
Title
Fast, exact, and parallel-friendly outlier
detection algorithms with proximity graph in
metric spaces

Author(s) Amagata, Daichi; Onizuka, Makoto; Hara, Takahiro

Citation VLDB Journal. 2022, 31(4), p. 797-821

Version Type VoR

URL https://hdl.handle.net/11094/92778

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

The VLDB Journal (2022) 31:797–821
https://doi.org/10.1007/s00778-022-00729-1

REGULAR PAPER

Fast, exact, and parallel-friendly outlier detection algorithms with
proximity graph in metric spaces

Daichi Amagata1 ·Makoto Onizuka1 · Takahiro Hara1

Received: 24 June 2021 / Revised: 28 December 2021 / Accepted: 6 January 2022 / Published online: 27 January 2022
© The Author(s) 2022

Abstract
In many fields, e.g., data mining and machine learning, distance-based outlier detection (DOD) is widely employed to remove
noises and find abnormal phenomena, because DOD is unsupervised, can be employed in any metric spaces, and does not
have any assumptions of data distributions. Nowadays, data mining and machine learning applications face the challenge
of dealing with large datasets, which requires efficient DOD algorithms. We address the DOD problem with two different
definitions. Our new idea, which solves the problems, is to exploit an in-memory proximity graph. For each problem, we
propose a new algorithm that exploits a proximity graph and analyze an appropriate type of proximity graph for the algorithm.
Our empirical study using real datasets confirms that our DOD algorithms are significantly faster than state-of-the-art ones.

Keywords Distance-based outlier detection · Metric space · Proximity graph

1 Introduction

Outlier detection is a fundamental task in many applications,
such as fraud detection, health check, and noise data removal
[5,17,50]. As described later, these applications often employ
distance-based outlier detection (DOD) [32], because DOD
is unsupervised, can be employed in any metric spaces, and
does not have any assumptions of data distributions.
Motivation Many applications that implement classifica-
tion, prediction, and regression often utilizemachine learning
techniques, because they can provide high accuracy. To train
high performance machine learning models, noises (i.e., out-
liers) should be removed from training datasets, because
the performances of models tend to be affected by outliers
[5,37,51]. It is now common practice for many applications
to remove noises as pre-processing for training [14,29], and
DOD can contribute to this noise removal. Moreover, natural
language processing, medical diagnostics, and image anal-

B Daichi Amagata
amagata.daichi@ist.osaka-u.ac.jp

Makoto Onizuka
onizuka@ist.osaka-u.ac.jp

Takahiro Hara
hara@ist.osaka-u.ac.jp

1 Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita, Osaka, Japan

ysis also receive benefits from DOD. For example, DOD
is utilized to make datasets clean and diverse by finding
errors or unique sentences from sentence embedding vec-
tors [36]. Campos et al. confirmed that DOD successfully
finds unhealthy people from medical data and irregular data
from image datasets [19].

To cover these applications, DOD techniques need to be
available in metric spaces. This is because the above appli-
cations can have many data types (e.g., multi-dimensional
points, strings, and time-series), which exist not only in
Euclidean spaces but also in other spaces. For instance, word
embedding vectors usually exist in angular distance spaces
[43]. We here note that DOD has several definitions. Let P
be a set of objects.

1. (r , k)-DOD [32]: an object p ∈ P is an outlier iff it has
less than k other objects p′ ∈ P such that dist(p, p′) ≤
r , where dist(p, p′) is the distance between p and p′.

2. (N , k)-DOD-max [45]: an object p ∈ P is an outlier iff
the distance to its k-th nearest neighbor is ranked in the
top-N among P .

3. (N , k)-DOD-avg [10]: an object p ∈ P is an outlier iff
the average distance to its k nearest neighbors is ranked
in the top-N among P .

The above applications often manage large datasets, e.g., to
train an accurate model, thereby techniques for these DOD

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00729-1&domain=pdf
http://orcid.org/0000-0001-8571-4931

798 D. Amagata et al.

problems need to deal with large datasets [30]. There exist
some algorithms that address the above DOD problems in
metric spaces, but they are essentially based on nested-loop
and suffer from O(n2) time, where n = |P|. The scalability
issue therefore remains. This article aims at developing scal-
able algorithms for DOD in the first two definitions, because
[19] demonstrates that (N , k)-DOD-avg returns almost the
same result as that of (N , k)-DOD-max. Hereinafter, we use
(N , k)-DOD to denote (N , k)-DOD-max.
Challenges Due to the popularization of main-memory
databases [55], in-memory processing of DOD on a large
dataset is possible. Exact DODwould be achieved efficiently
by building an effectivemain-memory index offline. Existing
metric DOD techniques [9,26,32,42,48] miss this observa-
tion. To design an efficient index-based solution for any
metric spaces, we address the following challenges: gen-
eral and effective index to any parameters (r , k) or (N , k),
space efficiency, robustness to any metric spaces, and, for
the (N , k)-DOD problem, quickly obtaining a tight thresh-
old and upper-bound distance.

For the first challenge, we do not know the parameters in
advance, so an index has to deal with any (r , k) or (N , k).
Building an index that is general to these parameters and
effectively supports fast and exact DOD is not trivial. The
state-of-the-art algorithms for (r , k)-DOD [9,48] and for
(N , k)-DOD [26] build a simple data structure in an online
fashion after (r , k) or (N , k) are specified. The pruning effi-
ciency of such indexes is limited, so they need a long time to
detect outliers.

A trivial index for fast and exact DOD is to store a sorted
array that maintains the distance to each object in P , for each
p ∈ P . From this array, whether p is an outlier or not can
be evaluated in O(1) time for the (r , k)-DOD problem. This
is because, if dist(p, p′) ≤ r where p′ is the k-th nearest
neighbor of p, p is not an outlier. Also, checking the k-th
element of the array for each object can solve the (N , k)-
DOD problem in O(n log N) time. This approach, however,
requires O(n2) space, so it is infeasible to employ this index
and does not solve the second challenge.

Third, since we consider metric spaces and recent appli-
cations usually deal with middle or high dimensional data,
robustness to any data types and dimensionality is impor-
tant. Notice that we can employ (i) range queries to evaluate
whether given objects are outliers for the (r , k)-DOD prob-
lem and (ii) k-NN queries to measure the distances to the
k-thNN for the (N , k)-DODproblem.A simple and practical
solution is to build a tree-based index offline and run a range
or k-NN query on the index for each object. However, space-
partitioning approaches like tree structures are efficient only
for low-dimensional data. That is, the computational per-
formances of existing space-partitioning techniques [9,48]
degrade on high-dimensional data.

Fig. 1 Example of a proximity graph. Each object (black vertex) has
links to its nearby objects, and r is a distance threshold. For k = 3, p
is not an outlier

Last, themain bottleneck of the (N , k)-DODproblem is to
compute the exact k-NNs. To avoid this as much as possible,
we need (i) a technique that computes a tight threshold with
a small cost and (ii) a technique that efficiently computes a
tight upper-bound of the k-NN distance for each object. This
is because, if an upper-bound of the k-NNdistance of p is less
than a given threshold, computing the exact k-NN distance
of p can be safely pruned. However, these techniques are
not trivial, since they have to overcome all of the first three
challenges.
Contributions We address the above challenges and make
the following contributions1.
(1) New algorithm for the (r , k)-DOD problem. We pro-
pose a new solution for the (r , k)-DOD problem that filters
non-outliers efficiently while guaranteeing correctness by
exploiting a proximity graph. In a proximity graph, an object
p corresponds to a vertex, and each object has links to some
of its similar objects, as shown in Fig. 1, which assumes a
Euclidean space. Example 1 intuitively explains the filtering
power of a proximity graph. (A non-outlier can be filtered in
O(k) time.)

Example 1 Let p be the center of the gray circle with radius
r in Fig. 1. Assume k = 3, and we can see that p is not an
outlier by traversing its links.

This novel idea of graph-based filtering yields a signifi-
cant improvement, because it avoids the impact of the curse
of dimensionality and we need to verify only not-filtered
objects. Note that our algorithm (i) is orthogonal to any met-
ric proximity graphs, (ii) is easily parallelizable, and (iii)
detects all outliers correctly.

The above idea provides a new result: the time complex-
ity of our solution is O((f + t)n), where f is the number
of false positives (not-filtered objects in filtering) and t is the
number of outliers. This result states that, if f + t = o(n) in
the worst case, our solution does not need O(n2) time. This
usually holds for real datasets, whereas the existing DOD

1 Our preliminary version [7] solves the (r , k)-DOD problem. This
journal article includes additional contents: we show that (1) our idea
for the (r , k)-DOD problem is also useful for the (N , k)-DOD problem
and can improve the theoretical and practical computation time and (2)
more experimental results than those in our preliminary version.

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 799

algorithms [9,32,48] essentially incur O(n2) time. Empiri-
cally, our solution scales almost linearly to n on real datasets.
(2) Novel metric proximity graph. To maximize the per-
formance of the above solution, f should be minimized.
Let us define neighbors of p as the objects p′ such that
dist(p, p′) ≤ r . The above solution greedily traverses p’s
neighbors from p in a given proximity graph. If this proxim-
ity graph has paths such that the neighbors of p are reachable
from p in a greedymanner, f decreases. (We use reachability
in this greedy traversal context.)

Motivated by this observation, we devise MRPG (Met-
ric Randomized Proximity Graph), a new proximity graph
that is specific to the (r , k)-DOD problem. When r or k is
large, to evaluate whether p is not an outlier, we may need
to traverse objects existing in more than 1-hop from p in
a proximity graph. However, existing proximity graphs are
not designed to consider reachability, which increases f . The
novelty of MRPG is that MRPG improves the reachability to
neighbors by making pivot-based monotonic paths between
objects with small distances. Furthermore, the space of a
MRPG is reasonable to fit into main memory, because it is
linear to n.

How to build a MRPG efficiently is not trivial, so we pro-
pose an efficient algorithm that builds aMRPG in linear time
to n. We show that simply improving reachability between
objects incurs �(n2) time, which clarifies that our algorithm
is much faster. Our MRPG building algorithm improves the
reachability to neighbors while keeping a theoretically com-
parable efficiency with the state-of-the-art algorithm that
builds an approximate K nearest neighbor graph [23], and
our algorithm is empirically faster.
(3) New algorithm for the (N , k)-DOD problem. By utiliz-
ing the idea of the first contribution, we propose Progrand, a
proximity graph-based algorithm for the (N , k)-DOD prob-
lem. Progrand is also easy to parallelize and yields a tight
threshold in �(Nn) time. Our filtering technique needs only
O(k) time for each object, so it can filter unqualified objects
in O(kn) time. Progrand computes (verifies) the exact k-
NNs only for not-filtered objects, which needs O(f ′n) time,
where f ′ is the number of verified objects. This algorithm
hence runs in O((N + k + f ′)n) time.

Without the sorted arrays described earlier, we need
�(Nn) time to solve the (N , k)-DOD problem, because we
need to run k-NN search, which needs �(n) time in met-
ric spaces [34], at least N times. Generally, N > k, so
O((N + k + f ′)n) ≈ O((N + f ′)n) and Progrand yields
a small f ′ in practice. This suggests that Progrand could
nearly match the lower-bound in practice.
(4) Extensive experiments. We conduct experiments using
various real datasets and distance functions. The results
demonstrate that our algorithms significantly outperform the

state-of-the-art ones. The codes of our algorithms are avail-
able in the GitHub repositories.2,3

Organization The rest of this article is organized as fol-
lows. Section 2 formally defines the problems of this article,
and Sect. 3 reviews related work. Sections 4 and 5 solve the
(r , k)-DOD and (N , k)-DOD problems, respectively. Sec-
tion 6 reports our experimental results, and Sect. 7 concludes
this article.

2 Preliminary

Let P be a set of n objects, i.e., n = |P|. The neighbors of
an object p ∈ P are defined as follows:

Definition 1 (Neighbor) Given a distance threshold r and an
object p ∈ P , p′ ∈ P\{p} is a neighbor of p if dist(p, p′) ≤
r .

Weconsider thatdist(·, ·) satisfiesmetric, i.e., non-negativity,
identity of indiscernible, symmetry, and triangle inequality.
We next define (r , k)-distance-based outlier and the problem
which we solve in Sect. 4.

Definition 2 ((r , k)-distance-based outlier) Given a distance
threshold r , a count threshold k, and a set of objects P , an
object p ∈ P is an (r , k)-distance-based outlier if p has less
than k neighbors.

Problem 1 ((r , k)-DOD) Given a distance threshold r , a
count threshold k, and a set of objects P, the (r , k)-DOD
problem finds all (r , k)-distance-based outliers.

If p has a small number (k) of neighbors within a suffi-
ciently large distance r from p, it is clearly an outlier. Some
density-based clustering algorithms employ this concept to
identify noises [6]. The distance threshold r would be speci-
fied by domain experts, but, if applications/users do not have
sufficient knowledge about P , specifying r may be difficult.
Hence, we also consider the (N , k)-DOD problem, which
alleviates this issue and can control the number of outliers.
This problem is formally defined below.

