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ABSTRACT The problem of maximum inner product search (MIPS) is one of the most important
components in machine learning systems. However, this problem does not care about diversity, although
result diversification can improve user satisfaction. This paper hence considers a new problem, namely the
categorical diversity-aware IPS problem, in which users can select preferable categories. Exactly solving
this problem needs O(n) time, where n is the number of vectors, and is not efficient for large n. We hence
propose an approximation algorithm that has a probabilistic success guarantee and runs in sub-linear time to
n. We conduct extensive experiments on real datasets, and the results demonstrate the superior performance
of our algorithm to that of a baseline using an existing MIPS technique.

INDEX TERMS Inner product search, category, diversification, high-dimensional data.

I. INTRODUCTION
The problem of maximum inner product search (MIPS)
has been extensively studied for a decade [5], [9], [19],
[26], [27], because this problem is one of the most
important components of modern machine-learning systems.
In these systems, objects (e.g., users and items) are usually
represented as dense high-dimensional vectors, and the inner
product of two vectors (e.g., those of a user and an item)
indicates their relevance (a high inner product shows a high
relevance). A typical example is recommender systems [3],
[5], [16], [20], [22], [30], [31], [32], [33]. Given a user (query)
vector, MIPS returns item the most relevant to the user (i.e.,
the item where the inner product of the user and item vectors
is the largest among all items) and this item is considered as
a recommendation item.

A. MOTIVATION
Although this problem can search for relevant vectors, con-
sidering only relevance may not maximize user satisfaction,
since the search result may be skewed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingli Li .

Example 1: The left part of TABLE 1 shows the k-MIPS
result (k = 5) of a user in the real dataset MovieLens.
We see that 4 out of 5 movies belong to the same category,
‘‘adventure’’. Even if the user wants the system to display a
recommendation result with more categories, k-MIPS cannot
deal with this case.
To avoid this skew, result diversification is often employed [1],
[4]. There are many definitions of diversity, and this paper
focuses on categorical diversity, because this is often required
in recommendation scenarios [7] of entertainment (e.g., video
on demand services) and business (e.g., online recruiting
services).

Consider that a given dataset X has multiple categories
and each vector x ∈ X belongs to one category. Past studies
of categorical diversification consider implicit approaches.
For example, Cheng et al. proposed a normalized coverage
measurement and tried to obtain a high value of the
criterion [7]. In [37], Zheng et al. proposed a learning-based
model that exploits a user-item bipartite graph to make
more categories reachable from users. These works devised
model-level techniques, so it is not guaranteed that the
search results contain preferable categories. To summarize,
(i) the MIPS problem may yield a skewed result and
(ii) existing categorical diversification problems cannot
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TABLE 1. Example of difference between k-MIPS and categorical diversity-aware k-IPS result sets for a user in MovieLens (k = 5 and kadventure = 2,
kmystery = 1, kfantasy = 1, and kanimation = 1).

flexibly control the degree of categorical diversity in the
search results.

To remove these drawbacks, an explicit way of categorical
diversification is necessary. To this end, we address the
following two important points:

• It is desirable for users to be able to specify the
categories in which they are interested, because doing so
guarantees that the search result contains user-preferable
categories.

• In addition, the search results should contain items that
are ranked in the top-K , where K ≥ k is a user-tolerable
ranking (e.g., K = 100), to keep highly relevant (and
categorically diversified) results. (Notice that K = k is
too strict, because the top-k items usually do not cover
user-specified categories, as shown in Example 1.)

Based on these two points, we formulate a new variant of the
MIPS problem, namely the categorical diversity-aware k-IPS
problem. In this problem, users can specify the categories that
they want the search result to display, which addresses the
first point. Specifically, they can specify ki (≤ k), and this
means that ki vectors belonging to category ci are required to
be included in the search result. Let τ be the inner product of
q and x ′, where q is a given query vector and x ′ is the top-K
vector in the K -MIPS problem for q. Assuming that ki ≥ 1,
each vector x ∈ Xi, where Xi is a set of vectors belonging to
ci, has to satisfy x · q ≥ τ to be included in the search result.
This addresses the second point. The categorical diversity-
aware k-IPS problem retrieves those k vectors that satisfy the
above requirements.
Example 2: The right part of TABLE 1 shows a categorical

diversity-aware k-IPS result for the same user in Example 1
(we set K = 100). Assume that this user provides
kadventure = 2, kmystery = 1, kfantasy = 1, and kanimation = 1
(i.e., s/he wants the system to display two adventure movies,
one mystery movie, one fantasy movie, and one animation
movie). Our problem follows these inputs, and the user can
enjoy a diversified result.

B. CHALLENGE
A simple algorithm that solves our problem is to run a
K -MIPS algorithm first to obtain τ and then exhaustively
search vectors x such that x ·q ≥ τ for each category ci where
ki ≥ 1. Even a state-of-the-art exact MIPS algorithm [20]
requires O(n) time, where n = |X |. Therefore, this simple
algorithm incurs O(n) time. This time cost is large for search
problems, because it corresponds to accessing (at most) all

vectors in X . However, this is unavoidable if the exact search
result is required.

