
Title Efficient Retrieval of Top-k Weighted Triangles
on Static and Dynamic Spatial Data

Author(s) Taniguchi, Ryosuke; Amagata, Daichi; Hara,
Takahiro

Citation IEEE Access. 2022, 10, p. 55298-55307

Version Type VoR

URL https://hdl.handle.net/11094/92777

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Received May 12, 2022, accepted May 20, 2022, date of publication May 23, 2022, date of current version May 27, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3177620

Efficient Retrieval of Top-k Weighted Triangles
on Static and Dynamic Spatial Data
RYOSUKE TANIGUCHI, DAICHI AMAGATA , (Member, IEEE),
AND TAKAHIRO HARA , (Senior Member, IEEE)
Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan

Corresponding author: Ryosuke Taniguchi (taniguchi.ryosuke@ist.osaka-u.ac.jp)

This work was supported in part by JST PRESTO under Grant JPMJPR1931, in part by JSPS Grant-in-Aid for Scientific
Research (A) under Grant 18H04095, and in part by JST CREST under Grant JPMJCR21F2.

ABSTRACT Due to the proliferation of location-based services, spatial data analysis becomes more and
more important. We consider graphs consisting of spatial points, where each point has edges to its nearby
points and the weight of each edge is the distance between the corresponding points, as they have been
receiving attention as spatial data analysis tools. We focus on triangles in such graphs and address the
problem of retrieving the top-k weighted spatial triangles. This problem is computationally challenging,
because the number of triangles in a graph is generally huge and enumerating all of them is not feasible.
To overcome this challenge, we propose an algorithm that returns the exact result efficiently. We moreover
consider two dynamic data models: (i) fully dynamic data that allow arbitrary point insertions and deletions
and (ii) streaming data in a sliding-window model. They often appear in location-based services. The results
of our experiments on real datasets show the efficiency of our algorithms for static and dynamic data.

INDEX TERMS Dynamic data, spatial points, top-k retrieval, weighted graph.

I. INTRODUCTION
Due to the proliferation of location-based services and IoT
devices, many geo-location points are being generated nowa-
days. Useful observations can be obtained by analyzing
such spatial points, thereby existing works devised many
spatial point processing techniques [2]–[5], [20] and sys-
tems [21], [28], [32] so far. As spatial point analysis tools,
graph-based approaches have recently been receiving much
attention [9], [11]–[13], [30], [34].

A. MOTIVATION AND CHALLENGE
Given a set P of spatial points and a distance threshold r ,
a spatial neighbor graph of P consists of a set of vertices
that correspond to points in P and a set of edges where an
edge is created between two points iff the distance between
them is not larger than r and the weight of this edge is the
distance. Graph-based structures provide intuitive relation-
ships between spatial points, so techniques that mine some
patterns (i.e., sub-graphs) from spatial neighbor graphs are
often required. In graph contexts, triangles are particularly
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considered as triangle is one of the simplest yet important
primitive sub-graph patterns having many applications [17],
[22]. For instance, spatial triangles can be utilized in group
search [14], co-location pattern mining [34], and urban plan-
ning [12], [13]. Note that the number of triangles in a spatial
neighbor graph is generally huge. It is not feasible to enumer-
ate all of them, and the output size should be controllable (by
a user-specified parameter k) [13], [17]. In spatial databases,
given a subset of points in P, the cohesiveness of the subset
is a factor in measuring its importance [14], [34].

The above applications and observations motivate us to
address the problem of retrieving the top-k weighted spatial
triangles. The weight of the triangle formed by points px , py,
and pz is defined as dist(px , py)+ dist(py, pz)+ dist(px , pz),
where dist(·, ·) measures the Euclidean distance between two
points, which takes into account the cohesiveness. Then,
given P and k , this problem retrieves k spatial triangles
with the minimum weight among all triangles in the spatial
neighbor graph of P. For example, this problem formulation
yields the following observation:
Example 1: We ran the above problem on a real dataset

Places, a set of POIs in the U.S.A., by setting k = 100,
and found some co-location patterns. First, we observed
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an intuitive pattern: industrial and precision manufacturing
facilities exist nearmachine shops.We secondly observed that
〈dentist, psychologist, consultant〉 appears multiple times in
the top-k triangles, suggesting that (psychological) consult-
ing services tend to exist near clinics (or hospitals). In addi-
tion, we found that consultant services tend to exist near
capital and risk management services, such as investment and
stocks, in the top-k result.

As seen above, this problem helps analysts and experts
mine (i) relationships between points and (ii) pat-
terns/knowledge hidden in spatial datasets, and they also help
consider where to open a new store (or service).

However, this problem is computationally challenging.
A straightforward approach is to enumerate all triangles and
then output k triangles with the minimum weight. The num-
ber of triangles in the spatial neighbor graph is exponential to
the dataset size, suggesting the infeasibility of this approach.
To alleviate this cost, DHL [17], which is a heuristic algo-
rithm andwas proposed originally for graph databases, can be
used. DHL needs to sort edges in order of weights, because it
greedily accesses the edges in this order to avoid enumerating
triangles with large weights. However, if we employ DHL,
we face substantial time incurred by sorting a large amount
of edges of the spatial neighbor graph of P.