Definition 3 (k nearest neighbors) The k nearest neighbors
of p ∈ P are k objects in P\{p} whose distances to p are
the smallest among P\{p}.
Let distk(p) be the distance between p and its k-th nearest
neighbor. In Sect. 5, outliers are defined as:

Problem 2 ((N , k)-distance-based outlier) Given P, k, and
N, the top-N objects with the largest distk(·) among P are
(N , k)-distance-based outliers (ties are broken arbitrarily).

2 https://github.com/amgt-d1/DOD.
3 https://github.com/amgt-d1/DOD-kNN.

123

https://github.com/amgt-d1/DOD
https://github.com/amgt-d1/DOD-kNN

800 D. Amagata et al.

Then, our problem in Sect. 5 is:

Problem 3 ((N , k)- DOD) Given P, k, and N, this problem
finds (N , k)-distance-based outliers.

An (r , k)- or (N , k)-distance-based outlier is hereinafter
called an outlier when the context is clear. We use inliers to
denote objects that are not outliers. As in recent works [24,
38,44,56], we assume that P is static and resides in the main
memory of a single machine. The objective of this article is
to develop fast and exact algorithms for Problems 1 and 2.

3 Related work

(r , k)-DOD problem in metric spaces A nested-loop
algorithm [32] is a straightforward solution to this problem.
This algorithm counts the number of neighbors of a given
p ∈ P by a linear scan of P and terminates it when the
count reaches k. This algorithm incurs O(n2) time, so does
not scale to large datasets.

Given r , SNIF [48] forms clusterswith radius r/2. (Cluster
centers are randomly chosen.) If the distance between p and
a cluster center is within r/2, p belongs to the corresponding
cluster. From triangle inequality, the distances between any
objects in the same cluster are within r . If a cluster has more
than k objects, they are not outliers. Even if a cluster has
less than k + 1 objects, objects in the cluster do not have
to access the whole P , because p can avoid accessing p′
such that dist(p, p′) > r by using clusters. However, this
approach does not function well on high-dimensional data,
due to the curse of dimensionality.

DOLPHIN [9] is also a scan-based algorithm. This algo-
rithm indexes already accessed objects to investigatewhether
the next objects are inliers. DOLPHIN can know how many
objects exist within a distance from the current object p. If
there are at least k objects within the distance, DOLPHIN
does not need to evaluate the number of neighbors of p any
more.

The main issue of the above algorithms is their time com-
plexity. They rely on the (group-based) nested-loop approach
and incur O(n2) time. Besides, they lose distance bounds
for high-dimensional data due to the curse of dimension-
ality, rendering degraded performance. In addition to these
solutions, an algorithm that exploits range search can also
solve the (r , k)-DOD problem, as can be seen from Defini-
tion 1. As a baseline, we employ VP-tree [52], because [20]
demonstrated that VP-tree is the most efficient solution for
the range search problem in metric spaces. Each node of a
VP-tree stores a subset P ′ of P , the centroid object in P ′, and
the maximum value among the distances from the centroid to
the objects in P ′. A range search on VP-tree is conducted as
follows. The lower-bound distance between a query and any
node can be obtained by using the maximum value and trian-

gle inequality. If this lower-bound distance is larger than r ,
the sub-tree rooted at this node is pruned (otherwise, its child
nodes are accessed). How to build a VP-tree is introduced in
Sect. 4.2.1.
(N , k)-DOD problem in metric spacesORCA [15] is the
first algorithm that tries to improve practical computation
time and is robust to dimensionality. This algorithm is based
on nested-loopwith early termination (see Lemma 7). ORCA
does not consider obtaining a tight threshold quickly, so it
cannot exploit the early termination and lacks scalability.

RBRP [25,26] is an improved version of ORCA. This
algorithm first partitions P into disjoint subsets, so that each
subset contains objects being similar to each other. When
computing the exact k-NNs of an object p, RBRP first scans
the subset to which p belongs, in order to quickly obtain a
tight upper-bound of distk(p). However, RBRP has the same
drawback as ORCA.

DIODE [42] also employs a nested-loop approach and
is the first work that tries to obtain a tight threshold and a
tight upper-bound of distk(p) quickly. In its pre-processing,
DIODE partitions P into disjoint subsets. For each subset,
DIODE computes its density. In addition, for each object
p ∈ P , DIODE computes the distance to each subset and
obtains the access order of subsets for p. Given N and k,
DIODE accesses the subsets in ascending order of their den-
sities, based on the assumption that objects p in a subset
with a low density have large distk(p), to quickly tighten
the threshold. DIODE computes the k-NNs of each object in
a similar way to RBRP. Because its density estimation may
not be accurate, it does not guarantee to tighten the threshold
efficiently. Hence, its performance may be worse than those
of ORCA and RBRP.

Since the state-of-the-art algorithms rely on a nested-loop
approach, they are easy to parallelize. However, the improve-
ment is limited, because they suffer from O(n2) time.
Other outlier detection works There are other
approaches for outlier detection: density-based (e.g., KDE
[31] and LOF [18]), angle-based [35], and model-based ones
[39]. Density- and angle-based approaches have a similar
parameter setting to DOD. On the other hand, a state-of-the-
art model-based one (iForest) [39] does not use distance and
parameters to evaluate outliers, thus is efficient4 and may be
useful if specifying parameters is difficult.

The above approaches have different applicability, for
example, iForest and angle-based approach do not fully cover
metric spaces, because they deal with only d-dimensional
vectors (metric spaces include other data types, such as

4 We empirically investigated that our DOD algorithms are still faster
than iForest [1]. For example, our algorithms took less than 11, 39, and
13 s to evaluate outliers on Glove, HEPMASS, and PAMAP2 datasets,
respectively (see Sect. 6). On the other hand, iForest needed approxi-
mately 112, 936, and 349 s on the datasets, respectively.

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 801

strings). Furthermore, it is important to note that [27] empir-
ically compared DOD with the above approaches on more
than 20 datasets w.r.t. effectiveness. Through ROC-AUC and
average precision tests, it shows the following results: (i) The
accuracy of DOD is competitive with that of iForest (known
state-of-the-art) and usually better than those of the others (
[19] also reported similar results). (ii) DOD is more robust
against the dimensionality than iForest. These facts alsomoti-
vate us to address the DOD problems.
Proximity graphs have been demonstrated to be the most
promising solution to the approximate k-NN search problem
in in-memory setting [38]. If the distance between an object
p and its approximate k-th NN is within r , p is not an outlier.
Also, if this distance is less than an intermediate threshold of
the (N , k)-DOD problem, we can skip computing distk(p).
From these observations, we see that proximity graphs have
the potential to solve the (r , k)- and (N , k)-DOD problems
efficiently. Some proximity graphs [11,24,28,38] are depen-
dent on L2 space, so we review proximity graphs in metric
spaces.

One of the most famous proximity graphs is KGraph. In
this graph, each object corresponds to a vertex andhas links to
its approximate K -NN (AKNN) objects (i.e., K is the degree
of the graph).NNDescent [23] is a state-of-the-art algorithm
to build an AKNN graph. Our proximity graph is also based
on an AKNN graph, and we extend NNDescent to build an
AKNNgraphmore efficiently in Sect. 4.2.1. Actually, simply
employing KGraph may incur some problems. For example,
its reachability to neighbors can be low if k > K .

Another famous proximity graph is based on navigable
small-world network models [16]. In a graph based on this
model, the number of hops between two arbitrary vertices is
proportional to log n. Building a graph based on this model
incurs O(n2) time, thereby an approximate solution, NSW,
was proposed in [40]. To accelerate approximate nearest
neighbor (ANN) search, its hierarchical version, HNSW,was
proposed in [41]. The upper layers of HNSW are built by
sampling objects in their lower layers. This structure aims
at skipping redundant vertices to quickly reach vertices with
small distances to a query. When we evaluate the number of
neighbors of p ∈ P or an upper-bound of distk(p), p is con-
sidered as a query object. Figure 2a depicts the search process
in the ANN problem: it starts from a random (or fixed) ver-
tex (the grey one) and traverses the proximity graph so that
the next vertex is closer to the query object (the white one)
than the former one. On the other hand, in our problem, a
query object is one of the objects in P . It is clearly better
to traverse the graph from the query object for finding its
neighbors, as shown in Fig. 2b. Therefore, we do not need
the skipping structure of HNSW. (If we use the approach in
Fig. 2b, HNSW is reduced to NSW, thus we do not consider
HNSW as a baseline.)

(a) ANN problem (b) Our problem

Fig. 2 Graph traversal difference between our andANNproblems (rep-
resented by arrows). Grey and white vertices respectively represent the
starting object and a query object

Although these proximity graphs can be employed in our
solution to the (r , k)-DOD problem, they cannot optimize
the performance of our solution. This is because they do not
consider reachability to neighbors. Moreover, if our solution
to the (N , k)-DOD problem simply employs them, it cannot
deal with any k. We therefore (i) propose a new proximity
graph for the (r , k)-DODproblem that takes reachability into
account in Sect. 4.2 and (ii) extend AKNN graph so that it
can be generally and efficiently utilized for the (N , k)-DOD
problem in Sect. 5.

4 Our solution to the (r, k)-DOD problem

4.1 New framework for the (r, k)-DOD problem

Let t be the number of outliers in P . A range search in metric
spaces of arbitrary dimension needs O(n) time. Therefore,
when we do not have an index with O(n2) space introduced
in Sect. 1, Problem 1 needs �(tn) time (because we have
to evaluate not only outliers but also inliers). To scale well
to large datasets, it is desirable that (1) the time complex-
ity of a solution nearly matches this lower-bound and (2)
the space complexity is linear to n (so as to easily fit into
the main-memory). Designing such a solution is however
not straightforward. Our new technique for the (r , k)-DOD
problem overcomes this non-trivial challenge. Table 1 sum-
marizes the symbols frequently used in Sect. 4.
Main idea Given P , the ratio of outliers in P is small
(usually less than 1%) [53]. That is, most objects in P are
inliers, so we should identify them as inliers quickly, to
reduce the computation time. The evaluation of whether p
is an inlier can be converted to answering the problem of
range counting with query object p and radius r . To filter
inliers quickly, therefore, we need an efficient solution for
the problem of range counting, with early termination when
the count reaches k. Recently, proximity graphs have shown
high potential for solving the approximate nearest neighbor
search problem in in-memory setting [38], thanks to the con-
nections between similar objects. Proximity graphs are also
promising for solving the range counting problem. Because
each object p has links to its similar objects in a proximity

123

802 D. Amagata et al.

Table 1 Overview of symbols in Sect. 4

Symbol Description

P A set of objects

n Cardinality of P , i.e., |P|
p An object

r A threshold for distance

k A threshold for the number of neighbors

G A proximity graph

v A vertex (i.e., object) in the context of G

K An initial degree of G

f The number of false positives

t The number of outliers

Q A queue for graph traversal

graph, we can efficiently count the number of neighbors of p
by traversing the graph from p, regardless of the dimension-
ality of the dataset. Figures 1 and 2b depict its intuition, and
Example 1 gives an overview of our filtering.Moreover, such
a proximity graph does not incur a high space cost, because
its space cost is reasonable and usually O(nK), where K
is an application-specified degree. Last, to return the exact
result set, we just have to verify only not-filtered objects by
using an exact range search technique (e.g., linear scan).

To implement the above idea, we propose a proximity
graph-based solution, a novel approach to the DOD problem.
Algorithm 1 describes its overview. This solution consists of
a filtering phase (lines 2–5) and a verification phase (lines
7–10).

4.1.1 Filtering phase

In this phase, we filter inliers by exploiting a proximity
graph G, which is built in a one-time pre-processing phase.
Specifically, we propose Greedy- Counting (Algorithm 2)
to count the number of neighbors of an object p ∈ P . Con-
sider that a vertex v in G corresponds to p ∈ P (v and p are
hereinafter used interchangeably in the context of G). Let
v.E be the set of links between v and some other vertices.

Given an object p, r , and k,Greedy- Counting greedily
traverses G from v, as long as a visited vertex v′ satisfies
dist(p, p′) ≤ r , to count the number of neighbors of p. In
other words, we first check v.E : for each (v, v′) ∈ v.E where
v′ has not been visited, we increment the count by one and
insert p′ into a queue Q, iff dist(p, p′) ≤ r . (One excep-
tion appears in line 13, and this is necessary for MRPG, see
Sect. 4.2.4). We next pop the front of Q, say v′, check v′.E ,
and do the same as for v. Greedy- Counting is terminated
when the count reaches k or Q becomes empty.