Many applications are tolerable approximate results and
require high efficiency [13], [17], [24], [28], [29], [30].
An approximation algorithm, which runs in time sub-linear to
n, is therefore required. The challenge is then to design such
an approximation algorithm that returns a search result with
high accuracy in time sub-linear to n. This is not trivial, and
existing approximate MIPS algorithms cannot overcome this
challenge. This is because state-of-the-art approximate MIPS
algorithms have no theoretical time [13], [29], [36], [38] or
have O(n log n) > O(n) time [17], [28].

C. CONTRIBUTION
We overcome the above challenge and propose a sub-linear
time algorithm with a probabilistic success guarantee.
We show that our problem can be transformed into the cosine
similarity search problem, and this observation enables us
to estimate τ . That is, we do not have to run any MIPS
algorithm to compute τ . Furthermore, the estimation provides
a bounded error by using a constant number of iterations.
We carefully design a dataset partitioning technique, and,
thanks to this partitioning, we can obtain an accurate search
result only from some subsets of X . We theoretically analyze
its time and space complexities along with its success
probability. Its practical performance is also evaluated by
using real datasets, and the results confirm that our algorithm
yields high accuracy and is much faster than the baseline
algorithm.

We summarize the main contributions of this paper as
follows:
• We formalize the categorical diversity-aware k-IPS
problem. This is the first work to address this problem.

• We show that exactly solving this problem requiresO(n)
time.

• We propose a sub-linear time approximation algorithm
with a probabilistic success guarantee: for each specified
category, if there is at least one vector that satisfies the
condition for being in the result, it can be included in the
result probabilistically.

• We conduct extensive experiments using real datasets.
Our experimental results demonstrate that our algorithm
is fast and accurate.

D. ORGANIZATION
The rest of this paper is organized as follows. Section II
introduces the problem definition and our baseline algorithm.
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Section III reviews related studies. In Sections IV and V,
we propose our algorithm and report our experimental results,
respectively. Finally, in Section VI, we conclude this paper.

II. PRELIMINARY
Wefirst introduce our formal problem definition, and we then
design a baseline algorithm for this problem.

A. PROBLEM DEFINITION
Let X be a set of d-dimensional vectors, where d is high (e.g.,
d ≥ 100). We use n to denote |X |. The inner product of x
and x ′ is denoted by x · x ′. For ease of presentation, we first
define the problem of k-maximum inner product search (or
k-MIPS).
Definition 1 (k-MIPS Problem): Given a set X of vectors,

a query vector q, and an output size k, this problem retrieves
k vectors x ∈ X such that x · q is the largest among X (ties
are broken arbitrarily).

We here consider categorical diversification. We assume
that there are multiple categories, and each x ∈ X belongs
to one category. Let Xi ⊂ X be a set of vectors belonging
to a category ci ∈ C , where C is a set of categories in X .
We have X =

⋃
Xi. Consider that the display size is k , e.g., k

items can be included in a search result. The k-MIPS problem
makes such a result by considering only inner products.
This does not guarantee that the result contains items with
various categories, so users may not be able to obtain ‘‘new
notices.’’ For example, in a movie recommendation scenario
like Example 1, the result contains only adventure movies the
user knows well. From this, it is desirable for users to specify
categories as input. More specifically, we consider a scenario
where users can specify ki for each ci so that

∑
ki = k . Note

that ki is the number of items in ci that will be included in
the result. This allows users to flexibly control the categorical
diversity of the result. Based on this idea, we define our
problem, namely categorical diversity-aware k-IPS.1

Definition 2 (Categorical Diversity-Aware k-IPS): Given
a set X of vectors, a query vector q, an output size k, an output
size ki for each category ci (

∑
ki = k), and a ranking

threshold K ≥ k, this problem retrieves, for each category
ci, at most ki vectors x ∈ Xi such that x · q ≥ τ , where τ is
the K-th largest inner product in the K-MIPS problem for q.
(If Xi contains more than ki vectors such that x · q ≥ τ , any
ki vectors satisfying this can be selected.)
We here put two important notes:

1) Although the above problem considers the output
size for each category (i.e., ki), specifying this when
ki = 0 is not user-friendly. We therefore assume that
ki = 0 by default, and users specify ki only when
ki ≥ 1.

2) This problem uses τ , the K -th largest inner product for
q, to retrieve items relevant to q. Therefore, K should
be a reasonable rank (e.g., K = 100), since each item

1From Definition 2, it is clear that each vector x in the search result
satisfies the threshold τ , but x · q may not be maximum. Therefore, our
problem is k-IPS, not k-MIPS.

TABLE 2. Summary of notations.