B. CONTRIBUTION
To solve the above issues, we propose an efficient algorithm
that returns the exact answer. We observe that a subset of
the spatial neighbor graph, which usually contains the top-
k weighted triangles, can be built offline. From this partial
graph, for each point p ∈ P, we can enumerate a triangle
having p with a small weight in O(1) time offline. These n
triangles provide a tight threshold for the top-k result, which
helps filter unnecessary points and triangles, accelerating
online computation. Thanks to these observations, our algo-
rithm does not need to correctly build the spatial graph and
sort all edges.

We moreover consider insertions of new points and dele-
tions of existing points, because this case often appears in
location-based services [2], [10]. In this case, the top-k result
may change, thus we need to efficiently update the result
whenever we have an update (insertion or deletion). We show
that our filtering idea for static data is still effective for
dynamic data. Furthermore, we consider a sliding-window
model for applications that focus only on recently generated
points [2], [3], [19], [20]. We also design an efficient and
exact algorithm for this case.

We summarize our main contributions below.

• We address the problem of retrieving the top-k weighted
spatial triangles. To the best of our knowledge, this is the
first work to tackle this problem in spatial databases.

• We propose a simple yet efficient algorithm for solving
this problem exactly.

• We show how to deal with fully dynamic data to effi-
ciently update the top-k result.

• We design an efficient and exact algorithm for monitor-
ing the top-k result under a sliding-window model.

• We conduct experiments on real datasets, and the results
show that (i) our solution for static data is up to three
orders of magnitude faster than a baseline algorithm
and (ii) our solutions for dynamic data can quickly
update the top-k result.

This article significantly extends our conference paper [26].
Compared with this paper, this article provides
• more detailed explanations of our solution for static data
with examples and pseudo codes,

• an exact algorithm for fully dynamic data,
• an exact algorithm for streaming data in a sliding-
window model,

• a detailed performance statistics of our solution for static
data,

• experimental results of our solutions for dynamic data,
and

• surveys about related works.

C. ORGANIZATION
The rest of this article is organized as follows. Section II
introduces preliminary information. We present our solutions
for static data, fully dynamic data, and sliding-window data,
in Sections III, IV, and V, respectively. We report our exper-
imental results in Section VI. We review related work in
Section VII. Finally, in Section VIII, we conclude this article.

II. PROBLEM DEFINITION
LetP be a set of spatial (or geo-location) points in a Euclidean
space. A spatial point p ∈ P has 2-dimensional coordinates
∈ R2. The Euclidean distance between p and p′ is denoted
by dist(p, p′). Given a distance threshold r , we can build a
spatial neighbor graph of P defined below:
Definition 1 (Spatial Neighbor Graph): Given a set P of

points and a distance threshold r, the spatial neighbor graph
of P is an undirected graph consisting of a set of vertices that
correspond to the points in P and a set of edges where an
edge is created between pi and pj iff dist(pi, pj) ≤ r. The
edge between pi and pj is represented as ei,j and has a weight
w(ei,j) where w(ei,j) = dist(pi, pj).
In the spatial neighbor graph, there are triangles consisting

of three points fully connected to each other. We define their
weight:
Definition 2 (Weight of a Triangle): Given a triangle
4x,y,z consisting of three points px , py, and pz, the weight
of this triangle, w(4x,y,z), is:

w(4x,y,z) = dist(px , py)+ dist(py, pz)+ dist(px , pz). (1)
Section III addresses the problem defined as follows:
Definition 3 (Top-k Weighted Triangle Retrieval Problem):

Given a set P of points, an output size k, and a distance
threshold r, this problem is to retrieve at most k triangles
in the spatial neighbor graph of P with the minimum weight.

We assume that r is reasonably specified so that there are
many triangles in the graph.
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TABLE 1. Summary of notations.

When P is a dynamic set of spatial points, it is required to
update the top-k result. This problem, which we address in
Section IV, is formally defined as follows:
Definition 4 (Top-k Weighted Triangle Monitoring Prob-

lem on Fully DynamicData): Given a dynamic set P of points,
an output size k, and a distance threshold r, this problem is to
monitor (or update) at most k triangles in the spatial neighbor
graph of P with the minimum weight, whenever P has updates
(insertions and/or deletions of points).

Last, when P is a set of streaming points, a sliding-window
model, which takes only the most recent W points into
account, is usually employed [2], [3], [19], [20]. Section V
assumes this case and addresses the following problem.
Definition 5 (Top-k Weighted Triangle Monitoring Prob-

lem on a Sliding-Window Model): Given a set P of streaming
points, an output size k, a windows size W , and a distance
threshold r, this problem is to monitor (or update) at most
k triangles in the spatial neighbor graph of PW with the
minimum weight, where PW contains the W most recently
generated points in P.

Table 1 summarise notations used frequently in this article.

