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ABSTRACT This article addresses the problem of cardinality estimation in inner product spaces. Given
a set of high-dimensional vectors, a query, and a threshold, this problem estimates the number of vectors
such that their inner products with the query are not less than the threshold. This is an important problem
for recent machine-learning applications that maintain objects, such as users and items, by using matrices.
The important requirements for solutions of this problem are high efficiency and accuracy. To satisfy these
requirements, we propose a sampling-based algorithm. We build trees of vectors via transformation to a
Euclidean space and dimensionality reduction in a pre-processing phase. Then our algorithm samples vectors
existing in the nodes that intersect with a search range on one of the trees. Our algorithm is surprisingly
simple, but it is theoretically and practically fast and effective. We conduct extensive experiments on real
datasets, and the results demonstrate that our algorithm shows superior performance compared with existing
techniques.

INDEX TERMS Cardinality estimation, high-dimensional data, inner product search.

I. INTRODUCTION
Artificial intelligence techniques have been recently applied
to real-life applications. Deep learning and matrix factoriza-
tion are representative examples. These techniques maintain
objects (e.g., neurons, users, and items) by using matrices,
so many studies with diverse fields, such as the World Wide
Web [23], machine-learning [24], [29], databases [15], [18],
[27], and recommender systems [1], [2], [12], have focused
on inner product spaces. Among them, the inner product
search problem has been extensively studied [6], [7], [9],
[13], [16], [19], [21], [22], [26], [33], [35], because it is a
primitive operator for extracting outputs from neural network
models and matrix products. In this article, we address an
estimation-version of the search problem, namely, the prob-
lem of cardinality estimation in inner product spaces. Given a
set X of high-dimensional vectors, a query q, and a threshold
τ , this problem estimates |Xq|, where Xq is a set of vectors
x ∈ X such that x · q ≥ τ , and x · q is the inner product of
x and q. This problem has important applications in data
science, management, and mining: for example, statistical
density estimation [32], making a query processing schedule
for inner product join [26], and understanding market sizes in
recommender systems [1].

A straightforward approach to solving this problem is to run
a state-of-the-art inner product search algorithm. Although
this approach returns the exact cardinality, it is computa-
tionally expensive. This is because state-of-the-art search
algorithms are based on a linear scan of X [15], [27], incurring
O(n) time, where n = |X|. Actually, many works designed
approximate inner product search algorithms [13], [19], [22],
[33]. It is hence possible to utilize them for faster cardinality
estimation. However, they still need to access many vectors,
i.e., this approach is still time-consuming. Another approach
is to employ estimation algorithms for other data spaces to
which inner product spaces can be transformed. For example,
we can use an estimation scheme for angular distance [32]
when vectors are transformed to the corresponding data space.
This is, however, not a good option, because it has many
hyper-parameters that are difficult to tune in practice. More-
over, our empirical studies show that this approach incurs
large errors.

As can be seen above, the inner product cardinality esti-
mation problem is challenging, and existing techniques for
inner product search and cardinality estimation cannot provide
fast and accurate estimation. We therefore propose a new
algorithm for cardinality estimation in inner product spaces.
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Informally, our idea is to transform this problem into the
problem of approximate range counting in a low-dimensional
Euclidean space. Based on this idea, our algorithm samples
vectors only from a local space that is sufficient to estimate
an accurate cardinality. Thanks to this approach, with a small
number of samples, our algorithm yields an accurate car-
dinality, i.e., fast and accurate estimation theoretically and
empirically. To summarize, our main contributions are as fol-
lows:

1) We propose a new algorithm for cardinality estimation
in inner product spaces.

2) We theoretically analyze the performance of our algo-
rithm.

3) We conduct extensive experiments on real datasets. The
experimental results demonstrate that our algorithm (i)
estimates cardinality more accurately than the state-of-
the-art cardinality estimation algorithm and (ii) is much
faster than the state-of-the-art inner product search al-
gorithms, while keeping a small estimation error.

The rest of this article is organized as follows. Section II
formally defines the problem we address in this article.
Section III reviews related studies. In Section IV, we
present our algorithm. We report our experimental results in
Section V. Finally, in Section VI, we conclude this article.