Algorithm 1 BASELINE

Require: X , q, k , {k1, . . . , k|C|} such that
∑

m ki = k , and K
1: τ ← K -MIPS by a state-of-the-art algorithm
2: Cq← ∅
3: for each ci such that ki ≥ 1 do
4: Ci← ∅
5: Cq← Cq ∪ {Ci}
6: end for
7: for each x ∈ X such that x · q ≥ τ do
8: if x ∈ Xi then
9: Ci← Ci ∪ {x}

10: end if
11: end for
12: S ← ∅
13: for each Ci ∈ Cq do

Add at most ki vectors sampled from Ci to S
14: end for
15: return S

in the search result of our problem is ranked in the
top-K w.r.t. the K -MIPS problem for q. This is totally
different from running ki-MIPS on Xi for each category
ci such that ki ≥ 1. For example, assume that we run
1-MIPS on Xi (i.e., ki = 1) and obtain x as a result.
If x · q < τ , x cannot be a result in the categorical
diversity-aware k-IPS problem. (Also, x is not relevant
to q and is therefore not of interest to the user.)

TABLE 2 summarizes the notations frequently used in this
paper.

B. BASELINE ALGORITHM
One simple algorithm that solves the categorical diversity-
aware k-IPS problem is to employ an existing state-of-the-art
k-MIPS algorithm. Recall that x ∈ X must have x · q ≥ τ

to be included in the categorical diversity-aware k-IPS result.
In addition, to obtain τ , we need to run K -MIPS. From this
observation, we design a baseline algorithm.

Algorithm 1 describes the baseline algorithm. It first com-
putes τ (the K -th largest inner product for q) by using a state-
of-the-art k-MIPS algorithm (we employ FEXIPRO [20]).
Then, it obtains a set Ci of vectors x such that x · q ≥ τ

for each category ci where ki ≥ 1. Last, at most ki vectors are
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randomly sampled from Ci, and these vectors are returned as
the search result.

Although this algorithm does not lose correctness, it incurs
O(n) time, because the exact k-MIPS problem requires O(n)
time. Theoretically, this time means accessing (at most) all
vectors in X , which is not desirable for the search problem.
However, to obtain the correct result (i.e., to compute τ ),
we cannot avoid running a k-MIPS algorithm. This suggests
that such an exact algorithm needs O(n) time. Therefore,
to address this inefficiency issue, we need to consider
an approximation algorithm. It is usually the case that
applications allow approximate results in order to improve
the computational cost [13], [17], [24], [28], [29], [30].
We therefore devise an approximation algorithm that runs in
sub-linear time to n in Section IV.

III. RELATED WORK
This section reviews existing k-MIPS and result diversifica-
tion works.

A. EXACT MIPS AND ITS VARIANT
As mentioned in Section II-B, solving the k-MIPS problem
exactly needsO(n) time. Therefore, existing works developed
heuristic algorithms that filter unnecessary vectors.

In [9], [19], and [26], tree-based data structures are
considered to prune a subset of vectors that cannot be
included in the k-MIPS answer. It is well known that
tree-based data structures face the curse of dimensionality,
thereby they do not function well on high-dimensional
datasets. (This phenomenon has been empirically observed
in [20] and [31].) Therefore, these approaches are not
appropriate for recent machine-learning systems that employ
dense high-dimensional vectors.

To remove this drawback, literature [20] proposed a linear-
scan-based algorithm, FEXIPRO. This algorithm exploits an
early termination strategy that stops the linear-scan early
whenever unseen vectors cannot be the k-MIPS result. To stop
the scan as early as possible, FEXIPRO employs some
optimization techniques. We incorporate this algorithm into
our baseline algorithm.

B. APPROXIMATE MIPS
To improve the efficiency of k-MIPS, approximation algo-
rithms have also been considered. Approximate k-MIPS
algorithms are roughly categorized into three techniques,
LSH (locality-sensitive hashing), proximity graph, and
quantization.

LSH-based algorithms [17], [25], [27], [28], [35] transform
the k-MIPS problem into the nearest neighbor search
problem in Euclidean space. Fast and accurate approximate
nearest neighbor search (ANNS) techniques have also been
extensively studied, and these LSH-based algorithms exploit
the ANNS techniques. Themain advantage of this LSH-based
approach is error guarantee. These algorithms probabilisti-
cally guarantee the worst case error of their approximate
k-MIPS results. However, to have this guarantee, LSH-based

algorithms incur many data accesses, resulting in a large
computational cost.

Proximity graph algorithms [23], [29], [38] are based on
a greedy algorithm. In the pre-processing (offline) phase,
these algorithms build a proximity graph, where each vertex
of this proximity graph corresponds to a vector in X . If the
inner product of x and x ′ is high, there is an edge between
x and x ′. The greedy algorithm assumes that, for a given
query vector q, if x · q is high, each vector x ′ having an edge
to x also has a high inner product with q. This algorithm
traverses such vertices greedily. It is empirically observed that
proximity graph algorithms provide fast computation time
and high recall, which is the main advantage of this approach.
However, this approach does not provide any theoretical
guarantee.

Quantization-based algorithms [10], [13], [36] mainly
consider space usage reduction. In this approach, each vector
in X is quantized, i.e., transformed into a lower-dimensional
vector. To minimize the lose derived from this quantization,
state-of-the-art works [10], [13], [36] proposed optimized
learning functions. Similar to proximity graph algorithms,
this approach also has no theoretical error bound. In addition,
this approach still incurs a linear time to n.