III. OUR SOLUTION FOR STATIC DATA
This section presents our proposed solution. Section III-A
introduces our main idea. In Sections III-B and III-C,
we detail our offline and online algorithms, respectively.

A. MAIN IDEA
To efficiently output the result, pruning points that do not
contribute to the top-k result is important. Assume that trian-
gle 4x,y,z is included in the top-k result. From Equation (1)
and Definition 3, it is intuitively seen that, for px , edges ex,y
and ex,z would be (two of) the t nearest neighbors (t-NNs)
of px , where t is a small constant. This suggests that the
top-k triangles can be retrieved from the t-NN graph and
that correct building of the spatial neighbor graph of P is not
necessary.
Example 2: Figure 1 depicts our idea. Consider an exam-

ple of P shown in Figure 1(a). Figures 1(b) and 1(c) respec-
tively show the spatial neighbor graph of P and 3-NN graph

FIGURE 1. Illustration of our idea. Red edges form the top-1 weighted
spatial triangle.

of P. The red edges show the top-1 weighted spatial triangle.
It can be seen that we can obtain the result from a sparser
graph than the spatial neighbor graph.

Now assume that we have the t-NN graph of P, then,
we can enumerate a promising triangle having p, i.e., the
triangle formed by p and its 2 nearest neighbors offline, for
each p ∈ P. Even if these triangles are not included in the top-
k result, they have small weights, leading to a tight threshold
for online computation that helps prune unnecessary points
(and triangles). Our algorithm is designed based on the above
ideas and consists of a one-time offline computation and
online computation.

B. OFFLINE PROCESSING
Algorithm 1 describes our offline algorithm. The objectives
of this offline processing are to (i) build a B-NN graph of
P, where B ≥ 3 is a batch size, and (ii) enumerate triangles
with small weights. The batch size B is tuned empirically,
and we show that a small constant (e.g., 10) is enough in
Section VI-A. We use p.E to denote the set of edges held by
a point p ∈ P.
Given P and B, for each px ∈ P, we compute the B-NNs of

px inP\{px} by using a kd-tree [6]. TheB-NNs aremaintained
in p.E and sorted in ascending order of weight (i.e., distance).
Moreover, for each px ∈ P, we compute the triangle 4x,y,z,
where py and pz are respectively the NN and 2-NN of px . This
triangle is maintained in T , so T has at most n triangles (we
remove duplicated triangles). Last, we sort the triangles in T
in ascending order of weight.
Remark: Our offline algorithm needs O(n1.5) time [26].

Let savg be the average number of edges held by each point.
Building the spatial neighbor graph of P incurs O(n(

√
n +

savg)) time. Our offline algorithm is hence cheaper, and it is
general to any k and r .

C. ONLINE PROCESSING
To efficiently retrieve the top-k weighted spatial triangles,
we consider edge access order. Let τ be an intermediate
threshold of the top-k result (i.e., the weight of the intermedi-
ate top k-th triangle). From τ and triangle inequality, for any
edges, we can obtain a weight θ that has to be satisfied to form
the top-k weighted spatial triangles. That is, any triangles
that have edges with weights larger than θ do not have to
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Algorithm 1 Offline Processing
Require: P (set of points) and B (batch size)
1: T ← ∅ // a set of triangles
2: for each px ∈ P do
3: px .E ← {ex,x ′ | px ′ ∈ B-NNs of px in P\{px}} // edges

are sorted in ascending order of weight
4: T ← T ∪{4x,y,z} where py and pz are respectively the

NN and 2-NN of px
5: end for
6: Sort the triangles 4 ∈ T in ascending order of w(4)

be enumerated. We exploit this observation along with the
triangles in T and the B-NN graph obtained offline.
Algorithm 2 overviews our online algorithm. Let Pcand be

the set of points that may form top-k triangles, and Pcand = P
at initialization. Our online algorithm has the following steps:

1) We first initialize the top-k result R and the threshold
τ from the n triangles obtained offline in DETERMINE-
THRESHOLD (Pcand , r). Then, from τ , we compute a
threshold θ for edges. As seen later, any edges with
weights larger than θ cannot form top-k triangles.

2) (If necessary, we update the B-NN graph by increasing
B.) In REDUCE-CANDIDATES (Pcand , i, θ), we remove
points with no edges satisfying θ any more from Pcand .

3) For each point in Pcand , we additionally enumerate
triangles that could be in the top-k result and update
R if necessary.

4) We repeat steps 2 and 3 until we have Pcand = ∅, and
then R is returned.

Below, we detail steps 1, 2, and 3.

• Step 1: Recall that T is a sorted set of triangles obtained
offline. Each triangle in T is formed by a point p, its NN,
and 2-NN. (We remove all triangles in T that have edges with
weights larger than r .) In DETERMINE-THRESHOLD (Pcand , r),
we initialize R by the first k triangles in T , and τ is the weight
of the k-th triangle. Let4x,y,z be the k-th triangle. We set the
threshold θ for edges as follows:

θ = τ −max{dist(px , py), dist(py, pz), dist(px , pz)}. (2)

This is used in the next step.