II. PROBLEM DEFINITION
Let X be a set of n vectors x1,..., xn. Each vector x ∈ X has
d-dimensions, i.e., x = 〈x[1], . . ., x[d]〉, and we assume that
d is high. Given two vectors x and x′, the inner product x · x′
is computed as: x · x′ = ∑d

i=1 x[i] · x′[i].
Applications, which use inner products, are usually inter-

ested in vectors that have large inner products with a given
query vector q. For example, when q represents a new item,
some applications may search for user vectors of which the
inner products with q (e.g., their ratings for the item) are
high. To estimate the number of such vectors, we address the
following problem:

Definition 1 (Cardinality estimation in inner product
spaces): Given a set X of vectors, a query vector q, and a
threshold τ , Xq is defined as:

Xq = {x | x ∈ X, x · q ≥ τ } .

Then, the problem of cardinality estimation in inner product
spaces is to estimate |Xq|.

Our objective is to estimate |Xq| for an arbitrary query q
quickly and accurately.

III. RELATED WORK
A. CARDINALITY ESTIMATION
This is an essential operator for many applications, so
many studies developed fast and accurate cardinality esti-
mation techniques. A typical example is cardinality esti-
mation on a collection of sets via sketches [10]. Famous
sketching techniques are Count-Min sketch [5] and Hyper-
LogLog sketch [8]. Their variants were extensively studied,

e.g., in [28]. However, these cannot be utilized for multi-
dimensional vectors.

In the database community, there are a lot of studies that ad-
dress the cardinality estimation problem in multi-dimensional
spaces. A classic solution is to simply run random sampling
from X. In practice, this simple random sampling is slow
and not accurate. Another approach is based on kernel den-
sity [17]. However, as it utilizes density, it supports only
metric spaces, whereas inner product spaces do not follow
metric.1 Machine-learning (ML) models for cardinality esti-
mation have also been devised recently [25], [30], [31], and
most of them focused on relational database tables. These are
hence hard to be employed in our problem, suggesting the
necessity of designing a technique that is specific to inner
product spaces. Moreover, we do not consider learning mod-
els for inner product cardinality estimation. This is because
existing works, e.g., [25], show that training cardinality esti-
mation models incur a long time, e.g., more than a few hours
(whereas our pre-processing needs less than a few minutes,
see Section B).

The cardinality estimation algorithm proposed in [32] can
be employed in our problem. Actually, inner product search
can be transformed into similarity search under angular dis-
tance constraint. (In [2], it was proved that inner product
search can be transformed into the cosine similarity search,
and the angular distance between two points is obtained from
the cosine similarity between them.) This algorithm utilizes
locality-sensitive hashing (LSH) [3] and computes concate-
nated binary hash values for each vector. Each bin of the LSH
table maintains those vectors with the same hash values. Given
a query vector, this algorithm first computes the hash values
of the query vector. Then, it samples vectors from the bins
such that the Hamming distance between their hash values and
those of the query is not larger than a threshold w.r.t. Ham-
ming distance. This algorithm computes the angular distance
between each sample vector and the query, and then estimates
the cardinality from the sampling result. Unfortunately, [32]
does not provide how to tune parameters w.r.t. LSH and the
Hamming distance threshold, although these directly relate to
the accuracy of the estimation result and are not trivial to tune.

B. INNER PRODUCT SEARCH
A straightforward way to solve our problem is to run an inner
product search algorithm. The state-of-the-art exact search
algorithms employ linear scan and develop early termination
techniques [15], [27] and beat the other approaches, such
as [21]. However, this approach is “too much” for cardinality
estimation, as it incurs O(n) time.

For high-dimensional vectors, exact solutions are usually
computationally expensive, so approximate solutions have
also been devised. A typical approach is to utilize LSH [13],
[19], [22], [33]. This approach transforms the problem of

1In Section A, we use a Euclidean transformation, but it holds only between
a vector and a query, i.e., it does not hold between any two vectors in X.
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FIGURE 1. Visualization of our data structure. Assume that
‖x1‖ ≥ ‖x2‖ ≥ · · · ≥ ‖xn‖. X is partitioned into disjoint subsets X1, X2,..., Xb.
Each group Gi contains X1, . . ., Xi . For each group Gi , an R-tree Ri [20] is
built on the m-dimensional space, i.e., the space projected via (2).