We do not consider approximate k-MIPS algorithms as
competitors for the following reasons. Proximity graph and
quantization-based algorithms do not have any theoretical
performance guarantees, so the search result may be arbi-
trarily wrong. LSH-based algorithms can bound the worst-
case error, but even state-of-the-art algorithms [17], [28] need
O(n log n) time, which is slower than FEXIPRO.

C. RESULT DIVERSIFICATION
Recently, diversification has been getting more important,
and many works in sub-fields of computer science dedicated
to diversification. Also, industries (e.g., Airbnb and Spotify)
try to display diversified results in their systems [1], [4].
There aremany views about diversification, and the following
three concepts are representative [18]: category, novelty, and
content.

In category-based diversification, past studies, e.g., [21],
[37], and [39], consider that the search results need to
maximize the number of categories. Although we follow
categorical diversity, we improve this past idea. Assume that
we automatically maximize the number of categories in a
search result for a given user. If the user is not interested
in some categories in the result, this maximization does not
make sense. Clearly, it is better for users to select their
preferable categories, to maximize their satisfaction. Our
problem is designed based on this idea. Note that the past
studies cannot deal with our problem, since they proposed
only model-level techniques and cannot guarantee that the
search result contains categories in which a user is interested.

Novelty and content share a similar idea: a search result
is diverse if it contains dissimilar items or these items
are dissimilar to those checked by the user. To measure
the dissimilarity between two vectors, past studies usually
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employ distance [2], [11], [12], [15], [34]. This problem
setting is totally different from ours, so these works cannot
solve our problem.

IV. PROPOSED ALGORITHM
A. MAIN IDEA AND OVERVIEW
To devise a sub-linear time algorithm, we have to avoid
(i) computing the exact τ and (ii) accessing unnecessary
vectors. We achieve these based on two ideas. First, as a given
query is interested only in categories ci such that ki ≥ 1,
accessing the vectors in Xj such that kj = 0 is unnecessary,
whereas the baseline algorithm may incur this access when
computing τ . We hence partition X into disjoint subsets
X1, . . . , and X|C|, in order not to access vectors belonging to
unnecessary categories. We furthermore partition each subset
Xi into disjoint buckets so that each bucket contains vectors x
with high x · q for a given q. It can be seen that we can obtain
such x by accessing only some buckets, not X . To enable this,
we estimate τ and avoid computing its exact value. By using
an estimated τ , we search for x in a bucket such that x ·q ≥ τ .
It is clear that, if we can obtain an accurate τ , the accuracy of
the search result becomes high. Below, we elaborate how to
implement the above ideas.

1) DATASET PARTITION
Recall that x ∈ X is a d-dimensional vector, so x can be
represented as x = 〈x[1], . . . , x[d]〉, where x[i] is the value
of the i-th dimension of x. Let ‖x‖ be the Euclidean norm of

x, i.e., ‖x‖ =
√∑d

i=1 x[i]2. Furthermore, letM be the largest
norm amongX . For each x ∈ X , we transform x into a (d+1)-
dimensional vector x̄, and

x̄ = 〈
x[1]
M

, . . . ,
x[d]
M

,

√
M2 − ‖x‖2

M
〉. (1)

Similarly, any query vector q is transformed into a (d + 1)-
dimensional vector q̄ so that

q̄ = 〈
q[1]
‖q‖

, . . . ,
q[d]
‖q‖

, 0〉. (2)

We have

x̄ · q̄ =
x · q
‖q‖M

. (3)

Therefore,

x · q ≥ τ ⇒ x̄ · q̄ ≥
τ

‖q‖M
. (4)

Notice that we have ‖x̄‖ = 1 and ‖q̄‖ = 1, so

x̄ · q̄ = cos(x̄, q̄). (5)

Equations (4) and (5) demonstrate that the inner product
search problem can be transformed into the cosine similarity
search problem.

From this observation, we can employ LSH for cosine
similarity [6]. In a nutshell, this approach partitions X into
disjoint subsets, and each subset contains vectors such that
any two vectors in the subset have a high cosine similarity

FIGURE 1. Overview of dataset partition. Xi is a set of vectors belonging
to category ci . After transforming each vector x ∈ Xi into a
(d + 1)-dimensional vector x̄ , we compute a hash code for x̄ . Xi is
partitioned into disjoint buckets, and each bucket contains vectors having
the same hash code.

(probabilistically). It is important to note that we do not
employ LSH for inner product, because inner products can
have infinite values whereas cosine similarity is bounded
in [−1, 1] (or [0, 1] in our problem). This is an important
observation for estimating τ

‖q‖M , which is introduced later.
An LSH for cosine similarity, h(x̄), provides a binary value
(0 or 1) based on:

h(x̄) =

{
1 (a · x̄ ≥ 0)
0 (a · x̄ < 0),

(6)

where a is a (d+1)-dimensional random vector, and the value
of its each dimension follows the normal distributionN (0, 1).
By using α hash functions, h1(x̄), . . . , hα(x̄), with different
random seeds, the hash code of x̄, hc(x̄), is obtained as:

hc(x̄) = 〈h1(x̄), . . . , hα(x̄)〉. (7)

We use this hash code to partition Xi. Specifically, Xi is
partitioned into disjoint buckets based on hash code, and a
bucket is a set of vectors having the same hash code. A hash
table Ti is a set of the disjoint buckets.
Example 3: FIGURE 1 illustrates our dataset partitioning

approach. For simplicity, this figure describes how to
partition X1 as an example.
The above example shows the case where we have a single

hash table for Xi. To increase the probability that a given
q has a similar hash code to those of vectors with high
inner product (or cosine similarity), we build β hash tables
with different random seeds. This dataset partitioning is
done offline, and Section IV-B presents our offline algorithm
that builds hash tables. In Section IV-C, we show that this
partitioning approach provides a sub-linear time algorithm
and a probabilistic success guarantee.