• Step 2: We next filter unnecessary points in Pcand by
using θ . Let pxj be the j-th NN of px . Consider the i-th iter-
ation of REDUCE-CANDIDATES (Pcand , i, θ). For px ∈ Pcand ,
if w(ex,xi+2) > θ , triangles including ex,xi+2 can be ignored.
(Recall that NN and 2-NN were considered in the offline
processing.)
Proposition 1: For a point px ∈ Pcand , if w(ex,xi+2 ) > θ ,

any triangles that have ex,xi+2 cannot be the top-k weighted
spatial triangles.

Proof: See [26]. �

From this observation, we see that, if w(ex,xi+2) > θ , all
unseen triangles having px do not have to be enumerated and

Algorithm 2 Online Processing
Require: P (set of points), k (output size), r (distance thresh-

old), B (batch size), and T (a set of triangles)
Ensure: R (set of k triangles with the minimum weight)
1: b← B
2: Pcand ← P
3: R← DETERMINE-THRESHOLD (Pcand , r)
4: 4x,y,z← triangle with the k-th smallest weight in R
5: τ ← w(4x,y,z)
6: θ ← τ −max{dist(px , py), dist(py, pz), dist(px , pz)}
7: i← 1
8: while Pcand 6= ∅ do
9: if i = b− 1 then

10: b← b+ B
11: Build b-NN graph of Pcand
12: end if
13: REDUCE-CANDIDATES (Pcand , i, θ)
14: R← ENUMERATE-TRIANGLES (Pcand , r, i)
15: Execute lines 4–6
16: i← i+ 1
17: end while

px can be safely removed from Pcand . REDUCE-CANDIDATES

(Pcand , i, θ) does this point removal.
The triangles enumerated offline practically have small

weights, as they are based on NN and 2-NN. Therefore, τ
and θ are tight even when i is small, and we can effectively
reduce the size of Pcand in early iterations.
Example 3: We use Figure 2 to understand our point filter-

ing. Assume that DETERMINE-THRESHOLD (Pcand , r) returns
the triangle formed by the red edges, and θ is also obtained as
depicted in this figure. Focus on px and py that are described
by green and blue, respectively. The edge between px (py)
and its 3-NN is described by the same color, and its weight
is shown in the right part of this figure. We have w(ex,x3 ) > θ

and w(ey,y3 ) > θ , and unseen triangles that have px or py
cannot be the top-k result. Therefore, we can remove them
from Pcand .

• Step 3: After filtering unnecessary points in the above
step, we enumerate triangles that may become the top-k
result in ENUMERATE-TRIANGLES (Pcand , r, i). Consider the
i-th iteration of this step. For each px ∈ Pcand , we enumerate
triangles formed by px , pxi+2 , and pxj , where j ∈ [1, . . . , i+1],
while updating the top-k result R, τ , and θ .
W.r.t. pxj , we access it in order of px1 , . . . , pxi+1 . Then, it is

important to notice that w(ex,xj ) + w(ex,xi+2) monotonically
increases. When we have w(ex,xj ) + w(ex,xi+2) ≥ τ , we see
that triangles with these edges cannot be the top-k result, thus
we can stop enumerating triangles without losing correctness.
Analysis: Let ni be the size of Pcand at the i-th iteration of

step 2. In addition, let n′i be the size of Pcand at the i-th itera-
tion of step 3. Our online algorithm needsO(

∑I
i=1(ni+ i ·n

′
i))

time, where I is the number of iterations of step 3. (The detail
appears in [26].) In Section VI-A, we show that our algorithm
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FIGURE 2. Illustration of REDUCE-CANDIDATES (Pcand , i, θ).

has a small n′i and I in practice, yieldingO(
∑I

i=1(ni+i·n
′
i)) ≈

O(n). This suggests that our algorithm practically beats any
approaches that build the spatial neighbor graph of P, as they
need at least �(n1+ε) time where ε > 0.

IV. OUR SOLUTION FOR FULLY DYNAMIC DATA
We next consider the case where P is subjective to updates
(point insertions and deletions), and address the problem
defined in Definition 4. In this case, the top-k result R may
change because of the update of P. We below consider how
to minimize the result update cost while keeping the correct
answer, and show that our approach in Section III-C can
actually deal with point insertions and deletions flexibly.
Hereinafter, we assume that the top-k result R is initialized
by our algorithm in the previous section.

A. INSERTION CASE
Assume that we have a new point px . It is important to note
that triangles which can newly become the top-k result are
limited to the ones having px . We use this observation to
incrementally update the top-k result.

1) Given px , we run a range search on a kd-tree where its
query point is px and radius is r , to update the B-NN
graph. (Observe that the points whose B-NNs may be
updated exist within the distance r from px , due to the
constraint of r .) For each point py in this range search
result, if px becomes a new B-NN of py, we add px into
the edge set py.E . Also, for px , we make px .E from this
range search result.

2) We next consider the triangle4x,x1,x2 . Ifw(ex , ex1 ) > θ

or w(ex , ex2 ) > θ , the weights of new triangles having
px are larger than τ . Hence, we terminate the update.

