio between pixel and object 
dimension for accurate classification (Hengl, 2006). PC images are 
usually acquired capturing larger areas to describe vegetation patches at 
landscape scale (Wingate et al., 2015). Thus, for the study design of 
future studies on the monitoring of reproductive phenology, an opti-
mised field of view should be chosen, considering flowers size and PC 
resolution. For example, a camera pointing at an angle of 60◦ from 
horizontal, the field of view of 49.5◦ and an optical resolution of 1280 ×
1040 pixels should be installed at a maximum height of 1.5 m to classify 
flowers of size 5 mm and at a maximum height of 3 m to classify flowers 
of size 10 mm. To ensure the observation of the onset of flowering, it is 
crucial to establish an experimental setting for phenological observation 
that spans the entire growing season, whenever possible. However, in 
this study, this was not always possible as the observation period began 
after spring weeding of the experiment, preventing the observation of 
the onset of flowering in some cases. 

4.3. Paths for further investigation 

New technologies and methodologies are opening new possibilities 
in grassland phenological studies. Active learning is a promising meth-
odology for balanced sample collection with reduced labelling effort, 
and was already proposed, for example, for the reduction of sampling 

effort in forestry inventories (Malek et al., 2019; Persello et al., 2014). 
The use of active learning could facilitate the labelling phase in biodi-
versity rich grasslands. 

Computer vision (CV) techniques are increasingly being used in 
ecological studies and have recently been applied to classify grassland 
images acquired from drones as well as PC images of arctic vegetation 
(Gallmann et al., 2022; Mann et al., 2022; Wäldchen and Mäder, 2017). 
However, to our knowledge, no study about grassland flowering 
phenology using CV techniques to classify PC imagery has been carried 
out so far. In this study, we applied a pixel approach rather than CV 
techniques, and quantified flower cover rather than flower count as 
abundance metric, because CV techniques require a much larger label-
ling effort and computational capacity, and might not be suited for 
graminoids flowers and occluded or overlapping flowers. Furthermore, 
we favoured pixel classification over CV techniques, because the former 
requires highly specialised knowledge, which is not always available to 
both biologists and ecologists (Wäldchen and Mäder, 2018). Flower 
cover is an informative metric also because it can better capture the 
effect of flowering on greenness, which is widely used to describe 
vegetation status (Shen et al., 2010). Nevertheless, the increasing 
availability of pre-trained models that can be fine-tuned, and the recent 
higher accessibility of these techniques suggest that, in some cases, they 
could be applied to estimate species flower cover in grassland mixtures 
(Kirillov et al., 2023; Mann et al., 2022; Wäldchen and Mäder, 2018). 
Thus, the availability of the proposed workflow opens up new 

Fig. 6. Time series of flower cover extracted from images acquired in nine experimental plots in spring 2014 (before first mowing). Time series are fitted using Local 
Polynomial Regression. Confidence intervals (0.95) and sown species names are given in each panel. 
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possibilities in many ecological research fields, including the investi-
gation of species richness effects on individual species flowering 
phenology. 
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