2) ESTIMATING τ

Let τ ′ = τ
‖q‖M . Assume that ki ≥ 1 and Xi has ki vectors

x such that x · q ≥ τ . Then, Equation (4) demonstrates that
there are ki vectors x̄ in the hash table Ti such that x̄ · q̄ ≥ τ ′.
Let τ ′est be an estimated value of τ ′. If τ ′est = τ ′, we can
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obtain the ki vectors by looking into Ti. Having τ ′est = τ ′

without running theMIPS problem is, unfortunately, difficult.
However, we can obtain τ ′est > (1 − ε)τ ′, where ε < 1 is a
small constant. We below demonstrate this.

Equations (4) and (5) show that we have
τ

‖q‖M
= τ ′ ∈ [0, 1]. (8)

Now let τ ′est = (1−ε)j, and assume that using τ ′est cannot find
ki vectors in Ti such that x̄ · q̄ ≥ τ ′est . In this case, it is trivial to
see that τ ′est > τ ′. Then, we set τ ′est = (1− ε)j+1, and assume
that using τ ′est finds ki vectors in Ti such that x̄ ·q̄ ≥ τ

′
est . In this

case, we have τ ′est ≤ τ
′. To summarize, there is a non-negative

integer j such that

(1− ε)j+1 ≤ τ ′ < (1− ε)j. (9)

FromEquations (8) and (9), it is trivial that we can have τ ′est >
(1−ε)τ ′. This approach may include x such that x ·q < τ , but
the error, i.e., (1−ε), is small. (In our experiments, we set ε =
0.01.) Furthermore, to have τ ′est > (1 − ε)τ ′, we need to set
τ ′est iteratively (i.e., j is incremented by one multiple times).
Since we have τ ′ ∈ [0, 1], the number of iterations is bounded
by a constant.2 This is also a merit of the transformation in
Equation (1).

B. OFFLINE PROCESSING
Algorithm 2 describes our offline algorithm. First, for each
x ∈ X , it computes its Euclidean norm ‖x‖, and then obtains
the largest normM (lines 1–2). Next, it transforms each x into
x̄ (lines 3–10). Last, it builds β hash tables for each category
in the manner presented in Section IV-A1, and T maintains
all hash tables (lines 12–20). (Recall that FIGURE 1 also
describes the steps in Algorithm 2.) It is important to note that
this algorithm is conducted only once and the data structures
built by this algorithm are general to any queries.

1) TIME COMPLEXITY
Hereinafter, we assume that d = O(1) for simplicity.
Computing the norm for every x ∈ X needsO(n) time, andM
is also obtained inO(n) time. The vector transformation needs
O(1) time for a given x ∈ X , thus its total time is also O(n).
Given a vector x̄ ∈ X̄ , its hash code is obtained in O(α) time.
Since we have β hash tables, hash table construction needs
O(β × α × n) time. Because β is a fixed hyper-parameter,
we haveO(αβn) = O(αn). (We set α so that 2α = polylog(n),
which is introduced in Section IV-C1.) Now it is clear that
Algorithm 2 needs O(αn) time. In practice, α is a small
constant, suggesting that O(αn) ≈ O(n).

2) SPACE COMPLEXITY
To maintain the n transformed vectors, trivially O(n) space
is required. Because each hash table maintains n transformed
vectors and we have β hash tables, the space complexity of
the hash tables is O(βn). Recall that β = O(1), and the total
space complexity is O(n).

2This is trivial. Considering (1− ε)j ≈ 0, we see that j is a constant.

Algorithm 2 OFFLINE-PROCESSING
Require: X , C , β (number of hash tables), and α (number of

hash functions for each table)
1: Compute ‖x‖ for every x ∈ X
2: M ← max{‖x1‖, . . . , ‖xn‖}
3: X̄ ← ∅
4: for each category ci ∈ C do
5: X̄i← ∅
6: for each x ∈ Xi do
7: Transform x into x̄
8: X̄i← X̄i ∪ {x̄}
9: end for

10: X̄ ← X̄i
11: end for
12: T ← ∅ // T is a set of hash tables
13: for i = 1 to |C| do
14: Ti← ∅ // Ti will maintain β hash tables for X̄i
15: T ← T ∪ {Ti}
16: end for
17: for each X̄i ∈ X̄ do
18: for j = 1 to β do
19: Build a hash table Ti,j for X̄i
20: Ti← Ti ∪ {Ti,j}
21: end for
22: end for