3) Otherwise, we run lines 7–16 of Algorithm 2 by setting
Pcand = {px}.

The main cost of this case is incurred by the range search,
which needsO(

√
n+s), where s is the size of the range search

result. The second operation needs O(1) time. Also, the third
operation needs a trivial cost� O(

√
n) because it has a few

iteration numbers in practice.

B. DELETION CASE
We next assume that a point px is removed from P. We have
two cases incurred by this point removal.

1) NO TRIANGLES ARE REMOVED FROM R
If no triangles having px are in the top-k result, it is trivial
to see that the top-k result does not change. In this case,
we simply remove the edges corresponding to px from the
B-NN graph.

2) SOME TRIANGLES ARE REMOVED FROM R
In this case, we need to update the top-k result. Note that this
case is essentially the same as the static case, because R has
less than k triangles. Therefore, to update R, we update the
B-NN graph, update R via DETERMINE-THRESHOLD (P, r),1

and then verify R through lines 4–16 of Algorithm 2.
Clearly, the former case needs O(1) time. The cost of

the latter case is the same as our online algorithm in
Section III-C. It is intuitively seen that the latter case rarely
occurs for datasets with a large n. This implies that the
amortized update cost for a deletion can come close to the
former cost.

V. OUR SOLUTION FOR SLIDING-WINDOW MODEL
This section addresses the problem in Definition 5. Different
from the fully dynamic case in Section IV, we need to con-
sider insertion and deletion at the same time in the sliding-
window model. This is because a window slide removes the
oldest point and inserts a new point. Therefore, under this
model, the top-k result has to be updated when
1) the weights of triangles having a new point are less than

the threshold of the current top-k result and
2) the removed point has triangles included in the current

top-k result.
To efficiently deal with these cases, we maintain the follow-
ing triangle for each point p ∈ PW . (Recall that PW is a set of
points in the current window.)
Definition 6 (4min

p ): Consider a point p ∈ PW , and 4min
p

represents the triangle that has the minimum weight among
the set of triangles having p but not being included in the
top-k result.

Although 4min
p may be updated when the window slides,

it supports efficient top-k result update. For case 1), we can
focus only on points p having w(4min

p ) < τ (recall that τ
is the threshold of the top-k result) and can ignore the other
points. For case 2), by adding4min

p into an intermediate top-k
result, we can obtain a tight τ , which also supports pruning
unnecessary points. Since we maintain only a single triangle
4

min
p for each point p ∈ PW , the space complexity is only

O(W ). Below, we show how to maintain 4min
p when px is

removed from and is added to the window.

A. DEALING WITH REMOVED POINT
When px is removed from the window, we confirm whether
px ∈ 4min of some points in PW . Let N (px) be a set of
neighbors of px . If px ∈ 4min

y for a point py ∈ PW , we have

1In this dynamic data case, for each point p ∈ P, we enumerate the triangle
p, its NN, and 2NN online, because it may be updated by past and current
point insertions and deletions.
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Algorithm 3 Removal
Require: PW , px (removed point), and R
1: if R contains triangles having px then
2: Remove all such triangles from R
3: end if
4: for each py ∈ N (px) such that px ∈ 4min

y do
5: 4

min
y ← UPDATE-4min(PW , py)

6: end for

Algorithm 4 Insertion
Require: PW , px (new point), and r
1: 4min

x ← UPDATE-4min(PW , px)
2: for each py ∈ N (px) do
3: 4

min
y ← UPDATE-4min(PW , py)

4: end for

to update 4min
y . To achieve this, we need to enumerate tri-

angles containing py, and this can be done by essentially the
same operation in step 3 of our algorithm for static data, see
Section III-C.

Algorithm 3 describes how to deal with px when it is
removed from the window. We first remove invalid triangles
from the current top-k resultR. Then, we update4min

y for each
py ∈ N (px) in the way explained above, which corresponds
to UPDATE-4min(PW , py).

B. DEALING WITH NEW POINT
When a new point px is inserted into the window, we evaluate
whether triangles having px and py can be 4min

y for each
py ∈ N (px). (We retrieve N (px) through a range search.)
Algorithm 4 describes this procedure.We first compute4min

x .
Then, for each py ∈ N (px), we update 4min

y if neces-
sary. How to enumerate triangles follows the same way as
in Section V-A.

C. TOP-k RESULT UPDATE
Recall that we need to update the top-k result R when
(i) w(4min

x ) < τ where px is a new point and (ii) triangles
having py, where py is a removed point, are included in R.
Taking into account this fact, we update R in the following
three steps, which are summarized in Algorithm 5.

1) We first remove invalid triangles from R in
Algorithm 3. Then, if |R| < k , we add (k − |R|)
triangles 4min with the minimum w(4min) to R to
obtain an intermediate top-k result with a (probably)
tight threshold.

2) If 4min
z was inserted into R in the previous step, there

may exist other triangles4 having pz such that w(4) <
τ . We hence enumerate such triangles and update4min

z
and R in lines 11–12.