Example 2 We use Fig. 1 to describe an example of the fil-
tering phase. Assume k = 3. For p in Fig. 1, Algorithm 1

Algorithm 1: Proximity Graph-based (r , k)-DOD
Input: P , r , k, and a proximity graph G

1 /* Filtering phase */
2 P ′ ← ∅

3 for each p ∈ P do
4 if Greedy- Counting(p, r , k,G) < k then
5 P ′ ← P ′ ∪ {p}
6 /* Verification phase */
7 Pout ← ∅

8 for each p ∈ P ′ do
9 if Exact- Counting(p, r , k) < k then

10 Pout ← Pout ∪ {p}
11 return Pout

Algorithm 2: Greedy- Counting
Input: pi , r , k, and a proximity graph G

1 count ← 0, Q ← {vi }, check vi as visited
2 while Q �= ∅ do
3 v ← the front of Q
4 Q ← Q\{v}
5 for each v′ ∈ v.E s.t. v′ has not been visited do
6 Check v′ as visited
7 if dist(p, p′) ≤ r then
8 count ← count +1
9 if count = k then

10 break

11 Q ← Q ∪ {v′}
12 else
13 if p′ is a pivot then
14 Q ← Q ∪ {v′}

15 if count = k then
16 break

17 return count

traverses its neighbors from p through the links. Greedy-
Counting first accesses the three objects p′ that have links
from p (by using Q), andwe see that dist(p, p′) ≤ r . There-
fore, p is an inlier, and Algorithm 1 filters p. Algorithm 1
runs this operation for the other objects iteratively.

Lemma 1 Our filtering does not incur false negatives.

Proof We omit all proofs in Sect. 4 due to space limitation.
They appear in [8]. 	

4.1.2 Verification phase

Let P ′ be the set of objects whose counts returned by
Greedy- Counting are less than k. From Lemma 1, P ′ con-
tains all outliers but may do some false positives (i.e., inliers
that are not filtered). Exact- Counting in Algorithm 1 ver-
ifies whether a given object p ∈ P ′ is really an outlier or not
in the following way:

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 803

– For datasets with low (intrinsic) dimensionality, we con-
duct a range counting on a VP-tree [52].

– For the others, we use a linear scan, because this is more
efficient than any indexingmethods for high-dimensional
data [21,47].

We terminate verifying p when the count of p reaches k.
Since this phase counts the exact number of neighbors for
all outliers in P ′ and P ′ contains all outliers, Algorithm 1
returns the exact answer.

4.1.3 Analysis

Hereinafter, we assume that the dimensionality is fixed.

Theorem 1 Algorithm 1 requires O((f + t)n) time, where
f and t are respectively the numbers of false positives and
outliers.

Remark 1 From the above result, we see that our solution the-
oretically does not need O(n2) time, if f + t = o(n) in the
worst case. This holds in practice, so our result supports a sig-
nificant speed-up over the existing (r , k)-DOD algorithms.
We here note that (1) real datasets have t � n [33,53], and
(2) t is usually dependent not on n but on the data distribu-
tions. These and Theorem 1 suggest that our solution with a
proximity graph yielding a small f can be (almost) linear to
n in practice (e.g., see Fig. 9h).

Multi − threading When we say that an algorithm is
parallel-friendly, we mean that the algorithm can be par-
allelized with no algorithmic modifications and (almost) no
synchronization. Then, the filtering and verification phases of
Algorithm 1 are parallel-friendly, because they evaluate each
object independently. In terms of implementation, assuming
the usage of OpenMP, we just need to add “#pragma omp
parallel for” before the for-loops at lines 3 and 8 of
Algorithm 1. This also clarifies that no algorithmic modifi-
cations and synchronization are required.

To exploit multi-threading, balancing the load of each
thread is important. The early termination in the verification
phase cannot function for outliers, since they do not have k
neighbors. The filtering and verification costs of outliers are
hence larger than those of inliers. That is, keeping load bal-
ance is hard in our problem theoretically, as we do not know
outliers in advance. We therefore consider a random parti-
tion for assigning objects into each thread, in the expectation
that each thread has an almost equal load. To (approx-
imately) achieve this without shuffling the dataset (i.e.,
without doing an additional operation), we use “#pragma
omp parallel for schedule (dynamic)”. This
approach practically functions well (e.g., see Fig. 12).

4.2 MRPG

Although our (r , k)-DOD algorithm is orthogonal to any
proximity graphs, its performance (i.e., f) depends on agiven
proximity graph. To maximize the performance, we should
minimize f in the filtering phase while keeping a small space
cost. Therefore, themain challenge of this section is to reduce
f with a proximity graph whose space is linear to n.
Consider an inlier p. To accurately identify p as an inlier

in the filtering phase (i.e., to reduce f), a proximity graph G
shouldhavepaths from p to its neighbors that canbe traversed
by Greedy- Counting. Our idea that achieves this is to
introducemonotonic path, a path from p such that Greedy-
Counting can traverse its neighbors in non-decreasing order
w.r.t. distance.

Definition 4 (Monotonic path) Consider two objects pi and
pi+x in P . Let vi , vi+1,…, vi+x be a path from pi to pi+x in
a proximity graph. Iff dist(vi , vi+ j) ≤ dist(vi , vi+ j+1) for
all j ∈ [0, x − 1], this path is a monotonic path.

If G has at least one monotonic path between any two
objects,G is amonotonic searchgraph (MSG) [22].Although
a MSG can reduce f , building it in metric spaces requires
�(n2) time (see Theorem 3), meaning that reducing f with
a proximity graph that can be built in a reasonable time is not
trivial. To solve this challenge, we propose MRPG (Metric
Randomized Proximity Graph), an approximate version of
MSG. MRPG incorporates the following properties.

Property 1: each object has links to its approximate K -
NNs.
Property 2: monotonic paths are created based on pivots
(a subset of P).
Property 3: candidates of outliers have their exact K ′-
NNs, where K ′ ≥ K .

The benefits of these properties are as follows. First, thanks
to the first property, Greedy- Counting tends not to miss
accessing similar objects. Second, the graph traversal in
Algorithm 2 goes through pivots. Assume that we now visit
a pivot when counting the number of neighbors of p. If the
pivot has a monotonic path to the neighbors of p, reach-
ability between p and its neighbors is improved. Now the
challenge is how to choose pivots to receive this benefit
for many objects. Random sampling is clearly not effec-
tive because it produces many samples from dense subspaces
(objects in dense spaces are easy to reach their neighbors).
Our approach is that we choose pivots from each subspace of
P , because this approach can choose pivots from compara-
tively sparse spaces and reachability between objects existing
in such spaces is also improved. (How to efficiently identify
subspaces is introduced in Sect. 4.2.1.) Last, the third prop-
erty is simple yet important. If objects have links to their

123

804 D. Amagata et al.

exact K ′-NNs, we can efficiently know whether or not they
are outliers, if k ≤ K ′.

This section presents a MRPG building algorithm, which
satisfies the above properties through the following steps:

1. NNDescent+: this builds an AKNN graph. We extend
NNDescent, a state-of-the-art AKNN graph building
algorithm, to quickly build it.

2. Connect- SubGraphs: because an AKNN graph may
have disjoint sub-graphs, this step connects such sub-
graphs to guarantee that MRPG is strongly connected.

3. Remove- Detours: this creates monotonic paths by
removing detours. We utilize a heuristic approximation.

4. Remove- Links: this removes unnecessary links to avoid
redundant graph traversal.

The first step achieves properties 1 and 3.We obtain property
2 in the third step. Section 4.2.5 shows that this algorithm
achieves linear time to n. That is, we achieve a reduction
of f by using a MRPG (i.e., the three properties) that can
be obtained in a reasonable time (Theorem 4). Moreover,
steps 1–3 are carefully designed so that, for a fixed K , each
step adds at most O(n) links, thus MRPG is space-efficient
(Theorem 5).

4.2.1 NNDescent+

MRPG is based on an AKNN graph, so we need an efficient
algorithm for building anAKNNgraph. Building an exact K -
NN graph needs O(n2) time, thereby we consider an AKNN
graph. NNDescent [23] is a state-of-the-art algorithm that
builds an AKNN graph in any metric spaces. We first intro-
duce it. Note that the AKNN graph obtained byNNDescent
satisfies only property 1.
NNDescent is based on the idea that, given an object p and
its similar object p′, objects similar to p′ would be similar
to p. That is, AKNNs of p can be obtained by accessing its
similar objects and their similar ones iteratively. Given K and
P , the specific procedures of NNDescent5 are as follows:

1. For each object p ∈ P , NNDescent first chooses K
random objects as its initial AKNNs.

2. For each object p ∈ P , NNDescent obtains a similar
object list that contains its AKNNs and reverse AKNNs.
(If p ∈AKNNs of p′, p′ is a reverse AKNN of p, thereby
how to obtain reverseAKNNs is trivial.) Given p ∈ P and
the objects p′ in the similar object list of p, NNDescent
accesses the similar object list of p′. If the list contains
objects with smaller distances to p than those to the cur-
rent AKNN of p, NNDescent updates its AKNNs.

5 We consider the basic version of NNDescent in [23].

3. NNDescent iteratively does the above procedure until no
updates occur (or α times, where α = O(1)).

Because [23] did not analyse the time complexity of
NNDescent, we here introduce it.

Theorem 2 NNDescent requires O(nK 2 log K) time.

Drawbacks of NNDescent NNDescent provides an AKNN
graphwith empirically high accuracy, but it has the following
drawbacks: (1) The initial random links incur many AKNN
updates in the second procedure. Due to this initialization,
each object cannot have links to its similar objects in an early
stage, incurring unnecessary distance computations. (2) The
similar object list of p′ is redundantly accessed even when
the list has no updates from the previous iteration.
NNDescent+ overcomes the above drawbacks (i) by uti-
lizing data partitioning that clusters similar objects and (ii)
by maintaining the update status of similar object lists. In
addition, (iii) NNDescent+ obtains the exact K ′-NNs for
objects with large distances to their K -NNs.

(i) Initialization by VP-tree-based partitioning. Each object
needs to find its (approximate) K -NNs quickly, to reduce
the number of update iterations. We achieve this by uti-
lizing a VP-tree-based partitioning approach.

Given an object set P , a VP-tree for P is built by recursive
partitioning. Consider that a node of the VP-tree contains P .
If a node contains more objects than the capacity c, this node
(or P) generates (or is partitioned into) its two child nodes,
left and right. (Otherwise, this node is a leaf node.) Let p be a
randomly chosen object from P . The partitioning algorithm
computes the distances between p and the other objects in
P , sorts the distances, and obtains the mean distance μ. If
an object p′ �= p has dist(p, p′) ≤ μ, it is assigned to the
left child of p. Otherwise, it is assigned to the right one. This
partition is repeated until no nodes can be partitioned.

We set c = O(K). Consider a leaf node that is the left
node of its parent. Let P ′ be the set of objects held by this
leaf node. Objects p ∈ P ′ tend to be similar to each other,
since each p ∈ P ′ has dist(p, p′) ≤ μ, where p′ is the
parent of this node. Therefore, for each p ∈ P ′, we set its K -
NNs in P ′ as its initial AKNNs. We note that the efficiency
of NNDescent is not lost.

Lemma 2 NNDescent+ needs O(nK 2 log K) time at its ini-
tialization.

Because of the random nature, some objects cannot be
contained in P ′. We hence do this partitioning a constant
number of times. (For objects that could not be contained in
P ′ after repeating the partitioning, random objects are set as
their AKNNs.) It is also important to note that nodes, whose

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 805

Algorithm 3: Partition
Input: A set of objects P ′ ⊆ P

1 if |P ′| > c then
2 p ← a randomly chosen object from P ′, D ← ∅

3 for each p′ ∈ P ′ do
4 D ← 〈dist(p, p′), p′〉
5 μ ← the mean distance in D
6 L ← ∅, R ← ∅

7 for each p′ ∈ P ′ do
8 if dist(p, p′) ≤ μ then
9 L ← L ∪ {p′}

10 else
11 R ← R ∪ {p′}
12 Partition(L), Partition(R)

13 if |L| ≤ c then
14 Set p as a pivot

15 else
16 if P ′ = L then
17 for each p′ ∈ P ′ do
18 Update AKNN of p′ from P ′

left child is a leaf node, are set as pivots, which are uti-
lized in future steps. The VP-tree-based partitioning makes
pivots being distributed in each subspace of the given data
space. This is also the reason why we use this partition-
ing. Algorithm 3 summarizes our initialization approach, and
NNDescent+ replaces the first procedure of NNDescent
with Algorithm 3.

(ii) Skipping similar object lists with no updates. When
obtaining the similar object list of an object p, NNDe-
scent+ adds objects p′, which are AKNNs or reverse
AKNNs of p, to the similar object list iff AKNNs of p′
have been updated in the previous iteration. We employ
a hash table to maintain the AKNN update status of each
object. The space complexity of this hash table is thus
O(n), and confirmation of the update status needs O(1)
amortized time for each object. Therefore,NNDescent+
reduces the cost of the second operation of NNDescent.