Algorithm 3 ONLINE-PROCESSING
Require: X , q, k , {k1, . . . , k|C|} such that

∑
m ki = k ,K , and

T
1: Transform q into q̄
2: Compute β hash codes of q̄
3: S ← ∅ // S is a result set
4: for each ci such that ki ≥ 1 do
5: Si← Retrieval(T , q̄, ki, ε)
6: S ← S ∪ {Si}
7: end for
8: return S

C. ONLINE PROCESSING
Given a query vector q, k , {k1, . . . , k|C|}, and K , we run our
algorithm described in Algorithm 3. It first transforms q into
q̄ based on Equation (2), and then computes a hash code of q̄
for each hash table. After that, for each category ci such that
ki ≥ 1, it runs Algorithm 4 that returns Si, which is a set of
vectors x ∈ Xi such that x̄ · q̄ ≥ τ ′est . Finally, Algorithm 3
returns S, which is a merged set of S1, . . . , S|C|.
Here, we present Algorithm 4 by focusing on a category ci

such that ki ≥ 1. Recall that the hash codes are binary vectors,
as can be seen from Equation (6). Then, the distance between
two hash codes can be obtained by the Hamming distance.
Since similar vectors have similar hash codes, buckets with
small Hamming distances to the hash codes of a given query
vector would contain vectors x̄ with high cos(x̄, q̄). Motivated
by this, for each hash table, we computeO(log n) buckets with
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Algorithm 4 RETRIEVAL(T , q̄, ki, ε)
1: X ′← ∅
2: for each j ∈ [1, β] do
3: Bj ← O(log n) buckets with the minimum Hamming

distance to the hash code of q̄ in Ti,j
4: X ′← X ′ ∪ Bj
5: end for
6: Si← ∅ // Si is a result set in this category
7: τ ′est ← 1
8: while τ ′est > γ do
9: for each x̄ ∈ X ′ such that x̄ · q̄ ≥ τ ′est and x /∈ Si do

10: Si← Si ∪ {x}
11: if |Si| = ki then
12: break
13: end if
14: end for
15: if |Si| = ki then
16: break
17: end if
18: τ ′est ← (1− ε)τ ′est
19: end while
20: return Si

the minimum Hamming distance to the hash code of q̄, and
the vectors in the buckets are maintained by X ′. Next, we set
τ ′est = 1 and search for vectors x̄ ∈ X ′ such that x̄ · q̄ ≥ τ ′est .
Such vectors are maintained in Si. If |Si| < ki, we update
τ ′est as in line 18. Algorithm 4 iterates the same operation
until |Si| = ki or τ ′est ≤ γ , where γ is a hyper-parameter
for avoiding redundant iterations.3

1) TIME COMPLEXITY
We analyze the time complexity of Algorithm 3 to demon-
strate the efficiency of our algorithm. Computing q̄ and its
hash codes needO(1) andO(α) times, respectively. The main
bottleneck of Algorithm 3 is attributed to line 5. Let the time
of line 5 be G(n), and the time complexity of Algorithm 3 is
O(α + |C|G(n)). If α and G(n)) are sub-linear to n, we see
that O(α + |C|G(n)) < O(n). We below demonstrate that α
and G(n)) are sub-linear to n.
Assume that ki ≥ 1. First, consider the retrieval of

O(log n) buckets with the minimum Hamming distance to
the hash code of q̄ in Ti,j. Notice that there are at most 2α

buckets, as the hash codes are α-dimensional binary vectors.
By setting α so that 2α = polylog(n), the number of buckets
in a hash table is at most sub-linear to n. (Note that polylog(n)
is always smaller than O(n).) This operation therefore needs
polylog(n) time. (Recall that the number of hash tables is
constant.) In addition, α has to be (much) smaller than O(n),
because α = O(n) cannot satisfy the setting of 2α =
polylog(n). We next consider the number of vectors in a
bucket. We set α so that this number also follows polylog(n).

3Because τ ′est > 0, we need to terminate the iteration at least when
τ ′est ≈ 0.

(In practice, we can obtain such α for large n, and α is often
small.4) As polylog(n) × O(log n) = polylog(n), |X ′| =
polylog(n). Recall that Algorithm 3 scans X ′ and the number
of iterations in Algorithm 4 is constant (see Section IV-A2).
We hence have G(n) = polylog(n), which demonstrates that
Algorithm 3 is at most sub-linear to n.

2) SUCCESS PROBABILITY ANALYSIS
Next, we analyze the success probability of our algorithm
to understand the high accuracy of algorithm in practice.
According to [6], the probability that two vectors x̄ and x̄ ′

have h(x̄) = h(x̄ ′), Pr[h(x̄) = h(x̄ ′)], is

Pr[h(x̄) = h(x̄ ′)] = 1−
cos−1(θ )

π
, (10)

where θ = x̄ · x̄ ′. Consider a set P of positive integers p such
that x ∈ Xi is the top p-th vector in the MIPS problem for q.
From Section IV-A2, it is trivial to see that x̄ · q̄ > (1− ε)τ ′.
For ease of presentation, let θp = x̄p·q̄, where xp is the top p-th
vector in the MIPS problem for q. From Equation (10), the
probability that q̄ and x̄p have the same hash code, Pr[hc(q̄) =
hc(x̄p)], is