3) Last, due to the update of τ , there may exist other points
p ∈ PW such that w(4min

p ) < τ . If so, we do the same
operations in the second step for p in lines 16–20.

Algorithm 5 Update-Top-k

Require: PW , r , T (set ofW triangles with4min) and R (the
current top-k result)

Ensure: R
1: Run Algorithms 3 and 4 in order
2: Sort the triangles 4min

∈ T in ascending order of
w(4min)

3: l ← k − |R|
4: if l > 0 then

R← R ∪ {l triangles with the smallest weight in T}
5: end if
6: 4x,y,z← triangle with the k-th smallest weight in R
7: τ ← w(4x,y,z)
8: i← 1
9: while i ≤ l do

10: p ← point having the triangle with the i-th smallest
weight in T

11: R← UPDATE-TOP-k-TRIANGLES(PW , p)
12: 4

min
p ← UPDATE-4min

p (PW , p)
13: Execute lines 6–7
14: i← i+ 1
15: end while
16: 4min

q ← triangle with the smallest weight in T
17: i← 1
18: while w(4min

q ) < τ do
19: Execute lines 11–14
20: 4

min
q ← triangle with the i-th smallest weight in T

21: end while

The number of triangles enumerated in Algorithm 5 can-
not be bounded (and the worst case can be similar to our
static algorithm) because it depends on data distributions.
Nevertheless, it is practically small because the top-k result
does not change so frequently. In Section VI-C, we show that
Algorithm 5 never reaches the worst case.

D. OPTIMIZATION
Assume that, for a point pa ∈ PW , 4min

a = 4a,b,c. It is
possible that 4min

b = 4a,b,c and 4min
c = 4a,b,c. If 4a,b,c

is newly included in the top-k result, we have to update
4

min
a , 4min

b , and 4min
c . Furthermore, if pa is removed from

the window, we have to update4min
b and4min

c . These degrade
the performance of Algorithm 5. To avoid such redundancy,
we employ a directed spatial neighbor graph.
Definition 7 (Directed Spatial Neighbor Graph): Assume

that points in PW are maintained by the generation order,
and o(pi) ≺ o(pj) shows that pi was generated before pj.
Then, given PW and r, in the directed spatial neighbor graph
of PW , there is a direct edge ei,j between pi and pj if and
only if dist(pi, pj) < r and o(pi) ≺ o(pj), where w(ei,j) =
dist(pi, pj).

From this definition, hereinafter, N (pi) is also re-defined
as a set of points pj such that dist(pi, pj) < r and o(pi) ≺
o(pj). Below, we present why this structure can remove the
redundancy.
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FIGURE 3. Example of the case where px is removed.

1) WHEN px IS REMOVED
Recall that the sliding-window model removes the oldest
point, so it is important to notice that o(px) ≺ o(p) for
every p ∈ PW . We then see that px /∈ N (p) and 4min

p never
contains px for every p ∈ PW . Therefore, when px is removed,
we do not have to update 4min

p for every p ∈ PW .
Example 4: We explain this observation by using Figure 3.

Figure 3(a) illustrates a directed spatial neighbor graph con-
sisting of PW = {p1, p2, p3, p4, p5, p6}, where o(pi) ≺ o(pj)
for i < j. Now assume that the window slides and p1 is
removed. As shown in Figure 3(b), the other points do not
have direct edges to p1 and do not change N (p). Hence,4min

p
also does not change.

2) WHEN py IS ADDED
In this case, we update the directed spatial neighbor graph
by using a range search. Then, for each px ∈ PW such that
dist(px , py) < r , we update 4min

y by enumerating triangles
that have both px and py (if necessary). Note that we have
4

min
y 6= 4

min
z for py and pz such that o(py) ≺ o(pz), since

N (pz) does not contain py.

3) TOP-k RESULT UPDATE
Thanks to the above optimization, we have no duplication
w.r.t.4min thus can avoid unnecessary triangle enumerations.
We incorporate this optimization into Algorithms 3–5.

VI. EXPERIMENT
For experiments, we used a Ubuntu machine equipped with
3.6GHz Intel Core i9-9900K CPU and 128GB RAM. In addi-
tion, all algorithms were compiled by g++ 9.3.0 with −O3
flag and ran in a single thread mode.

A. EVALUATION ON STATIC DATA
This section evaluates our algorithm for static data. We com-
pared it with DHL [17], which can compute the exact answer
from the spatial neighbor graph of P. As mentioned in
Sections I-A and VII, DHL is the only existing algorithm that
can deal with our problem. For DHL, we used the original
implementation.2

2https://github.com/raunakkmr/Retrieving-top-weighted-triangles-in-
graphs

TABLE 2. Impact of r on our algorithm.

1) DATASET
We used two real large datasets, CaStreet3 and Places,4

to investigate how efficiently our algorithm runs on large
datasets. Recall that one of our objectives is to design
an efficient (and exact) algorithm for the problem defined
in Definition 3. CaStreet consists of the minimum bound-
ing rectangles of road segments in the U.S.A. We used
bottom-left and upper-right points, and its cardinality is
4,499,454. Places consists of the geo-locations of public
places in the U.S.A, and its cardinality is 9,356,750.