approximate inner product search into the problem of ap-
proximate nearest neighbor search. Another approach is to
utilize proximity graphs [16], [35]. This approach employs a
greedy algorithm. It traverses nodes of the proximity graphs
that approach a given query the closest until no improvements
are obtained. Different from these approaches, ScaNN [9], the
state-of-the-art approximate inner product search algorithm,
employs vector quantization. The idea of vector quantization
is essentially similar to that of LSH: it partitions the data
space into disjoint subspaces, and, for a given q, it searches
the query result only in the subspaces that correspond to
q. ScaNN quantizes the vectors while minimizing the loss
incurred by the vector quantization. However, even this state-
of-the-art is not efficient for cardinality estimation, because it
still needs to access many vectors. Our problem hence needs a
different technique, and accurately estimating the cardinality
from a very small portion of X is required.

IV. OUR ALGORITHM
A desirable solution is to access only a subset X′ ⊂ X such
that each x ∈ X′ has x · q ≥ τ . This is unfortunately hard to
achieve, because τ is not known in advance. We then have a
question: how to approximately achieve this?

In a low-dimensional Euclidean space, a range search on
a tree-index can prune many unnecessary points, thus is a
promising approach. We hence use two transformations: from
the inner product space to the Euclidean space, and from the
high-dimensional space to a low-dimensional space. Note that
simply employing a range search may lose efficiency, because
this approach incurs �(|Xq|) time and |Xq| can be large. To
avoid this issue, we consider a sampling approach. However,
how to incorporate sampling in such a range search on a tree-
index to satisfy accurate estimation is not trivial. We design a
non-trivial algorithm that is theoretically and practically fast
and accurate.

Specifically, putting a similar observation to Johnson-
Lindenstrauss lemma [14], we have the following result.

Theorem 1: There is a sampling algorithm yielding an
estimation |X′

q| such that (i) E[|X′
q|] = |Xq| and (ii) (1 −

ε)|Xq| ≤ |X′
q| ≤ (1 + ε)|Xq| with at least probability 1 − δ

by using O
( |Vq̃,r̃ |

|Xq|ε2 ln 1
δ

)
samples, where |Vq̃,r̃ | is a sample

pool size, with O(n log n) space, for arbitrary q and τ .
Remark 1: This novel result improves the space cost

and sample complexity of a state-of-the-art algorithm [32].

Note that this algorithm needs O
(

n
ε2 log

( 1
δ

))
space (log n <

1
ε2 log

( 1
δ

)
) and an additional O

( 1
α

)
factor (α < 1) for sample

complexity to obtain the same theoretical estimation accuracy
to ours.

In this section, we prove this theorem by using a novel
approach that combines vector transformation, dimensionality
reduction, and random sampling with tree-traversal.

A. PRE-PROCESSING ALGORITHM
To start with, we present our pre-processing algorithm that
builds our data structure. This pre-processing is done only
once, and our data structure is general to any q and τ .

1) SORT X BY NORM
We first compute L2 norm ‖x‖ for each x ∈ X. Then, we sort
X in descending order of this norm.

2) FROM INNER PRODUCT SPACE TO EUCLIDEAN SPACE
We use Xbox transformation [2] to achieve this transforma-
tion. It transforms each x ∈ X into x̄ as follows:

x̄ =
〈
x[1], . . ., x[d],

√
M2 − ‖x‖2

〉
,

where M is the largest norm in X. Also, it transforms a given
query q into q̄ as follows:

q̄ = 〈q[1], . . ., q[d], 0〉 . (1)

Note that

‖x̄ − q̄‖2 = ‖x − q‖2 + M2 − ‖x‖2 = M2 + ‖q‖2 − 2x · q.

and

x · q ≥ τ ⇔ ‖x̄ − q̄‖2 ≤ M2 + ‖q‖2 − 2τ.

Define r as:

r =
√

M2 + ‖q‖2 − 2τ ,

and |Xq| corresponds to the number of x̄ such that ‖x̄ − q̄‖ ≤
r. Now it can be seen that the problem of inner product cardi-
nality estimation can be transformed into a range search in the
Euclidean space. We use X̄ to denote the set of transformed
vectors.