Pr[hc(q̄) = hc(x̄p)] = (1−
cos−1(θp)

π
)α. (11)

Then, we can obtain Pr(θp,m), namely the probability that the
Hamming distance between hc(q̄) and hc(x̄p) is m:

Pr(θp,m) =
(
α
m

)
(1−

cos−1(θp)
π

)α−m(
cos−1(θp)

π
)m. (12)

Given a hash table Ti,j, we assume that the Hamming
distances between the hash codes of the O(log n) buckets and
the query are in [hd li,j, hd

u
i,j]. The probability Pr(θp,Ti,j) that

x̄p is in the O(log n) buckets is:

Pr(θp,Ti,j) =

hdui,j∑
m=hd li,j

Pr(θp,m). (13)

Now we see that xp exists in X ′, i.e., the O(log n)×β buckets
of the β hash tables Ti,1, . . . , Ti,β , with probability at least

Pr(xp ∈ X ′) = 1−5βj=1(1− Pr(θp,Ti,j)). (14)

That is, for each category ci such that ki ≥ 1, Algorithm 3
can obtain the top p-th vector x ∈ Xi with probability at least
1 − 5βj=1(1 − Pr(θp,Ti,j)). Last, let I be a set of positive
integers p such that x ∈ Xi is the top p-th vector in the MIPS
problem for q and ‘‘p ≤ K ’’. Assume that |I | ≥ ki. The
probability that X ′ contains ki vectors such that x̄ · q̄ ≥ τ ′

is (
|I |
ki

)
5p∈I ′Pr(xp ∈ X

′), (15)

where I ′ is a subset of I such that |I ′| = ki. Therefore,
the probability that X ′ contains at least ki vectors such

4In our experiments, α is only 6.
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that x̄ · q̄ ≥ τ ′ is

|I |∑
k ′=ki

(
|I |
k ′
)
5p∈I ′Pr(xp ∈ X

′). (16)

In the next section, we confirm that the above probability
is high by investigating the accuracy of the search result
returned by Algorithm 3.

V. EMPIRICAL STUDY
We report our empirical results. All experiments were
conducted on a Ubuntu 16.04 LTS machine with 128GB
RAM and Core i9-9980XE CPU@3.0GHz. We evaluated
the baseline algorithm introduced in Section II-B and our
algorithm5 proposed in Section IV. (Recall that this is the
first work to address the problem of categorical diversity-
aware k-IPS, so no existing works can solve this problem.)
These algorithms were implemented in C++, complied by
g++ 5.5.0 with -O3 optimization, and single threaded.

A. EXPERIMENTAL SETTING
1) DATASETS
We used the following three real ratings datasets.
• Amazon-Kindle [14]: A rating dataset for books in
Amazon, containing 430,530 items.

• Amazon-Movie [14]: A rating dataset for movies in
Amazon, containing 200,941 items.

• MovieLens6: This is the MovieLens 25M dataset, and
the number of items is 59,047.

We used Matrix Factorization [8] to generate query (user)
vectors and item vectors in an inner product space. The
dimensionality of each vector was 200. Unfortunately,
Amazon-Kindle and Amazon-Movie do not have categorical
information. We hence added a category for each item in
these datasets uniformly at random, and the total number
of categories was 25. For MovieLens, we used the original
category.7

2) DEFAULT PARAMETERS
We set K = 100 and k = 10 by default. Given a query
vector q, it specified random three categories, and ki =
k/3. When we investigated the impact of a given parameter,
the other parameters were fixed. For our algorithm, we set
ε = 0.01, α = 6, and β = 3.

3) CRITERIA
We measured the running time and accuracy of the baseline
and our algorithms. The accuracy, Acc, is defined below.
Given a query q, the accuracy of its search result is:

Acc =
t∑

min{ki, li}
,

5The code is available at our GitHub repository:
https://github.com/peitaw22/Categorical-Diversity-Aware-k-IPS

6https://grouplens.org/datasets/movielens/
7For items having multiple categories, we chose a random one.

FIGURE 2. Scalability test. Dashed lines show the case of linear scalablity,
while solid lines show the performance of our algorithm. The result
demonstrates that our algorithm is sub-linear to data size, because its
scalablity is better than the linear case.

where t is the number of vectors x ∈ X in the search result
such that x · q ≥ τ and li is the number of vectors in Xi
satisfying x · q ≥ τ . Notice that there are less than ki vectors
in Xi satisfying x · q ≥ τ , so min{ki, li} is necessary to
have Acc ∈ [0, 1] for any query. Because our algorithm does
not provide false positives, other criteria related to precision
cannot be measured.

We used 100 random queries to evaluate the performance
of each algorithm. We report the average and median of Acc.

B. EXPERIMENTAL RESULT
1) OFFLINE TIME
We first report empirical offline time of our algorithm (i.e.,
practical time of Algorithm 2). OnAmazon-Kindle, Amazon-
Movie, and MovieLens, the offline time was 1.41, 3.05, and
0.41 [sec], respectively. Recall that the offline processing is
done only once, and the result confirms that its practical time
is short enough.