2) PARAMETER
We set n = 1, 000, 000 (via random sampling), k = 100, and
r = 0.01 by default.

3) IMPACT OF BATCH SIZE B
We first empirically tune the batch size (a hyper-parameter),
because it can affect the efficiency of our algorithm. When
B = 5, the running time was 0.07 (0.18) [sec] on CaStreet
(Places). Also, when B = 10 and B = 15, on CaStreet
(Places), those were respectively 0.10 and 0.10 (0.16 and
0.17) [sec]. From this result, it can be seen that the running
time of our algorithm is almost not affected by B. This
means that the top-k result can be retrieved from a B-NN
graph, where B is small. This result justifies our idea in
Section III-A, i.e., it is not necessary to build the spatial
neighbor graph of P correctly. From the result, we set B =
10 in the remaining experiments.

4) IMPACT OF r
Note that as r increases, the number of neighbors also
increases. Table 2 shows the result of our experiment with
varying r . The computation time of our algorithm is essen-
tially the same even when we use a larger r than the
default one. This result shows the robustness of our algorithm
against r .

5) OFFLINE TIME
We report the offline time of our algorithm at the default
parameter. On CaStreet and Places, our offline algorithm
took 21.05 and 26.54 seconds, respectively. Since our offline
algorithm is general for any k and r , the offline time is rea-
sonable. (Actually, even if our algorithm begins from offline
computation, it took less time to return the answer thanDHL.)

3http://chorochronos.datastories.org/?q=node/59
4https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces
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FIGURE 4. Impact of cardinality of dataset.

TABLE 3. Statistics of our algorithm in each iteration on Places (k = 100).

6) IMPACT OF n
Figure 4 studies the scalability of our algorithm to the cardi-
nality of dataset n. Our algorithm has a linear scalability to n,
while DHL is superlinear w.r.t. n. This clarifies the advantage
of our algorithm. When we used all points of CaStreet and
Places, our algorithm is 2807 and 6193 times faster than DHL
on CaStreet and Places, respectively.

To understand the linear scalability of our algorithm,
we investigated the size of Pcand and the number of trian-
gles enumerated in each iteration. Table 3 shows the result
on Places when n = 1, 000, 000 and n = 9, 356, 750.
(We omit the result on CaStreet, because it is similar to the
one in Table 3.) It is important to note that the numbers of
iterations and triangles enumerated are both very small. This
also clarifies the effectiveness of our idea. Recall that the time
complexity of our online algorithm is O(

∑I
i=1(ni + i · n′i)).

In practice, I and n′i are sufficiently small. In addition, when
i ≥ 2, ni = n′i−1 and ni is also sufficiently small. Notice that
n1 = n, then we have O(

∑I
i=1(ni + i · n

′
i)) ≈ O(n). Now it is

clear why we have the linear scalability.

B. EVALUATION ON FULLY DYNAMIC DATA
This section evaluates our solution for fully dynamic data.
Because no existingworks have addressed this problem so far,
we compared our solution with our static algorithm that com-
putes the result from scratch whenever we have an update.

1) DATASET
We used the same datasets as the ones in Section VI-A, and
we used 1,000,000 points for initialization.

FIGURE 5. Impact of deletion rate.

2) WORKLOAD
We used 10,000 updates as a workload. This workload con-
sisted of (1−α)×10, 000 insertions and α×10, 000 deletions.
(Given an update is a deletion, we removed a random point in
P.) To investigate the result update efficiency of our solution,
we conducted experiments with varying α (i.e., deletion rate).
We set k = 100.

3) RESULT
We measured the time to complete the workload, and
Figure 5 depicts the result. Due to the incremental update,
our algorithm for dynamic data, which is represented
by ‘‘OurDynamic’’, completes the workload significantly
faster than the algorithm for static data (represented by
‘‘OurStatic’’). For example, in the case of CaStreet and
α = 0.1, OurDynamic completes the workload in about
400 seconds. Its average update time per an update is hence
about 40 milliseconds, whereas that of OurStatic is about
9000 milliseconds.5

When α is larger, the performance difference becomes
more bigger. We see that, as α increases, OurDynamic needs
less time to complete theworkload. Inmost deletion cases, the
top-k result did not change, meaning that OurDynamic incurs
only O(1) time in each of these cases. We had these cases
more as the deletion rate increases, thus its time becomes
shorter.

C. EVALUATION ON SLIDING-WINDOW MODEL
Last, we evaluate our algorithms for the sliding-window
model. This problem also has no existing works, so we
compared our algorithms with our static algorithm that com-
putes the result from scratch whenever the window slides.
We use ‘‘Ours’’, ‘‘Ours-Opt’’, and ‘‘Static’’ to respectively
denote Algorithm 5 without the optimization in Section V-D,
Algorithm 5 with the optimization, and the static algorithm.

1) DATASET
We used the same datasets in Section VI-B.