3) DIMENSIONALITY REDUCTION
Because the problem of range search in a high-dimensional
Euclidean space cannot be solved efficiently, we reduce the
dimensionality of X̄ (from d + 1 to m). We utilize a random
projection function h(x̄). Specifically,

h(x̄) = a · x̄,
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FIGURE 2. Visualization of our range search. The dotted circle shows the
search range centered at a projected query q̃, which is shown by the red
point. Leaf nodes of an R-tree, l1, l2, and l3, are represented by rectangles,
and black points show projected vectors. The result of this range search is
{l1, l2}.

where a is a (d + 1)-dimensional vector and each of its di-
mensions is a random value drawn from a normal distribution
N (0, 1). Let x̃ be x in the projected space, i.e.,

x̃ = 〈h1 (x̄) , . . ., hm (x̄)〉 . (2)

4) BUILDING TREES IN AN m-DIMENSIONAL SPACE
Based on the norm order, we equally partition X into b dis-
joint subsets X1,..., Xb where

⋃b
i=1 Xi = X and Xi ∩ X j = ∅

(i �= j). We set b = O(log n). We then make b groups G1,...,
Gb, and the group Gi contains X1,..., Xi (i.e., Gi ⊆ Gi+1).
Last, for each group Gi, we build an in-memory R-tree Ri on
the set of projected vectors x̃ of x ∈ ⋃i

j=1 X j . Fig. 1 depicts
our data structure.

Let Mi be the largest norm in Xi. From Cauchy–Schwarz
inequality, i.e., x · q ≤ ‖x‖‖q‖, we can filter the subsets Xi

if Mi‖q‖ < τ . (All x ∈ ⋃b
j=i X j do not satisfy x · q ≤ τ .)

Therefore, in this case, we can focus only on Ri−1. For exam-
ple, in Fig. 1, if M3‖q‖ < τ , we use only R2. One may notice
that this also can be achieved by building an R-tree for each
subset Xi (not each group). However, if we do this, we have
to traverse multiple R-trees (i.e., from the R-tree on X1 to the
one on Xi−1), which involves many node traversal costs. We
avoid this drawback by making the groups, and this approach
reduces the sample complexity (see Remark 2).

B. ONLINE ALGORITHM
We next describe our online algorithm that exploits our data
structure to quickly and accurately estimate the cardinality.

1) FILTERING UNNECESSARY VECTORS
Given a query q and a threshold τ , we first compute the
norm ‖q‖. Next, we filter unnecessary vectors from Cauchy–
Schwarz inequality, as explained before. That is, we obtain the
group Gi where

i = max
1≤ j≤b

j s.t . M j‖q‖ ≥ τ,

and all vectors in Xi+ j ( j ≥ 1) are filtered.

2) R-TREE TRAVERSAL
Then, we search R-tree nodes that intersect with our search
range. The query q is transformed to q̄ via (1), and we project
it into the m-dimensional space via (2) to obtain q̃. Along with
this, we compute r̃ = √

mr, where r =
√

M2 + ‖q‖2 − 2τ .
(We later explain this setting of r̃.) We next run a range search
on Ri. Note that, different from usual range searches which
retrieve points, our range search retrieves the leaf nodes of Ri

that intersect with the hypersphere centered at q̃ and radius r̃.
For example, in Fig. 2, our range search retrieves leaf nodes
l1 and l2.

3) CARDINALITY ESTIMATION FROM SAMPLES
Last, we estimate the cardinality |Xq| by using the leaf nodes
obtained above. Let Vq̃,r̃ be the set of projected vectors
that belong to the leaf nodes. We run random sampling in
Vq̃,r̃ . (Assume that |Vq̃,r̃ | � s, where s is the sample size. If
|Vq̃,r̃ | ≤ s, we simply scan Vq̃,r̃ .) We prepare a counter c, and
then do the following:

1) We randomly sample a projected vector from Vq̃,r̃

2) Let x̃ be the sampled vector, and we compute x · q.
3) If x · q ≥ τ , we increase c by one.
4) We perform (i) to (iii) s times.

Finally, we use
c·|Vq̃,r̃ |

s as our estimation for |Xq|.

C. ANALYSIS
Let d = O(1) for simplicity. This section introduces our the-
oretical results. We first clarify the space complexity of our
data structure.

Proposition 1 (Space complexity): Our data structure re-
quires O(n log n) space.