(iii) Exact K’-NN Retrieval. The above initialization and
skipping approaches respectively reduce the number of
iterations and unnecessary distance computations. How-
ever, for an object p such that its K -NNs are relatively far
from p, the initialization may provide inaccurate results.
The initialization approach clusters objects with small
distances. However, given an object p with large dis-
tances to its K -NNs, it is difficult for this approach to
make p and its K -NNs belong to the same cluster (i.e.,
node). Theymaybelong to (totally) different clusters, and
thismaymake accurate K -NNs of p not reachable from p
in the second procedure. To alleviate this, NNDescent+
computes the exact K -NNs for such objects.

After the iterative AKNN updates (the third procedure in
NNDescent), NNDescent+ sorts objects in P in descend-
ing order of the sum of the distances to their approximate
K -NNs. If the sum is large, it is perhaps inaccurate (or it
tends to be an outlier).NNDescent+ picks the firstm objects
and retrieves their exact K ′-NNs, where K ′ ≥ K is suffi-
ciently large (but K ′ � n). We present why we use K ′ in
Sect. 4.2.5. Note that m is a constant and m � n. Therefore,
this approach incurs O(n(K + log n)) time. We then have:

Lemma 3 NNDescent+ requires O(nK 2 log K) time.

NNDescent+ andNNDescent require the same theoretical
time, butNNDescent+ is empirically faster inmost cases. In
addition, the procedure of NNDescent+ (except for obtain-
ing reverseAKNNs) can exploitmulti-threading (via parallel
for/sort).

4.2.2 Connecting sub-graphs

Since K � n, an AKNN graph may have some disjoint
sub-graphs. If this holds for the AKNN graph built by
NNDescent+, Greedy- Counting may not be able to tra-
verse some of neighbors.We therefore makeMRPG strongly
connected.6 Algorithm4details our approach,which consists
of two phases.
Reverse AK NN phase (lines 1–3). TheAKNNgraph built
by NNDescent+ is a directed graph. This first phase con-
verts it to an undirected graph. (If an object p is included
in AKNNs of p′, p creates a link to p′ if p does not have
it.) Although this is simple, reachability between objects and
their neighbors can be improved, because the reverseAKNNs
of each object are (probably) similar to it.
BFS wi th ANN phase (lines 4–24). In the second phase,
we propose a randomized approach that exploits breadth-
first search (BFS) and ANN search on a proximity graph.
We confirm the connection between any two objects through
BFS (from a random object). If this BFS has not traversed
some objects (line 14), the AKNN graph has some disjoint
sub-graphs.

Let P ′ be a set of objects that have not been traversed by
the BFS. We make a path between a pivot in P ′ and a pivot
in P\P ′. Let v′

piv be a random pivot in P ′. Also, let Vpiv be
a set of random pivots in P\P ′. Note that |Vpiv| is a small
constant. We retrieve an ANN object for v′

piv among P\P ′
and create links between v′

piv and its ANN (lines 18–24).
Since pivots are distributed uniformly in each subspace, this
approach creates links between objects with small distances
as much as possible, which is the behind idea of this phase.

To find an ANN, we employ the greedy algorithm pro-
posed in [40]. The inputs of this algorithm are a query object

6 A similar idea was proposed in [24], but how to add links to make a
proximity graph strongly connected is different from our approach. In
addition, [24] does not have a theoretical time bound to achieve it.

123

806 D. Amagata et al.

Algorithm 4: Connect- SubGraphs
Input: G

1 for each p ∈ P do
2 for each (v, v′) ∈ v.E such that v′ /∈ K ′-NN do
3 v′.E ← v′.E ∪ {v}
4 P ′ ← P
5 while P ′ �= ∅ do
6 Q ← a random vertex (object) v (p) in P ′
7 P ′ ← P ′\{p}
8 while Q �= ∅ do
9 v ← the front of Q

10 Q ← Q\{v}
11 for each v′ ∈ v.E do
12 if p′ ∈ P ′ then
13 P ′ ← P ′\{p′}, Q ← Q ∪ {v′}

14 if P ′ �= ∅ then
15 v′

piv ← a random pivot in P ′

16 Vpiv ← a set of random pivots in P\P ′
17 distmin ← ∞, vres ← v′

piv

18 for each v ∈ Vpiv do
19 vann ← ANN- Search(v, v′

piv,G)

20 if dist(vann, v′
piv) < distmin then

21 distmin ← dist(vann, v′
piv)

22 vres ← vann

23 v′
piv.E ← v′

piv.E ∪ {vres}
24 vres .E ← vres .E ∪ {v′

piv}

(v′
piv), a starting object (v ∈ Vpiv), and a proximity graph.

Given v, this algorithm traverses objects in v.E , identifies
the object v′ with the minimum distance to v′

piv , goes to v′,
and repeats this until we cannot get closer to v′

piv . We con-
duct this search for each v ∈ Vpiv , select the object vres
with the minimum distance to v′

piv , and create links between
v′
piv and vres . Then, we restart BFS from a random object

in P ′. (Already traversed objects are skipped.) The above
operations are repeated until BFS traverses all objects.

Example 3 Figure 3 illustrates an example of Connect-
SubGraphs. Figure 3a shows the AKNN graph obtained
by NNDescent+ (K ′ = K for ease of presentation). BFS
has traversed the red-marked vertices, and nowwe conduct an
ANN search, where the query and starting objects are respec-
tively vpiv and v. The ANN search traverses the grey arrows
(each traversed vertex selects the vertex that is the closest to
vpiv) and obtains vres .We then create a link between vpiv and
vres , as illustrated in Fig. 3b. After that, we restart BFS from a
random vertex, e.g., v′, in Fig. 3b, that has not been traversed
yet. Then, we see that this graph is strongly connected.

We set the maximum hop count for the ANN search. This
yields that the time complexity of this algorithm is O(K)

(since |Vpiv| = O(1)). Then we have:

Lemma 4 Algorithm 4 requires O(nK) time.

(a) (b)

Fig. 3 Example of Connect- SubGraphs. White vertices represent
pivots. BFS traversed red-marked vertices

4.2.3 Removing detours

If a path from an object p to its neighbor p′ is not mono-
tonic (i.e., it is a detour), Greedy- Counting may not be
able to access p′. For example, consider two objects p1 and
p2 where dist(p1, p2) ≤ r . Assume that there is only a
single path between p1 and p2, e.g., p1 → p3 → p2.
If dist(p1, p3) > r , Greedy- Counting cannot reach p2
from p1. This increases the number of false positives, so we
consider making monotonic paths. We first demonstrate that
making a monotonic search graph (MSG) is not practical.
Then, we propose a pivot-based approximation.
Building a MSG Tomake aMSG, we proposeGet- Non-
Monotonic(). We then theoretically show that building a
MSG needs �(n2) time.
Get- Non- Monotonic(). Given p1, this function conducts
BFS from p1. Assume that we now access p3 during BFS and
BFS traversed a path p1 → p2 → p3. If dist(p1, p2) >

dist(p1, p3), this path is a detour, so we need a mono-
tonic path from p1 to p3. We maintain, in an array A1, pairs
〈p j , dist(p1, p j)〉,where p j is an object such thatBFScould
not confirm amonotonic path from p1 to p j . After all objects
are traversed, we sort A1 in ascending order of distance. Note
that A1[0] = 〈p1, 0〉.

We invoke this function for each object. Now we have
an array Ai for each object pi . We add a link between the
two objects appearing in Ai [j] and Ai [j + 1] for each j ∈
[0, s−1], where s is the size of Ai . This approach guarantees
that a given proximity graph becomes a MSG. However, a
huge cost is incurred.

Theorem 3 We need O(n2(K + log n)) time to build a MSG.

Approximation by heuristic This theorem proves that
building a MSG is not practical. Note that it is not necessary
to make monotonic paths between any two objects, because
r and k are generally not so large [33,49,53]. It is thus impor-
tant to retain monotonic paths to objects with small distances
in practice. From this observation, we propose a heuristic that
creates links between similar objects. In addition to the obser-
vation, our heuristic utilizes the following observations: (i)
an AKNN graph has the property that similar objects of an
object p tend to exist within a small hop count from p, and

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 807

Algorithm 5: Remove- Detours
Input: G

1 P ′ ← a set of randomly chosen objects
2 Pnon ← ∅

3 for each p ∈ P ′ do
4 Pnon ← Pnon ∪ Get- Non- Monotonic(p, p, 3,G)

5 Ppiv ← a set of randomly chosen pivots
6 for each p′ ∈ Ppiv do
7 Pnon ← Pnon ∪ Get- Non- Monotonic(p, p′, 2,G)

8 for each 〈p, p′〉 ∈ Pnon do
9 Create links between p and p′

(a) (b)

Fig. 4 Example of Remove- Detours

(ii) given p and its similar object p′, objects similar to p′ tend
to be similar to p (i.e., the idea of NNDescent). That is, our
heuristic is based on the idea: we can create necessary links
for p by traversing such objects appearing in observations (i)
and (ii).

Algorithm 5 describes our heuristic. Line 1 samples |P ′|
objects as targets to make monotonic paths. (We do not
choose objects that have links to their exact K ′-NNs.) Pivots
are weighted for this sampling, since Greedy- Counting
traverses pivots. For each p ∈ P ′, we do the following:

1. We conduct 3-hop BFS from p (which terminates traver-
sal when the hop count reaches three from p), to
obtain objects with no monotonic path from p (line 4).
This is a hop count constrained version of Get- Non-
Monotonic(), and the objects obtained are maintained
similarly.

2. We sample |Ppiv| pivots with small distances to p. (Pivots
existing within one hop from p and/or having their exact
K ′-NNsare not sampled.)Then, for each p′ ∈ Ppiv , 2-hop
BFS from p′ is done to obtain objects with no monotonic
path from p (lines 5–7).

After that,we create necessary links, similar toMSGbuilding
(lines 8–9). (See [8] for the setting of 3-hop and 2-hop.)

Example 4 Figure 4a, which shows the proximity graph
obtained in Example 3, depicts 3-hop BFS. For ease of pre-
sentation, assume P ′ = {p}, and 3-hop BFS is conducted
from p. We see that the path from p to p′ is a detour, i.e., is

(a) (b)

Fig. 5 Example of Remove- Links

not a monotonic path. After sampling pivots near p and 2-
hop BFS from them (not described here), we have A = {p′}.
Hence we add a link between p and p′, as shown in Fig. 4b.

We set |P ′| = O(n
K) and |Ppiv| = O(K). Recall that

Get- Non- Monotonic()maintains A, andwe limit the size
of A so that |A| = O(K 2) by maintaining only objects with
the smallest distances to p. Then, we have:

Lemma 5 Algorithm 5 needs O(nK 2 log K) time.

4.2.4 Removing links

Notice that p1 and p2, which is connected to p1, may have
links to other common objects, say p3. If p1 and p2 are tra-
versed byGreedy- Counting, p3 is accessed at least twice.
If there are many common links between objects within one
hop, redundant accesses are incurred many times. To reduce
them, Remove- Links removes links based on pivots.

If a non-pivot object p has a link to a pivot p′, we remove
links to common objects between p and p′. We do this link
removal for each non-pivot object. (Because of this removal,
lines 13–14 of Algorithm 2 are necessary.)

Example 5 Figure 5 depicts an example of Remove- Links
that uses the graph obtained in Example 4. Two non-pivot
objects p1 and p2 in Fig. 5a have a link to a common pivot
p3. Objects p4, p5, and p6 have the same case. Links (p1, p2)
and (p4, p5) are hence removed, andwehave aMRPGshown
in Fig. 5b.

By using hash-based link management, we have:

Lemma 6 Remove- Links incurs O(nK) time.

4.2.5 Discussion

From Lemmas 3–6, we see that:

Theorem 4 We need O(nK 2 log K) time to build a MRPG.

In addition, aMRPG is easy to fit into modern main-memory
because its space cost is reasonable:

Theorem 5 The space complexity of a MRPG is O(nK).

123

808 D. Amagata et al.

In MRPG, there are objects that have links to their exact
K ′-NNs, and these objects have larger distances to their
AKNNs than the other objects in P . It can be intuitively
seen that these objects tend to be outliers. Assume that p
has links to its exact K ′-NNs. If K ′ ≥ k, we can evaluate
whether p is an outlier or not in O(k) time, by traversing
only its links. That is, if the count does not reach k, we can
accurately determine that p is an outlier without verification,
which reduces t in Theorem 1.

For such objects, we replace lines 4–5 of Algorithm 1with
the above operation. We set a sufficiently large integer as K ′
to usually have K ′ ≥ k, and, in this case, MRPG detects
outliers very quickly. (If k > K ′, MRPG utilizes the original
Algorithm 1 to keep correctness, so it does not lose general-
ity.)As analyzed in Sect. 4, themain cost of online processing
is the verification cost. Therefore, reducing this cost from
O(n) to O(k) yields significant efficiency improvement.