5This is slower than the computation time in the case of static data. When
datasets are static, for each point p ∈ P, OurStatic can enumerate the
triangle consisting of p, its NN, and 2NN offline. However, when datasets are
dynamic, it needs to do this online, because these triangles may be updated.
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FIGURE 6. Impact of window size.

2) WORKLOAD
After the firstW points were contained in the window, we ran
10,000 slides. We set r = 0.1 and k = 100.

3) RESULT
We measured the total time to deal with 10,000 window
slides. Figure 6 shows the result of experiments with different
window sizes. We observe that largerW needs a longer time.
However, Ours and Ours-Opt keep short update time. When
the window size is 1,000,000, Ours is about 700 (10,000)
times faster than Static on CaStreet (Places). Furthermore,
even when the window size is 2 million, Ours-Opt needs
only 82 [msec] and 2 [msec] on average to update the top-k
result per slide on CaStreet and Places, respectively, sug-
gesting that it scales well to large window sizes. It is also
seen that Ours-Opt is always faster than Ours, thanks to the
optimization.

VII. RELATED WORK
This section reviews existing works that relate to the problem
of retrieving the top-k weighted spatial triangles.

A. GRAPH-BASED SPATIAL DATA MINING
Graph is a simple yet effective structure for representing
relationships between data. Spatial points usually have rela-
tionships if they locate in close positions. Therefore, graph-
based spatial data mining has been receiving attention. (Note
that our work is different from works for road networks,
e.g., [8], because these assume that graphs are given and P
is constrained by the road networks.)

Literature [12] considers spatial pattern matching. Given
P and a query that is a graph pattern, it finds all subsets of
P that matches the query. Different from our problem, this
spatial pattern matching requires to specify a sub-graph of P.
Clearly, the graph structure of P is not pre-known, so it is
not an easy task to specify a concrete query. Moreover, the
query result size is not controllable. Literature [13] considers
a top-k version of spatial pattern matching, but it still has
the former drawback. Spatial maximal clique in the spatial
neighbor graph of P is considered in [34]. Since a triangle is
a 3-clique, this problem is similar to ours. The authors of [34]
found that the finding a spatial maximal clique corresponds
to doing a maximal convex polygon. Their solution is based

on this observation, and they do not consider the weight of
polygons. Therefore, their technique cannot be employed for
finding the top-k weighted spatial triangles.
Given a setW of location-based service providers and a set

U of users with locations, [27] tackled the bipartite matching
betweenW and U . Unlike the above works that try to ‘‘mine
interesting sub-graphs’’, this problem focuses on ‘‘building a
graph’’. Recently, [30] designed a system that builds spatial
proximity graphs (e.g., a k-NN graph and Delaunay graph)
from a given set P of points for multicore processors. It also
supports other operations, such as clustering and computing
minimum spanning trees on spatial proximity graphs. How-
ever, retrieving the top-k weighted spatial triangles is not
supported, and we are the first to study this problem in spatial
databases.

B. SPATIAL DATA ANALYSIS
Because spatial point analysis is well known to be important,
much efforts have been made to develop query processing
techniques, machine-learning models [23], [29], and sys-
tems [32], [33]. We below review some examples of analyti-
cal techniques.

The problem of maximizing range sum queries was
addressed in [11]. Given a rectangle, this problem finds
the location of the rectangle that maximizes the weight of
points enclosed by the rectangle. A streaming version of this
problem was also considered in [2], [3]. Such location selec-
tion problems have been extensively studied, e.g., in [15].
The interaction between spatial points was addressed in [4].
Some works considered spatial data visualization. In [16],
to achieve interactive visualization of spatial points, the
authors proposed an efficient algorithm that incrementally
updates the visualization result from the previous one. More-
over, [7] proposed an efficient bounding technique for kernel
density visualization.

C. TRIANGLE ENUMERATION/COUNTING
Because the problem of triangle enumeration/counting is
one of the classic problems in graph databases, many works
tackled it. State-of-the-art algorithms for static and dynamic
graphs can be found in [1], [18], [24], [25], [31]. Unfortu-
nately, existing works for graph databases generally assume
unweighted graphs and do not consider any ranking of
triangles.

Similarly to our problem, DHL addressed the problem of
retrieving the top-k weighted triangles in graph databases.
It was originally proposed for weighted graphs, so it can deal
with our problem by building the spatial neighbor graph of
P. (DHL originally retrieves k triangles with the maximum
weight, but it is straightforward to focus on triangles with
the minimum weight.) However, because of the overhead
incurred by dealing with the spatial neighbor graph, DHL is
significantly outperformed by our algorithm.

VIII. CONCLUSION
This paper addressed the problems of retrieving and moni-
toring top-k weighted spatial triangles. As there are many
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triangles in a spatial neighbor graph, enumerating all tri-
angles is costly. We hence proposed an efficient algorithm
that returns the exact answer. Based on this algorithm,
we showed how to deal with fully dynamic data. Further-
more, we designed an algorithm for streaming data in a
sliding-windowmodel. The results of our experiments on real
datasets demonstrate the efficiencies of our algorithms for
static and dynamic data.
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