Proof: Recall that we have b = O(log n) R-trees and the
group Gi has Gi ⊂ Gi+1 for i ∈ [1, b − 1]. The projected vec-
tor x̃ of x is hence replicated at most O(log n) times. From this
fact, this theorem holds. �

Next, we analyze the accuracy of our online algorithm. Let
t̄ = dist (x̄1, x̄2) for any two vectors x1 and x2, where dist (·, ·)
is the Euclidean distance between two vectors. Also, let t̃ =
dist (x̃1, x̃2). We introduce the following [34].

Lemma 1: Let t = t̃√
m

. We have E[t̃] = √
m × t̄ , and t is

an unbiased estimator of t̄ .
From this lemma, we can expect that the vectors x̄ satisfy-

ing ‖x̄ − q̄‖ ≤ r have ‖x̃ − q̃‖ ≤ r̃ = √
mr. In this case, the

random sampling nature provides that

Corollary 1: E

[
c·|Vq̃,r̃ |

s

]
= |Xq|.

From Lemma 1, we can derive the probability p of sampling
a vector x̃ of x satisfying x · q ≥ τ :

p = |Xq|
|Vq̃,r̃ | . (3)

We use this observation to derive the variance of our estima-
tion.

Lemma 2: Var
[

c·|Vq̃,r̃ |
s

]
= |Xq|(|Vq̃,r̃ |−|Xq|)

s .

Proof: Consider an independent random variable Xi, where
Xi = 1 with probability p and Xi = 0 with probability 1 − p.
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Let X = ∑s
i=1 Xi. (This corresponds to c in our algorithm.)

Because Var[Xi] = p(1 − p), Var[X ] = sp(1 − p). By replac-

ing X with
c·|Vq̃,r̃ |

s , we have

Var

[
c · |Vq̃,r̃|

s

]
=

( |Vq̃,r̃ |
s

)2

Var[c]

= |Vq̃,r̃ |2
s

p(1 − p).

From (3), this lemma holds. �
This lemma indicates that (i) larger samples reduce the

variance of our estimation and (ii) the variance is low as long
as we do not have p ≈ 1

2 . Last, we need to show the following:
Lemma 3: Our algorithm returns (1 ± ε)|Xq| estimation

with at least 1 − δ probability by setting s = O
( |Vq̃,r̃ |

|Xq|ε2 ln 1
δ

)
.

Proof: We use the same notation as in the proof of Lemma
2. Note that E[X ] = sp. We need s such that Pr[|X − E[X ]| ≥
εE[X ]] ≤ δ for 0 < ε < 1 and 0 < δ < 1. From Chernoff
bound, we have

Pr [|X − E[X ]| ≥ εE[X ]] ≤ 2e− E[X ]ε2
3 = 2e− spε2

3 .

Therefore, we need

δ ≤ 2e− spε2

3 .

Then we have

s ≥ 3

p

(
1

ε

)2

ln

(
1

δ

)
= O

(
1

pε2
ln

(
1

δ

))
.

From (3),

s = O

( |Vq̃,r̃ |
|Xq|ε2

ln

(
1

δ

))
.

Consequently, this lemma holds. �
From the above results, Theorem 1 holds.
Remark 2: Our filtering based on Cauchy–Schwarz in-

equality improves the sampling complexity. If we do not filter
any vectors, unnecessary vectors can be projected to the hy-
persphere, which increases the size of Vq̃,r̃ . Recall that we
efficiently avoid this in O(log n) time.

Last, we introduce that our online algorithm is sub-linear to
n in the worst case.

Proposition 2 (Time complexity): Our online algorithm
runs in O(n1−O(1) + N + s) time, where N is the number of
leaf nodes of Ri that intersect with the hypersphere.

Proof: The filtering step requires at most O(log n) time, be-
cause we have b = O(log n) subsets. The R-tree traversal step
requires O(n1−O(1) + N ) time [20], where N is the number of
leaf nodes of Ri that intersect with the hypersphere. Last, the
random sampling requires O(s) time, and getting |Vq̃,r̃ | needs
O(N ) time. �

V. EXPERIMENT
This section reports our experimental results. All experi-
ments were conducted on a Ubuntu 16.04 LTS machine with
3.0 GHz Core i9-9980XE CPU and 128 GB RAM.