5 Our solution to the (N, k)-DOD problem

Given a number of outliers N , when we do not have the
sorted distance arrays with O(n2) space (described in Sect.
1), Problem 3 requires�(Nn) time. This is because we need
to run k-NN search, which incurs�(n) time in metric spaces
[34], for at least N objects. Recall that existing algorithms are
based on nested-loop, so they incur O(n2) time. To reduce
the practical time, they early stop computing the k-NNs by
using the distance to an approximate k-th nearest neighbor.

Consider a subset S of P , and assume that p′ ∈ S is
the k-th nearest neighbor of an object p among S. Then, we
have dist(p, p′) ≥ distk(p), where distk(p) is the distance
between p and its k-th nearest neighbor among P . That is,
dist(p, p′) is an upper-bound of distk(p). Let udistk(p) be
an upper-bound of distk(p). This is utilized as follows [15]:

Lemma 7 Let τ ∗ be the N-th largest distk(·) among P. Fur-
thermore, let τ be distk(p) of an intermediate top N-th object
p, i.e., τ ≤ τ ∗. Assume that, for pi ∈ P, an algorithm has
computed dist(pi , p j) for each p j ∈ S, where pi �= p j and
|S| ≥ k. Then pi has udistk(p). If udistk(pi) ≤ τ , pi is not
an outlier.

From this lemma, the computational efficiency can be
improved, but the existing algorithms need O(n) time to
obtain a tight udistk(pi), limiting the scalability. A non-
trivial research question in this section is: can we solve
Problem 3 while avoiding O(n2) time and keeping O(n)

space? We answer this question by proposing Progrand
(Proximity graph-based algorithm for knn distance-based
DOD).

Progrand is surprisingly simple, but it is time- and space-
efficient and parallel-friendly. Its main properties are as

Table 2 Overview of symbols in Sect. 5

Symbol Description

P A set of objects

n Cardinality of P , i.e., |P|
p An object

N The number of outliers

R The (intermediate) result set

k The number of nearest neighbors

distk(·) The distance to the k-th NN object

τ The (intermediate) top-N largest distk(·).
udistk(·) An upper-bound of distk(·)
Pcand A set of candidate objects for outliers

Q A queue for graph traversal

follows: (1) Progrand exploits Lemma 7 more efficiently
than the state-of-the-art algorithms: different from them, Pro-
grand obtains a tight udistk(pi) in O(k) time for each object
pi ∈ P . (2) Progrand obtains a tight τ in �(Nn) time, not
O(n2) time. (3) Progrand runs in O((N + k + f ′)n) time
with O(n) space, and f ′, the number of not-filtered objects
informally, is much less than n, while the state-of-the-art
algorithms have f ′ = O(n). Table 2 summarize the symbols
frequently used in this section.
Main idea We show that the idea in Sect. 4.1 is also appli-
cable to the problem in this section. That is, we again
exploit a proximity graph to obtain both a tight τ and a tight
udistk(pi).

Consider a proximity graph of P , for example an AKNN
graph. It is clear that p ∈ P can obtain a tight udistk(p)
by traversing the proximity graph from p. Besides, we can
compute udistK (p) offline, since K is independent of k. It
can be seen that p would exist in a sparse (or low density)
space if udistK (p) is large. Outliers exist in a sparse space
and are not sensitive to k [19], and real datasets tend to have
this observation, see Sect. 5.3. Now we observe that a tight
τ would be obtained by accessing only N objects with the
largest udistK (·). This cost is much cheaper than those of
the existing algorithms, but this threshold can support more
powerful filtering than them.
Overview As with Algorithm 1, Progrand employs a filter-
and-verification framework. However, different from Algo-
rithm 1, Progrand requires a strongly connected proximity
graph to obtain udistk(·) for an arbitrary k. From the prob-
lem definition and the above idea, the proximity graph should
bemodeled byAKNNgraph.We therefore employ a strongly
connected AKNN graph as the index of Progrand. This index
is obtained in O(nK 2 log K) time by using NNDescent+
and Algorithm 4. During building this, each object p has an
upper-bound of distK (p), udistK (p). We sort P in descend-

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 809

Algorithm 6: Progrand (Filtering Phase)
Input: P , N , k, and τ

Output: Pcand (a set of objects that are not filtered) and R
1 R ← ∅

2 /* (1) Computing τ */
3 for each i ∈ [1, N] do
4 R ← R ∪ {pi }
5 τ ← distk(R[N])
6 /* (2) Filtering */
7 for each i ∈ [N + 1, n] do
8 Pvisi t ← {pi }, Q ← ∅

9 for each (pi , p j) ∈ pi .E do
10 Q ← Q ∪ {p j }
11 while Q �= ∅ do
12 p ← Q[0], Q ← Q\{p}
13 if p /∈ Pvisi t then
14 Pvisi t ← Pvisi t ∪ {p}, dist ← dist(pi , p)
15 Update k-NNs of p
16 if udistk(pi) ≤ τ then
17 Mark pi as filtered
18 break

19 if pi accessed m′ distinct objects then
20 break

21 for each (p, p′) ∈ p.E do
22 Q ← Q ∪ {p′}

23 Pcand ← a set of not-filtered objects /∈ R
24 Sort Pcand in descending order of udistk(·)

ing order of the upper-bound at the end of pre-processing.
Obviously, this index needs only O(n) space (for a fixed K).

Progrand runs Algorithm 6 and then runs Algorithm 7.
Simply put, Progrand first obtains a threshold τ , and then
filters inliers based on Lemma 7. After this filtering, Pro-
grand verifies not-filtered objects to investigate the correct
answer. By exploiting udistk(·) and optimizing the accessing
order, Progrand further skips unnecessary k-NN computa-
tions in this verification phase, different from the nested-loop
approach.

5.1 Filtering phase

Algorithm 6 details the filtering phase. Progrand maintains
the (intermediate) result withR, an ordered set of N objects,
which is sorted in descending order of distk(·).

(1) Computing τ . Recall that P is sorted in descending
order of udistK (·).Without loss of generality, we assume
P = {p1, p2, . . . , pN , ...}. Progrand computes the exact
k-NNs of the first N objects in P and adds them intoR.
After that, Progrand sets τ = distk(R[N]).

As noted earlier, this heuristic is based on the idea that
objects with large udistK (·) would exist in a sparse space

Fig. 6 Example of filtering in Progrand

so are probable to be outliers. In practice, this heuristic pro-
vides a tight τ and yields effective filtering. Recall that, in
NNDescent+, some objects have the exact distances to their
K ′-NNs, where K ′ > K . We discuss how to exploit this
property to optimize Progrand in Sect. 5.3.

(2) Proximity graph-based filtering. Given an object pi /∈ R,
Progrand tries to filter pi based on τ . Our filtering is
based on BFS, because each object p can access its sim-
ilar objects first by starting BFS from p on the strongly
connected AKNN graph.

For each pi ∈ P\R, when Progrand visits p for the first
time during theBFS from pi , Progrand computes dist(pi , p)
and updates the intermediate k-NNs of pi . If udistk(pi) ≤ τ ,
Prograndfilters pi fromLemma7, then terminates theBFSof
pi . Otherwise, Progrand continues the BFS until it accesses
m′ objects.

After that, Progrand obtains a set Pcand of objects p /∈ R
such that udistk(p) > τ . At the end of this phase, Progrand
sorts Pcand in descending order of udistk(·). This is neces-
sary to further prune the exact k-NN computation in the next
phase.

Example 6 We use Fig. 6 to describe an example of filtering
in Progrand. For simplicity, assume N = 1 and k = 2. We
assume that the red object in Fig. 6 has the largest udistK (·).
Then, τ is the distance to its 2nd nearest neighbor. Now focus
on the object p, which is at the center of the dotted circle with
radius τ . Progrand runs BFS from p to compute udist2(p).
We have udist2(p) < τ when Progrand accesses the objects
connected with p, so Progrand marks p as filtered. The same
operation is conducted for the other objects iteratively.

Correctness and e f f iciency Trivially, we have τ ≤ τ ∗,
where τ ∗ is the exact threshold, thus our filtering guarantees
the correctness, i.e., the outliers exist in R or Pcand . Note
that, thanks to the strongly connected nature, BFS from an
arbitrary object can access at least k other objects. We here
clarify the efficiency of the filtering phase. By setting m′ =
O(k), we have:

Lemma 8 Algorithm 6 requires O((N + k)n) time.

Proof It is apparent that the first step, computing τ , requires
�(Nn) time, since Progrand computes the exact k-NNs of

123

810 D. Amagata et al.

the first N objects in P . For a given object p, our filter-
ing computes the distances to at most m′ = O(k) other
objects, thus it requires at most O(kn) time. The last sort-
ing requires O(|Pcand | log |Pcand |) time. In the worst case,
|Pcand | = O(n) but generally N + k > log n. (In practice,
we have |Pcand | � n.) Now the correctness of this lemma is
clear. 	

Multi − threading This phase has three main parts: com-
puting τ , filtering, and sorting. Computing the exact k-NNs
of the first N objects is easy to parallelize, as each k-
NN computation can be done independently. Similar to
the filtering in Algorithm 1, our filtering in this section is
parallel-friendly, since computing udist(·) is an independent
operation. Section 4.2.1 has already introduced that sorting
can be parallelized. Then, we see that Algorithm 6 is parallel-
friendly.
Does batch f iltering improve e f f iciency?Onemaycon-
sider filtering multiple objects in a batch. Let P̂k

i consist of

pi and its approximate k-NNs. If arbitrary two objects in P̂k
i ,

say pa and pb, have dist(pa, pb) ≤ τ , they are not outliers,
as they all have udistk(·) ≤ τ .

Assume that we collect a set of objects p j such that
dist(pi , p j) ≤ τ

2 during we compute udistk(pi) in Algo-
rithm 6. Then, if the set size is larger than k, all objects in
this set have udistk(·) ≤ τ from triangle inequality. In this
case, we can filter all objects in this set in a batch (i.e., we
do not need to compute udistk(p j) for each p j in this set).
However, this approach gives little gain. This is because (1)
having such sets is generally hard in particular on middle-
or high-dimensional data due to the curse of dimensionality,
and (2) the main cost in this phase is derived from computing
τ , since�(Nn) > O(kn).We thus do not consider this batch
filtering to keep the filtering phase concise.

5.2 Verification phase

In this phase, Progrand verifies not-filtered objects and com-
putes the exact outliers. It is important to see that we do
not necessarily verify (i.e., compute the exact k-NNs of) all
objects in Pcand .

Corollary 1 Assume that Pcand = {pi , pi+1, . . . , pi+s},
where s = |Pcand |−1. If we have udistk(pi+ j) ≤ τ , objects
pi+l such that l ∈ [j, s] cannot be outliers.
Proof We have udistk(pi) ≥ ... ≥ udistk(pi+s), since
Pcand is sorted by udistk(·). Hence, if udistk(pi+ j) ≤
τ , from Lemma 7, objects pi+l , where l ∈ [j, s], have
distk(pi+l) ≤ τ . 	

From this corollary, when we have udistk(pi+ j) ≤ τ , we
can safely prune all objects pi+l such that l ∈ [j, s]. This
upper-bound-based access order can minimize the cost of

Algorithm 7: Progrand (Verification Phase)
Input: P , N , k, τ , and Pcand
Output: R (a set of N outliers)

1 for each pi ∈ Pcand do
2 if udistk(pi) > τ then
3 distk(pi) ← distance to the k-th NN of pi
4 if distk(pi) > τ then
5 Update R and τ

6 else
7 break

computing the exact k-NNs while guaranteeing the correct-
ness. This is also an advantage over existing (N , k)-DOD
algorithms, because our access order-based termination is
not available for their nested-loop approach.

Algorithm 7 elaborates this phase. To exploit the above
corollary, Progrand sequentially verifies the objects in Pcand .
Assume that now Progrand verifies an object pi ∈ Pcand . If
udistk(pi) > τ , Progrand computes distk(pi) by using a
linear scan of P with Lemma 7, and then updates R and τ .
Otherwise, we can guarantee that R has the exact outliers,
so Progrand terminates the verification.

Lemma 9 Algorithm 7 requires O(f ′n) time, where f ′ is the
number of verified objects.

Proof Progrand computes distk(pi) through a linear scan of
P , which immediately derives this lemma. 	

Multi − threading This phase is also easy to parallelize.
Since Progrand computes the exact k-NNs of a given p ∈
Pcand through a linear scan of P , we parallelize this scan by
partitioning P into equal-sized disjoint subsets. Each thread
computes the k-NNs in its assigned subset. Then Progrand
merges each local result to obtaindistk(p). Thismerge incurs
a negligible cost, suggesting that this is also parallel-friendly.

5.3 Analysis

We present the main result of this section. From Lemmas 8
and 9 , we have:

Theorem 6 The time complexity of Progrand is O((N + k +
f ′)n), where f ′ is the number of verified objects.