2) SCALABILITY TEST
We next show that our algorithm scales sub-linearly to n.
FIGURE 2 shows the results of our experiments that vary data
size by random sampling. Specifically, the solid lines show
the results of our algorithm, whereas the doted lines show
the cases of linear time. We observe that our algorithm scales
better than the linear case, which confirms the consistency
with our theoretical analysis in Section IV-C1.

3) IMPACT OF RANKING THRESHOLD K
TABLEs 3–5 show the results of the experiments with
varying K . Recall that the baseline is an exact algorithm,
so its Acc is always 1. Our algorithm returns an approximate
result, but its accuracy is generally high and nearly perfect
on the three datasets. We see that, on Amazon-Kindle and
MovieLens, the median Acc is 1.00, demonstrating that at
least 50% of queries obtained the exact result. In addition,
this high accuracy is not affected by K . This is because
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TABLE 3. Impact of K on average accuracy, median accuracy, and time [msec] on MovieLens.

TABLE 4. Impact of K on average accuracy, median accuracy, and time [msec] on Amazon-Movie.

TABLE 5. Impact of K on average accuracy, median accuracy, and time [msec] on MovieLens.

TABLE 6. Impact of k on average accuracy, median accuracy, and time [msec] on Amazon-Kindle.

TABLE 7. Impact of k on average accuracy, median accuracy, and time [msec] on Amazon-Movie.

TABLE 8. Impact of k on average accuracy, median accuracy, and time [msec] on MovieLens.

our algorithm employs a threshold estimation approach that
works for arbitrary ranking.

In terms of running time, the baseline algorithm needs
longer time as K increases. This is a reasonable result,
since it runs the k-MIPS algorithm (FEXIPRO [20]) to
obtain τ , and it needs a longer time for a larger output
size (K in this case). On the other hand, the running time
of our algorithm does not change even if K increases.
This is attributed to the threshold estimation approach and
the fact that the size of each LSH bucket is independent
of K . It is important to note that our algorithm is clearly
faster than the baseline algorithm. For example, on Amazon-
Kindle, Amazon-Movie, and MovieLens, our algorithm is
respectively 4.2x, 9.5x, and 2.8x faster than the baseline at
the default parameter setting. Since our algorithm yields an
accurate result, it provides a good trade-off between time and
accuracy.

4) IMPACT OF OUTPUT SIZE k
We next study the impact of output size k , and TABLEs 6–8
show the results. We see that the performance of the baseline

algorithm is stable. This is trivial, since its computational
bottleneck is to compute τ , which is independent of k .

Similarly, the performance of our algorithm is also not
affected by k much. For a fixed ranking threshold K , τ is also
fixed. Our algorithm accesses vectors in each corresponding
bucket until it finds k (or ki) vectors. Therefore, as k increases,
its running time becomes longer (only slightly). As for its
accuracy, our algorithm keeps high Acc, as with the case of
the experimental result w.r.t. K .

5) IMPACT OF #CATEGORIES SPECIFIED
Last, we investigate the influence of the number of categories
specified in TABLEs 9–11. Again, the performance of the
baseline algorithm is stable, since its bottleneck is irrelevant
to the number of categories specified. Different from this
observation, the running time of our algorithm is affected
by the number of categories specified. This is because
our algorithm accesses the LSH buckets for each category
specified. That is, the running time of our algorithm is
(almost) linear to the number of categories specified, as is
theoretically confirmed in Section IV-C1. On the other hand,
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TABLE 9. Impact of #categories on average accuracy, median accuracy, and time [msec] on Amazon-Kindle.

TABLE 10. Impact of #categories on average accuracy, median accuracy, and time [msec] on Amazon-Movie.

TABLE 11. Impact of #categories on average accuracy, median accuracy, and time [msec] on MovieLens.

the accuracy of our algorithm is almost not affected by the
number of categories specified, and our algorithm keeps
almost perfect accuracy.

VI. CONCLUSION
Because of the recent widespread application of machine-
learning, many objects are represented as dense high-
dimensional vectors in inner product space. In such
machine-learning systems, the maximum inner product
search (MIPS) problem plays an important role. However,
the standard MIPS may not yield a preferable result, because
it does not care about any diversification. We therefore
consider categorical diversity and formulate a new problem,
namely the categorical diversity-aware k-IPS problem. In this
problem, users can select their preferable categories, and
the results displayed must be presented in a user-specified
rank. We show that exactly solving this problem incurs
O(n) time, where n is the dataset size. From this fact,
we proposed a sub-linear time approximation algorithm that
has a probabilistic performance guarantee. We conducted
extensive experiments using real datasets. Our experimental
results demonstrate the high efficiency and accuracy of our
algorithm.

Our proposed algorithm is not deterministic w.r.t. approx-
imation guarantee, so developing a deterministic approach is
an interesting future work. In addition, although this paper
focused on categorical diversity, there are other definitions
of diversity, as discussed in Section III-C. To deal with
many scenarios, a comprehensive algorithmic framework for
different diversity definitions is desirable. Developing such a
framework is an open problem.
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