TABLE 1. Dataset Statistics

A. SETTING
We used three real datasets: Amazon-M (movie), Amazon-K
(Kindle) [11], and Netflix.2 They are sets of ratings, and the
rating scales are 1 to 5. To generate user and item vectors, we
ran the Matrix Factorization in [4] by setting d = 50, similarly
to [1], [15], [32]. The numbers of users and items are shown in
Table 1. For evaluation, we used item vectors as queries such
that |Xq| ≥ 1, and a set of user vectors was X.

We compared our algorithm Facetts3 with the following
state-of-the-art and some variants of Facetts.

1) FEXIPRO [15]: This is a state-of-the-art exact algorithm
for inner product search.

2) ScaNN [9]: This is a state-of-the-art approximation al-
gorithm for k-maximum inner product search. Because
this algorithm does not allow τ to be specified, we
set k = |Xq|. (This is not practical, but we can see its
performance in the best setting for ScaNN.)

3) IS [32]: This is a state-of-the-art cardinality estimation
algorithm for angular distance.

4) Facetts-wop: This is a variant of our algorithm, and it
does not partition X (so Cauchy–Schwarz inequality
cannot be used and a single R-tree is used).

5) Facetts-wog: This is also a variant of our algorithm, and
it does not group multiple subsets (so an R-tree is built
on each subset). After filtering unnecessary subsets,
this algorithm runs tree traversal and sampling for each
not-filtered R-tree, and the number of samples for each
subset is s′ = s/a, where a is the number of not-filtered
subsets.

For ScaNN, we used the original implementation.4 We im-
plemented the others in C++ and complied by g++ 5.5.0 with
−O3 flag.

B. RESULT OF PRE-PROCESSING
We first measured the pre-processing time of Facetts. On
Amazon-M, Amazon-K, and Netflix, the pre-processing times
were 66.5, 43.9, and 14.1 seconds, respectively. We see that
the pre-processing time of Facetts is reasonable, and scales
linearly to |X|.

C. RESULT OF ONLINE PROCESSING
We measured (i) the average time to estimate the cardinality
and (ii) the estimation error. We used absolute percentage

2[Online]. Available: https://www.cs.uic.edu/liub/Netflix-KDD-Cup-2007
.html

3Fast and accurate cardinality estimation via tree traversal sampling. We
set m = 5. Its code is available at https://github.com/peitaw22/facetts.

4[Online]. Available: https://github.com/google-research/google-research/
tree/master/scann
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TABLE 2. Impact of #samples on Avg. APE, Median APE, and Time [msec] on Amazon-M

TABLE 3. Impact of #samples on Avg. APE, Median APE, and Time [msec] on Amazon-K

TABLE 4. Impact of #samples on Avg. APE, Median APE, and Time [msec] on Netflix

TABLE 5. Avg. APE, Median APE, and Time [msec] of FEXIPRO and ScaNN

error (APE) to measure the error, and

APE =
∣∣∣∣ |Xq| − Cest

|Xq|
∣∣∣∣ ,

where Cest is the estimated cardinality. For ScaNN, Cest is the
number of vectors in the result set that satisfy the threshold.
(As ScaNN is an approximation algorithm, it has Cest ≤ |Xq|.)
We computed the average (denoted by APEavg) and median
(denoted by APEmed ).

1) IMPACT OF #SAMPLES
We investigated the impact of s, #samples, on the estimation
time and error. We set τ = 4.0. The experimental results are
shown in Tables 2, 3, and 4 (bold shows the smallest error
among the approximation algorithms). Since FEXIPRO and
ScaNN do not employ sampling, we measured their running
times when τ = 4.0 (the domain of τ is [0,5]), and the result
is shown in Table 5.

Generally, as the number of samples increases, each
sampling-based algorithm returns a smaller error while the
running time becomes longer. This is a natural result from
the theoretical result. We have two important observations.

TABLE 6. Decomposed Time of Facetts [msec] (s = 2000)

First, Facetts returns a much smaller error than IS on all
datasets. For example, APEavg of Facetts is about 10 times
smaller than that of IS on Amazon-M and Amazon-K while
keeping competitive running time. (The time difference is
derived from tree traversal, because IS does not employ such
an approach.) This result demonstrates the effectiveness of
our approach and shows that simply utilizing a cardinality
estimation algorithm for other data space is not promising.
Second, the error of Facetts is sufficiently small even when
the number of samples is small (e.g., s = 2000), whereas IS
incurs a large error. Looking at APEmed , we see that Facetts
provides less than 5% error for at least half queries.