Remark 2 From the above result, it is easy to see that Pro-
grand outperforms the state-of-the-art algorithms if f ′ is
small, since they theoretically incurO(n2) time. (For datasets
with f ′ = o(n), Progrand is always better than the state-of-
the-art algorithms theoretically.) We generally have N > k
as with Theorem 1, then O((N+k+ f ′)n) = O((N+ f ′)n).
Practically, Progrand often has f ′ < N , so it nearly matches
the �(Nn) time of Problem 3 with O(n) space and is much
faster than the state-of-the-art algorithms.

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 811

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Distribution of distance to the k-th nearest neighbor

Why can f ′ be small? We analyze Progrand’s efficiency
that provides a small f ′, by using the observations from
real datasets and AKNN graph. Figure 7 depicts the distribu-
tions of distances to the k-th NN in some real datasets used
in our experiments. (We used random min{0.3n, 1000000}
objects to obtain the distributions.) The distances follow
Gaussian (Glove and MNIST) or Zipf-like (PAMAP2 and
Words) distributions. That is, only a small number of objects
have a (much) longer distance to their k-th NN than those
of the others, as can be seen from the right side of each
figure. This observation suggests that, as long as N is not
too large, if (1) we can obtain a tight threshold τ , and (2)
udistk(p) ≈ distk(p) for each p ∈ P , then we can filter
most objects. In these conditions, it is trivial that f ′, i.e., the
number of objects p having udistk(p) > τ is small.

From Fig. 7a–d, for different k, the distributions do not
change. (We omit the distributions of distances to the 50th
NN of MNIST and Words, because they are similar to the
ones to the 20th NN.) This observation suggests that, given k
and k′(�= k), we have similar rank orders of each object in the
distk(·)- and distk′(·)-based rankings defined in Problem 3.
Then, if we have udistk(p) ≈ distk(p) and udistK (p) ≈
distK (p) for an arbitrary p, the first N objects in P tend to
place high ranks in Problem 3. — (�)

As stated in Sect. 3, approximate k-NN searches based
on proximity graphs provide highly accurate results. This

derives udistk(p) ≈ distk(p) and condition 2. Actually, the
accuracy of NNDescent+ is almost perfect in practice (see
Sect. 6.1.1), so udistK (p)

distK (p) ≈ 1. Now we have (�), which sat-
isfies condition 1, i.e., a tight threshold τ . Consequently, we
practically have conditions 1 and 2, which renders a small
f ′, regardless of n. (This is also confirmed empirically, see
Sect. 6.2.) It can be seen that the above discussion also jus-
tifies our approach of utilizing a proximity graph.
Optimization Recall that NNDescent+ computes the
exact K ′-NNs for a constant number of objects. Recall fur-
ther that Progrand utilizes the first N objects to initialize
the threshold τ . If k ≤ K ′, Progrand can utilize the objects,
whose exact K ′-NNs have been computed, to obtain τ . In
this case, Progrand needs only �(N) time to obtain τ . Then,
the total cost of Progrand is O((k+ f ′)n). This optimization
makes Progrand (much) faster. (As noted above, this opti-
mization is available only when k ≤ K ′, and the setting of
K ′ is an application matter. So, Progrand without this opti-
mization is assumed to be the default setting.)

6 Experiments

Our experiments were conducted on a Ubuntu machine with
dual 12-core 3.0GHz Intel Xeon E5-2687w v4 processors
that share a 512GB RAM. This machine can run at most 48
threads by using hyper-threading. All evaluated algorithms
were implemented in C++ and compiled by g++ 7.4.0 with
-O3 flag. We used OpenMP for multi-threading.

We set 12 and 8 hours as time limits for pre-processing and
outlier detection, respectively. In cases that algorithms could
not terminate pre-processing or could not detect all outliers
within the time limit, we represent “NA” as the result.
Datasets We used the following seven real datasets.

– Deep: a set of image features obtained by a deep neural
network.

– Glove: a set of dense word embedding vectors (words are
from Twitter).

– HEPMASS: a set of learned feature vectors of exotic
particles.

– MNIST: a set of gray-scaled digit images.
– PAMAP2: a set of sensor readings obtained from human
activities.

– SIFT: a set of SIFT feature vectors of images.
– Words: a set of English words (i.e, strings).

Table 3 summarizes the statistics of the above datasets and
the distance functions we used. Because the original domains
of PAMAP2 are different from each other, we normalized
PAMAP2 so that the domain of each dimension was [0, 105].

123

812 D. Amagata et al.

Table 3 Statistics of datasets and distance functions used

Dataset n Dim. Distance function

Deep [12] 10,000,000 96 L2-norm

Glove [43] 1,193,514 25 Angular distance

HEPMASS [13] 7,000,000 27 L1-norm

MNIST [2] 3,000,000 784 L4-norm

PAMAP2 [46] 2,844,868 51 L2-norm

SIFT [3] 1,000,000 128 L2-norm

Words [4] 466,551 1–45 Edit distance

6.1 Evaluation of (r, k)-DOD algorithms

Algori thms We evaluated the following algorithms:

– State-of-the-art ones:Nested-loop [15], SNIF [48],DOL-
PHIN [9], and VP-tree [52].

– Proximity graph-based ones: NSW [40], KGraph [23],
MRPG-basic, and MRPG. MRPG-basic is a variant
of MRPG, and, in NNDescent+, we compute the
exact K -NNs for some objects, instead of K ′-NNs.
Therefore, by comparing MRPG with MRPG-basic, the
efficiency of optimizing the verification is understand-
able. For outlier detection with NSW and KGraph, we
used Algorithms 1 and 2 without lines 13–14 of Algo-
rithm 2.We employed a VP-tree in the verification phase,
i.e., Exact- Counting, on HEPMASS, PAMAP2, and
Words.

We followed the original papers to set the system parameters
in the state-of-the-art algorithms. For KGraph,MRPG-basic,
andMRPG on PAMAP2, we set K = 40, and we set K = 25
on the other datasets. The number of links for each object in
NSW is set so that its memory usage is almost the same as
that of KGraph. For MRPG, we set K ′ = 4 × K .
Parameters Table 4 shows the default parameters. They
were specified so that the outlier ratio is small [53] or clear
outliers are identified (see Sect. 2). We confirmed that the
number of neighbors in each dataset follows power law and
most objects have many neighbors. We used 12 (48) threads
as the default number of threads for outlier detection (pre-
processing). For outlier detection on Deep and MNIST, we
used 48 threads, due to their large n or dimensionality.

6.1.1 Evaluation of NNDESCENT+

To confirm that NNDescent+ builds an accurate AKNN
graph, we measured recall and distance rate ˆdistK /distK ,
where ˆdistK is the distance to an approximate K -th NN
obtained by NNDescent+ (or NNDescent). We used
Glove, SIFT, and Words to evaluate the accuracy of NNDe-

Table 4 Default parameters

Dataset r k Outlier ratio (%)

Deep 0.93 50 0.62

Glove 0.25 20 0.55

HEPMASS 15 50 0.65

MNIST 600 50 0.34

PAMAP2 50,000 100 0.61

SIFT 320 40 1.04

Words 5 15 4.16

Table 5 Accuracy of NNDescent (NNDescent+)

Dataset Recall ˆdistK /distK

Glove 0.94 (0.95) 1.00 (1.00)

SIFT 0.96 (0.96) 1.00 (1.00)

Words 0.99 (0.99) 1.00 (1.01)

scent and NNDescent+. (To obtain the exact K -NNs, we
need O(n2) time, so we did not evaluate accuracy on the
other datasets.)

Table 5 shows the experimental result. Clearly, the accu-
racy of NNDescent+ is competitive with that of NNDes-
cent and is almost perfect. This result suggests that each
object in P can traverse its neighbors efficiently. In the
next experiments, we show that NNDescent+ is faster than
NNDescent.

6.1.2 Evaluation of offline processing

We evaluated the pre-processing efficiency of proximity
graphs: NSW, KGraph, MRPG-basic, and MRPG. Nested-
loop, SNIF, and DOLPHIN do not have a pre-processing
phase, whereas building a VP-tree took less than 310 s for
each dataset.
MRPG(-basic) vs. KGraph Table 6 presents the pre-
processing time of each proximity graph under the default
parameters. Inmost cases, building aMRPG-basic is themost
efficient, and building a MRPG is also more efficient than
building a KGraph. This result may be surprising, because
MRPG has additional operations after running NNDes-
cent+ whereas KGraph simply computes an AKNN graph.
Actually, this result is derived from the efficiency of NNDe-
scent+. We depict the decomposed times of building a
KGraph,MRPG-basic, andMRPG onGlove in Table 7, as an
example. This table shows that NNDescent+ is faster than
NNDescent, demonstrating the effectiveness of partitioning
based on VP-tree and skipping similar object lists. Also, the
other functions for building a MRPG do not incur significant
costs. These provide high performance for building aMRPG.

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 813

Table 6 Pre-processing time (s)

Dataset NSW KGraph MRPG(-basic)

Deep NA 20,079.80 17,230.30 (13417.40)

Glove 2333.47 923.83 791.53 (755.54)

HEPMASS NA 7935.25 5221.86 (4345.63)

MNIST 33368.60 2972.96 2281.55 (1566.05)

PAMAP2 4522.14 1325.40 888.61 (729.54)

SIFT 4910.94 929.48 817.33 (723.75)

Words 871.27 455.15 868.62 (707.08)

Table 7 Decomposed time of pre-processing on Glove (s)

Algorithm KGraph MRPG(-basic)

NNDescent(+) 923.83 474.20 (464.34)

Connect- SubGraphs – 24.28 (20.36)

Remove- Detours – 271.41 (278.21)

Remove- Links – 19.61 (19.44)

One exception appears in the Words case. We used edit
distance for Words, and this distance function needs a large
computational cost for objects with large dimensionality. We
observed that objects, whose exact K ′-NNs are computed,
have large dimensionality, thereby exact K ′-NNcomputation
incurs a long time.
MRPG vs. MRPG-basic Building a MRPG needs longer
time than building a MRPG-basic. This is because, for some
objects, we compute their K ′-NNswhere K ′ > K , during the
buildingof aMRPG.That is,NNDescent+ forMRPG incurs
longer time than that for MRPG-basic, as Table 7 presents.
NSW vs. the other proximity graphs Building a NSW
consistently needs longer time than building the other prox-
imity graphs, which can be seen from Table 6. Because
the NSW building algorithm is based on iterative object
insertion, this property lacks scalability to large datasets.
Therefore, NSW cannot be built on Deep and HEPMASS
within a half day.
Scalabili t y test Figure 8 illustrates the scalability to n for
building the proximity graphs. We varied n by random sam-
pling (i.e., we varied the sampling rate). NSW basically
needs (much) longer time for building. This algorithm is
competitive only in the case of Words, because its cardi-
nality is smaller than those of the other datasets. KGraph,
MRPG-basic, and MRPG have linear scalability to n, due to
Theorems 2 and 4.

6.1.3 Evaluation of online processing

Weevaluated (r , k)-DODalgorithms. Tables 8 and 9 describe
the running time and index size of each algorithm, respec-

tively. Algorithms whose index could not be built within the
time limit were not tested.
Our approach vs. state − of − the − art Let us com-
pare our approach, proximity graph-based solution (NSW,
KGraph, MRPG-basic, andMRPG), with the state-of-the-art
(Nested-loop, SNIF,DOLPHIN, andVP-tree). Table 8 shows
that our approach is clearly faster than the state-of-the-art,
demonstrating its robustness to the distance functions listed
in Table 3. This result is derived from the reduction of unnec-
essary distance computations. Specifically, in our approach
(or a proximity graph), each object tends to have links (or
paths) to its neighbors. This yields efficient filtering, i.e.,
inliers are quickly identified. For example, MRPG is 397.5,
223.9, 15.1, 19.8, 126.1, and 382.5 times faster than the best
algorithm among the state-of-the-art on Glove, HEPMASS,
MNIST, PAMAP2, SIFT, andWords, respectively. The state-
of-the-art could not detect outliers within the time limit on
Deep (largest dataset),whereasMRPGandMRPG-basic suc-
cessfully deal with it. Also, we see that MRPG provides a
significant speed-up by spending a bit longer pre-processing
time than MRPG-basic. This speed-up is derived from the
reduction of the verification cost by detecting (some) out-
liers in the filtering phase (see Sect. 4.2.5).

Table 9 shows that our approach needs a larger index size
than the state-of-the-art (Nested-loop does not build an index,
so its index size is 0). However, its index size is not signif-
icant, and recent main-memory systems afford to retain the
proximity graph, as its space requirement is O(nK).
MRPG vs. the other proximity graphs We next focus
on the performances of the proximity graphs. Table 8 reports
that MRPG is the clear winner. Recall that, to make Algo-
rithm1 faster,wehave to reduce the number of false positives,
f , as demonstrated in Theorem 1. Table 10 shows that
MRPG and MRPG-basic reduce f more compared with
KGraph and NSW. This fact demonstrates the effectiveness
ofmonotonic paths, i.e.,MRPG andMRPG-basic have better
reachability than the others. We notice that the performance
difference between MRPG and KGraph is not significant
on Deep and MNIST compared with the other datasets. In
Deep, we observed that false positive objects of MRPG have
only nearly k neighbors, which makes the early termination
in the verification not function. In MNIST, we found that
some objects having links to their exact K ′-NNs are inliers
and false positive objects have the same observation as with
Deep.7 The verification cost of outliers and false positives
thus remains on them, as with the other proximity graphs.

Recall that each dataset follows a power law distribution
w.r.t. the number of neighbors. If a dataset has many objects

7 AlthoughNSWhasmore f than KGraph, NSW is faster than KGraph
on MNIST. We found that the false positives of NSW have more neigh-
bors than those of KGraph, thus, for NSW, the early termination in the
sequential scan functions, rendering its faster time.

123

814 D. Amagata et al.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 8 Impact of n (pre-processing time) on the (r , k)-DOD problem

Table 8 Running time (s)

Dataset Nested-loop SNIF DOLPHIN VP-tree NSW KGraph MRPG-basic MRPG

Deep NA NA NA NA NA 8616.10 5474.10 1966.17

Glove 1045.47 1222.43 9277.89 1398.92 147.00 83.82 56.80 2.63

HEPMASS 17,295.40 20,360.80 NA 8597.23 NA 780.19 638.83 38.40

MNIST 15,494.00 22,579.80 NA 13,836.60 1630.25 1702.57 1264.26 918.91

PAMAP2 422.40 1213.56 1819.90 208.55 22.16 23.77 18.16 10.55

SIFT 1427.74 1507.58 8684.08 2005.27 200.89 175.88 144.11 11.32

Words 1844.65 2086.50 7061.50 1021.39 498.34 393.95 374.08 2.67

Bold shows the winner

Table 9 Index size [MB]

Dataset Nested-loop SNIF DOLPHIN VP-tree NSW KGraph MRPG-basic MRPG

Deep 0 NA NA 324.35 NA 1405.94 5516.58 7350.83

Glove 0 13.26 69.14 54.86 188.62 167.91 460.48 438.76

HEPMASS 0 61.04 NA 265.39 NA 1195.35 2188.65 2450.84

MNIST 0 27.75 NA 117.80 417.95 404.29 589.08 591.27

PAMAP2 0 18.36 65.12 128.00 819.17 528.26 553.87 760.69

SIFT 0 8.10 47.00 39.99 157.58 140.54 433.48 489.14

Words 0 4.41 26.86 27.79 102.20 93.92 191.73 178.74

that are inliers but exist in sparse areas, f of MRPG tends
to be large. This is because the reachability to their neigh-
bors still tends to be lower than that to neighbors of dense
objects. The number of inliers in sparse areas is affected by
the data distributions, so f between the datasets are different,

as shown in Table 10. For example, we observed that Deep
is sparser than the other datasets,8 so its f is large.

Table 11 exhibits the time for filtering and verification
on Glove. Due to the reachability, MRPG and MRPG-basic
incur longer filtering time but this reduces the verification
time themost. (This result is consistent for the other datasets.)

8 The reasonable r of Deep is far from the mean of its distance distri-
bution, compared with the other datasets.

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 815

Table 10 Number of false positives after the filtering phase

Algorithm NSW KGraph MRPG-basic MRPG

Deep NA 81,140 33,180 20,616

Glove 19,970 3,356 40 24

HEPMASS NA 11,133 2363 1,743

MNIST 7079 4698 2509 438

PAMAP2 18,346 22,543 4290 3986

SIFT 4899 2513 585 51

Words 9569 989 120 4

Table 11 Decomposed time of outlier detection on Glove (s)

Algorithm NSW KGraph MRPG-basic MRPG

Filtering 1.28 0.86 2.43 1.98

Verification 147.00 82.96 57.03 0.65

Besides, the running time of MRPG is shorter than those
of the other proximity graphs. This is due to the heuristic
that objects, which would be outliers, have links to exact
K ′-NNs. They are usually outliers in real datasets and are
identified as outliers when 1-hop links are traversed from
them, so verification is not needed for them. This provides a
(significant) speed-up, and MRPG is 1.3–140.1 times faster
than MRPG-basic. Recall that, in most cases, MRPG needs
less pre-processing time than the others. Therefore, in terms
of computational performance, MRPG normally dominates
the other proximity graphs.

As for index size, MRPG needs more memory than NSW
and KGraph, because MRPG creates additional links to
improve reachability. However,MRPG removes unnecessary
links, so its index size is competitive with those of NSW and
KGraph for datasets with skew, such as PAMAP2. The index
size of MRPG is smaller than that of MRPG-basic on Glove
and Words. This is also derived from the unnecessary link
removal.
E f f ectiveness o f Algori thms 4 and 5 . We evaluated (i)
MRPGwithoutAlgorithms4 and5, (ii)MRPGwithoutAlgo-
rithm 4, and (iii) MRPG without Algorithm 5, to investigate
how they contribute to improving reachability. We report
the numbers of false positives provided by the first, sec-
ond, and third variants on PAMAP2: they are respectively
11937, 4712, and 9720. They are less than those of NSW
and KGraph, see Table 10. From this result, we see that
Connect- SubGraphs is useful and Remove- Detours is
important to provide fewer false positives.
Varying n Figure 9 studies the scalability of each proximity
graph in the same way as in Fig. 8. (Parameters were fixed as
the default ones.) Since Table 8 confirms the superiority of
our approach over the state-of-the-art, we omit their results.

As n increases, the running time of each proximity graph
becomes longer. This is reasonable, since both filtering and

verification costs increase. We have three observations. The
first one is that MRPG-basic keeps outperforming NSW and
KGraph. Second, MRPG significantly outperforms the other
proximity graphs. Last, MRPG and MRPG-basic scale bet-
ter than the other proximity graphs, which confirms that our
monotonic path creation provides their scalability. Figure 9h
confirms that f +t ofMRPGis constant or almost not affected
by n. As stated earlier, we found that t is usually not depen-
dent on n, and MRPG yields f � t or at least f < t . This
observation provides the (almost) linear scalability of our
(r , k)-DOD algorithm with MRPG.

In theWords case,MRPG-basic andKGraph show similar
performances. We observed that the outliers in Words have
large dimensionality. Because computing edit distance needs
a quadratic cost to dimensionality, the verification of out-
liers incurs a large computational cost. For example, with the
default parameters, MRPG-basic (KGraph) took 2.43 (0.73)
and 371.65 (393.23) s for filtering and verification, respec-
tively. From the result in Table 10, we see that false positives
in Words are verified quickly (by early termination) and the
verification of outliers dominates the running time.
Varying k. We investigated the influence of outlier ratio by
varying k. Figure 10 presents the results. (The omitted results
appear in [8].) As k increases, our approach needs to traverse
more objects, rendering a larger filtering cost. In addition, as
k increases, the outlier ratio increases. Our approach hence
needs a more verification cost when k is large.

One difference between MRPG and the other proximity
graphs is robustness to k, as MRPG(-basic) outperforms the
other proximity graphs. This is derived from Connect-
SubGraphs and Remove- Detours, i.e., functions that
make MRPG different from KGraph. That is, the connec-
tivity of the graph and the existence of monotonic paths (for
similar objects) are important to exploit our algorithm.
Varying r . The result of experiments with varying distance
threshold r is shown in Fig. 11 (k is fixed at the default value).
Recall that the time of Algorithm 1 depends on the output
size, as its time complexity is O((f + t)n). As r increases,
the output size decreases thus its running time also decreases.
Similar to the results in Fig. 10, MRPG keeps outperforming
KGraph andNSWwhen the outlier ratio is either high or low.

From Fig. 11, we observe that the output size tends to
converge by increasing r . The objects returned by this prob-
lem with such r are clearly isolated ones. Applications of the
(r , k)-DOD problem follow the concept: objects with a small
number of neighbors within sufficiently large distances are
outliers. Running our algorithm by varying r (from small to
large) is a feasible way of finding such objects, i.e., outliers
required by the applications. After doing this, the applica-
tions may vary k and again run our algorithm while varying
r . By iterating this, they can obtain the result sets of multiple
pairs of r and k. Although how to get the final result from
these sets is not our scope, a possible method is to import

123

816 D. Amagata et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Impact of n on the (r , k)-DOD problem

(a) (b) (c) (d)

Fig. 10 Impact of k on the (r , k)-DOD problem

(a) (b) (c) (d)

Fig. 11 Impact of r

(a) (b) (c) (d)

Fig. 12 Impact of the number of threads on the (r , k)-DOD problem

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 817

Table 12 Running times (s) of Progrand and Progrand-opt

Algorithm Progrand Progrand-opt

Deep 356.44 261.90

Glove 19.49 10.91

HEPMASS 71.09 32.80

MNIST 266.17 56.10

PAMAP2 18.14 12.92

SIFT 17.25 5.54

Words 70.44 8.41

only objects that frequently appear in the above result sets.
This is because these objects tend to be evaluated as outliers
even for comparatively small k and large r among the spec-
ified values of r and k. (Recall that objects are easy to be
inliers for small k and large r .)
Varying the number of threads We clarify that our
approach exploits multi-threading empirically. Figure 12
shows the results on Glove, HEPMASS, PAMAP2, and
Words.We see that our solution exploits the available threads
and has almost linear scalability to the number of threads. For
example, compared with a single thread case,MRPGwith 12
threads obtains about 10–12 times speed-up in the datasets.
Also, the superiority among the proximity graphs does not
change.

6.2 Evaluation of (N, k)-DOD algorithms

We turn our attention to the (N , k)-DOD problem.
Algori thms We evaluated ORCA [15], RBRP [25,26],
DIODE [42], Progrand, and Progrand-opt (Progrand with
optimization in Sect. 5.3). Note that the three state-of-the-
art algorithms were also parallelized.

The inner parameters of RBRP and DIODE were set by
following the original papers. The setting of the proximity
graph of Progrand(-opt) is the same as that in Sect. 6.1. Sec-
tion 6.1.2 has already shown that we can build a strongly
connected AKNN graph efficiently, so this section focuses
on online time.9

Parameters We set N = 1000 and k = 20 by default. The
default number of threads is 12.
E f f ectiveness o f our approachWedemonstrate the effec-
tiveness of our approach to Problem3 by showing the number
of verified objects (i.e., we show f ′). On Deep, Glove, HEP-
MASS, MNIST, PAMAP2, SIFT, andWords, f ′ of Progrand

9 Actually, we can employ a strongly connected NSW as an index of
Progrand, but Sect. 6.1.2 has demonstrated that building an NSW does
not scale well. Therefore, we do not consider this index. In addition,
Sect. 6.1 demonstrated that triangle inequality-based pruning, i.e., SNIF,
does not improve efficiency compared with the simple nested-loop.
Progrand with the batch filtering discussed in Sect. 5.1 has the same
case, thus we do not test it.

Table 13 Decomposed time (s) of Progrand

Computing τ Filtering Verification

Deep 94.54 54.65 207.208

Glove 8.59 4.63 6.27

HEPMASS 38.29 27.52 5.28

MNIST 202.64 14.26 48.41

PAMAP2 5.22 10.83 2.09

SIFT 11.71 3.91 1.64

Words 62.03 1.90 6.51

is respectively 3448, 920, 130, 196, 308, 146, and 139. We
see that f ′ � n, and Progrand filtersmore than 99.9% of the
objects in P .
E f f ectiveness of optimization To see how the optimiza-
tion contributes to efficiency improvement, we compared
Progrand-opt with Progrand. Table 12 shows the compar-
ison result. Progrand-opt obtains at least 1.4x speed-up.
Table 13 details the decomposed time of Progrand. Recall
that Progrand-opt optimizes computing τ , and we observed
that Progrand-opt computes τ within 0.001 [sec]. We then
see that Progrand-opt functions well, when computing τ is a
bottleneck, e.g.,HEPMASS,MNIST, SIFT, andWords cases.
Varying n. Next, we investigated the scalability of each
algorithm in the same way as Sect. 6.1. Figure 13 depicts
the result (plots are log-scale). We have three main obser-
vations. First, Progrand(-opt) scales (almost) linearly to n.
This is because, as shown in Fig. 13h, f ′ of Progrand(-opt)
is almost constant. (Words does not seem tohave this case, but
still has f ′ � n.) Second, Progrand-opt is the clear winner
in all tests and Progrand also outperforms the state-of-the-art
with a large margin (with the exception of the Words case).
Last, inWords case, RBRP, DIODE, and Progrand have sim-
ilar performances. We found that RBRP and DIODE also
obtain a tight τ quickly on Words. As shown in Table 13, the
bottleneck of Progrand on Words is τ computation, thus the
last observation is reasonable.
Varying N Figure 14 shows the impact of the number of
outliers N . (We do not show the result if a given algo-
rithm could not terminate (N , k)-DOD within the time
limit.) As N increases, the running time of each algorithm
increases, except for Progrand-opt on Words. This is rea-
sonable, because τ decreases as N increases. Notice from
Fig. 14a that Progrand(-opt) is the only algorithm that can
deal with large n and N .