Next, let us compare Facetts with the state-of-the-art
search-based algorithms FEXIPRO and ScaNN. It can be seen
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TABLE 7. Impact of Threshold on Average APE, Median APE, and Time [msec] on Amazon-M

TABLE 8. Impact of Threshold on Average APE, Median APE, and Time [msec] on Amazon-K

TABLE 9. Impact of Threshold on Average APE, Median APE, and Time [msec] on Netflix

TABLE 10. Memory Usage [GB]

that Facetts is much faster than FEXIPRO, the exact state-of-
the-art algorithm (so its error is 0). Also, Facetts is faster than
ScaNN. As Table 6 shows, each component of Facetts does
not incur a large overhead, so its estimation time is quite short.
Notice that, even when s = 2000, Facetts returns a smaller
error than ScaNN. This result confirms that search-based al-
gorithms are not appropriate for cardinality estimation.

We compare Facetts with its variant Facetts-wop to evalu-
ate the effectiveness of our partitioning strategy. Tables 2–4
show that Facetts always returns a smaller error. The reason is
derived from filtering unnecessary vectors. Due to the pro-
jection into the m-dimensional space, vectors x such that
x · q < τ can also exist in the leaf nodes intersecting with the
hypersphere. Facetts avoids this case as much as possible, so
its estimation error is smaller.

Last, we compare Facetts with Facetts-wog. We see that
Facetts significantly outperforms Facetts-wog, and Facetts-
wog incurs a very large error. This result clarifies the ef-
fectiveness of our grouping approach (see Remark 2). Since

Facetts-wog needs sampling in multiple R-trees and the num-
ber of samples for each R-tree becomes smaller, it cannot
effectively sample vectors x such that x · q ≥ τ . In addition,
due to the traversals of multiple R-trees, its estimation time
is slower than that of Facetts on Amazon-M and Amazon-K.
On Netflix, on the other hand, Facetts-wog is a bit faster than
Facetts. We found that the number of leaf nodes intersecting
with the hypersphere in Facetts-wog is smaller than that in
Facetts for the Netflix case. Besides, the number of not-filtered
subsets is small in this case. These lead the shorter estimation
time of Facetts-wog (but this does not make sense, as it incurs
a large error).

2) IMPACT OF THRESHOLD τ

Tables 7–9 show the experimental results with varying τ . We
set s = 2000 for the sampling-based algorithms. (We omit
the result of Facetts-wog, because its error is too large.) As
τ increases, the running times of FEXIPRO and ScaNN de-
crease. This is because their search space becomes smaller as
the threshold becomes tight. On the other hand, the running
times of the sampling-based algorithms do not change much,
because their main overhead is to compute the inner product
of sampled vectors and a given query vector, as we showed in
Table 6.

We next observe that, as τ increases, the errors of ScaNN
and the sampling-based algorithms increase. Notice that, for
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a large τ , |Xq| decreases. Then, the probability of sampling
vectors x such that x · q ≥ τ decreases. The errors of the
sampling-based algorithms hence increase. However, Facetts
retains small errors even for large τ , see its APEmed . ScaNN
has a smaller APEavg than Facetts when τ is small, but the
difference is slight and Facetts has much shorter estimation
time.

3) MEMORY USAGE
Table 10 compares the memory usage of Facetts with that of
the state-of-the-art cardinality estimation algorithm IS. We see
that Facetts needs less memory than IS, showing that Facetts
outperforms IS w.r.t. estimation time, accuracy, and memory
usage.

VI. CONCLUSION
In this article, we addressed the problem of cardinality es-
timation in inner product spaces. Because machine-learning
techniques are widespread and they often use inner products
of high-dimensional vectors, this problem also has impor-
tant applications. Existing techniques for (approximate) inner
product search and cardinality estimation in other data spaces
actually can be employed to solve our problem. However,
they are expensive for our problem as they involve many data
accesses.

We therefore proposed a fast and accurate algorithm for
inner product cardinality estimation. Our algorithm employs
a new idea: transforming the inner product cardinality into
range count estimation in a low-dimensional Euclidean space.
We theoretically analyzed the performance of our algorithm,
and it can enjoy a performance guarantee. Our extensive
experiments also demonstrate that our algorithm yields accu-
rate cardinality estimation with fast computation time on real
datasets.
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