The Words case, i.e., the result in Fig. 14g, has a dif-
ferent observation from those with the other datasets. First,
DIODE is a little better than Progrand.We found that DIODE
obtains a more accurate threshold than Progrand on Words.
However, the difference is small, and DIODE is much slower
than Progrand on the other datasets. Second, the performance
of Progrand-opt is not stable. Recall that the performance of

123

818 D. Amagata et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13 Impact of n on the (N , k)-DOD problem

(a) (b) (c) (d)

(e) (f) (g)

Fig. 14 Impact of N

Progrand-opt depends on f ′, i.e., the initialized τ . This is
also affected by N , thus, when τ is very accurate (or not so
accurate), its running time becomes faster (see the result of
N = 1500) or a bit slower (see the result of N = 7500).
Varying k Figure 15 studies the impact of k. First, we see
that the state-of-the-art algorithms are not affected much by
k. Since they rely on nested-loop, computing udistk(·) incurs
O(n) time, so this result is understandable.On the other hand,
the performance of Progrand(-opt) is affected by k. For fixed
N and n, the time complexity of Progrand(-opt) is O(k+ f ′).
However, the empirical results show that the running time of
Progrand normally grows sub-linearly to k. This suggests that

the impact of k is practically not so strong, compared with
the theoretical result.
Varying the number of threads Last,we study the impact
of the number of threads. Figure 16 shows the results on
Glove, HEPMASS, PAMAP2, and Words. It can be seen
that, as well as the nested-loop-based state-of-the-art algo-
rithms, Progrand(-opt) receives benefit frommulti-threading
and its running time decreases with increasing the number
of available threads. Thanks to this property, Progrand(-opt)
keeps outperforming the state-of-the-art algorithms. Notice
that Progrand(-opt) can detect outliers quickly even with a
single thread, whereas the other algorithms with a single

123

Fast, exact, and parallel-friendly outlier detection algorithms with ... 819

(a) (b) (c) (d)

(e) (f) (g)

Fig. 15 Impact of k on the (N , k)-DOD problem

(a) (b) (c) (d)

Fig. 16 Impact of the number of threads on the (N , k)-DOD problem

thread need much longer time or cannot terminate (N , k)-
DOD within the time limit.

7 Conclusion

In this article, we addressed the problem of distance-based
outlier detection in metric spaces. We proposed proximity
graph-based algorithms. For the (r , k)-DOD problem, we
proposed a proximity graph-based algorithm. To optimize
this algorithm,wedevisedMRPG(MetricRandomizedProx-
imity Graph), which improves reachability to neighbors and
reduces the verification cost. For the (N , k)-DOD problem,
weproposedProgrand,which is also a proximity graph-based
algorithm, and this algorithm needs nearly O(Nn) time in
practice. Our experiments on real datasets confirm that our
algorithms are much faster than state-of-the-art.

Some DOD works, e.g., [54], consider that multiple
parameters are given in a batch. How to process (r , k)-DOD
or (N , k)-DOD with multiple parameters efficiently (in a
batch) is an open problem to be worth investigating.

Acknowledgements This research is partially supportedby JSTPRESTO
GrantNumber JPMJPR1931, JSPSGrant-in-Aid forScientificResearch
(A) Grant Number 18H04095, and JST CREST Grant Number
JPMJCR21F2.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.IsolationForest.html

2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
multiclass.html

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

820 D. Amagata et al.

3. http://corpus-texmex.irisa.fr/
4. https://github.com/dwyl/english-words
5. Aggarwal, C.C.: Outlier analysis. In: Data Mining, pp. 237–263

(2015)
6. Amagata, D., Hara, T.: Fast density-peaks clustering: multicore-

based parallelization approach. In: SIGMOD, pp. 49–61 (2021)
7. Amagata,D.,Onizuka,M.,Hara, T.: Fast and exact outlier detection

in metric spaces: a proximity graph-based approach. In: SIGMOD,
pp. 36–48 (2021)

8. Amagata,D.,Onizuka,M.,Hara, T.: Fast and exact outlier detection
in metric spaces: a proximity graph-based approach (full version)
(2021). arXiv:2110.08959

9. Angiulli, F., Fassetti, F.: Dolphin: an efficient algorithm for mining
distance-based outliers in very large datasets. ACM Trans. Knowl.
Data Discov. 3(1), 4 (2009)

10. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional
spaces. In: European Conference on Principles of Data Mining and
Knowledge Discovery, pp. 15–27 (2002)

11. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in
fixed dimensions. In: SODA, vol. 93, pp. 271–280 (1993)

12. Babenko, A., Lempitsky, V.: Efficient indexing of billion-scale
datasets of deep descriptors. In: CVPR, pp. 2055–2063 (2016)

13. Baldi, P., Cranmer, K., Faucett, T., Sadowski, P., Whiteson, D.:
Parameterized machine learning for high-energy physics (2016).
arXiv preprint arXiv:1601.07913

14. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior
of several methods for balancing machine learning training data.
SIGKDD Explor. Newslett. 6(1), 20–29 (2004)

15. Bay, S.D., Schwabacher,M.:Mining distance-based outliers in near
linear timewith randomization and a simple pruning rule. In: KDD,
pp. 29–38 (2003)

16. Boguna, M., Krioukov, D., Claffy, K.C.: Navigability of complex
networks. Nat. Phys. 5(1), 74 (2009)

17. Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods,
models, and classification. ACMComput. Surv. 53(3), 1–37 (2020)

18. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying
density-based local outliers. In: SIGMOD, pp. 93–104 (2000)

19. Campos, G.O., Zimek, A., Sander, J., Campello, R.J., Micenková,
B., Schubert, E., Assent, I., Houle, M.E.: On the evaluation of
unsupervised outlier detection: measures, datasets, and an empiri-
cal study. Data Min. Knowl. Disc. 30(4), 891–927 (2016)

20. Chen, L., Gao, Y., Zheng, B., Jensen, C.S., Yang, H., Yang, K.:
Pivot-based metric indexing. PVLDB 10(10), 1058–1069 (2017)

21. Cui, B., Coi, B.C., Su, J., Tan, K.L.: Indexing high-dimensional
data for efficient in-memory similarity search. IEEE Trans. Knowl.
Data Eng. 17(3), 339–353 (2005)

22. Dearholt, D., Gonzales, N., Kurup, G.: Monotonic search networks
for computer vision databases. In: ACSSC, vol. 2, pp. 548–553
(1988)

23. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph
construction for generic similarity measures. In: WWW, pp. 577–
586 (2011)

24. Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest
neighbor search with the navigating spreading-out graph. PVLDB
12(5), 461–474 (2019)

25. Ghoting, A., Parthasarathy, S., Otey,M.E.: Fast mining of distance-
based outliers in high-dimensional datasets. In: SDM, pp. 609–613
(2006)

26. Ghoting, A., Parthasarathy, S., Otey,M.E.: Fast mining of distance-
based outliers in high-dimensional datasets. Data Min. Knowl.
Disc. 16(3), 349–364 (2008)

27. Gu, X., Akoglu, L., Rinaldo, A.: Statistical analysis of nearest
neighbor methods for anomaly detection. In: NeurIPS, pp. 10923–
10933 (2019)

28. Harwood, B., Drummond, T.: Fanng: fast approximate nearest
neighbour graphs. In: CVPR, pp. 5713–5722 (2016)

29. Hodge, V., Austin, J.: A survey of outlier detection methodologies.
Artif. Intell. Rev. 22(2), 85–126 (2004)

30. Ilyas, I.F., Chu, X.: Data Cleaning. Morgan & Claypool (2019)
31. Kim, J., Scott, C.D.: Robust kernel density estimation. J. Mach.

Learn. Res. 13(1), 2529–2565 (2012)
32. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based out-

liers in large datasets. In: VLDB, vol. 98, pp. 392–403 (1998)
33. Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K.,

Manolopoulos, Y.: Continuous monitoring of distance-based out-
liers over data streams. In: ICDE, pp. 135–146 (2011)

34. Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for
proximity search. In: SODA, pp. 798–807 (2004)

35. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detec-
tion in high-dimensional data. In: KDD, pp. 444–452 (2008)

36. Larson, S., Mahendran, A., Lee, A., Kummerfeld, J.K., Hill, P.,
Laurenzano, M.A., Hauswald, J., Tang, L., Mars, J.: Outlier detec-
tion for improved data quality and diversity in dialog systems. In:
NAACL-HLT, pp. 517–527 (2019)

37. Lerman, G., Maunu, T.: An overview of robust subspace recovery.
Proc. IEEE 106(8), 1380–1410 (2018)

38. Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W., Lin, X.:
Approximate nearest neighbor search on high dimensional data—
experiments, analyses, and improvement. IEEETrans.Knowl.Data
Eng. 32(8), 1475–1488 (2019)

39. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp.
413–422 (2008)

40. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approx-
imate nearest neighbor algorithm based on navigable small world
graphs. Inf. Syst. 45, 61–68 (2014)

41. Malkov, Y.A., Yashunin, D.: Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world
graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 824–836
(2020)

42. Orair, G.H., Teixeira, C.H., Meira, W., Jr., Wang, Y., Parthasarathy,
S.: Distance-based outlier detection: consolidation and renewed
bearing. PVLDB 3(1–2), 1469–1480 (2010)

43. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors
for word representation. In: EMNLP, pp. 1532–1543 (2014)

44. Perdacher, M., Plant, C., Böhm, C.: Cache-oblivious high-
performance similarity join. In: SIGMOD, pp. 87–104 (2019)

45. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for
mining outliers from large data sets. In: SIGMOD, pp. 427–438
(2000)

46. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for
activity monitoring. In: ISWC, pp. 108–109 (2012)

47. Sun, Y., Wang, W., Qin, J., Zhang, Y., Lin, X.: Srs: solv-
ing c-approximate nearest neighbor queries in high dimensional
euclidean space with a tiny index. PVLDB 8(1), 1–12 (2014)

48. Tao, Y., Xiao, X., Zhou, S.: Mining distance-based outliers from
large databases in any metric space. In: KDD, pp. 394–403 (2006)

49. Tran, L., Fan, L., Shahabi, C.: Distance-based outlier detection
indata streams. PVLDB 9(12), 1089–1100 (2016)

50. Wang, H., Bah, M.J., Hammad, M.: Progress in outlier detection
techniques: a survey. IEEE Access 7, 107964–108000 (2019)

51. Wang, Y., Liu, W., Ma, X., Bailey, J., Zha, H., Song, L., Xia, S.T.:
Iterative learning with open-set noisy labels. In: CVPR, pp. 8688–
8696 (2018)

52. Yianilos, P.N.: Data structures and algorithms for nearest neighbor
search in general metric spaces. In: SODA, pp. 311–321 (1993)

53. Yoon, S., Lee, J.G., Lee, B.S.:Nets: Extremely fast outlier detection
froma data streamvia set-based processing. PVLDB 12(11), 1303–
1315 (2019)

54. Yoon, S., Shin, Y., Lee, J.G., Lee, B.S.: Multiple dynamic outlier-
detection from a data stream by exploiting duality of data and
queries. In: SIGMOD, pp. 2063–2075 (2021)

123

http://corpus-texmex.irisa.fr/
https://github.com/dwyl/english-words
http://arxiv.org/abs/2110.08959
http://arxiv.org/abs/1601.07913

Fast, exact, and parallel-friendly outlier detection algorithms with ... 821

55. Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M.: In-memory
big datamanagement and processing: a survey. IEEETrans.Knowl.
Data Eng. 27(7), 1920–1948 (2015)

56. Zois, V., Tsotras, V.J., Najjar, W.A.: Efficient main-memory top-
k selection for multicore architectures. PVLDB 13(2), 114–127
(2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Fast, exact, and parallel-friendly outlier detection algorithms with proximity graph in metric spaces
	Abstract
	1 Introduction
	2 Preliminary
	3 Related work
	4 Our solution to the (r,k)-DOD problem
	4.1 New framework for the (r,k)-DOD problem
	4.1.1 Filtering phase
	4.1.2 Verification phase
	4.1.3 Analysis

	4.2 MRPG
	4.2.1 NNDescent+
	4.2.2 Connecting sub-graphs
	4.2.3 Removing detours
	4.2.4 Removing links
	4.2.5 Discussion

	5 Our solution to the (N,k)-DOD problem
	5.1 Filtering phase
	5.2 Verification phase
	5.3 Analysis

	6 Experiments
	6.1 Evaluation of (r,k)-DOD algorithms
	6.1.1 Evaluation of NNDescent+
	6.1.2 Evaluation of offline processing
	6.1.3 Evaluation of online processing

	6.2 Evaluation of (N,k)-DOD algorithms

	7 Conclusion
	Acknowledgements
	References

